JP5738257B2 - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- JP5738257B2 JP5738257B2 JP2012228835A JP2012228835A JP5738257B2 JP 5738257 B2 JP5738257 B2 JP 5738257B2 JP 2012228835 A JP2012228835 A JP 2012228835A JP 2012228835 A JP2012228835 A JP 2012228835A JP 5738257 B2 JP5738257 B2 JP 5738257B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- phosphor
- emitting device
- light emitting
- film piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 109
- 229920005989 resin Polymers 0.000 claims description 72
- 239000011347 resin Substances 0.000 claims description 72
- 239000000758 substrate Substances 0.000 claims description 61
- 238000000605 extraction Methods 0.000 claims description 28
- 239000004065 semiconductor Substances 0.000 claims description 27
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 230000017525 heat dissipation Effects 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000009877 rendering Methods 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000012463 white pigment Substances 0.000 description 3
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 102100032047 Alsin Human genes 0.000 description 1
- 101710187109 Alsin Proteins 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000012053 enzymatic serum creatinine assay Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Led Device Packages (AREA)
Description
本発明は、LED照明等に用いられる発光装置に係り、特に青色光、紫色光、紫外光を発する半導体発光素子とその光を白色光に変換する蛍光体から構成された発光装置に関する。 The present invention relates to a light emitting device used for LED lighting or the like, and more particularly to a light emitting device including a semiconductor light emitting element that emits blue light, violet light, and ultraviolet light and a phosphor that converts the light into white light.
近年、LEDを用いた照明装置が実用化され、白熱電球や蛍光灯をはじめ水銀灯やハロゲン灯にも置き換わりつつある。その理由は、低消費電力で同等輝度が得られ、地球温暖化の原因である二酸化炭素の排出量を大幅に削減できるエコ商品の切り札となるからである。例えば、60W級の白熱電球の同等輝度は、9WのLED電球で実現できている。このように、すべての照明がLED照明に代われば、二酸化炭素排出量の削減目標は容易に達成できるのであるが、これを阻んでいるのが、2つの照明装置の価格差がまだ大きいことである。寿命を考慮すれば、その価格差はかなり小さくなっているので、特殊な場所の照明は、それを交換する人件費も削減できるため、LED照明に置き換えられつつあるが、最もニーズの多い一般照明には、初期の価格差がまだ大きいため、普及を妨げている。 In recent years, lighting devices using LEDs have been put into practical use and are being replaced by incandescent bulbs and fluorescent lamps as well as mercury lamps and halogen lamps. The reason is that the same brightness can be obtained with low power consumption, and it becomes a trump card for eco-products that can significantly reduce the amount of carbon dioxide emissions that cause global warming. For example, the equivalent brightness of a 60W class incandescent bulb can be realized with a 9W LED bulb. In this way, if all lighting is replaced by LED lighting, the reduction target of carbon dioxide emissions can be easily achieved, but the obstacle is that the price difference between the two lighting devices is still large. It is. Considering the lifespan, the price difference is quite small, so lighting in special places can be replaced with LED lighting because it can also reduce labor costs to replace it, but general lighting with the most needs However, the initial price gap is still large, which is preventing the spread.
LED電球を高価にしている原因は、大きく分けると2つあり、その一つは、LED電球の駆動電源は、直流の定電流電源で、交流からの変換機が必要になること、二つめは、発光装置(白色LEDデバイスとも記する)自体が高価であることである。白色LEDデバイスを高価にしている原因は、材料費が高いことと、歩留が悪いことである。白色LEDデバイスの材料費は、占有率が高いほうから、パッケージ、LED素子、蛍光体、樹脂の順であり、白色LEDデバイスの歩留を悪くしている主要因は、色度(または色温度)の歩留(つまり目標の色度を出すための良品率が、蛍光体の量のバラツキなどで、悪くなること)である。白色LEDデバイスを販売している各社は、この観点から価格を下げるために努力を払っている。 There are two main reasons why LED bulbs are expensive. One of them is that the drive power source for LED bulbs is a DC constant current power source, and a converter from AC is required. The light emitting device (also referred to as a white LED device) itself is expensive. The reason why the white LED device is expensive is that the material cost is high and the yield is poor. The material cost of the white LED device is from the higher occupancy to the package, the LED element, the phosphor, and the resin, and the main factor that deteriorates the yield of the white LED device is chromaticity (or color temperature). ) Yield (that is, the non-defective product rate for obtaining the target chromaticity deteriorates due to variations in the amount of the phosphor). Companies selling white LED devices are making efforts to reduce prices from this perspective.
その1つの例が、特許文献1に示されているような、CREE社の取り組みである。従来は、パッケージに半導体発光素子(LED素子、またはLEDチップとも記す)を実装した後に、蛍光体粉末を混ぜた樹脂でパッケージ内を封じることにより、発光装置が製造されていたが、これでは、発光装置の色度検査でNGとなった時は、パッケージも含めた発光装置全体がNGとなり、一番高価なパッケージまでが捨てられることになる。これに対して、特許文献1では、図5(a)(b)に示すように、LED素子139のワイヤーボンドパッド131を除く光取り出し面(もしくはLED素子139の側面まで含めて)に、蛍光体層138を形成した白色LED素子130としている。この場合、色度検査は、LED素子139の段階で行うことができ、図5(c)において参照符号134で示す高価なパッケージは、捨てられることはなくなる。さらに、LED素子139の表面の範囲でしか、蛍光体が使用されていないので、蛍光体の節約にもなる。さらに、LED素子139の点光源で色度が決定されるため、白色LEDデバイスの指向角による色度のバラツキも改善される。
One example is the approach of CREE as shown in US Pat. Conventionally, after mounting a semiconductor light emitting element (also referred to as an LED element or LED chip) on the package, the light emitting device is manufactured by sealing the inside of the package with a resin mixed with phosphor powder. When the chromaticity inspection of the light emitting device is NG, the entire light emitting device including the package becomes NG, and even the most expensive package is discarded. In contrast, in Patent Document 1, as shown in FIG. 5 (a) (b), the light extraction surface, except for the wire bond pads 131 of the LED element 139 (Moshiku is included to the side surface of the LED element 139) The white LED element 130 on which the phosphor layer 138 is formed. In this case, the chromaticity inspection can be performed at the stage of the LED element 139 , and the expensive package indicated by reference numeral 134 in FIG. 5C is not discarded . Furthermore, since the phosphor is used only in the range of the surface of the LED element 139 , the phosphor can be saved. Furthermore, since the chromaticity is determined by the point light source of the LED element 139, the chromaticity variation due to the directivity angle of the white LED device is also improved.
同じような取り組みは、特許文献2や3でも行われている。
特許文献2では、図6(a)に示すように、蛍光体チップ141をLEDチップに透明樹脂で接着させたチップ組立体142として、パッケージにフリップチップ方式で実装したり、また別の例では、ワイヤーボンディング方式(電極面を上にして実装し、基板との結線はワイヤーボンディングで行う方式)で実装したりしている。また、特許文献3では、図6(b)に示すように、実装部(電極部)にバンプ146を有するLEDチップのバンプ先端部以外を、蛍光体粉末を混ぜた樹脂で被覆して、構造体147にし、バンプ部に導電性接着剤を用いて、反射壁148をもつキャビティに実装し、透明樹脂で封止している。この2つの例も特許文献1と同様な改善を目的とした例である。
Similar efforts are made in Patent Documents 2 and 3.
