JP5927270B2 - ロボットシミュレーション装置 - Google Patents
ロボットシミュレーション装置 Download PDFInfo
- Publication number
- JP5927270B2 JP5927270B2 JP2014226164A JP2014226164A JP5927270B2 JP 5927270 B2 JP5927270 B2 JP 5927270B2 JP 2014226164 A JP2014226164 A JP 2014226164A JP 2014226164 A JP2014226164 A JP 2014226164A JP 5927270 B2 JP5927270 B2 JP 5927270B2
- Authority
- JP
- Japan
- Prior art keywords
- striatum
- point
- interest
- robot
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims description 62
- 210000001577 neostriatum Anatomy 0.000 claims description 87
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000013016 damping Methods 0.000 description 8
- 230000005484 gravity Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/1605—Simulation of manipulator lay-out, design, modelling of manipulator
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/32—Circuit design at the digital level
- G06F30/33—Design verification, e.g. functional simulation or model checking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/01—Mobile robot
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20207—Multiple controlling elements for single controlled element
- Y10T74/20305—Robotic arm
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Robotics (AREA)
- Geometry (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Manipulator (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
Description
本発明は、線条体が取り付けられたロボットの動作をシミュレーションするロボットシミュレーション装置に関する。
線条体が取り付けられたロボットにおいては、ロボットの動作に伴い線条体がねじれを生じる場合がある。この点に関し、従来、線条体を固定する第1固定点および第2固定点における自転によるねじれと、第1固定点と第2固定点との位置関係とに基づき、線条体のねじれ量を算出するようにした装置が知られている(例えば特許文献1参照)。また、複数の質点と各質点間を結ぶばねとによって線条体のシミュレーションモデルを作成し、線条体の動作シミュレーションを行うようにした装置が知られている(例えば特許文献2参照)。
しかしながら、上記特許文献1記載の装置では、第1固定点と第2固定点とに着目して線条体のねじれ量を算出するため、線条体の長手方向の各部のねじれ状態(例えば第1固定点と第2固定点の中間位置のねじれ状態)を把握することが困難である。また、上記特許文献2記載の装置のように線条体の動作シミュレーションを行うだけでは、線条体のねじれ状態を容易に把握することができない。
本発明の一態様は、ロボットに取り付けられる線条体の動作をシミュレーションするロボットシミュレーション装置であって、線条体の外周面を規定するように線条体の長手方向に沿って設定された複数の質点と、複数の質点同士を結ぶ複数のばね要素とによって線条体の3次元モデルを生成するモデル生成部と、線条体の3次元モデル上に、線条体のねじれ状態を把握するための複数の着目点を設定する着目点設定部と、線条体の3次元モデルを用いて、ロボットの動作に伴う線条体の動作をシミュレーションするシミュレーション部と、シミュレーション部によるシミュレーションによって得られた複数の質点の時系列の位置データおよび複数の着目点の時系列の位置データを用いて、線条体の輪郭を表す線条体画像とともに、着目点を表す着目点画像を表示する表示部と、を備え、複数の着目点は、複数の質点の一部であり、線条体の3次元モデルの周方向一部に、線条体の3次元モデルの長手方向に沿って一列に設定されている。
本発明によれば、線条体の3次元モデル上に設定された複数の着目点の時系列の位置データをシミュレーションによって取得し、この着目点の位置データを用いて着目点画像を表示するので、線条体の長手方向の各部のねじれ状態を、ユーザは容易に把握することができる。
以下、図1〜図5を参照して本発明の実施形態に係るロボットシミュレーション装置について説明する。ロボットシミュレーション装置は、例えばオフラインでロボットの動作をシミュレーションし、シミュレーション結果を表示する装置である。本実施形態に係るロボットシミュレーション装置は、例えば垂直多関節ロボットに適用することができる。垂直多関節ロボットは、サーボモータによって回転駆動される複数のアームと、アーム先端部に取り付けられたハンドとを有する。
この種のロボットには、複数のアームに沿って線条体が配線される。より具体的には、アームの外周面には、線条体の取付け部が設けられ、線条体は、長手方向において部分的に取付け部に固定される。線条体は、配線や配管等を総称したものであり、サーボモータへの動力線や各種信号線等の配線、液体や気体を供給する配管などを含む。線条体には、ゴム等、高い弾力性を有する材料だけでなく、弾力性が低い材料、例えば光ファイバーケーブル等を用いることができる。
線条体は、取付け部を介してロボットに取り付けられるため、取付け部においてロボットと一体に移動する。したがって、線条体は、ロボットの動作に伴い変形し、ねじれを生じるおそれがある。線条体を光ファイバーケーブルにより構成した場合に線条体にねじれが生じると、線条体が断線または破損するおそれがある。これを避けるためには、予めロボットの動作に伴う線条体のねじれ状態をシミュレーションによって把握することが好ましい。そこで、本実施形態では、以下のようにロボットシミュレーション装置1を構成する。
図1は、本発明の実施形態に係るロボットシミュレーション装置1の構成を示すブロック図である。このシミュレーション装置1は、CPU,ROM,RAM,その他の周辺回路などを有する演算処理装置を含んで構成され、機能的構成として、モデル生成部11と、着目点設定部12と、シミュレーション部13と、表示部14とを有する。
モデル生成部11は、ロボットの3次元モデル(ロボットモデル)と、ロボットモデルに形成された線条体取付け部において、ロボットモデルに付設される線条体の3次元モデル(線条体モデル)とを生成する。これらロボットモデルおよび線条体モデルは、それぞれ3次元形状のロボットおよび線条体を表し、例えば図示しない入力部を介して入力されたロボットおよび線条体のCADデータ等を用いて生成することができる。
図2は、円形断面を有する線条体モデル2の一例を示す斜視図である。図2に示すように、線条体モデル2は、複数の質点3と、質点3同士を接続する複数のばね要素4とによって形成されている。質点3は、線条体の長手方向に垂直である平面20上に配置された第1質点31と第2質点32とを含む。第1質点31は、平面20の径方向中央部に配置されている。第2質点32は、第1質点31の周囲に周方向等間隔に配置され、線条体の外周面を規定する。第1質点31と第2質点32とは、線条体の長手方向に沿って等間隔に配置されている。各質点3は、質量情報と、3次元位置情報(位置データ)と、3次元速度情報とを有する。各質点3の質量は、線条体の質量を質点の個数で除算した値とすることができる。
ばね要素4は、同一平面20の円周上に配置された第2質点32同士を接続する第1ばね41と、平面20上で第1質点31から放射状に延びて第1質点31と第2質点32とを接続する第2ばね42と、線条体の長手方向に沿って一列に配置された第1質点31同士および第2質点32同士を順次接続する第3ばね43と、長手方向に配置された第2質点32同士を斜めに接続する第4ばね44とを含む。第1ばね41と第2ばね42とは、線条体の径方向の弾性を表し、第3ばね43と第4ばね44とは、線条体の長手方向の弾性を表す。
着目点設定部12は、線条体モデル2上に、線条体のねじれ状態を把握するための複数の着目点33を設定する。図2では、線条体モデルの周方向一部に、より具体的には、第3ばね要素43を介して順次接続された線条体の長手方向に沿った一列の第2質点32に着目点33が設定されている。着目点33は、入力部を介して線条体モデル2上にユーザが任意に設定することができる。
シミュレーション部13は、予め定められた動作プログラムに従いロボットモデルを動作させ、ロボットの動作に伴う線条体の動作をシミュレーションする。すなわち、ロボットモデルの動作に伴い、線条体モデル2の各質点3に作用するばね要素4からの弾性力と重力と減衰力とを所定の単位時間毎に算出し、単位時間毎に各質点3の位置を変更するようなシミュレーション(物理シミュレーション)を実行する。
この場合、質点3Aと質点3Bとがばね要素4を介して互いに接続されているときの、質点3Aに作用するばね要素4の弾性力F1は、次式(I)で算出できる。
F1=(3A→3Bの単位ベクトル)×ばね定数×ばね伸縮量 (I)
上式(I)で、ばね要素4の伸縮量(ばね伸縮量)は、ある状態のばね要素4の長さからばね要素4の自然長を減算した値とする。ばね要素4の自然長は、線条体モデル2の伸縮および曲げがない自然な状態の質点3A、3B間の距離に相当する。
F1=(3A→3Bの単位ベクトル)×ばね定数×ばね伸縮量 (I)
上式(I)で、ばね要素4の伸縮量(ばね伸縮量)は、ある状態のばね要素4の長さからばね要素4の自然長を減算した値とする。ばね要素4の自然長は、線条体モデル2の伸縮および曲げがない自然な状態の質点3A、3B間の距離に相当する。
ばね要素の減衰力には、ばねの振動を抑える減衰力F2と各質点3の並進運動を抑える減衰力F3とがあり、それぞれ次式(II),(III)で算出できる。
F2=v×vの内積×振動の減衰係数 (II)
F3=各質点の速度×並進運動の減衰係数 (III)
上式(II)で、vは、(質点3Bの速度−質点3Aの速度)の単位ベクトルである。減衰力F2,F3は、ばねの動きを遅くように作用する。
F2=v×vの内積×振動の減衰係数 (II)
F3=各質点の速度×並進運動の減衰係数 (III)
上式(II)で、vは、(質点3Bの速度−質点3Aの速度)の単位ベクトルである。減衰力F2,F3は、ばねの動きを遅くように作用する。
各質点3に作用する重力F4は、次式(IV)で算出できる。
F4=重力方向の単位ベクトル×重力加速度×質点の質量 (IV)
なお、線条体モデル2の質点3が、ある干渉面に衝突したとき、質点3には反発力が作用する。この点を考慮し、弾性力と重力と減衰力だけでなく、質点に作用する反発力を算出してもよい。この場合、衝突時の質点の速度の、衝突した面の面直方向の成分の値は、衝突前の速度に反発係数を乗算して符号を反転した値になる。このとき、反発力は、衝突の前後の速度の変化量を単位時間で割って得られる加速度に、質点の質量を乗算することで算出できる。
F4=重力方向の単位ベクトル×重力加速度×質点の質量 (IV)
なお、線条体モデル2の質点3が、ある干渉面に衝突したとき、質点3には反発力が作用する。この点を考慮し、弾性力と重力と減衰力だけでなく、質点に作用する反発力を算出してもよい。この場合、衝突時の質点の速度の、衝突した面の面直方向の成分の値は、衝突前の速度に反発係数を乗算して符号を反転した値になる。このとき、反発力は、衝突の前後の速度の変化量を単位時間で割って得られる加速度に、質点の質量を乗算することで算出できる。
シミュレーション部13は、各質点3に作用する力F1〜F4の合力をさらに算出し、これを質量で除算することにより質点3の加速度を算出する。また、加速度×単位時間により質点3の速度の変化量を算出し、これを質点3の速度に加算することで質点3の速度を算出する。さらに、速度×単位時間により質点3の変位量を算出し、これを質点3の3次元の位置データに加算することで質点3の位置を算出する。
すなわち、シミュレーション部13は、単位時間毎に、ロボットの動きに合わせて線条体取付部における質点3の位置を変更し、各質点3に作用する力F1〜F4を上述したようにして算出するとともに、これらの合力を算出し、各質点3の速度および位置を更新することにより、線条体の挙動をシミュレートする。これにより各質点3の時系列の位置データが得られる。また、着目点33は質点3の一部であるので、着目点33の位置データも得られる。
表示部14は、表示モニタと、表示モニタに画像を表示するための表示制御部とを有する。表示部14は、シミュレーション部13によるシミュレーションによって得られた各質点3の時系列の位置データを用いて、線条体の輪郭を表す3次元の線条体画像を表示モニタに表示するとともに、複数の着目点33の時系列の位置データを用いて、着目点33を表す3次元の着目点画像を表示する。すなわち、所定時間毎に変化する線条体画像と着目点画像の動画を表示モニタに表示する。
図3は、線条体画像51と着目点画像52の一例を示す図である。図3において、線条体画像51は実線で、着目点画像52は黒丸で示されている。着目点33は、線条体の周方向同一位相に長手方向一列に設定されるため、線条体がねじれると、図3に示すように、着目点画像52が線条体画像51上にねじれた状態で表示される。これにより、ユーザは線条体のねじれ状態を容易に把握することができる。
本実施形態のロボットシミュレーション装置は、さらに線条体のねじれ状態を定量的に表すため、ねじれ量を算出する機能を有する。ねじれ量は、例えばシミュレーション部13により算出される。図4は、ねじれ量の算出手順を説明する図である。図4において、20n,20n+1は、質点3が設定される線条体モデル2の互いに隣り合う平面であり、31n,31n+1は、それぞれ平面20n,20n+1の中央部に位置する質点であり、32n,32n+1は、それぞれ平面20n,20n+1の円周上の周方向互いに同一位置(同一位相)に位置する質点である。質点32n,32n+1は、例えば着目点33である。
平面20n,20n+1間における線条体のねじれ量は、質点31n,32n,31n+1によって形成される面と質点31n+1,32n+1,31nによって形成される面とのなす角度によって定義することができる。このとき、線条体の長さ方向の先端部(ハンド側)に向かって、右回りのねじれをプラス、左回りのねじれをマイナスと定義する。このような定義の下、ロボットモデルに形成された第1の線条体取付部から第1の線条体取付部に隣接する第2の線条体取付部までねじれ量を積算することで、第1の線条体取付部から第2の線条体取付部までの間の線条体全体のねじれ量を算出することができる。
シミュレーション部13は、シミュレーション実行中に、単位時間毎の線条体のねじれ量を算出し、記憶部に記憶する。これにより、ねじれ量の最大値および最小値を求めることができる。さらに、シミュレーション部13は、最大値と最小値の平均値を算出し、この平均値を低減するような線条体の取付け姿勢(目標取付け姿勢)を求める。表示部14は、目標取付け姿勢を表示モニタに表示する。
例えばねじれ量の最大値が+50°、最小値が−10°であるとき、これらの平均値は+20°であり、この平均値を打ち消すようなねじれ量の値、すなわち、−20°が表示される。表示されるねじれ量は、線条体の目標取付け姿勢(角度)を表し、ユーザは、この角度(−20°)分だけ、一方の線条体取付部において線条体を初期状態(シミュレーションを行った状態)から回転させて取り付ける。すなわち、線条体に所定量の初期ねじれを与えて線条体を取り付ける。これにより、ロボットの実動作時における線条体の最大ねじれ量を低減することができ、弾力性の低い光ファイバー等を線条体として用いた場合に、その断線や破損を防止することができる。
図5は、ロボットシミュレーション装置1で実行される処理の一例を示すフローチャートである。このフローチャートに示す処理は、着目点設定部12での処理により、図2に示すように質点2の一部を着目点33として設定した後、例えば入力部を介してシミュレーション開始指令が入力されると開始される。
ステップS1では、モデル生成部11での処理により、ロボットモデルを生成する。ステップS2では、モデル生成部11での処理により、ロボットモデルに対応させて線条体モデル2を生成する。ステップS3では、シミュレーション部13での処理により、予め定められた動作プログラムに従いロボットモデルを動作させ、ロボットの動作に伴う線条体のシミュレーションを実行する。
スップS4では、表示部14での処理により、シミュレーション結果に基づいて表示モニタに線条体画像51と着目点画像52とを表示する。ステップS5では、シミュレーション部13での処理により、線条体のねじれ量の最大値と最小値とを算出する。ステップS6では、シミュレーション部13での処理により、ねじれ量の平均値を算出するとともに、平均値を小さくするような線条体の目標取付け姿勢、すなわち線条体取付部における線条体の回転量を、表示部14を介して表示する。
本実施形態によれば以下のような作用効果を奏することができる。
(1)ロボットシミュレーション装置1は、線条体の外周面を規定するように線条体の長手方向に沿って設定された複数の質点3と、複数の質点3同士を結ぶ複数のばね要素4とによって3次元の線条体モデル2を生成するモデル生成部11と、線条体モデル2上に、線条体のねじれ状態を把握するための複数の着目点33を設定する着目点設定部12と、線条体モデル2を用いて、ロボットの動作に伴う線条体の動作をシミュレーションするシミュレーション部13と、シミュレーションによって得られた複数の質点3の時系列の位置データおよび複数の着目点33の時系列の位置データを用いて、線条体画像51とともに着目点画像52を表示する表示部14とを備える。このように表示部14を介して線条体画像51とともに着目点画像52を表示することにより、線条体の長手方向の各部のねじれ状態を、ユーザは容易に把握することができる。
(1)ロボットシミュレーション装置1は、線条体の外周面を規定するように線条体の長手方向に沿って設定された複数の質点3と、複数の質点3同士を結ぶ複数のばね要素4とによって3次元の線条体モデル2を生成するモデル生成部11と、線条体モデル2上に、線条体のねじれ状態を把握するための複数の着目点33を設定する着目点設定部12と、線条体モデル2を用いて、ロボットの動作に伴う線条体の動作をシミュレーションするシミュレーション部13と、シミュレーションによって得られた複数の質点3の時系列の位置データおよび複数の着目点33の時系列の位置データを用いて、線条体画像51とともに着目点画像52を表示する表示部14とを備える。このように表示部14を介して線条体画像51とともに着目点画像52を表示することにより、線条体の長手方向の各部のねじれ状態を、ユーザは容易に把握することができる。
(2)さらにシミュレーション部13は、複数の着目点33の時系列の位置データに基づいて、線条体の最大ねじれ量を算出するとともに、最大ねじれ量を低減するような線条体の取付け姿勢(目標取付け姿勢)を算出する。この目標取付け姿勢に合わせて線条体を取り付けることにより、例えば線条体に初期ねじれを与えるように線条体取付部において線条体を所定角度だけ回転させて取り付けることにより、ロボットの実動作時における線条体の最大ねじれ量を低減することができる。
(3)線条体モデル2の周方向一部に、線条体モデル2の長手方向に沿って一列に設定された複数の質点3(第2質点32)を着目点33として設定するので、着目点33の設定が容易である。また、質点3の一部を着目点33とするので、着目点33の位置データを質点3の位置データとは別に算出する必要がなく、着目点33の位置データの算出も容易である。
上記実施形態では、質点3の一部を着目点33として設定したが、質点3とは別の点を着目点として設定してもよい。線条体の周方向同一位相に位置する、線条体の長手方向に沿った一列の質点を着目点33としたが、着目点33はこれに限らない。すなわち、線条体のねじれ状態を把握することができる、互いに所定の位置関係にある点を着目点33とするのであれば、着目点設定部12の構成はいかなるものでもよい。
上記実施形態(図2)では、第1質点31および第2質点と、第1ばね41、第2ばね42、第3ばね43および第4ばね44により線条体モデル2を生成したが、複数の質点と質点同士を結ぶ複数のばね要素とによって生成されるのであれば、線条体モデル2はいかなるものでもよく、モデル生成部11の構成は上述したものに限らない。
上記実施形態では、シミュレーション部13によるシミュレーションによって得られた所定時間毎の複数の質点3の位置データおよび複数の着目点33の位置データを用いて、表示部14が線条体画像と着目点画像の動画を表示するようにしたが、所定の時点における静止画を表示するようにしてもよく、表示部14の構成は上述したものに限らない。上記実施形態(図3)では、着目点画像52を黒丸で表すようにしたが、着目点33を表す目印となるのであれば、着目点画像52の構成はいかなるものでもよい。例えば着目点画像52を、他の画像と異なる表示色で表示し、着目点33を識別可能に表示してもよい。
上記実施形態では、シミュレーション部13が、線条体の目標取付け姿勢を線条体取付部における角度(初期ねじれ量)として求めたが、目標取付け姿勢として他の情報を表示部14を介して与えるようにしてもよく、シミュレーション部13の構成は上述したものに限らない。
上記実施形態では、ロボットシミュレーション装置を多関節ロボットに適用したが、本発明は、これに限らず、線条体が取り付けられる種々のロボットに適用することができる。
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態および変形例の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。すなわち、本発明の技術的思想の範囲内で考えられる他の形態についても、本発明の範囲内に含まれる。また、上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能である。
1 ロボットシミュレーション装置
2 線条体モデル
3 質点
4 ばね要素
11 モデル生成部
12 着目点設定部
13 シミュレーション部
14 表示部
51 線条体画像
52 着目点画像
2 線条体モデル
3 質点
4 ばね要素
11 モデル生成部
12 着目点設定部
13 シミュレーション部
14 表示部
51 線条体画像
52 着目点画像
Claims (2)
- ロボットに取り付けられる線条体の動作をシミュレーションするロボットシミュレーション装置であって、
前記線条体の外周面を規定するように前記線条体の長手方向に沿って設定された複数の質点と、該複数の質点同士を結ぶ複数のばね要素とによって前記線条体の3次元モデルを生成するモデル生成部と、
前記線条体の3次元モデル上に、前記線条体のねじれ状態を把握するための複数の着目点を設定する着目点設定部と、
前記線条体の3次元モデルを用いて、前記ロボットの動作に伴う前記線条体の動作をシミュレーションするシミュレーション部と、
前記シミュレーション部によるシミュレーションによって得られた前記複数の質点の時系列の位置データおよび前記複数の着目点の時系列の位置データを用いて、前記線条体の輪郭を表す線条体画像とともに、前記着目点を表す着目点画像を表示する表示部と、を備え、
前記複数の着目点は、前記複数の質点の一部であり、前記線条体の3次元モデルの周方向一部に、前記線条体の3次元モデルの長手方向に沿って一列に設定されていることを特徴とするロボットシミュレーション装置。 - 請求項1に記載のロボットシミュレーション装置において、
前記シミュレーション部は、前記複数の着目点の時系列の位置データに基づいて、前記線条体の最大ねじれ量を算出するとともに、該最大ねじれ量を低減するような前記線条体の取付け姿勢を算出することを特徴とするロボットシミュレーション装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014226164A JP5927270B2 (ja) | 2014-11-06 | 2014-11-06 | ロボットシミュレーション装置 |
US14/927,503 US10216874B2 (en) | 2014-11-06 | 2015-10-30 | Robot simulation device |
DE102015013988.6A DE102015013988B4 (de) | 2014-11-06 | 2015-10-30 | Robotersimulationsvorrichtung |
CN201510749915.7A CN105583823B (zh) | 2014-11-06 | 2015-11-05 | 机器人模拟装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014226164A JP5927270B2 (ja) | 2014-11-06 | 2014-11-06 | ロボットシミュレーション装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016087750A JP2016087750A (ja) | 2016-05-23 |
JP5927270B2 true JP5927270B2 (ja) | 2016-06-01 |
Family
ID=55803044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014226164A Active JP5927270B2 (ja) | 2014-11-06 | 2014-11-06 | ロボットシミュレーション装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10216874B2 (ja) |
JP (1) | JP5927270B2 (ja) |
CN (1) | CN105583823B (ja) |
DE (1) | DE102015013988B4 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6404258B2 (ja) | 2016-04-26 | 2018-10-10 | 矢崎総業株式会社 | 電気接続箱及びワイヤハーネス |
JP6796557B2 (ja) | 2017-06-30 | 2020-12-09 | 株式会社神戸製鋼所 | 溶接ロボットのトーチケーブル干渉評価情報出力装置、評価情報出力方法及びプログラム |
JP7012944B2 (ja) * | 2018-10-11 | 2022-01-31 | オムロン株式会社 | シミュレーション装置、シミュレーション方法及びシミュレーションプログラム |
JP7508218B2 (ja) * | 2019-12-06 | 2024-07-01 | キヤノン株式会社 | 情報処理方法、ロボット、物品の製造方法、および情報処理装置 |
US20240238975A1 (en) * | 2020-07-10 | 2024-07-18 | Fanuc Corporation | Teaching device and teaching method for laser machining |
JP7556283B2 (ja) * | 2020-12-23 | 2024-09-26 | オムロン株式会社 | シミュレーション装置およびシミュレーションプログラム |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2993341B2 (ja) * | 1993-12-24 | 1999-12-20 | 日産自動車株式会社 | 線条材のシミュレーション方法 |
JPH10275007A (ja) * | 1997-03-31 | 1998-10-13 | Nissan Motor Co Ltd | ロボット動作シミュレーション方法 |
JP4164784B2 (ja) * | 2000-03-02 | 2008-10-15 | マツダ株式会社 | 線条材の配線設計支援装置及び配線設計支援方法及びコンピュータ読み取り可能な記憶媒体 |
KR100977348B1 (ko) * | 2002-03-15 | 2010-08-20 | 소니 주식회사 | 다리식 이동 로봇의 동작 제어 장치 및 동작 제어 방법 및 로봇 장치 |
CN101763118B (zh) * | 2002-03-18 | 2015-09-02 | 索尼株式会社 | 机器人设备及其动作控制方法 |
JP2004074368A (ja) * | 2002-08-21 | 2004-03-11 | Komatsu Ltd | ロボットオフライン教示システムにおけるケーブル表示装置 |
JP4383114B2 (ja) * | 2003-07-31 | 2009-12-16 | 矢崎総業株式会社 | ワイヤーハーネスの回転角度計算方法、その装置及びそのプログラム |
JPWO2005024728A1 (ja) * | 2003-09-03 | 2007-11-08 | 日本電気株式会社 | 形態変形装置、物体動作符号化装置および物体動作復号化装置 |
US7715944B2 (en) * | 2004-02-06 | 2010-05-11 | Honda Motor Co., Ltd. | Gait generating device of mobile robot |
JP2005293331A (ja) | 2004-04-01 | 2005-10-20 | Nissan Motor Co Ltd | ロボット付加非剛体物のシミュレーション方法およびロボット付加非剛体物の状態診断方法 |
RU2525008C2 (ru) * | 2008-08-27 | 2014-08-10 | Абб Рисерч Лтд. | Робот для неблагоприятных условий внешней среды |
JP5836565B2 (ja) * | 2009-03-24 | 2015-12-24 | ディズニー エンタープライゼス インコーポレイテッド | モーションキャプチャデータを模倣するロボットの追跡及びバランス維持システム及び方法 |
JP4870831B2 (ja) * | 2010-06-30 | 2012-02-08 | ファナック株式会社 | 塗布作業シミュレーション装置 |
JP5573510B2 (ja) * | 2010-09-02 | 2014-08-20 | 富士通株式会社 | 3次元シミュレーションプログラム、方法および装置 |
JP5465142B2 (ja) * | 2010-09-27 | 2014-04-09 | 本田技研工業株式会社 | ロボットおよびその行動制御システム |
CN103261460B (zh) * | 2010-12-13 | 2015-11-25 | 日本精线株式会社 | 铜合金线及铜合金弹簧 |
JP5166579B2 (ja) * | 2011-08-04 | 2013-03-21 | ファナック株式会社 | 線条体の振る舞いをシミュレートするロボットシミュレーション装置 |
JP5661023B2 (ja) * | 2011-12-02 | 2015-01-28 | 本田技研工業株式会社 | 脚式移動ロボットの歩容生成装置及びロボットの動作目標生成装置 |
CN202846534U (zh) | 2012-10-15 | 2013-04-03 | 西安航天精密机电研究所 | 一种六自由度工业机器人的走线结构 |
JP5910647B2 (ja) * | 2014-02-19 | 2016-04-27 | トヨタ自動車株式会社 | 移動ロボットの移動制御方法 |
JP6228079B2 (ja) * | 2014-07-16 | 2017-11-08 | 本田技研工業株式会社 | 移動ロボットの動作目標生成装置 |
JP6450279B2 (ja) * | 2015-08-05 | 2019-01-09 | 本田技研工業株式会社 | 移動ロボットの目標zmp軌道の生成装置 |
-
2014
- 2014-11-06 JP JP2014226164A patent/JP5927270B2/ja active Active
-
2015
- 2015-10-30 US US14/927,503 patent/US10216874B2/en active Active
- 2015-10-30 DE DE102015013988.6A patent/DE102015013988B4/de active Active
- 2015-11-05 CN CN201510749915.7A patent/CN105583823B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016087750A (ja) | 2016-05-23 |
DE102015013988B4 (de) | 2019-10-24 |
CN105583823B (zh) | 2017-04-26 |
US10216874B2 (en) | 2019-02-26 |
US20160132623A1 (en) | 2016-05-12 |
DE102015013988A1 (de) | 2016-05-12 |
CN105583823A (zh) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5927270B2 (ja) | ロボットシミュレーション装置 | |
CN107067451B (zh) | 动画中动态骨骼的实现方法和装置 | |
CN103235846B (zh) | 柔性线缆的实时装配仿真方法及装置 | |
US10302519B2 (en) | Robot center-of-gravity display device, robot control device, and robot simulation device | |
JP2018008347A (ja) | ロボットシステムおよび動作領域表示方法 | |
JP2018030210A (ja) | シミュレーション装置、制御システム、ロボットシステム、シミュレーション方法、プログラム及び記録媒体 | |
JP2018039060A (ja) | ロボットシミュレーション装置 | |
JP5166579B2 (ja) | 線条体の振る舞いをシミュレートするロボットシミュレーション装置 | |
JP2012208903A (ja) | 布線設計方法、布線シミュレーション装置及びプログラム | |
CN109311155B (zh) | 一种工业机器人的工具坐标系原点的标定方法及装置 | |
JP5732985B2 (ja) | トルク算出装置、トルク算出方法、及びプログラム | |
JP4463120B2 (ja) | 身まねロボットシステムとその身まね動作制御方法 | |
JP7556283B2 (ja) | シミュレーション装置およびシミュレーションプログラム | |
JP5970868B2 (ja) | ダミー計測装置 | |
JP4641033B2 (ja) | ワイヤハーネスの可動範囲解析装置 | |
JP5602043B2 (ja) | 骨格モデルの関節角度の曲がりにくさの制御装置,方法,及びプログラム | |
JP5223489B2 (ja) | 柔軟物体の変形形状算出方法 | |
CN112045673A (zh) | 离线编程装置、机器人控制装置及增强现实系统 | |
JP6862849B2 (ja) | 演算装置、演算方法、演算プログラムおよびロボットシステム | |
JP2020075329A (ja) | シミュレーション装置、制御システム、ロボットシステム、シミュレーション方法、プログラム及び記録媒体 | |
JP7357902B2 (ja) | ロボット制御システム、装置、方法及びプログラム | |
JP2015089585A (ja) | リグレッサ行列の算出方法、力学パラメータの同定方法 | |
JP4334402B2 (ja) | 線状柔軟物の組付けシミュレーション装置 | |
JP4746058B2 (ja) | ワイヤハーネス可動経路表示システム | |
JP2013029892A (ja) | 画像生成装置、画像生成方法、プログラム及び情報記憶媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5927270 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |