Nothing Special   »   [go: up one dir, main page]

JP5835726B2 - Process for producing desalted milk, desalted and defatted milk, desalted concentrated milk and desalted and defatted concentrated milk, and desalted milk powder and desalted and defatted milk powder - Google Patents

Process for producing desalted milk, desalted and defatted milk, desalted concentrated milk and desalted and defatted concentrated milk, and desalted milk powder and desalted and defatted milk powder Download PDF

Info

Publication number
JP5835726B2
JP5835726B2 JP2011161600A JP2011161600A JP5835726B2 JP 5835726 B2 JP5835726 B2 JP 5835726B2 JP 2011161600 A JP2011161600 A JP 2011161600A JP 2011161600 A JP2011161600 A JP 2011161600A JP 5835726 B2 JP5835726 B2 JP 5835726B2
Authority
JP
Japan
Prior art keywords
milk
desalted
membrane
concentration
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011161600A
Other languages
Japanese (ja)
Other versions
JP2013021990A (en
Inventor
秀武 新井
秀武 新井
雅史 塩川
雅史 塩川
和典 柏木
和典 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Priority to JP2011161600A priority Critical patent/JP5835726B2/en
Publication of JP2013021990A publication Critical patent/JP2013021990A/en
Application granted granted Critical
Publication of JP5835726B2 publication Critical patent/JP5835726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dairy Products (AREA)

Description

この発明は、脱塩処理乳及び脱塩脱脂粉乳、並びに、これらの製造方法に関し、特に、膜分離技術を利用して、品質の安定した脱塩処理乳及び脱塩脱脂粉乳を長時間連続で製造する製造方法と、これによって製造した品質の安定した脱塩処理乳及び脱塩脱脂粉乳に関する。   TECHNICAL FIELD The present invention relates to desalted milk and desalted skim milk, and methods for producing these, and in particular, by using membrane separation technology, stable desalted milk and desalted skim milk for a long period of time. The present invention relates to a production method to be produced, and a quality-degraded desalted milk and a desalted skim milk produced thereby.

乳からイオンを除去する方法の一つとして膜分離技術が採用されている。乳業においてはチーズ製造時に副産物として発生するチーズホエイの回収、有効利用を目的として、育児用調製粉乳向け乳タンパク・ペプチド原料、WPC(ホエイタンパク濃縮物)・TMP(乳タンパク濃縮物)等の各種飲食品向けタンパク原料、ナチュラルチーズ・ヨーグルト等の乳製品、成分調整牛乳・濃縮乳等の製造に幅広く利用されている。   Membrane separation technology is adopted as one of the methods for removing ions from milk. In the dairy industry, various types of milk protein / peptide raw materials for infant formula milk, WPC (whey protein concentrate), TMP (milk protein concentrate), etc. are used for the recovery and effective use of cheese whey produced as a by-product during cheese manufacture. It is widely used in the production of protein raw materials for food and drink, dairy products such as natural cheese and yogurt, and component-modified milk and concentrated milk.

膜分離用の膜は各種存在し、異なる特徴がある。   Various membranes for membrane separation exist and have different characteristics.

RO(Reverse Osmosis;逆浸透)膜は、乳中より水分のみ除去し、主として濃縮の用途で使用される。   RO (Reverse Osmosis) membrane removes only water from milk and is mainly used for concentration.

NF(Nanofiltration;ナノろ過)膜は、ナトリウム・カリウム等の1価イオンを透過することから、部分脱塩による塩味の除去を目的に使用される。NF膜を用いた処理方法は、容易にナトリウムやカリウムなどの1価ミネラルを低減することができると共に水分の除去を同時に行えるので、濃縮及び乾燥工程での負荷を低減できる、エネルギー的に非常に効率的な方法であるとされている。   NF (Nanofiltration) membranes are used for the purpose of removing salty taste by partial desalting because they pass through monovalent ions such as sodium and potassium. Since the treatment method using the NF membrane can easily reduce monovalent minerals such as sodium and potassium and simultaneously remove water, the load in the concentration and drying process can be reduced. It is said to be an efficient method.

そこで、従来から、NF膜を用いることによって乳または乳素材中の水分及びナトリウム等の1価の金属塩を透過分離し、無脂乳固形分含量及びCa/Naの濃度比を調整すること、RO膜を用いるこることによって水分を透過分離し、これをNF膜処理した乳または乳素材と混合することによって無脂乳固形分含量及びCa/Naの濃度比を調整することが提案されている(特許文献1)。   Therefore, conventionally, by using a NF membrane, monovalent metal salts such as water and sodium in milk or milk material are permeated and separated, and the non-fat milk solid content and the Ca / Na concentration ratio are adjusted, It has been proposed to adjust the non-fat milk solids content and the Ca / Na concentration ratio by permeating and separating moisture by using an RO membrane and mixing it with milk or milk material that has been treated with an NF membrane. (Patent Document 1).

また、NF膜を用い、乳類をそのまま脱塩するNF法や、NF膜でろ過して濃縮した乳に水を加え、さらにNF膜でろ過するダイヤフィルトレーション(DF)法、更に、原料乳をNF膜で濾過してナトリウムやカリウムなどの1価ミネラルのみを除去した後、濃縮し、噴霧乾燥して低ミネラルミルクパウダーを得る方法などが提案されている(特許文献2)。   Also, NF method using NF membrane and desalting milk as it is, Diafiltration (DF) method of adding water to milk concentrated by filtration through NF membrane, and further filtering through NF membrane, raw material A method has been proposed in which milk is filtered through an NF membrane to remove only monovalent minerals such as sodium and potassium, and then concentrated and spray-dried to obtain a low mineral milk powder (Patent Document 2).

特開2002−253116号公報JP 2002-253116 A 特開平8−266221号公報JP-A-8-266221

膜分離技術を利用して原料乳(生乳)からナトリウムやカリウムを分離する際の脱塩率はオンラインでモニタリングすることができず製造終了後に分析確認するのが一般的であった。すなわち、従来技術で原料乳(生乳)から膜分離技術を使用して脱塩処理する場合、全ての原料乳を脱塩工程に通した後に脱塩処理した脱塩処理乳を貯液タンクなどに貯液し、攪拌などで濃度や組成を均一にした後にナトリウムやカリウムの組成を確認する方法を採用してきた。   The desalination rate when separating sodium and potassium from raw milk (raw milk) using membrane separation technology cannot be monitored online, and is generally confirmed by analysis after the end of production. That is, when desalinating from raw milk (raw milk) using membrane separation technology in the prior art, desalted milk that has been desalted after all raw milk has been passed through the desalting process is stored in a storage tank, etc. A method of checking the composition of sodium and potassium after storing the solution and making the concentration and composition uniform by stirring or the like has been adopted.

このような従来の方法では、脱塩率が処理毎(バッチ毎)で異なる可能性があり、測定して出てきた脱塩率に応じて更に脱塩処理をするなどの新たな処理が必要となる懸念もあった。そこで、原料乳から同一の処理で脱塩した脱塩処理乳を安定的に供給できない問題点があった。   In such a conventional method, there is a possibility that the desalination rate varies depending on the treatment (batch), and a new treatment such as further desalination treatment is required according to the measured desalination rate. There was also a concern. Thus, there has been a problem that desalted milk that has been desalted from raw milk by the same process cannot be stably supplied.

また、膜分離技術を利用して原料乳(生乳)からナトリウムやカリウムを分離する場合、1セクションで圧力を制御すると高濃度側で求められる圧力に設定する必要があり、膜が閉塞しやすかった。   Moreover, when separating sodium and potassium from raw milk (raw milk) using membrane separation technology, it was necessary to set the pressure required on the high concentration side when the pressure was controlled in one section, and the membrane was likely to be clogged .

膜が閉塞した場合、配管洗浄(CIP)を行うが、再起動した際、脱塩条件を完全に元の条件に戻すことが難しく、CIPの前後で、製品の脱塩率に差が出ることがあった。   When the membrane is clogged, pipe cleaning (CIP) is performed, but when it is restarted, it is difficult to completely return the desalting conditions to the original conditions, and there is a difference in the desalting rate of the product before and after CIP. was there.

すなわち、原料乳(生乳)の脱塩処理を1つの脱塩用の膜で処理する場合、特に大量の原料乳を一括して処理するようなライン設計をした場合、脱塩用の膜の閉塞なども考慮して、原料乳から常に設計した脱塩率を有する脱塩処理乳を生産するためには、1バッチの原料乳を処理する毎に新品(おろしたて)の膜を使用する必要があり、極めて不経済であるが、それを解決した技術的提案はない。   In other words, when desalting raw milk (raw milk) is processed with a single desalting membrane, especially when a line design is used to process a large amount of raw milk at once, blocking the desalting membrane In order to produce desalted processed milk with a constantly designed desalination rate from raw milk, it is necessary to use a new (freshly) membrane every time one batch of raw milk is processed. There is no technical proposal to solve this problem.

一方、例えば、原料乳からの脱塩の度合いは、原料乳自体や原料乳を使用した乳製品、及びその乳製品を使用した飲食品の風味へ影響する。例えば、原料乳を脱塩することで原料乳自体が有していた塩味が低減され、相対的に乳風味が高まり、ミルクの良好な風味が高まることも知られている。このため、原料乳から安定した脱塩率で脱塩処理した脱塩処理乳や、これを利用した乳製品が市場から求められていた。   On the other hand, for example, the degree of desalting from raw milk affects the flavor of raw milk itself, dairy products using raw milk, and food and drink using the dairy products. For example, it is also known that the salty taste of the raw milk itself is reduced by desalting the raw milk, the milk flavor is relatively increased, and the good flavor of the milk is increased. For this reason, desalinized milk that has been desalted from raw milk at a stable desalting rate, and dairy products using the desalted milk have been demanded from the market.

以上の背景から、本発明は、膜分離技術を利用して、品質の安定した脱塩処理乳及び脱塩脱脂粉乳を長時間連続で製造する製造方法と、これによって製造した品質の安定した脱塩処理乳及び脱塩脱脂粉乳を提案することを目的にしている。   From the above background, the present invention uses a membrane separation technique to produce a desalinized milk and a desalted skim milk powder with stable quality for a long time, and a stable desalted product produced thereby. The object is to propose salt-treated milk and desalted skim milk powder.

請求項1記載の発明は、
ナノフィルトレーション膜を用いて原料乳に対して第一回目の膜濃縮処理を行った後、当該第一回膜濃縮後の原料乳を希釈し、再度、ナノフィルトレーション膜を用いて第二回目の膜濃縮処理を行うことにより、前記第二回目の膜濃縮処理後のナトリウム換算の塩分含有量が、前記原料乳におけるナトリウム換算の塩分含有量より低下している脱塩処理乳を、脱塩率を所定の値に保って12時間以上連続して製造する脱塩処理乳の製造方法であって、
前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理における透過流束:F(kg/m /h)と、前記原料乳の固形分濃度及び第二回膜濃縮が行われる前の固形分濃度:TS(重量%)との間に
F<22−0.8TS
(ただし、F<9.2で、TS<25.8)
の関係が成立することを特徴とする脱塩処理乳の製造方法
である。
The invention described in claim 1
After the first membrane concentration treatment is performed on the raw material milk using the nanofiltration membrane, the raw material milk after the first membrane concentration is diluted, and again using the nanofiltration membrane By performing the second membrane concentration treatment, the sodium-equivalent salt content after the second membrane concentration treatment is lower than the sodium-equivalent salt content in the raw milk, A desalinized milk production method for continuously producing a desalination rate at a predetermined value for 12 hours or more ,
Permeation flux in the first membrane concentration treatment and the second membrane concentration treatment: F (kg / m 2 / h), solid content concentration of the raw milk and before the second membrane concentration Solid content concentration: between TS (wt%)
F <22-0.8TS
(However, F <9.2 and TS <25.8)
This is a method for producing desalted milk, wherein the relationship is established .

請求項2記載の発明は、
前記原料乳は、還元工程を経ていない獣乳、当該獣乳の加工品である乳製品を還元して作られた加工乳、植物由来の乳のいずれかであることを特徴とする請求項1記載の脱塩処理乳の製造方法
である。
The invention according to claim 2
The raw material milk is any of animal milk that has not undergone a reduction step, processed milk produced by reducing a dairy product that is a processed product of the animal milk, and plant-derived milk. It is a manufacturing method of desalinized milk described.

請求項3記載の発明は、
前記原料乳が全脂タイプである請求項1又は2記載の脱塩処理乳の製造方法
である。
The invention described in claim 3
The method for producing desalted milk according to claim 1 or 2, wherein the raw milk is a whole fat type .

請求項4記載の発明は、
前記原料乳が脱脂したものである請求項1又は2記載の脱塩処理乳の製造方法
である。
The invention according to claim 4
The method for producing desalted milk according to claim 1 or 2, wherein the raw milk is defatted .

請求項5記載の発明は、
前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理における透過流束:F(kg/m /h)と、前記原料乳の固形分濃度及び第二回膜濃縮が行われる前の固形分濃度:TS(重量%)との間に
F<22.3−TS
(ただし、F<10.1で、TS<18.9)
の関係が成立することを特徴とする請求項4記載の脱塩処理乳の製造方法
である。
The invention according to claim 5
Permeation flux in the first membrane concentration treatment and the second membrane concentration treatment: F (kg / m 2 / h), solid content concentration of the raw milk and before the second membrane concentration Solid content concentration: between TS (wt%)
F <22.3-TS
(However, F <10.1 and TS <18.9)
The method for producing desalted milk according to claim 4, wherein the relationship is established .

請求項6記載の発明は、
ナノフィルトレーション膜を用いて原料乳に対して第一回目の膜濃縮処理を行った後、当該第一回膜濃縮後の原料乳を希釈し、再度、ナノフィルトレーション膜を用いて第二回目の膜濃縮処理を行うことにより、ナトリウム換算で塩分含有量が前記原料乳に比較して40%以上低下している脱塩処理乳を12時間以上連続して製造する脱塩処理乳の製造方法であって、
前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理における透過流束:F(kg/m /h)と、前記原料乳の固形分濃度及び第二回膜濃縮が行われる前の固形分濃度:TS(重量%)との間に
F<22−0.8TS
(ただし、F<9.2で、TS<25.8)
の関係が成立することを特徴とする脱塩処理乳の製造方法
である。
The invention described in claim 6
After the first membrane concentration treatment is performed on the raw material milk using the nanofiltration membrane, the raw material milk after the first membrane concentration is diluted, and again using the nanofiltration membrane By performing the membrane concentration treatment for the second time, the desalinized milk for continuously producing desalted milk having a salt content reduced by 40% or more in terms of sodium as compared with the raw material milk for 12 hours or more. A manufacturing method comprising:
Permeation flux in the first membrane concentration treatment and the second membrane concentration treatment: F (kg / m 2 / h), solid content concentration of the raw milk and before the second membrane concentration Solid content concentration: between TS (wt%)
F <22-0.8TS
(However, F <9.2 and TS <25.8)
This is a method for producing desalted milk, characterized in that the above relationship is established .

請求項7記載の発明は、
前記原料乳は、還元工程を経ていない獣乳、当該獣乳の加工品である乳製品を還元して作られた加工乳、植物由来の乳のいずれかであることを特徴とする請求項6記載の脱塩処理乳の製造方法
である。
The invention described in claim 7
The raw milk is claim 6, wherein the animal milk that has not undergone the reduction step, processed milk made by reducing the dairy is a processed product of the animal milk to be either milk of vegetable origin serial is a manufacturing method of desalting milk mounting.

請求項8記載の発明は、
前記原料乳が全脂タイプである請求項6又は7記載の脱塩処理乳の製造方法
である。
The invention described in claim 8
The method for producing desalted milk according to claim 6 or 7, wherein the raw milk is a whole fat type .

請求項9記載の発明は、
前記原料乳が脱脂したものである請求項6又は7記載の脱塩処理乳の製造方法
である。
The invention according to claim 9
The method for producing desalted milk according to claim 6 or 7, wherein the raw milk is defatted .

請求項10記載の発明は、
前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理における透過流束:F(kg/m /h)と、前記原料乳の固形分濃度及び第二回膜濃縮が行われる前の固形分濃度:TS(重量%)との間に
F<22.3−TS
(ただし、F<10.1で、TS<18.9)
の関係が成立することを特徴とする請求項9記載の脱塩処理乳の製造方法
である。
The invention according to claim 10 is:
Permeation flux in the first membrane concentration treatment and the second membrane concentration treatment: F (kg / m 2 / h), solid content concentration of the raw milk and before the second membrane concentration Solid content concentration: between TS (wt%)
F <22.3-TS
(However, F <10.1 and TS <18.9)
The method for producing desalted milk according to claim 9, wherein the relationship is established .

請求項11記載の発明は、
前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理での脱塩濃縮工程において、前記透過流束:F(kg/m /h)を一定にして前記脱塩濃縮工程を行うとともに、操作圧力が前記脱塩濃縮工程の間で運転時間とともに上昇することがないように連続運転を行うことを特徴とする請求項1〜10のいずれか一項記載の脱塩処理乳の製造方法
である。
The invention according to claim 11
In the desalting concentration step in the first membrane concentration treatment and the second membrane concentration treatment, the desalting concentration step is performed with the permeation flux: F (kg / m 2 / h) being constant. In addition, the continuous operation is performed so that the operation pressure does not increase with the operation time during the desalting and concentration step, and the desalinized milk according to any one of claims 1 to 10 is produced. Is the method .

請求項12記載の発明は、
前記操作圧力を前記脱塩濃縮工程の間で一定に保つあるいは、前記操作圧力を前記脱塩濃縮工程の間で所定の範囲内であるように制御することを特徴とする請求項11記載の脱塩処理乳の製造方法
である。
The invention according to claim 12
12. The dewatering according to claim 11, wherein the operating pressure is kept constant during the desalting and concentration step, or the operating pressure is controlled to be within a predetermined range during the desalting and concentration step. This is a method for producing salt-treated milk .

請求項13記載の発明は、
請求項4、5、9、10のいずれか一項記載の脱塩処理乳の製造方法によって製造する脱塩処理乳が脱塩脱脂処理乳であることを特徴とする脱塩脱脂処理乳の製造方法
である。
The invention according to claim 13
The desalinized milk produced by the desalinized milk production method according to any one of claims 4, 5, 9, and 10 is a desalted and skimmed milk. Is the method .

請求項14記載の発明は、
請求項1〜12のいずれか一項記載の脱塩処理乳の製造方法によって製造した脱塩処理乳から水分を除去して脱塩濃縮乳を製造する方法
である。
The invention according to claim 14
A method for producing any one desalination process to remove water from the desalination process milk desalted and concentrated milk produced by the manufacturing method of the milk according to claims 1-12.

請求項15記載の発明は、
請求項13記載の脱塩脱脂処理乳の製造方法によって製造した脱塩脱脂処理乳から水分を除去して脱塩脱脂濃縮乳を製造する方法
である。
請求項16記載の発明は、
請求項1〜12のいずれか一項記載の脱塩処理乳の製造方法によって製造した脱塩処理乳から水分を除去し、粉末状化して脱塩粉乳を製造する方法
である。
請求項17記載の発明は、
請求項13記載の脱塩脱脂処理乳の製造方法によって製造した脱塩脱脂処理乳から水分を除去し、粉末状化して脱塩脱脂粉乳を製造する方法
である。
The invention according to claim 15 is:
13. to remove moisture from the desalination degreased milk produced by the manufacturing method of desalination degreasing milk wherein the process for producing desalted defatted concentrated milk.
The invention according to claim 16
A method for producing desalted powdered milk by removing water from the desalted milk produced by the method for producing desalted milk according to claim 1, and pulverizing it .
It is.
The invention described in claim 17
A method for producing demineralized skim milk powder by removing moisture from the desalted and degreased processed milk produced by the method for producing demineralized and degreased milk according to claim 13.
It is.

本発明によれば、品質の安定した脱塩処理乳及び脱塩脱脂粉乳を長時間連続で製造する製造方法と、これによって製造した品質の安定した脱塩処理乳及び脱塩脱脂粉乳を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method which manufactures demineralized milk and demineralized skim milk powder with which quality was stabilized continuously for a long time, and the demineralized milk and demineralized skim milk powder which were manufactured stably by this are provided. be able to.

脱脂乳をナノフィルトレーション(NF)膜を用いて膜濃縮する処理を最大12時間連続で行った連続運転中での濃縮液の屈折糖度(%)の経時変化を示す図。The figure which shows the time-dependent change of the refractive sugar degree (%) of the concentrate in the continuous operation which performed the process which membrane-concentrates skim milk using a nanofiltration (NF) film | membrane continuously for a maximum of 12 hours. 表2に連続運転中の操作条件が表されている複数の膜濃縮連続処理運転中の操作圧力の経時変化を表す図。The figure showing the time-dependent change of the operation pressure in the several membrane concentration continuous treatment driving | operation with which the operation conditions in the continuous operation are represented in Table 2. 表2と図1〜2の連続運転の結果に基づき、透過流束(kg/m2/h)と固形分濃度(重量%)の関係から12時間連続が可能と考えられる領域を表す図。The figure showing the area | region considered to be continuous for 12 hours from the relationship between permeation | transmission flux (kg / m < 2 > / h) and solid content concentration (weight%) based on the result of the continuous operation of Table 2 and FIGS. 生乳をナノフィルトレーション(NF)膜を用いて膜濃縮する処理を最大12時間連続で行った連続運転中での濃縮液の屈折糖度(%)の経時変化を示す図。The figure which shows the time-dependent change of the refractive sugar degree (%) of the concentrate in the continuous operation which performed the process which membrane-concentrates raw milk using a nanofiltration (NF) film | membrane continuously for a maximum of 12 hours. 表3に連続運転中の操作条件が表されている複数の膜濃縮連続処理運転中の操作圧力の経時変化を表す図。The figure showing the time-dependent change of the operation pressure in the several membrane concentration continuous process driving | operation with which the operation conditions in the continuous operation are represented in Table 3. 表3、図4〜図5の連続運転の結果に基づき、透過流束(kg/m2/h)と固形分濃度(重量%)の関係から12時間連続が可能と考えられる領域を表す図。Based on the results of continuous operation shown in Table 3 and FIGS. 4 to 5, a diagram showing an area considered to be possible for 12 hours from the relationship between the permeation flux (kg / m 2 / h) and the solid content concentration (% by weight). .

本発明者らは上記目的を達成するため鋭意研究を進めたところ、以下の知見を得ることができた。   The inventors of the present invention have made extensive studies in order to achieve the above object, and have obtained the following knowledge.

即ち、原料乳を膜濃縮して脱塩処理するにあたり、ナノフィルトレーション膜面積あたりの透過液の流速(透過流束)(kg/m/h)を所定範囲に定めながら膜濃縮し、その後希釈処理し、更に、ナノフィルトレーション膜面積あたりの透過液の流速(透過流束)(kg/m/h)を所定範囲に定めながら膜濃縮することで、長時間(12時間以上)連続的に所定の脱塩率(ナトリウム換算で40%以上の低下)を維持して脱塩処理乳を安定的に製造できることを見出した。 That is, when the raw milk is concentrated in a membrane and desalted, the membrane is concentrated while setting the flow rate (permeation flux) (kg / m 2 / h) of the permeate per nanofiltration membrane area to a predetermined range, Dilution treatment is then performed, and further, membrane concentration is performed while setting the flow rate (permeation flux) (kg / m 2 / h) of the permeate per nanofiltration membrane area within a predetermined range, so that a long time (12 hours or more) ) It has been found that desalted milk can be stably produced while maintaining a predetermined desalting rate (decrease of 40% or more in terms of sodium) continuously.

また、本発明の脱塩処理乳の製造方法を採用することで、単に原料乳を脱塩処理するだけでなく、設計通りの脱塩処理乳を必要に応じて必要なだけ連続的に製造することができ、全ての原料乳の脱塩処理後に再度脱塩、及び全ての原料乳の脱塩処理後に再度原料乳の添加など、出来上がった脱塩状態によって脱塩率を調整するなどの工程が煩雑になるリスクも少なくなり、効率的な脱塩濃縮乳の生産が期待できる。   In addition, by adopting the method for producing desalted processed milk of the present invention, not only simply desalting raw material milk, but also continuously producing desalted processed milk as designed as necessary. It is possible to adjust the desalination rate according to the completed desalted state, such as desalting again after desalination treatment of all raw milk and addition of raw milk again after desalting treatment of all raw milk. The risk of complications is reduced, and efficient production of desalted and concentrated milk can be expected.

本発明が提案する脱塩処理乳の製造方法は、ナノフィルトレーション膜を用いて原料乳に対して第一回目の膜濃縮処理を行った後、当該第一回膜濃縮後の原料乳を希釈し、再度、ナノフィルトレーション膜を用いて第二回目の膜濃縮処理を行うことにより、前記第二回目の膜濃縮処理後のナトリウム換算の塩分含有量が、前記原料乳におけるナトリウム換算の塩分含有量より低下している脱塩処理乳を、脱塩率を所定の値に保って12時間以上連続して製造する、あるいは、ナトリウム換算で塩分含有量が前記原料乳に比較して40%以上低下している脱塩処理乳を12時間以上連続して製造するものである。   In the method for producing desalted milk proposed by the present invention, after the first membrane concentration treatment is performed on raw milk using a nanofiltration membrane, the raw milk after the first membrane concentration is processed. By diluting and again performing the second membrane concentration treatment using the nanofiltration membrane, the sodium equivalent salt content after the second membrane concentration treatment is reduced to the sodium equivalent in the raw milk. Desalinated milk that is lower than the salt content is continuously produced for 12 hours or more while maintaining the desalination rate at a predetermined value, or the salt content is 40 in comparison with the raw material milk in terms of sodium. % Desalted milk that has been reduced by at least 12% is produced continuously for 12 hours or more.

本発明において、前記第一回目及び第二回目の膜濃縮処理は、いずれも、所定範囲の膜面積を有する前記ナノフィルトレーション膜を用い、所定の透過流束で行うことが望ましい。これによって、長時間(12時間以上)連続的に所定の脱塩率(ナトリウム換算で40%以上の低下)を維持して脱塩処理乳を安定的に製造できる。   In the present invention, it is preferable that the first and second membrane concentration treatments are performed with a predetermined permeation flux using the nanofiltration membrane having a predetermined range of membrane area. Thereby, desalted milk can be stably produced while maintaining a predetermined desalting rate (decrease of 40% or more in terms of sodium) continuously for a long time (12 hours or more).

ここで、透過流束(kg/m/h)とは、ナノフィルトレーション膜面積あたりの透過液の流速のことである。所定範囲の膜面積(m)を有するナノフィルトレーション膜を透過する原料乳の流速(kg/h)及び、第一回膜濃縮後に希釈されて第二回膜濃縮に供される原料乳の流速(kg/h)を、それぞれ、前記ナノフィルトレーション膜の膜面積(m)で除算して求められるものである。 Here, the permeation flux (kg / m 2 / h) is the flow rate of the permeate per nanofiltration membrane area. The flow rate (kg 2 / h) of raw milk that permeates the nanofiltration membrane having a membrane area (m 2 ) in a predetermined range, and the raw material that is diluted after the first membrane concentration and used for the second membrane concentration The milk flow rate (kg 2 / h) is obtained by dividing the milk flow area (m 2 ) by the nanofiltration membrane, respectively.

ここで、前記の原料乳は特に由来は限定されないが、例えば獣乳(牛乳、羊乳、山羊乳、水牛乳など)や植物由来の乳(大豆乳)などである。原料乳は還元工程を経ていない生乳や、乳製品(脱脂粉乳、脱脂乳、バター、クリーム、練乳など)を還元して作られた加工乳など液状であれば特に限定されない。   Here, the origin of the raw material milk is not particularly limited, and examples thereof include animal milk (such as milk, sheep milk, goat milk, and buffalo milk) and plant-derived milk (soy milk). The raw material milk is not particularly limited as long as it is liquid, such as raw milk that has not undergone a reduction step, and processed milk that is produced by reducing dairy products (fat dry milk, skim milk, butter, cream, condensed milk, etc.).

また、原料乳は液状であればナノフィルトレーション膜で脱塩処理をすることができるので、全脂タイプ、脱脂タイプ、脂肪強化タイプのいずれであっても限定されないことはいうまでもない。   In addition, since raw milk can be desalted with a nanofiltration membrane if it is liquid, it goes without saying that it is not limited to any of the full fat type, degreased type, and fat-enriched type.

さらに、原料乳への風味や栄養価を強化するための各種食品や食品添加物の添加は原料乳が液状である限りは任意に添加することができる。   Furthermore, various foods and food additives for enhancing the flavor and nutritional value of the raw material milk can be arbitrarily added as long as the raw material milk is liquid.

本発明による第一回目の膜濃縮処理は、ナトリウムやカリウムなどの一価の陽イオンと水分を透過して濃縮できる機能を有する膜濃縮処理であれば特に限定されることはない。好ましくはナノフィルトレーション(NF)膜を使用する膜処理であることが望ましい。ナノフィルトレーション膜は市販のものを使用することが可能であるが、平均塩除去率が90%以上、好ましくは95%以上、さらに好ましくは97%以上であり、本発明で実証したナノフィルトレーション膜の平均塩除去率が97%〜99%であった。   The first membrane concentration treatment according to the present invention is not particularly limited as long as it is a membrane concentration treatment having a function of permeating and condensing monovalent cations such as sodium and potassium and moisture. The membrane treatment using a nanofiltration (NF) membrane is preferable. A commercially available nanofiltration membrane can be used, but the average salt removal rate is 90% or higher, preferably 95% or higher, more preferably 97% or higher. The average salt removal rate of the translation membrane was 97% to 99%.

前述した本発明の製造方法における希釈処理は前述の第一回目の膜濃縮処理後の処理物(濃縮乳)を希釈するものであれば、特に手段は限定されない。   The means for diluting in the production method of the present invention is not particularly limited as long as it dilutes the processed product (concentrated milk) after the first membrane concentration treatment.

例えば、第一回目の膜濃縮処理後の処理物(濃縮乳)に原料水をそのまま加えて、あるいは原料水を脱塩処理してから加えて希釈する方法など、第一回目の膜濃縮処理後の処理物(濃縮乳)の組成が薄まれば特に限定されない。   For example, after the first membrane concentration treatment, the raw material water is added to the processed product (concentrated milk) after the first membrane concentration treatment, or the raw water is desalted and then diluted. If the composition of this processed material (concentrated milk) becomes thin, it will not specifically limit.

また、原料水以外にも第一回目の膜濃縮処理で出てきた透過液(原料乳から透過されたナトリウムやカリウムなどの1価の陽イオンと水分の含まれた溶液)を脱塩処理したものを全て使用することができる。ここでの脱塩処理の一例としては、RO膜などの逆浸透膜処理を使用する方法、電気透析処理を行う方法、イオン交換カラムなどのイオン交換処理を行う方法、等が挙げられるが特に限定されるものではない。   In addition to the raw water, the permeate (the solution containing monovalent cations such as sodium and potassium permeated from the raw milk and water) that was generated in the first membrane concentration treatment was desalted. You can use everything. Examples of the desalting treatment here include a method using a reverse osmosis membrane treatment such as an RO membrane, a method of performing an electrodialysis treatment, a method of performing an ion exchange treatment such as an ion exchange column, and the like. Is not to be done.

前述した本発明の製造方法における第二回目の膜濃縮処理は、ナトリウムやカリウムなどの一価の陽イオンと水分を透過して濃縮できる機能を有する膜濃縮処理であれば特に限定されることはない。好ましくはナノフィルトレーション(NF)膜を使用する膜処理であることが望ましい。ナノフィルトレーション膜は市販のものを使用することが可能であるが、平均塩除去率が90%以上、好ましくは95%以上、さらに好ましくは97%以上であり、本発明で実証したナノフィルトレーション膜の平均塩除去率が97%〜99%であった。   The second membrane concentration treatment in the production method of the present invention described above is not particularly limited as long as it is a membrane concentration treatment having a function of permeating and condensing monovalent cations such as sodium and potassium and moisture. Absent. The membrane treatment using a nanofiltration (NF) membrane is preferable. A commercially available nanofiltration membrane can be used, but the average salt removal rate is 90% or higher, preferably 95% or higher, more preferably 97% or higher. The average salt removal rate of the translation membrane was 97% to 99%.

前述した本発明の製造方法においては、脱塩率を所定の値に維持したまま12時間以上連続して脱塩処理乳を製造する上で、また、ナトリウム換算で塩分含有量が前記原料乳に比較して40%以上低下している脱塩処理乳を12時間以上連続して製造する上で、第一回目及び第二回目の膜濃縮処理における透過流束:F(kg/m/h)と、前記原料乳の固形分濃度及び膜濃縮が行われる前の固形分濃度:TS(重量%)との間に所定の関係を成立させておくことが望ましい。 In the production method of the present invention described above, the desalinized milk is continuously produced for 12 hours or more while maintaining the desalination rate at a predetermined value. In the continuous production of desalted milk that has been reduced by 40% or more for 12 hours or longer, the permeation flux in the first and second membrane concentration treatments: F (kg / m 2 / h ) And the solid content concentration of the raw material milk and the solid content concentration before the film concentration: TS (% by weight) is desirably established.

前述したように、前記第一回目及び第二回目の膜濃縮処理を、いずれも、所定範囲の膜面積を有する前記ナノフィルトレーション膜を用い、所定の透過流束で行うことにより、前記脱塩処理乳を、脱塩率を所定の値に保って12時間以上連続して製造する、あるいは、ナトリウム換算で塩分含有量が前記原料乳に比較して40%以上低下している脱塩処理乳を12時間以上連続して製造することができる。この上で、更に、第一回目及び第二回目の膜濃縮処理における透過流束:F(kg/m/h)と、前記原料乳の固形分濃度及び膜濃縮が行われる前の固形分濃度:TS(重量%)との間に所定の関係を成立させておくことにより、脱塩率を所定の値に保って脱塩処理乳を12時間以上連続して製造する、あるいは、ナトリウム換算で塩分含有量が前記原料乳に比較して40%以上低下している脱塩処理乳を12時間以上連続して製造することを一層安定的に行うことができる。 As described above, the first and second membrane concentration treatments are performed by using the nanofiltration membrane having a membrane area within a predetermined range and with a predetermined permeation flux. Salt-treated milk is produced continuously for 12 hours or more while maintaining the desalination rate at a predetermined value, or the salt content is reduced by 40% or more in terms of sodium compared to the raw milk. Milk can be produced continuously for 12 hours or more. Furthermore, the permeation flux: F (kg / m 2 / h) in the first and second membrane concentration treatments, the solid content concentration of the raw material milk and the solid content before the membrane concentration is performed. Concentration: By producing a predetermined relationship with TS (% by weight), desalted milk is continuously produced for 12 hours or more while maintaining the desalination rate at a predetermined value, or sodium equivalent Thus, it is possible to more stably produce desalted milk having a salt content reduced by 40% or more compared to the raw material milk for 12 hours or more.

この場合、第一回目及び第二回目の膜濃縮処理における透過流束:F(kg/m/h)と、前記原料乳の固形分濃度及び膜濃縮が行われる前の固形分濃度:TS(重量%)との間の関係は、個々の処理において、目標とする脱塩率を考慮して適宜設定することができる。 In this case, the permeation flux in the first and second membrane concentration processes: F (kg / m 2 / h), the solid content concentration of the raw milk and the solid content concentration before the membrane concentration: TS The relationship between (% by weight) can be appropriately set in consideration of the target desalination rate in each treatment.

例えば、本願発明者等の検討によれば、脱脂乳を脱塩処理する場合には、F<22.3−TS(ただし、F<10.1で、TS<18.9)の関係が成立することが望ましいことが確認されている。   For example, according to the study by the inventors of the present application, when desalinating skim milk, the relationship of F <22.3-TS (where F <10.1 and TS <18.9) is established. It has been confirmed that it is desirable.

この場合、F>10.1またはTS>18.9の時には運転時間が長くなるにつれて膜が閉塞することにより、管内圧力が高まり安定的な連続生産が困難になる。また、透過流束F>22.3−TSの場合にも管内圧力が高まり、安定的な連続生産が難しくなる。   In this case, when F> 10.1 or TS> 18.9, the membrane is blocked as the operation time becomes longer, so that the pressure in the tube is increased and stable continuous production becomes difficult. Further, in the case of permeation flux F> 22.3-TS, the pressure in the pipe increases, and stable continuous production becomes difficult.

なお、前記の関係(F<22.3−TS)が成立しているときには、20t/hの処理量で前記原料乳を処理することができる。   In addition, when the said relationship (F <22.3-TS) is materialized, the said raw material milk can be processed with the processing amount of 20 t / h.

例えば、この場合、第一回目の膜濃縮処理及び第二回目の膜濃縮処理に使用される前記ナノフィルトレーション膜は同一とし、いずれも、合計の膜面積を1800mとし、第一回目の膜濃縮で固形分9.4%から16%まで脱塩濃縮し、希釈水にて固形分16%の脱塩濃縮乳を固形分9.4%まで希釈し、第二回目の膜濃縮で固形分9.4%から16%まで再度脱塩濃縮することでナトリウム換算にて40%の脱塩が可能となる。これらの工程を一連で行うよう設計することで、12時間以上安定した脱塩率の脱塩脱脂(濃縮)乳を生産することが可能となる。 For example, in this case, the nanofiltration membranes used for the first membrane concentration treatment and the second membrane concentration treatment are the same, and the total membrane area is 1800 m 2 , Desalted and concentrated to a solid content of 9.4% to 16% by membrane concentration, diluted with diluted water to a desalted and concentrated milk with a solid content of 16% to a solid content of 9.4%, and solidified by the second membrane concentration. By desalting and concentrating again from 9.4% to 16%, 40% desalting can be achieved in terms of sodium. By designing to perform these steps in series, it becomes possible to produce desalted and defatted (concentrated) milk having a stable desalting rate for 12 hours or more.

一方、生乳(全脂乳)を脱塩処理する場合には、本願発明者等の検討によれば、F<22−0.8TS(ただし、F<9.2で、TS<25.9)の関係が成立することが望ましいことが確認されている。   On the other hand, when the raw milk (whole milk) is desalted, according to the study by the present inventors, F <22-0.8TS (however, F <9.2 and TS <25.9). It has been confirmed that the above relationship is desirable.

この場合、F>9.2またはTS>25.9の時には運転時間が長くなるにつれて膜が閉塞することにより、管内圧力が高まり安定的な連続生産が困難になる。また、透過流束F>22−0.8TSの場合にも管内圧力が高まり、安定的な連続生産が難しくなる。   In this case, when F> 9.2 or TS> 25.9, the membrane is blocked as the operation time becomes longer, so that the pressure in the tube is increased and stable continuous production becomes difficult. In addition, when the permeation flux F> 22-0.8TS, the pressure in the pipe increases, and stable continuous production becomes difficult.

なお、前記の関係(F<22−0.8TS)が成立しているときには、20t/h及び14t/hの処理量で前記原料乳を処理することができる。   In addition, when the said relationship (F <22-0.8TS) is materialized, the said raw material milk can be processed with the processing amount of 20 t / h and 14 t / h.

また、この場合、第一回目の膜濃縮処理及び第二回目の膜濃縮処理に使用される前記ナノフィルトレーション膜は同一とし、いずれも、膜面積を1800mとし、第一回目の膜濃縮で固形分12.8%から22.6%まで脱塩濃縮し、希釈水にて固形分22.6%の脱塩濃縮乳を固形分12.8%まで希釈し、第二回目の膜濃縮で固形分12.8%から22.6%まで再度脱塩濃縮することでナトリウム換算にて40%の脱塩が可能となる。これらの工程を一連で行うよう設計することで、12時間以上安定した脱塩率の脱塩(濃縮)乳を生産することが可能となる。 In this case, the nanofiltration membranes used for the first membrane concentration treatment and the second membrane concentration treatment are the same, and both have a membrane area of 1800 m 2 and the first membrane concentration treatment. Desalted and concentrated from 12.8% to 22.6% solids, diluted 22.6% desalted and concentrated milk with diluted water to 12.8% solids, and concentrated for the second time. By desalting and concentrating again from 12.8% to 22.6% solid content, 40% desalting can be achieved in terms of sodium. By designing these steps in a series, desalted (concentrated) milk having a stable desalination rate for 12 hours or more can be produced.

さらに、脱脂乳および生乳において、透過流束Fと全固形分TSとの関係が成立している範囲では、1つのナノフィルトレーション膜処理設備を有効活用し、膜処理と貯液を繰り返す工程を行うことで、最終的なナノフィルトレーション膜処理後に12時間以上安定した脱塩率の脱塩(脱脂)濃縮乳を生産することが可能であることはいうまでもなく、この場合、工場での膜設備の占有スペースの効率化が期待できる。   Furthermore, in the skim milk and raw milk, within the range where the relationship between the permeation flux F and the total solid content TS is established, the process of effectively using one nanofiltration membrane treatment facility and repeating the membrane treatment and liquid storage It goes without saying that it is possible to produce a desalted (defatted) concentrated milk having a stable desalting rate for 12 hours or more after the final nanofiltration membrane treatment. It is expected that the space occupied by the membrane equipment will be improved.

この場合、膜濃縮処理に使用される前記ナノフィルトレーション膜は、膜面積を648mとし、第1回目の膜濃縮後に貯液し、次いで第2回目の膜濃縮を行うことで固形分12.8%から25.6%まで脱塩濃縮し、希釈水にて固形分25.6%の脱塩濃縮乳を固形分12.8%まで希釈し、第3回目の膜濃縮後に貯液し、次いで第4回目の膜濃縮を行うことで固形分12.8%から25.6%まで脱塩濃縮し第二回目の膜濃縮で固形分12.8%から22.6%まで再度脱塩濃縮することでナトリウム換算にて50%の脱塩が可能となる。これらの工程を設計により第4回目の膜濃縮処理後に、12時間以上安定した脱塩率の脱塩脱脂(濃縮)乳を生産することが可能となる。 In this case, the nanofiltration membrane used for the membrane concentration treatment has a membrane area of 648 m 2 , stores liquid after the first membrane concentration, and then performs the second membrane concentration to obtain a solid content of 12 Desalted and concentrated from 8% to 25.6%, diluted 25.6% of desalted and concentrated milk to 12.8% in diluted water, and stored after the third membrane concentration. Next, the fourth concentration of the membrane is desalted and concentrated from 12.8% to 25.6% solids, and the second concentration of the membrane is again desalted from 12.8% to 22.6% solids. Concentration makes it possible to desalinate 50% in terms of sodium. By designing these steps, it is possible to produce desalted and defatted (concentrated) milk having a stable desalting rate for 12 hours or more after the fourth membrane concentration treatment.

本発明の製造方法において、膜処理による脱塩濃縮工程にて、透過流束一定にさせた際の操作圧力が運転時間と共に上昇せず、一定または所定の範囲内である場合において連続運転による一定の脱塩率の脱塩(脱脂)濃縮乳の生産することが、膜の閉塞のリスクが軽減される点で望ましい。   In the production method of the present invention, when the permeation flux is kept constant in the desalting and concentration step by membrane treatment, the operation pressure does not increase with the operation time, and is constant or within a predetermined range. Production of desalted (defatted) concentrated milk with a desalting rate of is desirable in that the risk of blockage of the membrane is reduced.

本発明の製造方法において、原料乳の処理温度は特に制限されないが、殺菌前の原料乳を処理する場合にはできる限り細菌増殖を抑えるために低温で処理することが望ましく、例えば10℃以下で処理することが望ましい。   In the production method of the present invention, the treatment temperature of the raw material milk is not particularly limited, but when the raw material milk before sterilization is treated, it is desirable to treat it at a low temperature in order to suppress bacterial growth as much as possible, for example, at 10 ° C. or less. It is desirable to process.

本発明の製造方法で使用する組成分析法は牛乳や乳製品で公知となっている手法で分析することができ、その手法は特に限定されない。   The composition analysis method used in the production method of the present invention can be analyzed by a method known for milk and dairy products, and the method is not particularly limited.

本発明が、提案する脱塩処理乳は前述した本発明の製造方法によって製造したものである。   The desalted milk proposed by the present invention is produced by the production method of the present invention described above.

本発明で製造された脱塩処理乳から更に処理、加工することに特に制限はない。すなわち、脱塩処理乳を更に濃縮・乾燥して粉乳にすることや、脱塩処理乳を希釈して加工乳や乳飲料などにすること、脱塩処理乳やそれを加工した乳製品を原料とした飲食品にすることなどに制限はない。   There is no restriction | limiting in particular in further processing and processing from the desalinated milk manufactured by this invention. In other words, desalted milk is further concentrated and dried to form powdered milk, desalted milk is diluted into processed milk and milk beverages, and desalted milk and dairy products processed from it are used as raw materials. There are no restrictions on the foods and drinks.

なお、前述したように、原料乳には液状であれば、全脂タイプ、脱脂タイプ、脂肪強化タイプのいずれでも使用できる。そこで、脱脂タイプを原料乳に使用すれば、本発明の製造方法によって脱塩脱脂処理乳を製造することができる。使用する原料乳を全脂タイプ、脱脂タイプにすることによって、脱塩処理乳を更に濃縮・乾燥して全脂粉乳や脱脂粉乳を製造することができる。   As described above, any raw fat type, non-fat type, or fat-enriched type can be used as long as the raw material milk is liquid. Then, if a non-fat type is used for raw material milk, demineralized and degreased milk can be produced by the production method of the present invention. By making the raw material milk to be used a full-fat type or a non-fat type, the desalted milk can be further concentrated and dried to produce full-fat milk powder or skim milk powder.

以下、発明者等が本願発明を完成させるに至った実験例と当該実験例に基づく本発明の実施例により本発明を更に詳細に説明する。本発明は上述した実施形態及び以下の実施例に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。なお、以下において%はいずれも重量基準である。   Hereinafter, the present invention will be described in more detail with reference to experimental examples in which the inventors have completed the present invention and examples of the present invention based on the experimental examples. The present invention is not limited to the above-described embodiment and the following examples, and can be variously modified within the technical scope grasped from the description of the scope of claims. In the following,% is based on weight.

(試験例1)
脱脂乳に対するナノフィルトレーション膜の透過性能を確認するための回分濃縮試験。
(Test Example 1)
Batch concentration test to confirm the permeation performance of nanofiltration membranes for skim milk.

3t容量の供給タンクより脱脂乳を高圧ポンプにて約1300L/hで、直径4インチ、膜面積7.4mの平均塩除去率97〜99%のナノフィルトレーション膜(NF3838C/30−FF スパイラル膜、米国Dow−Filmtec社製)を含む循環ラインに払い出し、払い出し後は透過液のみ回収タンクに排出しながら脱脂乳濃度が約2倍程度になるまで10℃以下で膜濃縮を行った。操作圧力を1.2MPa、1.4MPa、1.6MPaの3水準にて等圧条件となるよう設定し、濃縮液のサンプリングを行い、それぞれ屈折糖度(%)、全固形分(%)、ナトリウム含量(mg%)、カリウム含量(mg%)を測定した。測定結果を表1に示した。

Figure 0005835726
A nanofiltration membrane (NF3838C / 30-FF) with an average salt removal rate of 97 to 99% with a diameter of 4 inches and a membrane area of 7.4 m 2 at about 1300 L / h with skim milk from a supply tank of 3 t capacity The membrane was concentrated to 10 ° C. or lower until the concentration of skim milk was about doubled while discharging only the permeate into the recovery tank. The operating pressure was set to be equal pressure conditions at three levels of 1.2 MPa, 1.4 MPa, and 1.6 MPa, and the concentrated solution was sampled. Refractive sugar content (%), total solid content (%), sodium The content (mg%) and potassium content (mg%) were measured. The measurement results are shown in Table 1.
Figure 0005835726

表1の測定結果より、1.6MPa以下の操作圧力において等圧条件下でナノフィルトレーション膜による膜濃縮を行った場合、全固形分と屈折糖度の関係は以下の式の通りと考えられた。
全固形分(%)=0.9338×屈折糖度(%)−0.8478
From the measurement results of Table 1, when membrane concentration with a nanofiltration membrane is performed under an isobaric condition at an operating pressure of 1.6 MPa or less, the relationship between total solid content and refractive sugar content is considered to be as follows: It was.
Total solid content (%) = 0.9338 × refractive sugar content (%) − 0.8478

また、ナトリウムとカリウムの脱塩率の平均値と濃縮後の脱塩濃縮乳の全固形分との関係は表1の結果より以下の式の通りと考えられた。
NaとKの脱塩率の平均値(%)=42.3×Ln(全固形分%)−94.8
In addition, the relationship between the average value of the desalting rate of sodium and potassium and the total solid content of the desalted and concentrated milk after concentration was considered as shown in the following formula from the results of Table 1.
Average value of desalting rate of Na and K (%) = 42.3 × Ln (% of total solids) −94.8

そこで、全固形分9.38%の脱脂乳よりナトリウムとカリウムの脱塩率の平均値を40%の脱塩脱脂濃縮乳をするには、上記の式より脱塩脱脂濃縮乳の全固形分を23.9%までナノフィルトレーション膜で濃縮する必要のあることがわかった。   Therefore, in order to obtain a demineralized and defatted concentrated milk having an average value of the desalting rate of sodium and potassium from the dehydrated milk having a total solid content of 9.38%, the total solid content of the demineralized and defatted concentrated milk is obtained from the above formula. It was found necessary to concentrate to 23.9% with a nanofiltration membrane.

また、全固形分9.38%の脱脂乳より全固形分16.02%の脱塩脱脂濃縮乳までナノフィルトレーション膜で濃縮し、その後、全固形分9.38%まで希釈して脱塩脱脂乳とし、再び全固形分16.02%まで膜濃縮することでも、ナトリウムとカリウムの脱塩率の平均値を40%の脱塩脱脂濃縮乳とすることができることがわかった。   In addition, it is concentrated with a nanofiltration membrane from skimmed milk with a total solid content of 9.38% to a desalted and defatted concentrated milk with a total solid content of 16.02%, and then diluted to a total solid content of 9.38%. It was found that the average value of the demineralization rate of sodium and potassium could be 40% of desalted and defatted concentrated milk by making the salt defatted milk and membrane concentration again to a total solid content of 16.02%.

(試験例2)
膜濃縮条件(透過流束と濃縮濃度)毎による、透過流束と濃縮濃度の組み合わせを幅広く設定し、12時間の連続運転が可能となる条件範囲を特定するための連続運転試験を実施した。
(Test Example 2)
A wide range of combinations of permeation flux and concentration concentration was set for each membrane concentration condition (permeation flux and concentration concentration), and a continuous operation test was conducted to identify a condition range in which continuous operation for 12 hours was possible.

3t容量の貯液タンクより脱脂乳を高圧ポンプにて所定流量で払い出しを行い、直径4インチ、膜面積7.4mの平均塩除去率97〜99%のナノフィルトレーション膜(NF3838C/30−FF スパイラル膜、米国Dow−Filmtec社製)で膜濃縮を行い、処理温度を10℃以下で実施した。 Nonfat milk is discharged from a 3t-capacity storage tank at a predetermined flow rate with a high-pressure pump, and a nanofiltration membrane (NF3838C / 30) with an average salt removal rate of 97 to 99% with a diameter of 4 inches and a membrane area of 7.4 m 2 is used. -FF spiral membrane (manufactured by Dow-Filmtec, USA) was performed, and the treatment temperature was 10 ° C or lower.

実施した連続運転試験の設定条件と連続運転試験の結果は以下の表2の通りである。

Figure 0005835726
Table 2 below shows the setting conditions of the conducted continuous operation test and the results of the continuous operation test.
Figure 0005835726

表2のデータはRun2は7時間、Run2以外のRun1とRun3〜7は12時間連続運転したデータである。膜処理後の濃縮液の実測TS(%)はそれぞれ連続運転した際の平均値を指す。また、流量についてはそれぞれ連続運転した際の下限値と上限値のデータを流量計による指示値をいう。透過液屈折糖度はそれぞれ連続運転した際の下限値と上限値のデータをいう。透過流束(kg/m/h)は透過液の流量からナノフィルトレーション膜の面積(7.4m)を割った値であり、その実測値はそれぞれ連続運転した際の下限値と上限値のデータをいう。透過流束の「実測・平均」はそれぞれ連続運転した際の平均値を指す。 The data in Table 2 is data obtained by running Run 2 for 7 hours, and Run 1 and Runs 3 to 7 other than Run 2 for 12 hours continuously. The measured TS (%) of the concentrated solution after membrane treatment refers to the average value when continuously operated. As for the flow rate, the lower limit value and the upper limit value data in continuous operation are indicated by the flow meter. The permeated liquid refractory sugar content refers to data of a lower limit value and an upper limit value when continuously operated. The permeation flux (kg / m 2 / h) is a value obtained by dividing the flow rate of the permeate by the area of the nanofiltration membrane (7.4 m 2 ). This is the upper limit data. “Measurement / average” of the permeation flux refers to the average value in continuous operation.

脱脂乳や脱脂濃縮乳を供給タンクより高圧ポンプで循環ラインに定量供給し、透過流束を一定に保つよう透過液の流量を一定にするようナノフィルトレーション膜前後の操作圧力を調整しながら連続運転を行った。   While supplying non-fat milk and non-fat concentrated milk to a circulation line with a high-pressure pump from a supply tank, adjusting the operation pressure before and after the nanofiltration membrane to keep the permeate flow rate constant so as to keep the permeate flux constant Continuous operation was performed.

連続運転結果を前記の表2に示した。いずれの試験においても脱脂乳、濃縮液の流量は12時間通して安定していた。濃縮乳の濃度も目標値付近で安定していた。また、各試験では概ね設定通りの透過流束で運転を行った。ナノフィルトレーション膜を透過した濃縮液の屈折糖度の運転時間における推移を図1に示した。   The results of continuous operation are shown in Table 2 above. In any test, the flow rates of skim milk and concentrate were stable for 12 hours. The concentration of concentrated milk was also stable near the target value. In each test, the operation was performed with the permeation flux almost as set. FIG. 1 shows the transition of the refractive sugar content of the concentrated solution that has passed through the nanofiltration membrane in the operation time.

図1より、連続運転中の濃縮液の屈折糖度は一定していることが明らかとなった。   From FIG. 1, it was revealed that the refractive sugar content of the concentrate during continuous operation is constant.

連続運転中の操作圧力の経時変化を図2に示した。 The change with time of the operating pressure during continuous operation is shown in FIG.

図2より、Run2以外は連続運転中の操作圧力値は一定であり、安定して12時間の連続運転が可能と考えられる。Run4では運転の終盤にナノフィルトレーション膜の閉塞を示唆する操作圧力の上昇が観られたが、Run2と比べると操作圧力の上昇開始時間が遅く、12時間の運転は可能と判断した。   From FIG. 2, the operating pressure value during the continuous operation is constant except for Run 2, and it is considered that the continuous operation for 12 hours can be stably performed. In Run 4, an increase in the operating pressure was suggested at the end of the operation, suggesting that the nanofiltration membrane was blocked, but compared to Run 2, the starting time of the increase in the operating pressure was later, and it was judged that operation for 12 hours was possible.

前記の結果を踏まえて、連続運転の可否をシンボル(○、△、×)で区別してプロットし、○の分布状況から12時間連続運転可能領域を図3上に斜線で示した。   Based on the above results, the availability of continuous operation was plotted by distinguishing with symbols (◯, Δ, ×), and the 12-hour continuous operation possible region was indicated by hatching in FIG.

図3より、脱脂乳の各濃縮固形分における12時間連続運転が可能な条件の範囲は、透過流束をF[kg/m/h]、濃縮固形分TS[%]をとすると、凡そ次式で示す範囲内となる。
透過流束F <22.3−TS
(ただしF<10.1 かつ TS<18.9)
From FIG. 3, the range of conditions under which each of the concentrated solids of skim milk can be operated continuously for 12 hours is approximately when the permeation flux is F [kg / m 2 / h] and the concentrated solids TS [%]. Within the range shown by the following formula.
Permeation flux F <22.3-TS
(However, F <10.1 and TS <18.9)

脱脂乳から脱塩脱脂濃縮乳を製造するための処理設備として、ナノフィルトレーション膜の総面積1800mの3循環経路方式の第1のナノフィルトレーション膜処理設備、その下流工程に、脱脂乳をナノフィルトレーション濾過して得られた透過液を逆浸透膜処理した濾過水を比例混合する設備、さらに、その下流工程に、ナノフィルトレーション膜の総面積1800mの3循環経路方式の第2のナノフィルトレーション膜処理設備を有する連続処理装置を使用した。 As a processing facility for producing desalted and defatted concentrated milk from skimmed milk, a first nanofiltration membrane treatment facility of a three-circulation path system having a total area of 1800 m 2 of nanofiltration membrane, and the downstream process thereof is defatted. Equipment for proportionally mixing filtered water obtained by reverse osmosis membrane treatment of the permeate obtained by nanofiltration filtration of milk, and further, in the downstream process, a three-circulation route system with a total area of nanofiltration membrane of 1800 m 2 A continuous processing apparatus having a second nanofiltration membrane processing facility was used.

脱塩率(製造された脱塩処理乳のナトリウム換算での塩分含有量÷脱脂乳のナトリウム換算での塩分含有量×100)=40%を目標として、脱脂乳(固形分9.4%)をこの装置に20t/hで通液した。第1及び第2のナノフィルトレーション膜処理設備における透過液体の平均流速はいずれも8.3t/hであった。第2のナノフィルトレーション膜処理装置を出たところでの脱塩率は40%前後で推移し、その脱塩率は12時間以上変わらなかった。   Desalination rate (salt content in sodium equivalent of manufactured desalted processed milk / salt content in sodium equivalent of skim milk × 100) = 40%, skim milk (solid content 9.4%) Was passed through the apparatus at 20 t / h. The average flow rate of the permeated liquid in the first and second nanofiltration membrane treatment facilities was 8.3 t / h. The desalination rate at the time of leaving the second nanofiltration membrane treatment apparatus remained around 40%, and the desalination rate did not change for more than 12 hours.

(試験例3)
全脂乳に対するナノフィルトレーション膜の透過性能を確認するための回分濃縮試験。
(Test Example 3)
Batch concentration test to confirm the permeation performance of nanofiltration membranes for whole milk.

3t容量の供給タンクより全脂乳を高圧ポンプにて約1300L/hで、直径4インチ、膜面積7.4mの平均塩除去率97〜99%のナノフィルトレーション膜(NF3838C/30−FF スパイラル膜、米国Dow−Filmtec社製)を含む循環ラインに払い出し、払い出し後は透過液のみ回収タンクに排出しながら脱脂乳濃度が約2倍程度になるまで10℃以下で膜濃縮を行った。操作圧力を1.2MPa、1.4MPa、1.6MPaの3水準にて等圧条件となるよう設定し、濃縮液のサンプリングを行い、それぞれ屈折糖度(%)、全固形分(%)、ナトリウム含量(mg%)、カリウム含量(mg%)を測定した。測定結果を表3に示した。

Figure 0005835726
A nanofiltration membrane (NF3838C / 30-) with an average salt removal rate of 97 to 99% with a diameter of 4 inches and a membrane area of 7.4 m 2 at about 1300 L / h from a 3 t capacity supply tank with a high-pressure pump. FF spiral membrane, manufactured by US Dow-Filmtec), and after the discharge, the membrane was concentrated at 10 ° C. or lower until the concentration of skim milk was about doubled while discharging only the permeate to the recovery tank. . The operating pressure was set to be equal pressure conditions at three levels of 1.2 MPa, 1.4 MPa, and 1.6 MPa, and the concentrated solution was sampled. Refractive sugar content (%), total solid content (%), sodium The content (mg%) and potassium content (mg%) were measured. The measurement results are shown in Table 3.
Figure 0005835726

表3の測定結果より、1.6MPa以下の操作圧力において等圧条件下でナノフィルトレーション膜による膜濃縮を行った場合、全固形分と屈折糖度の関係は以下の式の通りと考えられた。
全固形分(%)=1.15×屈折糖度(%)−1.09
From the measurement results in Table 3, when membrane concentration was performed with a nanofiltration membrane under an isobaric condition at an operating pressure of 1.6 MPa or less, the relationship between total solid content and refractive sugar content is considered to be as follows: It was.
Total solid content (%) = 1.15 × refractive sugar content (%) − 1.09

また、ナトリウムとカリウムの脱塩率の平均値と濃縮後の脱塩濃縮乳の全固形分との関係は表1の結果より以下の式の通りと考えられた。
NaとKの脱塩率の平均値(%)=50.5×Ln(全固形分%)−131
In addition, the relationship between the average value of the desalting rate of sodium and potassium and the total solid content of the desalted and concentrated milk after concentration was considered as shown in the following formula from the results of Table 1.
Average value of desalting rate of Na and K (%) = 50.5 × Ln (% of total solids) −131

そこで、全固形分12.81%の生乳よりナトリウムとカリウムの脱塩率の平均値を40%の脱塩脱脂濃縮乳をするには、上記の式より脱塩脱脂濃縮乳の全固形分を29.6%までナノフィルトレーション膜で濃縮する必要のあることがわかった。   Therefore, in order to obtain a demineralized defatted concentrated milk having an average sodium and potassium demineralization rate of 40% from raw milk having a total solid content of 12.81%, the total solid content of the demineralized defatted concentrated milk is calculated from the above formula. It was found that it was necessary to concentrate with a nanofiltration membrane to 29.6%.

また、全固形分12.81%の生乳より全固形分25.6%の脱塩濃縮乳までナノフィルトレーション膜で濃縮し、その後、全固形分12.81%まで希釈して脱塩全脂乳とし、再び全固形分25.6%まで膜濃縮することでも、ナトリウムとカリウムの脱塩率の平均値を50%の脱塩全脂濃縮乳とすることができることがわかった。   Concentrate with a nanofiltration membrane from raw milk with a total solid content of 12.81% to desalted and concentrated milk with a total solid content of 25.6%, and then dilute to a total solid content of 12.81%. It was also found that the average value of the desalting rate of sodium and potassium could be 50% of desalted whole fat concentrated milk by making the fat milk and concentrating the membrane again to a total solid content of 25.6%.

(試験例4)
膜濃縮条件(透過流束と濃縮濃度)毎による、透過流束と濃縮濃度の組み合わせを幅広く設定して、12時間の連続運転が可能となる条件範囲を特定するための連続運転試験を実施した。
(Test Example 4)
A wide range of combinations of permeation flux and concentration concentration for each membrane concentration condition (permeation flux and concentration concentration) was conducted, and a continuous operation test was conducted to identify a condition range in which continuous operation for 12 hours was possible. .

3t容量の貯液タンクより脱脂乳を高圧ポンプにて所定流量で払い出しを行い、直径4インチ、膜面積7.4mの平均塩除去率97〜99%のナノフィルトレーション膜(NF3838C/30−FF スパイラル膜、米国Dow−Filmtec社製)で膜濃縮を行い、処理温度を10℃以下で実施した。 Nonfat milk is discharged from a 3t-capacity storage tank at a predetermined flow rate with a high-pressure pump, and a nanofiltration membrane (NF3838C / 30) with an average salt removal rate of 97 to 99% with a diameter of 4 inches and a membrane area of 7.4 m 2 is used. -FF spiral membrane (manufactured by Dow-Filmtec, USA) was performed, and the treatment temperature was 10 ° C or lower.

実施した連続運転試験の設定条件と連続運転試験の結果は以下の表4の通りである。

Figure 0005835726
Table 4 below shows the setting conditions of the continuous operation test and the results of the continuous operation test.
Figure 0005835726

表4のデータはRun2は5時間、Run3が7時間、Run4が8時間、Run7が9時間、それ以外のRun1とRun5〜6、Run8〜9は12時間連続運転したデータである。膜処理後の濃縮液の実測TS(%)はそれぞれ連続運転した際の平均値を指す。また、流量についてはそれぞれ連続運転した際の下限値と上限値のデータを流量計による指示値をいう。透過液屈折糖度はそれぞれ連続運転した際の下限値と上限値のデータをいう。透過流束は透過液の流量からナノフィルトレーション膜の面積(7.4m)を割った値であり、その実測値はそれぞれ連続運転した際の下限値と上限値のデータをいう。透過流束の「実測・平均」はそれぞれ連続運転した際の平均値を指す。 The data in Table 4 is data obtained by running Run 2 for 5 hours, Run 3 for 7 hours, Run 4 for 8 hours, Run 7 for 9 hours, and other Run 1 and Run 5 to 6, and Run 8 to 9 for 12 hours continuously. The measured TS (%) of the concentrated solution after membrane treatment refers to the average value when continuously operated. As for the flow rate, the lower limit value and the upper limit value data in continuous operation are indicated by the flow meter. The permeated liquid refractory sugar content refers to data of a lower limit value and an upper limit value when continuously operated. The permeation flux is a value obtained by dividing the area of the nanofiltration membrane (7.4 m 2 ) from the flow rate of the permeate, and the actual measurement values are data of the lower limit value and the upper limit value when continuously operated, respectively. “Measurement / average” of the permeation flux refers to the average value in continuous operation.

脱脂乳や脱脂濃縮乳を供給タンクより高圧ポンプで循環ラインに定量供給し、透過流束を一定に保つよう透過液の流量を一定にするようナノフィルトレーション膜前後の操作圧力を調整しながら連続運転を行った。   While supplying non-fat milk and non-fat concentrated milk to a circulation line with a high-pressure pump from a supply tank, adjusting the operation pressure before and after the nanofiltration membrane to keep the permeate flow rate constant so as to keep the permeate flux constant Continuous operation was performed.

連続運転結果を前記の表4に示した。いずれの試験においても脱脂乳、透過液の流量は連続運転を通して安定していた。濃縮乳の濃度も目標値付近で安定していた。また、各試験では設定通りの透過流束で運転を行った。膜濃縮された濃縮液の屈折糖度の運転時間における推移を図4に示した。   The results of continuous operation are shown in Table 4 above. In any test, the flow rate of skim milk and permeate was stable throughout the continuous operation. The concentration of concentrated milk was also stable near the target value. In each test, operation was performed with a permeation flux as set. FIG. 4 shows the transition of the refractive sugar content of the concentrated solution concentrated in the membrane during the operation time.

図4より、連続運転中の濃縮液の屈折糖度は一定しており、濃縮液の組成も一定であることが明らかとなった。   FIG. 4 reveals that the refractive sugar content of the concentrate during continuous operation is constant and the composition of the concentrate is also constant.

連続運転中の操作圧力の経時変化を図5に示した。図5より、Run1、5、6、8、9は操作圧力が安定しており、12時間の連続運転が可能であったが、Run2、3、4、7は運転中にナノフィルトレーション膜の閉塞を示唆する操作圧力の上昇が観られ、12時間の連続運転は不可能と考えられた。   FIG. 5 shows the change over time in the operating pressure during continuous operation. From FIG. 5, the operating pressures of Runs 1, 5, 6, 8, and 9 were stable, and continuous operation for 12 hours was possible, but Runs 2, 3, 4, and 7 were nanofiltration membranes during operation. An increase in operating pressure was observed suggesting a blockage of the water, and continuous operation for 12 hours was considered impossible.

この連続運転結果を踏まえて、連続運転の可否をシンボル(○、×)で区別してプロットし、○の分布状況から12時間連続運転可能領域を図6上に斜線で示した。   Based on the result of continuous operation, whether or not continuous operation is possible is plotted by distinguishing with symbols (◯, ×), and the region where continuous operation is possible for 12 hours is shown by hatching in FIG.

図6より、生乳の各固形分における12時間連続運転が可能な条件の範囲は、透過流束をF[kg/m/h]、濃縮固形分をTS[%]をとすると、凡そ次の式で示す範囲内となる。
透過流束F <22−0.8TS
(ただしF<9.2 かつ TS<25.9)
From FIG. 6, the range of conditions under which each solid content of raw milk can be continuously operated for 12 hours is approximately the following when the permeation flux is F [kg / m 2 / h] and the concentrated solid content is TS [%]. It will be within the range indicated by the formula.
Permeation flux F <22-0.8TS
(However, F <9.2 and TS <25.9)

生乳から脱塩濃縮乳を製造するための処理設備として、ナノフィルトレーション膜の総面積1800mの3循環経路方式の第1のナノフィルトレーション膜処理設備、その下流工程に、脱脂乳をナノフィルトレーション濾過して得られた透過液を逆浸透膜処理した濾過水を比例混合する設備、さらに、その下流工程に、ナノフィルトレーション膜の総面積1800mの3循環経路方式の第2のナノフィルトレーション膜処理設備を有する連続処理装置を使用した。 As processing equipment for producing desalted concentrated milk from raw milk, the first nanofiltration membrane processing equipment of the 3 circulation path system with a total area of 1800 m 2 of nanofiltration membrane, and the skim milk in the downstream process A facility for proportionally mixing filtered water obtained by subjecting the permeate obtained by nanofiltration filtration to reverse osmosis membrane treatment, and further downstream of the facility, a three-circulation path system with a total area of 1800 m 2 of nanofiltration membrane A continuous processing apparatus having two nanofiltration membrane processing facilities was used.

脱塩率(製造された脱塩処理乳のナトリウム換算での塩分含有量÷脱脂乳のナトリウム換算での塩分含有量×100)=40%を目標として、生乳(固形分13.0%)をこの装置に20t/hで通液した。第1及び第2のナノフィルトレーション膜処理設備における透過液体の平均流速はいずれも8.3t/hであった。第2のナノフィルトレーション膜処理装置を出たところでの脱塩率は40%前後で推移し、その脱塩率は12時間以上変わらなかった。   Desalination rate (salt content in sodium equivalent of manufactured desalted processed milk ÷ salt content in sodium equivalent of skim milk × 100) = 40%, raw milk (solid content 13.0%) The liquid was passed through this apparatus at 20 t / h. The average flow rate of the permeated liquid in the first and second nanofiltration membrane treatment facilities was 8.3 t / h. The desalination rate at the time of leaving the second nanofiltration membrane treatment apparatus remained around 40%, and the desalination rate did not change for more than 12 hours.

生乳から脱塩濃縮乳を製造するための処理設備として、ナノフィルトレーション膜の総面積648mの2循環経路方式のナノフィルトレーション膜処理設備、さらに、その下流工程に貯液設備を有する装置を使用した。 As a processing facility for producing desalted and concentrated milk from raw milk, it has a nanofiltration membrane processing facility with a total circulation area of 648 m 2 and a liquid storage facility in the downstream process. The device was used.

脱塩率(製造された脱塩処理乳のナトリウム換算での塩分含有量÷生乳のナトリウム換算での塩分含有量×100)=50%を目標として、生乳(固形分12.8%)をこの装置に14t/hで通液し、第1回目のナノフィルトレーション膜処理設備における透過液体の平均流速は4.7t/hであった。貯液後の濃縮液を7.2t/hで通液し、第2回目のナノフィルトレーション膜処理設備における透過液体の平均流速は1.8t/hであった。さらに、貯液後の濃縮液に生乳をナノフィルトレーション濾過して得られた透過液を逆浸透膜処理して水と同等組成となった濾過水を混合し、固形分12.8%まで希釈した。さらに、希釈後の脱塩乳(固形分12.8%)を14t/hで通液し、第3回目のナノフィルトレーション膜処理設備における透過液体の平均流速は4.7t/hであった。貯液後の濃縮液を7.2t/hで通液し、第4回目のナノフィルトレーション膜処理設備における透過液体の平均流速は1.8t/hであった。第4回目のナノフィルトレーション膜処理装置を出たところでの脱塩率は50%前後で推移し、その脱塩率は12時間以上変わらなかった。   Desalination rate (salt content of sodium in desalted processed milk ÷ salt content in terms of sodium in raw milk x 100) = 50%, with raw milk (12.8% solids) The liquid was passed through the apparatus at 14 t / h, and the average flow rate of the permeated liquid in the first nanofiltration membrane treatment facility was 4.7 t / h. The concentrated liquid after storage was passed at 7.2 t / h, and the average flow rate of the permeated liquid in the second nanofiltration membrane treatment facility was 1.8 t / h. Furthermore, the permeate obtained by nanofiltration filtration of raw milk into the concentrated solution after storage is mixed with filtered water having a composition equivalent to that of water by reverse osmosis membrane treatment, to a solid content of 12.8% Diluted. Furthermore, diluted desalted milk (solid content: 12.8%) was passed at 14 t / h, and the average flow rate of the permeated liquid in the third nanofiltration membrane treatment facility was 4.7 t / h. It was. The concentrated liquid after storage was passed at 7.2 t / h, and the average flow rate of the permeated liquid in the fourth nanofiltration membrane treatment facility was 1.8 t / h. The desalination rate after leaving the fourth nanofiltration membrane treatment apparatus was around 50%, and the desalination rate did not change for more than 12 hours.

所定範囲のナノフィルトレーション膜面積と透過流速において、原料乳をナノフィルトレーション(NF)膜において脱塩処理をすることで膜濃縮し、その後希釈処理をし、さらにナノフィルトレーション(NF)膜において脱塩処理をすることで、長時間(12時間以上)連続的に一定の脱塩率(例えば、ナトリウム換算で40%以上の低下)を有する脱塩処理乳を安定的に製造できることを見出した。   In a predetermined range of nanofiltration membrane area and permeation flow rate, raw milk is concentrated by desalting in a nanofiltration (NF) membrane, then diluted, and further subjected to nanofiltration (NF). ) By desalting the membrane, it is possible to stably produce desalted milk having a constant desalting rate (for example, a decrease of 40% or more in terms of sodium) continuously for a long time (12 hours or more). I found.

本発明の脱塩処理乳の製造方法を採用することで、単に原料乳を脱塩処理するだけでなく、設計通りの脱塩処理乳を必要に応じて必要なだけ製造することができ、脱塩処理後に再度脱塩するような脱塩状態によって工程が煩雑になるリスクも少なくなり、効率的な脱塩濃縮乳の生産が可能となった。   By adopting the method for producing desalted processed milk of the present invention, it is possible not only to desalinate raw milk, but also to produce desalted processed milk as designed as needed. The risk of complicated processes due to the desalting state in which salt is desalted again after salt treatment is reduced, and efficient desalted concentrated milk can be produced.

Claims (17)

ナノフィルトレーション膜を用いて原料乳に対して第一回目の膜濃縮処理を行った後、当該第一回膜濃縮後の原料乳を希釈し、再度、ナノフィルトレーション膜を用いて第二回目の膜濃縮処理を行うことにより、前記第二回目の膜濃縮処理後のナトリウム換算の塩分含有量が、前記原料乳におけるナトリウム換算の塩分含有量より低下している脱塩処理乳を、脱塩率を所定の値に保って12時間以上連続して製造する脱塩処理乳の製造方法であって、
前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理における透過流束:F(kg/m /h)と、前記原料乳の固形分濃度及び第二回膜濃縮が行われる前の固形分濃度:TS(重量%)との間に
F<22−0.8TS
(ただし、F<9.2で、TS<25.8)
の関係が成立することを特徴とする脱塩処理乳の製造方法
After the first membrane concentration treatment is performed on the raw material milk using the nanofiltration membrane, the raw material milk after the first membrane concentration is diluted, and again using the nanofiltration membrane By performing the second membrane concentration treatment, the sodium-equivalent salt content after the second membrane concentration treatment is lower than the sodium-equivalent salt content in the raw milk, A desalinized milk production method for continuously producing a desalination rate at a predetermined value for 12 hours or more ,
Permeation flux in the first membrane concentration treatment and the second membrane concentration treatment: F (kg / m 2 / h), solid content concentration of the raw milk and before the second membrane concentration Solid content concentration: between TS (wt%)
F <22-0.8TS
(However, F <9.2 and TS <25.8)
A method for producing desalted milk, wherein the relationship is established .
前記原料乳は、還元工程を経ていない獣乳、当該獣乳の加工品である乳製品を還元して作られた加工乳、植物由来の乳のいずれかであることを特徴とする請求項1記載の脱塩処理乳の製造方法。 The raw material milk is any of animal milk that has not undergone a reduction step, processed milk produced by reducing a dairy product that is a processed product of the animal milk, and plant-derived milk. The manufacturing method of desalinized milk of description. 前記原料乳が全脂タイプである請求項1又は2記載の脱塩処理乳の製造方法。 The method for producing desalted milk according to claim 1 or 2, wherein the raw milk is a whole fat type . 前記原料乳が脱脂したものである請求項1又は2記載の脱塩処理乳の製造方法。 The method for producing desalted milk according to claim 1 or 2, wherein the raw milk is defatted . 前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理における透過流束:F(kg/m /h)と、前記原料乳の固形分濃度及び第二回膜濃縮が行われる前の固形分濃度:TS(重量%)との間に
F<22.3−TS
(ただし、F<10.1で、TS<18.9)
の関係が成立することを特徴とする請求項4記載の脱塩処理乳の製造方法。
Permeation flux in the first membrane concentration treatment and the second membrane concentration treatment: F (kg / m 2 / h), solid content concentration of the raw milk and before the second membrane concentration Solid content concentration: between TS (wt%)
F <22.3-TS
(However, F <10.1 and TS <18.9)
The method for producing desalted milk according to claim 4, wherein the relationship is established .
ナノフィルトレーション膜を用いて原料乳に対して第一回目の膜濃縮処理を行った後、当該第一回膜濃縮後の原料乳を希釈し、再度、ナノフィルトレーション膜を用いて第二回目の膜濃縮処理を行うことにより、ナトリウム換算で塩分含有量が前記原料乳に比較して40%以上低下している脱塩処理乳を12時間以上連続して製造する脱塩処理乳の製造方法であって、
前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理における透過流束:F(kg/m /h)と、前記原料乳の固形分濃度及び第二回膜濃縮が行われる前の固形分濃度:TS(重量%)との間に
F<22−0.8TS
(ただし、F<9.2で、TS<25.8)
の関係が成立することを特徴とする脱塩処理乳の製造方法。
After the first membrane concentration treatment is performed on the raw material milk using the nanofiltration membrane, the raw material milk after the first membrane concentration is diluted, and again using the nanofiltration membrane By performing the membrane concentration treatment for the second time, the desalinized milk for continuously producing desalted milk having a salt content reduced by 40% or more in terms of sodium as compared with the raw material milk for 12 hours or more. A manufacturing method comprising:
Permeation flux in the first membrane concentration treatment and the second membrane concentration treatment: F (kg / m 2 / h), solid content concentration of the raw milk and before the second membrane concentration Solid content concentration: between TS (wt%)
F <22-0.8TS
(However, F <9.2 and TS <25.8)
A method for producing desalted milk, wherein the relationship is established .
前記原料乳は、還元工程を経ていない獣乳、当該獣乳の加工品である乳製品を還元して作られた加工乳、植物由来の乳のいずれかであることを特徴とする請求項6記載の脱塩処理乳の製造方法。 The raw milk is claim 6, wherein the animal milk that has not undergone the reduction step, processed milk made by reducing the dairy is a processed product of the animal milk to be either milk of vegetable origin manufacturing method of desalting milk serial placement. 前記原料乳が全脂タイプである請求項6又は7記載の脱塩処理乳の製造方法。 The method for producing desalted milk according to claim 6 or 7, wherein the raw milk is a whole fat type . 前記原料乳が脱脂したものである請求項6又は7記載の脱塩処理乳の製造方法。 The method for producing desalted milk according to claim 6 or 7, wherein the raw milk is defatted . 前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理における透過流束:F(kg/m /h)と、前記原料乳の固形分濃度及び第二回膜濃縮が行われる前の固形分濃度:TS(重量%)との間に
F<22.3−TS
(ただし、F<10.1で、TS<18.9)
の関係が成立することを特徴とする請求項9記載の脱塩処理乳の製造方法
Permeation flux in the first membrane concentration treatment and the second membrane concentration treatment: F (kg / m 2 / h), solid content concentration of the raw milk and before the second membrane concentration Solid content concentration: between TS (wt%)
F <22.3-TS
(However, F <10.1 and TS <18.9)
The method for producing desalted milk according to claim 9, wherein the relationship is established .
前記第一回目の膜濃縮処理及び前記第二回目の膜濃縮処理での脱塩濃縮工程において、前記透過流束:F(kg/mIn the desalination concentration step in the first membrane concentration treatment and the second membrane concentration treatment, the permeation flux: F (kg / m 2 /h)を一定にして前記脱塩濃縮工程を行うとともに、操作圧力が前記脱塩濃縮工程の間で運転時間とともに上昇することがないように連続運転を行うことを特徴とする請求項1〜10のいずれか一項記載の脱塩処理乳の製造方法。/ H) is performed at a constant value, and the desalting concentration step is performed, and continuous operation is performed so that the operating pressure does not increase with the operating time during the desalting concentration step. The method for producing desalted milk according to claim 10. 前記操作圧力を前記脱塩濃縮工程の間で一定に保つあるいは、前記操作圧力を前記脱塩濃縮工程の間で所定の範囲内であるように制御することを特徴とする請求項11記載の脱塩処理乳の製造方法。12. The dewatering according to claim 11, wherein the operating pressure is kept constant during the desalting and concentration step, or the operating pressure is controlled to be within a predetermined range during the desalting and concentration step. A method for producing salt-treated milk. 請求項4、5、9、10のいずれか一項記載の脱塩処理乳の製造方法によって製造する脱塩処理乳が脱塩脱脂処理乳であることを特徴とする脱塩脱脂処理乳の製造方法。 The desalinized milk produced by the desalinized milk production method according to any one of claims 4, 5, 9, and 10 is a desalted and skimmed milk. Method. 請求項1〜12のいずれか一項記載の脱塩処理乳の製造方法によって製造した脱塩処理乳から水分を除去して脱塩濃縮乳を製造する方法 Method for producing any one desalination process to remove water from the desalination process milk desalted and concentrated milk produced by the manufacturing method of the milk according to claims 1-12. 請求項13記載の脱塩脱脂処理乳の製造方法によって製造した脱塩脱脂処理乳から水分を除去して脱塩脱脂濃縮乳を製造する方法 Method of making a claim 13 to remove moisture from the desalination degreased milk produced by the manufacturing method of desalination degreased milk desalting skim concentrated milk according. 請求項1〜12のいずれか一項記載の脱塩処理乳の製造方法によって製造した脱塩処理乳から水分を除去し、粉末状化して脱塩粉乳を製造する方法 A method for producing desalted powdered milk by removing water from the desalted milk produced by the method for producing desalted milk according to claim 1, and pulverizing it . 請求項13記載の脱塩脱脂処理乳の製造方法によって製造した脱塩脱脂処理乳から水分を除去し、粉末状化して脱塩脱脂粉乳を製造する方法 A method for producing demineralized skim milk powder by removing moisture from the desalted and degreased milk produced by the method for producing demineralized and skimmed milk according to claim 13 .
JP2011161600A 2011-07-25 2011-07-25 Process for producing desalted milk, desalted and defatted milk, desalted concentrated milk and desalted and defatted concentrated milk, and desalted milk powder and desalted and defatted milk powder Active JP5835726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011161600A JP5835726B2 (en) 2011-07-25 2011-07-25 Process for producing desalted milk, desalted and defatted milk, desalted concentrated milk and desalted and defatted concentrated milk, and desalted milk powder and desalted and defatted milk powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011161600A JP5835726B2 (en) 2011-07-25 2011-07-25 Process for producing desalted milk, desalted and defatted milk, desalted concentrated milk and desalted and defatted concentrated milk, and desalted milk powder and desalted and defatted milk powder

Publications (2)

Publication Number Publication Date
JP2013021990A JP2013021990A (en) 2013-02-04
JP5835726B2 true JP5835726B2 (en) 2015-12-24

Family

ID=47781036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011161600A Active JP5835726B2 (en) 2011-07-25 2011-07-25 Process for producing desalted milk, desalted and defatted milk, desalted concentrated milk and desalted and defatted concentrated milk, and desalted milk powder and desalted and defatted milk powder

Country Status (1)

Country Link
JP (1) JP5835726B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105961B2 (en) 2013-02-07 2017-03-29 オークマ株式会社 Position control device
JP6749916B2 (en) * 2015-08-14 2020-09-02 株式会社明治 Method for producing fermented milk containing high concentration of protein
US20210378253A1 (en) * 2018-10-26 2021-12-09 Meiji Co., Ltd. Method for producing high-protein milk raw material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266221A (en) * 1995-03-30 1996-10-15 Snow Brand Milk Prod Co Ltd Low-mineral milk powder and its production
JP3236828B2 (en) * 1999-01-27 2001-12-10 雪印乳業株式会社 Milk calcium composition
DK2415349T3 (en) * 2009-03-30 2013-07-22 Morinaga Milk Industry Co Ltd PROCEDURE FOR MANUFACTURE OF SALKED MILK AND SALKED MILK
DK2481292T3 (en) * 2009-09-25 2016-04-18 Morinaga Milk Industry Co Ltd Method of producing phosphorfattig valle

Also Published As

Publication number Publication date
JP2013021990A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
EP1503630B1 (en) Process for producing a lactose-free milk product
Chen et al. Membrane separations in the dairy industry
Le et al. Membrane separations in dairy processing
JP2016189778A (en) Low-lactose and lactose-free milk product and process for production thereof
CN112423596B (en) Production and separation of milk fractions using forward osmosis
RU2555522C1 (en) Complex milk salt, its production method and food products containing such salt
WO2010116686A1 (en) Method for producing desalted milk, and desalted milk
JP5835726B2 (en) Process for producing desalted milk, desalted and defatted milk, desalted concentrated milk and desalted and defatted concentrated milk, and desalted milk powder and desalted and defatted milk powder
RU2582258C2 (en) Method of production and device for production of initial milk material for skim milk
WO2013069546A1 (en) Method for producing and device for producing cheese starting material milk
RU2668393C2 (en) Beta-casein containing compositions production method and related products
JPH034742A (en) Preparation of desalted milk
JP6060075B2 (en) A fresh cream having a strong body and a method for producing the same.
CN111935986A (en) Method for desalting whey and whey obtained thereby
Cassano Integrated membrane processes in the food industry
Rao et al. Effect of soluble calcium of milk on fouling of ultrafiltration membranes
WO2020207894A1 (en) Process for demineralising a dairy-based protein composition, and dairy-based protein composition which can be obtained by the process
RU2579674C2 (en) Milk product made of recombined milk and such product manufacture method
RU2595416C2 (en) Milk product and production method thereof
RU2595414C2 (en) Dairy product made of recombined milk and production method thereof
Antonio Trani et al. Membrane Technologies Applied to Cheese Milk
Pant et al. Applications of Membrane Technology in Whey Processing
RU2595413C2 (en) Recombined condensed milk and production method thereof
RU2579682C2 (en) Yoghurt beverage made of recombined milk and such product manufacture method
RU2595412C2 (en) 31/2% fat yoghurt beverage made of recombined milk and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151027

R150 Certificate of patent or registration of utility model

Ref document number: 5835726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350