In Patent Document 2, as shown in FIG. 6A, a chip assembly 142 in which a
特許文献1、2、及び3で示すように、蛍光体の節約や色度の歩留改善、及び白色の点発光体とすることにより、指向角による色度のバラツキ改善を目的として、言わば、白色発光素子(白色LED素子とも記す)の概念が登場した。その白色発光素子130を、図5(c)に示すように、熱伝導率が中程度に良くて板状のパッケージ基板133(具体的には、セラミックの酸化アルミ基板)に実装し、樹脂レンズ134で封止して、目的の方向に光を集光させる構造の発光装置132が、安く作れて、輝度、放熱、及び信頼性も兼ね備えた照明用発光装置として、その構造を確立しつつある。しかし、部品構成上、最も高いパッケージ基板は、可能な限り特性を損なうことなく、可能な限り安くという考えで小型化され、反射壁の構造をなくし、樹脂レンズ134による集光に置き換えられているが、まだ、高いパッケージ基板133は、構成要素の中で一番大きなサイズとなっている。 As shown in Patent Documents 1, 2, and 3, for the purpose of improving the variation in chromaticity depending on the directivity angle by saving phosphors, improving the yield of chromaticity, and white point light emitters, The concept of a white light emitting element (also referred to as a white LED element) has appeared. As shown in FIG. 5C, the white light emitting element 130 is mounted on a plate-shaped package substrate 133 (specifically, a ceramic aluminum oxide substrate) having a moderate thermal conductivity, and a resin lens. The light-emitting device 132 that is sealed with 134 and collects light in a target direction can be manufactured at low cost, and its structure is being established as a light-emitting device for illumination that also has brightness, heat dissipation, and reliability. . However, in terms of component configuration, the highest package substrate is reduced in size with the idea of being as cheap as possible without losing the characteristics as much as possible, eliminating the structure of the reflecting wall, and being replaced by condensing by the resin lens 134. However, the high package substrate 133 is still the largest size among the components.
図5(c)の場合で、具体的に言うと、パッケージ基板(セラミックの酸化アルミ基板または窒化アルミ基板)を大きくしなければならない主な原因は、白色LED素子130からの光を一定方向に集光させるためにはレンズ形成は不可欠で、従来の方法では、パッケージ基板133上に形成されるため、パッケージ基板を一番大きくしなければ形成できないのである。
また、図6(b)のような、反射壁を形成する場合でも、基板上に形成されるため、パッケージ基板のサイズは一番大きくなる。
光の有効利用の観点から言うと、一定方向に光を向ける機能は、エコな照明には重要な要素であり、しかも、この機能は、発光源の近くに置けば置くほど効果的である。つまり、発光装置から離れてその周囲に反射壁を置くより、発光装置の中に置くほうが効果的なのである。そのため発光装置内のパッケージに集光機能を持たせるのである。
In the case of FIG. 5 (c), specifically speaking, the main cause for having to enlarge the package substrate (ceramic aluminum oxide substrate or aluminum nitride substrate) is that the light from the white LED element 130 is directed in a certain direction. In order to collect the light, it is indispensable to form a lens. In the conventional method, the lens is formed on the package substrate 133. Therefore, the lens cannot be formed unless the package substrate is made the largest.
Further, even when the reflection wall is formed as shown in FIG. 6B, the package substrate is the largest because it is formed on the substrate.
From the viewpoint of effective use of light, the function of directing light in a certain direction is an important element for ecological lighting, and this function is more effective as it is placed closer to the light source. That is, it is more effective to place the reflecting wall in the light emitting device than to place the reflecting wall around the light emitting device. Therefore, a light collecting function is given to the package in the light emitting device.
また、放熱性の観点からパッケージ基板133の大きさを評価するとセラミックの酸化アルミ基板や窒化アルミ基板の熱伝導率は等方的であるので、厚みと同じ距離だけ周りに熱が広がると考えれば、LED素子の放熱電極のサイズを一辺が1mmの正方形とした場合、基板の厚みを0.5mmとすると、放熱に必要なパッケージ基板のサイズは、一辺が2.0mmの正方形の大きさで十分である。しかし、図5に示す発光装置のパッケージ基板133の大きさは、一辺が3.45mmの正方形と大きくなっている。 Further, if the size of the package substrate 133 is evaluated from the viewpoint of heat dissipation, the thermal conductivity of the ceramic aluminum oxide substrate or the aluminum nitride substrate is isotropic, so if it is considered that heat spreads around the same distance as the thickness When the size of the heat dissipation electrode of the LED element is a square with a side of 1 mm and the thickness of the substrate is 0.5 mm, the size of the package substrate necessary for heat dissipation is sufficient with a square with a side of 2.0 mm. It is. However, the size of the package substrate 133 of the light-emitting device shown in FIG. 5 is as large as a square with a side of 3.45 mm.
このように、パッケージ基板は、LED素子をモールドしている樹脂構造(すなわち、LED素子を被覆する蛍光体粉末を混ぜた蛍光体含有樹脂、反射壁内に充填される透明樹脂や蛍光体含有樹脂、反射壁を形成する白色顔料を混ぜた白色樹脂、さらにレンズを形成する透明樹脂など)よりも大きくとる必要があるのである。 Thus, the package substrate has a resin structure in which the LED element is molded (that is, a phosphor-containing resin mixed with a phosphor powder covering the LED element, a transparent resin or a phosphor-containing resin filled in the reflection wall) The white resin mixed with the white pigment forming the reflection wall, and the transparent resin forming the lens, etc.) must be larger.
本発明は、上述のごとき実情に鑑みてなされたもので、特に、材料費の占有率が高いパッケージ基板の大きさを(放熱性を満足する範囲で)できるだけ小さくし、かつ、LED素子をモールドしている樹脂構造は、パッケージ基板より大きく形成し、LED素子で発した光を、一定方向に集光させる機能や光取り出し効率も従来と同等以上に良い構造とすることにより、特性も向上し、さらに安価な、発光装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in particular, the size of a package substrate having a high share of material cost is made as small as possible (in a range that satisfies heat dissipation), and an LED element is molded. The resin structure is larger than the package substrate, and the characteristics are also improved by making the light emitted from the LED element focused in a certain direction and the light extraction efficiency better than before. Another object of the present invention is to provide a light-emitting device that is more inexpensive.
本発明は、半導体発光素子を基板にフリップチップ実装した発光装置において、前記半導体発光素子は、光取り出し面が前記基板に対向する電極形成面より小さい台形状に形成されて側面が傾斜しており、前記半導体発光素子の光取り出し面上には、前記基板より大きな蛍光体含有フィルム片の略中央部分が貼付けられ、前記蛍光体含有フィルム片における前記半導体発光素子からはみ出た周辺部分から前記基板の間は、前記半導体発光素子の発光光に対して透明な樹脂が充填されて逆四角錐形状の構造体に形成され、前記構造体の外側には白色樹脂が充填されることで、前記構造体と該白色樹脂との界面には反射壁が形成されていることを特徴とする発光装置である。
これによって、材料費の占有率が高いパッケージ基板の大きさを(放熱性を満足する範囲で)できるだけ小さくし、かつ、LED素子をモールドしている樹脂構造は、パッケージ基板より大きく形成し、LED素子で発した光を、一定方向に集光させる機能も従来と同等以上に備えた構造とすることにより、特性も向上し、さらに安価な、発光装置とすることができる。
The present invention relates to a light emitting device in which a semiconductor light emitting element is flip-chip mounted on a substrate, and the semiconductor light emitting element is formed in a trapezoidal shape with a light extraction surface smaller than an electrode forming surface facing the substrate, and the side surface is inclined. On the light extraction surface of the semiconductor light-emitting element, a substantially central portion of a phosphor-containing film piece larger than the substrate is attached, and from the peripheral part of the phosphor-containing film piece that protrudes from the semiconductor light-emitting element , In the meantime, a resin transparent to the light emitted from the semiconductor light-emitting element is filled to form an inverted quadrangular pyramid structure, and a white resin is filled outside the structure, so that the structure The light emitting device is characterized in that a reflecting wall is formed at the interface between the white resin and the white resin .
As a result , the size of the package substrate having a high share of the material cost is made as small as possible (in a range satisfying heat dissipation), and the resin structure in which the LED element is molded is formed to be larger than the package substrate. By adopting a structure in which the light emitted from the element is condensed at a level equal to or higher than that of the conventional structure, characteristics can be improved and a light-emitting device can be obtained at lower cost.
半導体発光素子を用いた白色光を得る方法として、初期の頃は、青色光で青色と補色の関係にある黄色の光を発するYAG系の蛍光体粉末が用いられていた。しかし、この半導体発光素子の青色光とYAG蛍光体の黄色光で作られる疑似の白色光は、平均演色評価数Raの値が70台程度と低く、その照明で物の自然な色を再現するには無理があった。そこで、第2ステップとして、青色光で光の3原色である緑色と赤色の光を発する蛍光体粉末が用いられるようになり、半導体発光素子の青色光と2種の蛍光体からのブロードな光スペクトルを持つ緑色光と赤色光により、白色光を構成し、その平均演色評価指数Raの値は93と改善され、その照明による色再現性もかなり良くなっている。この先、紫色光や紫外光を発する半導体発光素子の高輝度化が進めば、紫色光や紫外光で光の3原色を発する3種の蛍光体粉末が用いられる。また、それに色再現性をよくするため、複数の蛍光体が混合されても良い。
照明用白色発光装置とするためには、上記した蛍光体を含有する樹脂の部分を前記樹脂構造の中に入れればよいのである。
もちろん、蛍光体を用いずに半導体発光素子の光をそのまま出す発光装置であっても良いのである。
As a method of obtaining white light using a semiconductor light emitting element, YAG phosphor powder that emits yellow light having a complementary color with blue light was used in the early days. However, the pseudo white light produced by the blue light of the semiconductor light emitting device and the yellow light of the YAG phosphor has a low average color rendering index Ra of about 70 units, and reproduces the natural color of the object by the illumination. Was impossible. Therefore, as a second step, phosphor powder that emits green light and red light, which are the three primary colors of blue light, is used, and the blue light of the semiconductor light emitting element and the broad light from the two types of phosphors are used. White light is composed of green light and red light having a spectrum, the average color rendering index Ra is improved to 93, and the color reproducibility by illumination is considerably improved. If the brightness of the semiconductor light emitting element emitting violet light or ultraviolet light further increases, three kinds of phosphor powders that emit three primary colors of light with violet light or ultraviolet light are used. Moreover, in order to improve color reproducibility, a plurality of phosphors may be mixed.
In order to obtain a white light emitting device for illumination, a resin portion containing the above-described phosphor may be placed in the resin structure.
Of course, a light emitting device that emits light from a semiconductor light emitting element without using a phosphor may be used.
ところで、半導体発光素子をモールドしている樹脂構造は、さまざまなものがある。例えば、図1の場合は、LEDチップ2の上面にある蛍光体含有樹脂(蛍光体含有フィルム片)3と側面にある透明樹脂7、及びその外側に酸化チタン微粉末を混ぜた白色樹脂(反射壁)6で構成されている。また、図2では、LEDチップ2の上面の蛍光体含有フィルム片13と側面の反射壁16、及び上には透明樹脂からなる樹脂レンズ18で構成されている。また、図3では、台形状のLEDチップ32の上面に蛍光体含有フィルム片33と傾斜面に透明樹脂37、その外側に反射壁36(図4では、上には透明樹脂レンズ38)で構成されている。
特に、本発明に係る図3および図4では、前記半導体発光素子をモールドする樹脂構造は、逆四角錐形状の透明樹脂の部分および白色顔料を混ぜた白色樹脂の部分の組み合わせからなる。このような樹脂構造は、基板34をはみ出して形成さており、反射壁や透明樹脂レンズは基板34に制限されることなく大きく形成することができるため、光の取り出し効率をよくすることができる。
By the way, there are various resin structures in which the semiconductor light emitting element is molded. For example, in the case of FIG. 1, a phosphor-containing resin (phosphor-containing film piece) 3 on the upper surface of the LED chip 2, a transparent resin 7 on the side surface, and a white resin (reflective) mixed with fine titanium oxide powder on the outside. Wall) 6. Moreover, in FIG. 2, it is comprised by the fluorescent substance containing film piece 13 of the upper surface of LED chip 2, the reflective wall 16 of a side surface, and the resin lens 18 which consists of transparent resin on it. Further, in FIG. 3, the trapezoidal LED chip 32 is configured with a phosphor-containing film piece 33 on the upper surface, a transparent resin 37 on the inclined surface, and a reflection wall 36 on the outer side (in FIG. 4, a
In particular, in FIGS. 3 and 4 according to the present invention, the resin structure for molding the semiconductor light emitting element is a combination of a transparent resin portion having an inverted quadrangular pyramid shape and a white resin portion mixed with a white pigment. Such resin structure is formed by protruding a substrate 3 4, the reflecting wall and the transparent resin lens can be made large formed without being limited to the substrate 3 4, is possible to improve the light extraction efficiency it can.
詳しくは、フリップチップ実装は、青色光、紫色光、または紫外光を発光し、対向する2つの主面を持ち、一方の主面を光取り出し面とし、他方の主面を電極形成面とし、該電極形成面上にバンプを有する半導体発光素子が、前記電極形成面と同等もしくは大きな対向する2つの主面を持ち、一方の主面上に1対のチップ搭載電極(+電極および−電極)、他方の主面上に1対の外部基板実装電極(+電極および−電極)が形成され、各主面上の前記+電極間および前記−電極間はスルーホールで導通接続されている基板の前記チップ搭載電極上に、前記バンプを介して実装された2重構造体からなるものである。そこで本発明では、前記2重構造体の前記光取り出し面より大きな対向する2つの主面を持ち、一方の主面を入光面とし、他方の主面を出光面とする蛍光体粉末を混ぜた蛍光体含有樹脂(蛍光体含有フィルム片と記する)が、前記光取り出し面と前記入光面を対向するように重ねて配置され、該蛍光体含有フィルム片における前記半導体発光素子からはみ出た周辺部分から前記基板の間は、前記半導体発光素子の発光光に対して透明な樹脂が充填されて逆四角錐形状の構造体に形成され、さらにその構造体の外側で、前記2重構造体の前記外部基板実装電極が形成された主面(または該主面とその近傍)、および前記蛍光体含有フィルム片の前記出光面(または該出光面とその近傍)以外の露出面が前記白色顔料を混ぜた白色樹脂(反射壁と記する)で覆われ、前記構造体と該白色樹脂との界面には反射壁が形成されている。このような構造にすることにより、高価な基板を最小サイズにすることができ、また反射壁は基板サイズに制限されることなく、光取り出し効率を良くすることができる。
Specifically, the flip chip mounting emits blue light, violet light, or ultraviolet light, has two main surfaces facing each other, one main surface is a light extraction surface, and the other main surface is an electrode formation surface, The semiconductor light emitting device having bumps on the electrode forming surface has two main surfaces that are equal to or larger than the electrode forming surface, and a pair of chip mounting electrodes (+ electrode and − electrode) on one main surface. A pair of external substrate mounting electrodes (+ electrode and − electrode) are formed on the other main surface, and the + electrode and the − electrode on each main surface are conductively connected by through holes. It consists of a double structure mounted on the chip mounting electrode via the bump . Therefore, in the present invention, the has two major surfaces larger face than the light extraction surface of the double structure, the one main surface and the light incident surface, fluorescent powders you the other main surface and the light exit surface A phosphor-containing resin mixed with (referred to as a phosphor-containing film piece) is disposed so that the light extraction surface and the light incident surface are opposed to each other, and from the semiconductor light emitting element in the phosphor-containing film piece A space between the protruding peripheral portion and the substrate is filled with a resin transparent to the light emitted from the semiconductor light emitting element to form an inverted quadrangular pyramid-shaped structure, and on the outside of the structure, the double layer is formed. Exposed surfaces other than the main surface (or the main surface and the vicinity thereof) on which the external substrate mounting electrode of the structure is formed, and the light exit surface (or the light output surface and the vicinity thereof) of the phosphor-containing film piece are White resin mixed with white pigment (with reflective wall Covered with that), the interface between the structure and the said white resin Ru Tei is formed reflecting wall. By adopting such a structure, an expensive substrate can be minimized, and the light extraction efficiency can be improved without limiting the reflecting wall to the substrate size.
そして、2重構造体のLEDチップのp−nジャンクションで発光した光は、その大部分が光取り出し面から出て、その面と重ねて配置されている蛍光体含有フィルム片の入光面から、蛍光体含有フィルム片内に入り、蛍光体を発光させ、そのトータルの光が出光面から出て行き、照明用の白色光として利用される。また、蛍光体含有フィルム片の蛍光体の濃度を適切にし、LEDチップで発光した光の大部分を蛍光体特有の発光に変換し、蛍光体発光特有のブロードなスペクトルを持つ緑色や黄色やオレンジ色や赤色を発する発光装置とすることもできる。
And most of the light emitted from the pn junction of the double-structured LED chip comes out from the light extraction surface, and from the light incident surface of the phosphor-containing film piece arranged to overlap the surface. Then, the phosphor enters the phosphor-containing film piece, causes the phosphor to emit light, and the total light exits from the light exit surface and is used as white light for illumination. In addition, the phosphor concentration of the phosphor-containing film piece is adjusted appropriately, and most of the light emitted from the LED chip is converted into the light emission peculiar to the phosphor. It can also be set as the light-emitting device which emits a color or red.
また、本発明では、 前記蛍光体含有フィルム片の前記出光面の上に該出光面の外形を内包する径を持つ樹脂レンズを形成することを特徴とする。この構成によれば、光取り出し効率が更に良くなり、光束値として7から8%程度高く、高輝度にすることができる。
In the present invention, you and forming a resin lens having a diameter which encloses the outer shape of the output light surface on the light exit surface of the phosphor-containing film piece. According to this configuration , the light extraction efficiency is further improved, the luminous flux value is increased by about 7 to 8%, and high luminance can be achieved.
さらにまた、本発明では、 前記蛍光体含有フィルム片の代わりに透明樹脂フィルム片を用いることを特徴とする。この構成によれば、LEDチップの光の色をそのまま発光する発光装置とすることができ、LEDチップの発光色を適切に選ぶことにより、さまざまな用途に使用できる高出力で、LEDチップ発光特有のシャープなスペクトルを持つ紫外光や可視光や赤外光の安価な発光装置とすることができる。高出力の赤外光を発する発光装置は、消費電力の少ない暖房装置としても利用できる。
Furthermore, in the present invention, it characterized by using a transparent resin film pieces instead of the phosphor-containing film piece. According to this configuration, it is possible to provide a light emitting device that emits the light color of the LED chip as it is, and by appropriately selecting the light emission color of the LED chip, the LED chip emits light with high output that can be used for various applications. Thus, an inexpensive light emitting device of ultraviolet light, visible light, or infrared light having a sharp spectrum can be obtained. A light-emitting device that emits high-power infrared light can also be used as a heating device with low power consumption.
また、本発明では、前記蛍光体含有フィルム片の領域を分割し、分割した領域ごとに、青色蛍光体、緑色蛍光体、赤色蛍光体、黄色蛍光体のうち、いずれかの蛍光体を1つ割り当てて、該蛍光体含有フィルム片を構成することを特徴とする。
上記の構成によれば、LED素子が青色光の場合、前記蛍光体含有フィルム片に、緑色蛍光体と赤色蛍光体を混合して製作した場合、これらの蛍光体間で相互作用が生じる。すなわち、LED素子からの光で励起された緑色蛍光体からのブロードなスペクトルを持つ緑色の光は、再度赤色蛍光体に吸収されて、その強度が大きく減少する。これを防ぐために、例えば図7のように、前記蛍光体含有フィルム片の領域を複数に分割し、緑色蛍光体の領域72と赤色蛍光体の領域71を分けて形成する(分離型蛍光体フィルム片と記する)ことにより、前記相互作用は防ぐことができ、その分、発光装置の演色性(RaやR9)を向上することができ、輝度も向上することができる。LED素子が紫外光や紫色光の場合は、青色蛍光体も使用するので、青色蛍光体と緑色蛍光体や黄色蛍光体や赤色蛍光体などとの相互作用が顕著になるので、分離型の効果が一段と高まる。
Moreover, in this invention, the area | region of the said fluorescent substance containing film piece is divided | segmented, and one fluorescent substance is selected among blue fluorescent substance, green fluorescent substance, red fluorescent substance, and yellow fluorescent substance for every divided | segmented area | region. One assigned, characterized in that it constitutes a phosphor-containing film piece.
According to said structure, when an LED element is blue light, when a green fluorescent substance and a red fluorescent substance are mixed and manufactured to the said fluorescent substance containing film piece, interaction arises between these fluorescent substances. That is, the green light having a broad spectrum from the green phosphor excited by the light from the LED element is again absorbed by the red phosphor and the intensity thereof is greatly reduced. To prevent this, for example, as shown in FIG. 7, the area of the phosphor-containing film piece is divided into multiple divided areas 71 of the region 72 and the red phosphor of the green phosphor is formed (isolation phosphor by serial and film piece), the interaction can be prevented, correspondingly, Ki out to improve the color rendering of the light emitting device (Ra and R9), it is possible to also improve luminance. When the LED element is ultraviolet light or violet light, a blue phosphor is also used, so the interaction between the blue phosphor and the green phosphor, the yellow phosphor, the red phosphor, etc. becomes remarkable, so the separation type effect Will increase further.
本発明の発光装置は、材料費の占有率が高いパッケージ基板の大きさを(放熱性を満足する範囲で)できるかぎり小さくし、かつ、LEDチップをモールドしている樹脂構造は、パッケージ基板より大きく形成し、発光素子で発した光を、一定方向に集光させる機能や光取り出し効率も従来と同等以上に良い構造とすることができるので、特性も向上し、さらに安価な、発光装置を提供することができる。
また、半導体発光素子の光取り出し面上には、蛍光体含有フィルム片が重ねて配置された白色発光素子であり、余分の蛍光体の使用が節約されるとともに、白色の点発光体であるため指向角による色度のバラツキも改善できる。
さらに、2重構造体の基板の外部基板実装電極の形成面と蛍光体含有フィルム片の出光面以外の露出面は、反射壁で覆われており、出光面方向以外に行く光(特に、半導体発光素子の側面に行く光、蛍光体含有フィルム片の側面に行く光、等)は、反射壁で分散反射され、一定方向に集光される。さらに、この反射壁は、発光源に密接して(つまり近い距離で)形成されているので、効率よく反射集光でき、高輝度にすることができる。また、樹脂レンズで更に光取り出し効率が良くなる。
また、蛍光体含有フィルム片の領域を、数分割し、各分割領域ごとに青色蛍光体、緑色蛍光体、赤色蛍光体、黄色蛍光体を分離して形成する(分離型蛍光体フィルム片とする)ことにより、各蛍光体の相互作用を防ぎ、発光装置の演色性や輝度を向上することができる。
In the light emitting device of the present invention, the size of the package substrate having a high share of the material cost is made as small as possible (to the extent that heat dissipation is satisfied), and the resin structure in which the LED chip is molded is smaller than the package substrate. The light emitting device can be formed in a large size and has a function for condensing light emitted from a light emitting element in a certain direction and a light extraction efficiency that is as good as or better than conventional ones. Can be provided.
Further, since the phosphor-containing film piece is placed on the light extraction surface of the semiconductor light-emitting device, the white light-emitting device saves the use of an extra phosphor and is a white point light emitter. The chromaticity variation due to the directivity angle can also be improved.
Furthermore, the exposed surface other than the light emitting surface of the phosphor-containing film piece and the surface where the external substrate mounting electrode is formed on the double-structured substrate are covered with a reflecting wall, and light that travels in directions other than the light emitting surface direction (especially semiconductors) The light going to the side surface of the light emitting element, the light going to the side surface of the phosphor-containing film piece, etc. are dispersed and reflected by the reflecting wall and collected in a certain direction. Further, since the reflecting wall is formed in close contact with the light emitting source (that is, at a short distance), the reflecting wall can be efficiently reflected and condensed, and the brightness can be increased. Further, the light extraction efficiency is further improved by the resin lens.
Further, the region of the phosphor-containing film piece is divided into several parts, and a blue phosphor, a green phosphor, a red phosphor, and a yellow phosphor are separated and formed for each divided region (referred to as a separated phosphor film piece). Thus, the interaction between the phosphors can be prevented, and the color rendering properties and luminance of the light emitting device can be improved.
また、白色発光装置に限らず、本発明の構造を単色発光の半導体発光装置に応用することにより、蛍光体発光特有なブロードなスペクトルをもつ光の三原色に対応した高出力の発光装置や、LEDチップ発光特有のシャープなスペクトルを持つ紫外光や可視光や赤外光の高出力の発光装置の製造が可能となる。 Moreover, by applying the structure of the present invention not only to a white light emitting device but also to a single color semiconductor light emitting device, a high output light emitting device corresponding to the three primary colors of light having a broad spectrum peculiar to phosphor emission, an LED It becomes possible to manufacture a high-power light emitting device with ultraviolet light, visible light, or infrared light having a sharp spectrum peculiar to chip light emission.
以下、本発明の発光装置の実施形態について、第1から第6実施形態の順に、図面を参照して詳細に説明する。 Hereinafter, embodiments of a light-emitting device of the present invention will be described in detail in the order of first to sixth embodiments with reference to the drawings.
まず、第1実施形態の発光装置を図1に示す。
この発光装置1は、青色光を発光し、n側電極(−電極)とp側電極(+電極)上に10μmの厚みのメッキバンプ(10μm厚のNiメッキ上にAuストライクメッキをしたもの)を形成した3W級の青色LED素子2を、セラミックの酸化アルミ基板(または窒化アルミ基板)4のチップ搭載電極(E1、F1)上にメッキバンプを介して実装し、2重構造体にする。この基板4のサイズは、放熱を考慮して、厚みは約0.5mm、大きさは(コストも考慮して)一辺が約2mmの正方形でLEDチップよりやや大きくする。2重構造体の基板に形成されたチップ搭載電極(E1、F1)と外部基板実装電極(E2、F2)のE1−E2間、およびF1−F2間は、スルーホールで導通接続されている。
この2重構造体の青色LED素子2の上面(光取り出し面)に、シリコン樹脂に蛍光体粉末を混ぜて矩形状にした蛍光体含有フィルム片3の入光面をシリコン樹脂で接着する。蛍光体含有フィルム片3のサイズは、厚みが約0.1mmで、大きさは、一辺が約2.4mmの正方形である。
青色LED素子2の側面には、シリコン樹脂で、蛍光体含有フィルム片3を底面とする逆四角錐形状の構造体7を形成する。
さらに、2重構造体の基板4の外部基板実装電極形成面と蛍光体含有フィルム片3の出光面以外の露出面を酸化チタン微粉末をシリコン樹脂に混ぜた白色樹脂6で被覆し、反射壁を形成し発光装置1とする。
この構造は、基板4を白樹脂内に埋め込んだ形状で、従来の基板上に樹脂構造を形成するものとは異なっている。基板4は、LED素子2を搭載し、LED素子2で発生する熱を放熱するために必要な最小の大きさに止めており、高価な基板の材料費を抑えることができる。
また、この構造の発光装置1の輝度(光束:ルーメン値)は、蛍光体含有フィルム片3の大きさ(広さ)に大きく依存する。例えば、3W級のLED素子2の場合は、蛍光体含有フィルム片3の大きさは、一辺が2.4mmから3.0mmの正方形の時に最も光の取り出し効率が良くなり明るく(ルーメン値が大きく)なる。それ以下では、光の取り出し効率が悪くなり暗く(ルーメン値が小さく)なる。つまり、蛍光体含有フィルム片3は、基板より大きくする必要があり、本発明の構造であればそれが可能となり、輝度やその他の光特性も従来の構造に比べ同等以上にすることができるのである。
First, the light-emitting device of 1st Embodiment is shown in FIG.
This light-emitting device 1 emits blue light, and has a plating bump of 10 μm thickness on an n-side electrode (−electrode) and a p-side electrode (+ electrode) (Au strike plating on a 10 μm-thick Ni plating). The 3W-class blue LED element 2 on which is formed is mounted on the chip mounting electrodes (E1, F1) of the ceramic aluminum oxide substrate (or aluminum nitride substrate) 4 via plating bumps to form a double structure. The size of the substrate 4 is about 0.5 mm in thickness in consideration of heat dissipation, and the size is a square having a side of about 2 mm (in consideration of cost) and is slightly larger than the LED chip. The chip mounting electrodes (E1, F1) formed on the double structure substrate and the external substrate mounting electrodes (E2, F2) E1-E2 and F1-F2 are conductively connected by through holes.
On the upper surface (light extraction surface) of the blue LED element 2 of the double structure, the light incident surface of the phosphor-containing film piece 3 made by mixing phosphor powder into silicon resin and having a rectangular shape is bonded with silicon resin. The size of the phosphor-containing film piece 3 is a square having a thickness of about 0.1 mm and a side of about 2.4 mm.
On the side surface of the blue LED element 2, an inverted quadrangular pyramid-shaped structure 7 having a phosphor-containing film piece 3 as a bottom surface is formed of silicon resin.
Further, the external substrate mounting electrode forming surface of the double-structured substrate 4 and the exposed surface other than the light exit surface of the phosphor-containing film piece 3 are covered with a
This structure is different from the conventional structure in which the substrate 4 is embedded in white resin and the resin structure is formed on the conventional substrate. The board | substrate 4 mounts the LED element 2, is stopped to the minimum magnitude | size required in order to thermally radiate the heat | fever which generate | occur | produces in the LED element 2, and can suppress the material cost of an expensive board | substrate.
The luminance (light flux: lumen value) of the light emitting device 1 having this structure greatly depends on the size (width) of the phosphor-containing film piece 3. For example, in the case of a 3W-class LED element 2, the size of the phosphor-containing film piece 3 is most bright and bright (the lumen value is large) when the side of the square is 2.4 mm to 3.0 mm square. )Become. Below that, the light extraction efficiency becomes poor and dark (the lumen value is small). In other words, the phosphor-containing film piece 3 needs to be larger than the substrate, and this is possible with the structure of the present invention, and the luminance and other optical characteristics can be equal to or higher than those of the conventional structure. is there.
LED素子2は、透光性結晶基板(例えば、サファイア基板、SiC基板、GaN基板など)の面上に、GaN系化合物半導体膜を基板側から、バッファ層、n型層、青色光を発する発光層、およびp型層の順に積層し、p型層の面上にp側電極を、p型層及び発光層を部分的に選択エッチングしn型層を露出した部分にn側電極を形成したもので、p側電極とn側電極は、数μmの段差はあるが、ほぼ同一面上に形成されている。これらの電極の表面は、Au膜であり、ウエハー状態の時に、これら電極上にPd,Ni,Au(表面保護用)の順に無電解メッキが可能で、高さほぼ10μm(好ましくは20μm)のバンプを形成しておく。高さのほとんどはNiである。 The LED element 2 emits a GaN-based compound semiconductor film from the substrate side on the surface of a translucent crystal substrate (for example, sapphire substrate, SiC substrate, GaN substrate, etc.), and emits blue light. The p-type electrode was laminated on the p-type layer surface, the p-type electrode was formed on the surface of the p-type layer, and the p-type layer and the light-emitting layer were partially selectively etched to form the n-type electrode on the exposed portion of the n-type layer. However, the p-side electrode and the n-side electrode are formed on substantially the same plane, although there are steps of several μm. The surfaces of these electrodes are Au films, and when they are in a wafer state, they can be electrolessly plated in the order of Pd, Ni, Au (for surface protection), and have a height of approximately 10 μm (preferably 20 μm). Form bumps. Most of the height is Ni.
蛍光体含有フィルム片3は、例えば、2種類の蛍光体粉末をレジンタイプのシリコーンに混ぜ合わせて、フィルム状に成型し硬化させたものを矩形状に分割したものであり、1種の蛍光体は、青色光で励起され、緑色光を発する蛍光体(例えば、CaSc2O4:Ce)で、他の1種の蛍光体は、青色光で励起され、赤色光を発する蛍光体(例えば、(SrCa)AlSiN3:Eu)である。配合量は例えば電球色に近い色温度3000K程度に合わせる。色温度は、配合量を変えることにより選択できる。レジンタイプのシリコーンは、高屈折率(1.5〜1.55)で、硬さがShoreD(40〜70、好ましくは60〜70)で、透明性の良い(例えば、光透過性が波長450nmの青色光に対し、樹脂の厚みが1mmの場合、95%以上、好ましくは99%以上)ものを使用する。 The phosphor-containing film piece 3 is obtained by, for example, mixing two types of phosphor powders with resin-type silicone, forming a film and curing it, and dividing it into a rectangular shape. Is a phosphor that is excited by blue light and emits green light (for example, CaSc 2 O 4 : Ce), and the other phosphor is a phosphor that is excited by blue light and emits red light (for example, (SrCa) AlSiN 3 : Eu). The blending amount is adjusted to, for example, a color temperature of about 3000 K, which is close to a light bulb color. The color temperature can be selected by changing the blending amount. Resin-type silicone has a high refractive index (1.5 to 1.55), a hardness of Shore D (40 to 70, preferably 60 to 70), and good transparency (for example, a light transmission wavelength of 450 nm). When the thickness of the resin is 1 mm, 95% or more, preferably 99% or more) is used.
反射壁6は、例えば、粒子径が0.21μmの酸化チタン微粉末をレジンタイプのシリコーンに混ぜ合わせて硬化させたものである。酸化チタンは、誘電率が大きく光反射率が高いので、反射壁によく利用されるが、光触媒の性質があるため、紫外光や青色光により励起され、周囲の水分や酸素に作用し、O2HラジカルやOHラジカルを作り、シリコン樹脂を劣化変色させる。そのため青色LED素子の周囲の反射壁が白色から変色し、数十時間で80%以下に輝度劣化してしまう。そのためここで使用する酸化チタン微粒子は、その表面をシリカやアルミナでコートしたりシロキサン処理により、光触媒の性質を防いだものを使用する。また、シリコン樹脂との配合比は、顔料体積濃度で5〜30%程度とし、密集効果による反射率の低下を防ぐことも必要である。また、レジンタイプのシリコーンは、高屈折率(1.5〜1.55)で、硬さがShoreD(50〜70、好ましくは60〜70)で、透明性の良い(例えば、光透過性が波長450nmの青色光に対し、樹脂の厚みが1mmの場合、95%以上、好ましくは99%以上)ものを使用する。また、この反射壁の厚みは、蛍光体含有フィルム片3の側面は60μm程度以上で、LED素子2の側面側はそれより厚く100μm程度以上にする。これらの値は一例でこれに限ったものではない。
The reflecting
LED素子2と蛍光体含有フィルム片3との接着は、蛍光体含有フィルム片に使用したレジンタイプのシリコーンを用いる。このシリコン樹脂の中に色度や色温度補正用の前記蛍光体を適量混ぜても良い。 Adhesion between the LED element 2 and the phosphor-containing film piece 3 uses resin-type silicone used for the phosphor-containing film piece. An appropriate amount of the phosphor for correcting chromaticity and color temperature may be mixed in the silicon resin.
次に、第2実施形態の発光装置を図2に示す。
この発光装置10は、2重構造体は第1実施形態と同じであるが、光の取り出し効率を上げるために樹脂レンズ18を用いている。
第1実施形態の場合は、光の取り出し効率を良くするために錐形の反射壁5と広めの蛍光体含有フィルム片3を用いていたが、第2実施形態の場合は、錐形の反射壁は用いずに、蛍光体含有フィルム片13のサイズもLED素子2より僅かに大ものを用いているが、その分広めの凸状の樹脂レンズ18を用いることにより、光の取り出し効率を第1実施形態の発光装置1以上に良くしている。
Next, the light emitting device of the second embodiment is shown in FIG.
The light emitting device 10 has the same double structure as that of the first embodiment, but uses a resin lens 18 to increase the light extraction efficiency.
In the case of the first embodiment, the cone-shaped reflection wall 5 and the broad phosphor-containing film piece 3 are used in order to improve the light extraction efficiency. In the case of the second embodiment, the cone-shaped reflection is used. Although the wall is not used and the size of the phosphor-containing film piece 13 is slightly larger than that of the LED element 2, the light extraction efficiency can be improved by using a wider convex resin lens 18. This is better than the light emitting device 1 of the embodiment.
第1実施形態と同様に、3W級の青色LED素子2を基板4上に実装して、前記2重構造体とした後、この青色LED素子2の上面(光取り出し面)に、蛍光体含有フィルム片13の入光面をシリコン樹脂で接着する。蛍光体含有フィルム片13のサイズは、厚みが約0.1mmで、大きさは、一辺が約1.5mmの正方形である。
さらに、2重構造体の基板4の外部基板実装電極形成面と蛍光体含有フィルム片13の出光面以外の露出面を白色樹脂で被覆し、反射壁16を形成する。この時、反射壁16の上面は、蛍光体含有フィルム片13の出光面と同じ面一の面にする。
さらに、この面一の面上に、蛍光体含有フィルム片13の出光面を内包する径を持つ凸状の樹脂レンズ18を形成する。この凸状の樹脂レンズ18の直径は、約2mmから約3mm程度と蛍光体含有フィルム片13より大きくし、光の取り出し効率を良くする。
この樹脂レンズ18の効果で、この構造の発光装置10の輝度(光束:ルーメン値)は、第1実施形態の発光装置1よりも、明るくなる。
樹脂レンズ18の大きさで、発光装置10のサイズが決まり、例えば、樹脂レンズ18の直径が約2.0mmの時、発光装置10の大きさは、一辺が約2.4mmの正方形になり、直径が約3mmの時、一辺が約3.4mm程度となる。光の取り出し効率は、後者の方が良くなる。
As in the first embodiment, a 3W-class blue LED element 2 is mounted on the substrate 4 to form the double structure, and then the upper surface (light extraction surface) of the blue LED element 2 contains a phosphor. The light incident surface of the film piece 13 is bonded with silicon resin. The size of the phosphor-containing film piece 13 is a square having a thickness of about 0.1 mm and a side of about 1.5 mm.
Further, the external substrate mounting electrode forming surface of the double structure substrate 4 and the exposed surface other than the light exit surface of the phosphor-containing film piece 13 are covered with a white resin to form the reflecting wall 16. At this time, the upper surface of the reflection wall 16 is flush with the light exit surface of the phosphor-containing film piece 13.
Further, a convex resin lens 18 having a diameter that encloses the light exit surface of the phosphor-containing film piece 13 is formed on the flush surface. The diameter of the convex resin lens 18 is about 2 mm to about 3 mm, which is larger than that of the phosphor-containing film piece 13 to improve the light extraction efficiency.
Due to the effect of the resin lens 18, the luminance (light flux: lumen value) of the light emitting device 10 having this structure becomes brighter than that of the light emitting device 1 of the first embodiment.
The size of the light emitting device 10 is determined by the size of the resin lens 18. For example, when the diameter of the resin lens 18 is about 2.0 mm, the size of the light emitting device 10 is a square having a side of about 2.4 mm. When the diameter is about 3 mm, one side is about 3.4 mm. The latter has better light extraction efficiency.
次に、第3実施形態の発光装置の断面図を図3に示す。この断面図は、第1実施形態の線A−Aに相当する位置の断面図である。
この発光装置30は、第1実施形態の発光装置1とほぼ同じであるが、使用されている3W級の青色LED素子32が異なっている。該青色LED素子32は、光取り出し面が電極形成面より小さい台形状で、側面が傾斜しており、この面からの光取り出しも考慮されている。そのため、第1実施形態の発光装置1の逆四角錐形状の構造体7と同じように構造体37を形成し、傾斜面からの光の取り出しを良好にしている。
この場合の蛍光体含有フィルム片33のサイズは、厚みが約0.1mmで、大きさは一辺が約2.4mmから約3.0mm程度にする。
Next, FIG. 3 shows a cross-sectional view of the light emitting device of the third embodiment. This cross-sectional view is a cross-sectional view at a position corresponding to the line AA of the first embodiment.
The light emitting device 30 is substantially the same as the light emitting device 1 of the first embodiment, except that the 3W-class blue LED element 32 used is different. The blue LED element 32 has a trapezoidal shape in which the light extraction surface is smaller than the electrode formation surface and the side surface is inclined, and light extraction from this surface is also considered. Therefore, the structure 37 is formed in the same manner as the inverted quadrangular pyramid-shaped structure 7 of the light emitting device 1 of the first embodiment, and the light extraction from the inclined surface is made favorable.
In this case, the phosphor-containing film piece 33 has a thickness of about 0.1 mm and a side of about 2.4 mm to about 3.0 mm.
次に、第4実施形態の発光装置の断面図を図4に示す。この断面図は、第2実施形態の線B−Bに相当する位置の断面図である。
この発光装置40は、第3実施形態の発光装置30と同じように、台形状の3W級の青色LED素子32を用いている。発光装置30の蛍光体含有フィルム片33の上に、該蛍光体含有フィルム片より大きなレンズ径をもつ凸状の樹脂レンズ38を形成し、光の取り出し効率をさらに向上している。
この発光装置40に使用される蛍光体含有フィルム片33のサイズは、厚みが約0.1mmで、大きさは一辺が約2.4mmの正方形であり、樹脂レンズの直径は約3.4mmである。
Next, FIG. 4 shows a cross-sectional view of the light emitting device of the fourth embodiment. This cross-sectional view is a cross-sectional view at a position corresponding to the line BB in the second embodiment.
The light emitting device 40 uses a trapezoidal 3W-class blue LED element 32 as in the light emitting device 30 of the third embodiment. A
The phosphor-containing film piece 33 used in the light emitting device 40 has a thickness of about 0.1 mm, a square with a side of about 2.4 mm, and a resin lens diameter of about 3.4 mm. is there.
次に、第5実施形態の発光装置は、図1から図4までの発光装置において、蛍光体含有フィルム片3や13や33の代わりに図7(a)(b)(c)(d)で示すような分離型蛍光体フィルム片を用いた発光装置である。
この発光装置は、蛍光体相互の干渉がほとんどなく、(例えば、緑色蛍光体と赤色蛍光体を混合した蛍光体含有フィルムの場合、緑色蛍光体が発する光を赤色蛍光体が再度吸収するといった干渉がなく)演色性を示す演色評価数RaやR9を高くすることができるし、緑色蛍光体の発した光を再度赤色蛍光体が吸収するといった2段階の吸収がないので、発光効率もよくなる。
蛍光体の分離形状は、図7に示しているが、(a)や(b)のように一つの丸や四角でも良いし、複数の丸や四角でも良いし、丸や四角以外の形でも良い。また、(c)や(d)のように十字の線や横や縦の線で分割しても良い。
Next, the light emitting device according to the fifth embodiment is the same as the light emitting device shown in FIGS. 1 to 4, instead of the phosphor-containing film pieces 3, 13, and 33, as shown in FIGS. It is a light-emitting device using the separate type | mold phosphor film piece as shown by.
This light-emitting device has almost no interference between phosphors (for example, in the case of a phosphor-containing film in which green phosphors and red phosphors are mixed, interference such that red phosphors absorb light emitted by green phosphors again). The color rendering index Ra or R9 showing the color rendering properties can be increased, and the light emission efficiency is improved because there is no two-stage absorption in which the red phosphor absorbs the light emitted from the green phosphor again.
The separation shape of the phosphor is shown in FIG. 7, but it may be a single circle or square as shown in (a) or (b), a plurality of circles or squares, or a shape other than a circle or square. good. Further, as shown in (c) and (d), it may be divided by a cross line or a horizontal or vertical line.
次に、第6実施形態の発光装置は、図1から図4までの発光装置において、蛍光体含有フィルム片3や13や33の代わりに、蛍光体を混ぜていないシリコン樹脂からなる透明樹脂フィルムを使用した発光装置である。
この発光装置は、使用するLED素子自体の発光色(紫外光、可視光、赤外光)で、LED素子特有の狭い半値幅をもつスペクトルの光が特徴である。
Next, the light emitting device according to the sixth embodiment is a transparent resin film made of a silicon resin in which no phosphor is mixed, instead of the phosphor containing film pieces 3, 13, and 33 in the light emitting devices of FIGS. 1 to 4. Is a light emitting device using
This light-emitting device is characterized by the light of the LED element itself that is used (ultraviolet light, visible light, infrared light) and a spectrum of light having a narrow half-value width unique to the LED element.
1,10,30,40 発光装置
2,32 半導体発光素子(LED素子またはLEDチップ)
3,13,33 蛍光体含有フィルム片
4,34 基板
5 反射壁の斜面
6,16,36,76 反射壁
18,38 樹脂レンズ
71,72 蛍光体含有フィルム片の分割領域
E1,F1,E2,F2,G1,H1,G2,H2 電極
1, 10, 30, 40 Light-emitting device 2,32 Semiconductor light-emitting element (LED element or LED chip)
3,13,33 Phosphor-containing film piece 4,34 Substrate 5 Reflecting
Claims (4)
前記半導体発光素子は、光取り出し面が前記基板に対向する電極形成面より小さい台形状に形成されて側面が傾斜しており、
前記半導体発光素子の光取り出し面上には、前記基板より大きな蛍光体含有フィルム片の略中央部分が貼付けられ、
前記蛍光体含有フィルム片における前記半導体発光素子からはみ出た周辺部分から前記基板の間は、前記半導体発光素子の発光光に対して透明な樹脂が充填されて逆四角錐形状の構造体に形成され、
前記構造体の外側には白色樹脂が充填されることで、前記構造体と該白色樹脂との界面には反射壁が形成されていることを特徴とする発光装置。 In a light emitting device in which a semiconductor light emitting element is flip-chip mounted on a substrate,
The semiconductor light emitting element is formed in a trapezoidal shape with a light extraction surface smaller than the electrode formation surface facing the substrate, and the side surface is inclined,
On the light extraction surface of the semiconductor light emitting element, a substantially central portion of a phosphor-containing film piece larger than the substrate is attached,
A space between the substrate and a portion of the phosphor-containing film piece that protrudes from the semiconductor light emitting element is filled with a resin transparent to the light emitted from the semiconductor light emitting element to form an inverted quadrangular pyramid structure. ,
A light emitting device , wherein a white resin is filled outside the structure, and a reflection wall is formed at an interface between the structure and the white resin .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012228835A JP5738257B2 (en) | 2012-10-16 | 2012-10-16 | Light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012228835A JP5738257B2 (en) | 2012-10-16 | 2012-10-16 | Light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014082300A JP2014082300A (en) | 2014-05-08 |
JP5738257B2 true JP5738257B2 (en) | 2015-06-17 |
Family
ID=50786245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012228835A Active JP5738257B2 (en) | 2012-10-16 | 2012-10-16 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5738257B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6582754B2 (en) * | 2015-08-31 | 2019-10-02 | 日亜化学工業株式会社 | Composite substrate, light emitting device, and method of manufacturing light emitting device |
KR102559294B1 (en) * | 2018-05-28 | 2023-07-25 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | Light emitting device package |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4590994B2 (en) * | 2004-09-09 | 2010-12-01 | 豊田合成株式会社 | Light emitting device and manufacturing method thereof |
JP3872490B2 (en) * | 2004-12-24 | 2007-01-24 | 京セラ株式会社 | Light emitting element storage package, light emitting device, and lighting device |
JP2007019096A (en) * | 2005-07-05 | 2007-01-25 | Toyoda Gosei Co Ltd | Light-emitting device and its manufacturing method |
JP2007142085A (en) * | 2005-11-17 | 2007-06-07 | Agilent Technol Inc | Light-emitting device and manufacturing method thereof |
JP2007242856A (en) * | 2006-03-08 | 2007-09-20 | Rohm Co Ltd | Chip-type semiconductor light emitting device |
TWI481069B (en) * | 2008-11-27 | 2015-04-11 | Lextar Electronics Corp | Optical film |
-
2012
- 2012-10-16 JP JP2012228835A patent/JP5738257B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014082300A (en) | 2014-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9882097B2 (en) | Optoelectronic semiconductor chip, optoelectronic semiconductor component, and a method for producing an optoelectronic semiconductor component | |
JP4918238B2 (en) | Light emitting device | |
US9420642B2 (en) | Light emitting apparatus and lighting apparatus | |
TW201631802A (en) | Light emitting diode module and fabricating method thereof | |
US10096749B2 (en) | Illumination light source, illumination apparatus, outdoor illumination apparatus, and vehicle headlight | |
JP5895597B2 (en) | Light emitting device | |
JP2010515243A (en) | LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME | |
JP6457225B2 (en) | Light emitting device | |
JP2017117858A (en) | Light-emitting device | |
JP6140730B2 (en) | Method for creating phosphor layer | |
TW201218428A (en) | Light emitting diode package structure | |
JP2008028181A (en) | Lighting device | |
US11756939B2 (en) | Light emitting element with particular phosphors | |
JP2007134606A (en) | White light source | |
JP2011249476A (en) | Semiconductor light-emitting device | |
JP4591106B2 (en) | White light emitting device | |
JP2007180430A (en) | Light-emitting diode device | |
JP2007294890A (en) | Light emitting device | |
US20160254423A1 (en) | Non-magnified led for high center-beam candle power | |
JP5738257B2 (en) | Light emitting device | |
JP2006237571A (en) | Light-emitting diode device | |
JP2019165237A (en) | Light-emitting device | |
US20170077362A1 (en) | Light-emitting apparatus and illumination apparatus | |
WO2010123051A1 (en) | Light-emitting device | |
US9698321B2 (en) | Light-emitting apparatus, illumination apparatus, and method of manufacturing light-emitting apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5738257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |