Nothing Special   »   [go: up one dir, main page]

JP5761572B2 - Control device for electric variable valve timing device - Google Patents

Control device for electric variable valve timing device Download PDF

Info

Publication number
JP5761572B2
JP5761572B2 JP2012015145A JP2012015145A JP5761572B2 JP 5761572 B2 JP5761572 B2 JP 5761572B2 JP 2012015145 A JP2012015145 A JP 2012015145A JP 2012015145 A JP2012015145 A JP 2012015145A JP 5761572 B2 JP5761572 B2 JP 5761572B2
Authority
JP
Japan
Prior art keywords
temperature
switching element
oil
estimated
valve timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012015145A
Other languages
Japanese (ja)
Other versions
JP2013155630A (en
Inventor
等 加藤
等 加藤
平田 靖雄
靖雄 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012015145A priority Critical patent/JP5761572B2/en
Priority to US13/750,023 priority patent/US20130192549A1/en
Publication of JP2013155630A publication Critical patent/JP2013155630A/en
Application granted granted Critical
Publication of JP5761572B2 publication Critical patent/JP5761572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/05Timing control under consideration of oil condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2086Output circuits, e.g. for controlling currents in command coils with means for detecting circuit failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K2017/0806Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Electric Motors In General (AREA)

Description

本発明は、内燃機関のバルブタイミングをモータにより変化させる電動式可変バルブタイミング装置の制御装置に関する発明である。   The present invention relates to a control device for an electric variable valve timing device that changes a valve timing of an internal combustion engine by a motor.

近年、車両に搭載される内燃機関においては、出力向上、燃費節減、排気エミッション低減等を目的として、吸気バルブや排気バルブのバルブタイミング(開閉タイミング)を変化させる可変バルブタイミング装置を採用したものがある。現在、実用化されている可変バルブタイミング装置は、クランク軸に対するカム軸の回転位相(カム軸位相)をモータ又は油圧で変化させることで、カム軸によって開閉駆動される吸気バルブや排気バルブのバルブタイミングを変化させるようにしたものが多い。   In recent years, internal combustion engines mounted on vehicles have adopted variable valve timing devices that change the valve timing (open / close timing) of intake valves and exhaust valves for the purpose of improving output, reducing fuel consumption, and reducing exhaust emissions. is there. Currently, a variable valve timing device in practical use is a valve of an intake valve or an exhaust valve that is driven to open and close by a camshaft by changing the rotation phase (camshaft phase) of the camshaft with respect to the crankshaft by a motor or hydraulic pressure. There are many things that change the timing.

モータを駆動源とする電動式の可変バルブタイミング装置においては、例えば、特許文献1(特許第4678545号公報)に記載されているように、エンジンが始動してから油温(潤滑油の温度)が所定温度に到達するまでの期間、モータに通電する電流を通常値よりも大きくすることで、低油温時の可変バルブタイミング装置の応答性の悪化を抑制するようにしたものがある。   In an electric variable valve timing device using a motor as a drive source, for example, as described in Patent Document 1 (Japanese Patent No. 4678545), an oil temperature (lubricating oil temperature) after the engine is started. In some cases, the current flowing to the motor is made larger than the normal value until the temperature reaches a predetermined temperature, thereby suppressing the deterioration of the responsiveness of the variable valve timing device when the oil temperature is low.

特許第4678545号公報Japanese Patent No. 4678545

ところで、エンジンが高負荷状態で運転されると、油温(潤滑油の温度)が130℃付近まで上昇することがあるため、潤滑油で潤滑される部品や油路の近くに搭載された部品の温度も130℃付近まで上昇することがある。また、エンジンヘッドには多くの油路が設けられているため、エンジンヘッドに搭載された電動式の可変バルブタイミング装置やそのモータ駆動回路も高温状態になることがある。モータ駆動回路には、発熱し易い部品としてモータの通電制御用のスイッチング素子(例えばMOSFET等)が搭載されており、モータ駆動回路が高温状態でスイッチング素子に大きな電流が流れると、スイッチング素子の温度が許容上限温度(例えば150℃)を越えてスイッチング素子が過熱状態になってしまう可能性がある。   By the way, when the engine is operated under a high load condition, the oil temperature (lubricating oil temperature) may rise to around 130 ° C., so parts that are lubricated with lubricating oil or parts that are mounted near the oil passage The temperature may also rise to around 130 ° C. Further, since many oil passages are provided in the engine head, the electric variable valve timing device mounted on the engine head and its motor drive circuit may be in a high temperature state. The motor drive circuit is equipped with a switching element (such as a MOSFET) for controlling energization of the motor as a component that easily generates heat. When a large current flows through the switching element when the motor drive circuit is at a high temperature, the temperature of the switching element is increased. May exceed the allowable upper limit temperature (for example, 150 ° C.), and the switching element may be overheated.

上記特許文献1の技術は、油温が低い期間にモータに通電する電流を通常値よりも大きくすることで可変バルブタイミング装置の応答性の悪化を抑制するものであり、上述したスイッチング素子の過熱の問題を解決することができない。   The technique of the above-mentioned patent document 1 suppresses the deterioration of the responsiveness of the variable valve timing device by increasing the current supplied to the motor during a period when the oil temperature is low to be larger than the normal value. Can't solve the problem.

そこで、本発明が解決しようとする課題は、モータの通電制御用のスイッチング素子が過熱状態になることを防止することができる電動式可変バルブタイミング装置の制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a control device for an electric variable valve timing device that can prevent a switching element for energization control of a motor from being overheated.

上記課題を解決するために、請求項1に係る発明は、内燃機関のバルブタイミングをモータにより変化させる電動式可変バルブタイミング装置の制御装置において、内燃機関の潤滑油の温度を推定する油温推定手段と、この油温推定手段で推定した潤滑油の温度に基づいてモータの通電制御用のスイッチング素子が実装された基板の温度を推定する基板温度推定手段と、この基板温度推定手段で推定した基板の温度に基づいてスイッチング素子の温度が所定の許容上限温度を越えないようにスイッチング素子に流れる電流を制限する電流制限制御手段とを備え、基板温度推定手段は、油温推定手段で推定した潤滑油の温度と内燃機関の冷却水温とに基づいてベース基板温度を算出し、該ベース基板温度をなまし処理して基板の温度を求めるようにしたものである。 In order to solve the above-mentioned problems, an invention according to claim 1 is an oil temperature estimation method for estimating a temperature of lubricating oil of an internal combustion engine in a control device for an electric variable valve timing device that changes a valve timing of the internal combustion engine by a motor. Means, a substrate temperature estimating means for estimating the temperature of the board on which the switching element for energization control of the motor is mounted based on the temperature of the lubricating oil estimated by the oil temperature estimating means, and the substrate temperature estimating means Current limit control means for limiting the current flowing through the switching element so that the temperature of the switching element does not exceed a predetermined allowable upper limit temperature based on the temperature of the board, and the board temperature estimation means is estimated by the oil temperature estimation means The base substrate temperature is calculated based on the temperature of the lubricating oil and the cooling water temperature of the internal combustion engine, and the base substrate temperature is smoothed to obtain the substrate temperature. It is obtained by the.

潤滑油の温度の影響を受けてモータ駆動回路の基板の温度が変化するため、推定した潤滑油の温度に基づいて基板の温度を推定すれば、基板の温度を精度良く推定することができる。また、基板の温度と基板に実装されたスイッチング素子の温度との間にはある程度の相関関係があるため、推定した基板の温度に基づいてスイッチング素子の温度が許容上限温度を越えないようにスイッチング素子に流れる電流を制限すれば、スイッチング素子が過熱状態になることを防止することができる。しかも、潤滑油の温度、基板の温度、スイッチング素子の温度等を検出する温度センサを設ける必要がないため、低コスト化の要求を満たすことができる。
また、基板の温度を推定する際に、油温推定手段で推定した潤滑油の温度と内燃機関の冷却水温とに基づいてベース基板温度を算出し、該ベース基板温度をなまし処理して基板の温度を求めるようにしている。このようにすれば、潤滑油の温度と冷却水温の両方を考慮に入れて基板の温度を精度良く推定することができる。
Since the temperature of the substrate of the motor drive circuit changes due to the influence of the temperature of the lubricating oil, if the temperature of the substrate is estimated based on the estimated temperature of the lubricating oil, the temperature of the substrate can be estimated with high accuracy. In addition, since there is a certain degree of correlation between the temperature of the board and the temperature of the switching element mounted on the board, switching is performed so that the temperature of the switching element does not exceed the allowable upper limit temperature based on the estimated board temperature. Limiting the current flowing through the element can prevent the switching element from being overheated. In addition, since it is not necessary to provide a temperature sensor for detecting the temperature of the lubricating oil, the temperature of the substrate, the temperature of the switching element, etc., the demand for cost reduction can be satisfied.
Further, when estimating the temperature of the substrate, the base substrate temperature is calculated based on the temperature of the lubricating oil estimated by the oil temperature estimating means and the cooling water temperature of the internal combustion engine, and the base substrate temperature is smoothed and processed. I want to find the temperature. In this way, the temperature of the substrate can be accurately estimated in consideration of both the temperature of the lubricating oil and the cooling water temperature.

この場合、請求項2のように、基板温度推定手段で推定した基板の温度が所定の判定値よりも高くなったときにスイッチング素子に流れる電流を所定の上限ガード値で制限するようにすると良い。一般に、基板の温度は、スイッチング素子の温度に比べて緩やかに変化するため、基板の温度を判定値と比較してスイッチング素子に流れる電流を制限する電流制限制御を実行するようにすれば、電流制限制御の実行と停止が頻繁に切り換わるハンチングを防止することができる。   In this case, as in claim 2, when the substrate temperature estimated by the substrate temperature estimating means becomes higher than a predetermined determination value, the current flowing through the switching element is preferably limited by a predetermined upper limit guard value. . In general, the temperature of the substrate changes more slowly than the temperature of the switching element. Therefore, if current limiting control is performed to limit the current flowing through the switching element by comparing the substrate temperature with the determination value, the current It is possible to prevent hunting in which the restriction control is frequently switched between execution and stop.

或は、請求項3のように、基板温度推定手段で推定した基板の温度に基づいてスイッチング素子の温度を推定するスイッチング素子温度推定手段を備え、このスイッチング素子温度推定手段で推定したスイッチング素子の温度が所定の判定値よりも高くなったときにスイッチング素子に流れる電流を所定の上限ガード値で制限するようにしても良い。このようにすれば、推定したスイッチング素子の温度に基づいてスイッチング素子の温度が許容上限温度を越えないようにスイッチング素子に流れる電流を制限する電流制限制御を精度良く行うことができる。   Alternatively, a switching element temperature estimation means for estimating the temperature of the switching element based on the substrate temperature estimated by the substrate temperature estimation means as in claim 3 is provided, and the switching element temperature estimation means estimated by the switching element temperature estimation means You may make it restrict | limit the electric current which flows into a switching element when temperature becomes higher than a predetermined | prescribed determination value with a predetermined | prescribed upper limit guard value. In this way, it is possible to accurately perform current limit control for limiting the current flowing through the switching element so that the temperature of the switching element does not exceed the allowable upper limit temperature based on the estimated temperature of the switching element.

この場合、請求項4のように、スイッチング素子に流れる電流に基づいてスイッチング素子の自己発熱による温度上昇分を算出し、基板温度推定手段で推定した基板の温度にスイッチング素子の温度上昇分を加算してスイッチング素子の温度を求めるようにすると良い。このようにすれば、スイッチング素子の自己発熱による温度上昇分を考慮に入れてスイッチング素子の温度を精度良く推定することができる。   In this case, as in claim 4, the temperature rise due to self-heating of the switching element is calculated based on the current flowing through the switching element, and the temperature rise of the switching element is added to the temperature of the board estimated by the board temperature estimating means. Thus, the temperature of the switching element is preferably obtained. In this way, the temperature of the switching element can be accurately estimated in consideration of the temperature increase due to the self-heating of the switching element.

また、潤滑油の温度を推定する際には、請求項のように、内燃機関の運転状態に基づいて内燃機関の冷却水温に対する潤滑油の温度上昇分を算出し、冷却水温に潤滑油の温度上昇分を加算した値をなまし処理して潤滑油の温度を求めるようにしても良い。このようにすれば、潤滑油の温度が冷却水温よりも高くなる領域でも、冷却水温に対する潤滑油の温度上昇分を考慮に入れて潤滑油の温度を精度良く推定することができる。 When estimating the temperature of the lubricating oil, as described in claim 5 , the temperature rise of the lubricating oil relative to the cooling water temperature of the internal combustion engine is calculated based on the operating state of the internal combustion engine, and the lubricating oil temperature is calculated as the cooling water temperature. A value obtained by adding the temperature rise may be smoothed to obtain the temperature of the lubricating oil. In this way, even in a region where the temperature of the lubricating oil is higher than the cooling water temperature, the temperature of the lubricating oil can be accurately estimated in consideration of the temperature rise of the lubricating oil with respect to the cooling water temperature.

更に、請求項のように、内燃機関の運転状態に基づいて内燃機関の燃焼温度を算出して、該燃焼温度に基づいて冷却水温に対する潤滑油の温度上昇分を算出し、冷却水温に潤滑油の温度上昇分を加算した値をなまし処理して潤滑油の温度を求めるようにしても良い。このようにすれば、内燃機関の運転状態に応じて変化する燃焼温度も考慮に入れて潤滑油の温度を更に精度良く推定することができ、油温に基づいた基板温度の推定精度を向上させることができる。
Further, as in claim 6 , the combustion temperature of the internal combustion engine is calculated based on the operating state of the internal combustion engine, the temperature rise of the lubricating oil with respect to the cooling water temperature is calculated based on the combustion temperature, and lubrication is performed to the cooling water temperature. A value obtained by adding the oil temperature rise may be smoothed to obtain the temperature of the lubricating oil. In this way, the temperature of the lubricating oil can be estimated with higher accuracy in consideration of the combustion temperature that changes according to the operating state of the internal combustion engine, and the estimation accuracy of the substrate temperature based on the oil temperature is improved. be able to.

図1は本発明の実施例1におけるバルブタイミング制御システム全体の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of the entire valve timing control system in Embodiment 1 of the present invention. 図2は可変バルブタイミング装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the variable valve timing device. 図3は実施例1の基板温度に基づいた電流制限制御の実行例を説明するタイムチャートである。FIG. 3 is a time chart for explaining an execution example of the current limiting control based on the substrate temperature in the first embodiment. 図4は実施例1の基板温度推定ルーチンの処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of processing of the substrate temperature estimation routine of the first embodiment. 図5は実施例1の電流制限制御ルーチンの処理の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of processing of the current limit control routine of the first embodiment. 図6は実施例2の基板温度に基づいた電流制限制御の実行例を説明するタイムチャートである。FIG. 6 is a time chart for explaining an execution example of the current limiting control based on the substrate temperature in the second embodiment. 図7は実施例2の基板温度推定ルーチンの処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of the substrate temperature estimation routine of the second embodiment. 図8は実施例3のMOS温度に基づいた電流制限制御の実行例を説明するタイムチャートである。FIG. 8 is a time chart for explaining an execution example of the current limiting control based on the MOS temperature of the third embodiment. 図9は実施例3のMOS温度推定ルーチンの処理の流れを示すフローチャートである。FIG. 9 is a flowchart showing the flow of processing of the MOS temperature estimation routine of the third embodiment. 図10は実施例3の電流制限制御ルーチンの処理の流れを示すフローチャートである。FIG. 10 is a flowchart showing the flow of processing of the current limit control routine of the third embodiment. 図11は実施例4のMOS温度に基づいた電流制限制御の実行例を説明するタイムチャートである。FIG. 11 is a time chart illustrating an execution example of current limit control based on the MOS temperature of the fourth embodiment. 図12は実施例4のMOS温度推定ルーチンの処理の流れを示すフローチャートである。FIG. 12 is a flowchart showing the flow of processing of the MOS temperature estimation routine of the fourth embodiment.

以下、本発明を実施するための形態を吸気バルブの可変バルブタイミング装置に適用して具体化した幾つかの実施例を説明する。   Hereinafter, several embodiments in which the mode for carrying out the present invention is applied to a variable valve timing apparatus for an intake valve will be described.

本発明の実施例1を図1乃至図5に基づいて説明する。
まず、図1に基づいてシステム全体の概略構成を説明する。
内燃機関であるエンジン11は、クランク軸12からの動力がタイミングチェーン13(又はタイミングベルト)により各スプロケット14,15を介して吸気側カム軸16と排気側カム軸17とに伝達されるようになっている。但し、吸気側カム軸16には、電動式の可変バルブタイミング装置18が設けられている。この可変バルブタイミング装置18によって、クランク軸12に対する吸気側カム軸16の回転位相(カム軸位相)を変化させることで、吸気側カム軸16によって開閉駆動される吸気バルブ(図示せず)のバルブタイミング(開閉タイミング)を変化させるようになっている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire system will be described with reference to FIG.
The engine 11 that is an internal combustion engine transmits power from the crankshaft 12 to the intake side camshaft 16 and the exhaust side camshaft 17 via the sprockets 14 and 15 by the timing chain 13 (or timing belt). It has become. However, the intake side camshaft 16 is provided with an electric variable valve timing device 18. The variable valve timing device 18 changes the rotation phase (cam shaft phase) of the intake side cam shaft 16 with respect to the crankshaft 12 to change the valve of an intake valve (not shown) driven to open and close by the intake side cam shaft 16. The timing (opening / closing timing) is changed.

また、吸気側カム軸16の外周側には、吸気側カム軸16の回転に同期して所定のカム角毎にカム角信号を出力するカム角センサ19が取り付けられている。一方、クランク軸12の外周側には、クランク軸12の回転に同期して所定のクランク角毎にクランク角信号を出力するクランク角センサ20が取り付けられている。   A cam angle sensor 19 that outputs a cam angle signal for each predetermined cam angle in synchronization with the rotation of the intake side cam shaft 16 is attached to the outer peripheral side of the intake side cam shaft 16. On the other hand, a crank angle sensor 20 that outputs a crank angle signal at every predetermined crank angle in synchronization with the rotation of the crankshaft 12 is attached to the outer peripheral side of the crankshaft 12.

次に、図2に基づいて電動式の可変バルブタイミング装置18の概略構成を説明する。尚、電動式の可変バルブタイミング装置18の構成は、図2に示す構成に限定されず、適宜変更しても良い。   Next, a schematic configuration of the electric variable valve timing device 18 will be described with reference to FIG. The configuration of the electric variable valve timing device 18 is not limited to the configuration shown in FIG. 2 and may be changed as appropriate.

可変バルブタイミング装置18の位相可変機構21は、吸気側カム軸16と同心状に配置された内歯付きのアウタギヤ22と、このアウタギヤ22の内周側に同心状に配置された外歯付きのインナギヤ23と、これらアウタギヤ22とインナギヤ23との間に配置されて両者に噛み合う遊星ギヤ24とから構成されている。アウタギヤ22は、クランク軸12と同期して回転するスプロケット14と一体的に回転するように設けられ、インナギヤ23は、吸気側カム軸16と一体的に回転するように設けられている。また、遊星ギヤ24は、アウタギヤ22とインナギヤ23に噛み合った状態でインナギヤ23の回りを円軌道を描くように旋回することで、アウタギヤ22の回転力をインナギヤ23に伝達する役割を果たすと共に、アウタギヤ22の回転速度に対する遊星ギヤ24の旋回速度(公転速度)を変化させることで、アウタギヤ22に対するインナギヤ23の回転位相(カム軸位相)を調整するようになっている。   The phase variable mechanism 21 of the variable valve timing device 18 includes an outer gear 22 with inner teeth arranged concentrically with the intake side camshaft 16, and an outer gear with outer teeth arranged concentrically on the inner peripheral side of the outer gear 22. An inner gear 23 and a planetary gear 24 disposed between the outer gear 22 and the inner gear 23 and meshing with each other are constituted. The outer gear 22 is provided so as to rotate integrally with the sprocket 14 that rotates in synchronization with the crankshaft 12, and the inner gear 23 is provided so as to rotate integrally with the intake side camshaft 16. Further, the planetary gear 24 functions to transmit the rotational force of the outer gear 22 to the inner gear 23 by turning around the inner gear 23 in a state of meshing with the outer gear 22 and the inner gear 23, and also to play the outer gear 22. The rotational phase (cam shaft phase) of the inner gear 23 with respect to the outer gear 22 is adjusted by changing the turning speed (revolution speed) of the planetary gear 24 with respect to the rotational speed of 22.

一方、エンジン11には、遊星ギヤ24の旋回速度を可変するためのモータ26が設けられている。このモータ26の回転軸27は、吸気側カム軸16、アウタギヤ22及びインナギヤ23と同軸上に配置され、このモータ26の回転軸27と遊星ギヤ24の支持軸25とが、径方向に延びる連結部材28を介して連結されている。これにより、モータ26の回転に伴って、遊星ギヤ24が支持軸25を中心に回転(自転)しながらインナギヤ23の外周の円軌道を旋回(公転)できるようになっている。また、モータ26には、モータ26の回転に同期して所定回転角毎にモータ回転角信号を出力するモータ回転角センサ29(図1参照)が取り付けられている。このモータ回転角センサ29の出力信号に基づいてモータ26の回転角や回転速度が検出される。   On the other hand, the engine 11 is provided with a motor 26 for changing the turning speed of the planetary gear 24. The rotation shaft 27 of the motor 26 is arranged coaxially with the intake side cam shaft 16, the outer gear 22 and the inner gear 23, and the rotation shaft 27 of the motor 26 and the support shaft 25 of the planetary gear 24 are connected to extend in the radial direction. It is connected via a member 28. Thus, as the motor 26 rotates, the planetary gear 24 can turn (revolve) on the circular orbit on the outer periphery of the inner gear 23 while rotating (spinning) around the support shaft 25. In addition, a motor rotation angle sensor 29 (see FIG. 1) that outputs a motor rotation angle signal at every predetermined rotation angle in synchronization with the rotation of the motor 26 is attached to the motor 26. Based on the output signal of the motor rotation angle sensor 29, the rotation angle and rotation speed of the motor 26 are detected.

この可変バルブタイミング装置18は、定常時に吸気側カム軸16をクランク軸12の回転速度の1/2の回転速度で駆動するようにアウタギヤ22とインナギヤ23と遊星ギヤ24が構成され、クランク軸12の回転速度の1/2の回転速度(定常時にはクランク軸12の回転速度の1/2=吸気側カム軸16の回転速度となる)に対してモータ26の回転速度を調整することで、吸気バルブのバルブタイミング(吸気側のカム軸位相)を変化させるようになっている。   In the variable valve timing device 18, an outer gear 22, an inner gear 23, and a planetary gear 24 are configured so that the intake side camshaft 16 is driven at a rotational speed that is half the rotational speed of the crankshaft 12 in a steady state. The rotational speed of the motor 26 is adjusted with respect to the rotational speed ½ of the rotational speed of the motor 26 (in the steady state, ½ of the rotational speed of the crankshaft 12 = the rotational speed of the intake camshaft 16). The valve timing of the valve (camshaft phase on the intake side) is changed.

バルブタイミングを変化させないときは、モータ26の回転速度をアウタギヤ22の回転速度(クランク軸12の回転速度の1/2の回転速度)に一致させて、遊星ギヤ24の旋回速度をアウタギヤ22の回転速度に一致させることで、アウタギヤ22とインナギヤ23との回転位相の差を現状維持してバルブタイミング(カム軸位相)を現状維持する。尚、モータ26の非駆動時に、モータ26の回転軸がアウタギヤ22と同期して回転するように構成して、モータ26の回転速度がアウタギヤ22の回転速度(クランク軸12の回転速度の1/2の回転速度)に一致するようにしても良い。   When the valve timing is not changed, the rotational speed of the motor 26 is made to coincide with the rotational speed of the outer gear 22 (a rotational speed that is 1/2 of the rotational speed of the crankshaft 12), and the turning speed of the planetary gear 24 is set to the rotational speed of the outer gear 22. By matching the speed, the difference in rotational phase between the outer gear 22 and the inner gear 23 is maintained, and the valve timing (cam shaft phase) is maintained. In addition, when the motor 26 is not driven, the rotation shaft of the motor 26 is configured to rotate in synchronization with the outer gear 22 so that the rotation speed of the motor 26 is the rotation speed of the outer gear 22 (1/0 of the rotation speed of the crankshaft 12). 2 rotation speed).

そして、バルブタイミングを変化させるときは、モータ26の回転速度をアウタギヤ22の回転速度に対して変化させて、遊星ギヤ24の旋回速度をアウタギヤ22の回転速度に対して変化させることで、アウタギヤ22とインナギヤ23との回転位相の差を変化させてバルブタイミング(カム軸位相)を変化させる。   When changing the valve timing, the rotational speed of the motor 26 is changed with respect to the rotational speed of the outer gear 22, and the turning speed of the planetary gear 24 is changed with respect to the rotational speed of the outer gear 22. The valve timing (cam shaft phase) is changed by changing the difference in rotational phase between the inner gear 23 and the inner gear 23.

例えば、バルブタイミングを進角する場合には、モータ26の回転速度をアウタギヤ22の回転速度よりも速くして、遊星ギヤ24の旋回速度をアウタギヤ22の回転速度よりも速くすることで、アウタギヤ22に対するインナギヤ23の回転位相を進角してバルブタイミング(カム軸位相)を進角する。   For example, when the valve timing is advanced, the rotational speed of the motor 26 is made faster than the rotational speed of the outer gear 22, and the turning speed of the planetary gear 24 is made faster than the rotational speed of the outer gear 22. The valve timing (cam shaft phase) is advanced by advancing the rotational phase of the inner gear 23 with respect to.

一方、バルブタイミングを遅角する場合には、モータ26の回転速度をアウタギヤ22の回転速度よりも遅くして、遊星ギヤ24の旋回速度をアウタギヤ22の回転速度よりも遅くすることで、アウタギヤ22に対するインナギヤ23の回転位相を遅角してバルブタイミング(カム軸位相)を遅角する。   On the other hand, when retarding the valve timing, the rotational speed of the motor 26 is made slower than the rotational speed of the outer gear 22, and the turning speed of the planetary gear 24 is made slower than the rotational speed of the outer gear 22. The valve timing (cam shaft phase) is retarded by retarding the rotational phase of the inner gear 23 relative to the inner gear 23.

前述した各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of the various sensors described above are input to an electronic control unit (hereinafter referred to as “ECU”) 30. The ECU 30 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

また、ECU30は、エンジン運転中に、カム角センサ19とクランク角センサ20の出力信号に基づいてクランク軸12に対する吸気側カム軸16の実回転位相(実カム軸位相)を演算すると共に、エンジン運転条件に応じて目標カム軸位相を演算し、この目標カム軸位相(目標バルブタイミング)と実カム軸位相(実バルブタイミング)との偏差及びエンジン回転速度に基づいて目標モータ回転速度を演算し、演算した目標モータ回転速度の信号をモータ駆動回路(以下「EDU」と表記する)31に出力する。このEDU31は、目標モータ回転速度と実モータ回転速度との偏差を小さくするようにモータ26の通電デューティ比(通電制御量)をフィードバック制御することで、実カム軸位相を目標カム軸位相にフィードバック制御する。尚、EDU31の機能をECU30に組み込むようにしても良い。   Further, the ECU 30 calculates the actual rotation phase (actual cam shaft phase) of the intake cam shaft 16 with respect to the crankshaft 12 based on the output signals of the cam angle sensor 19 and the crank angle sensor 20 during engine operation, and the engine. The target camshaft phase is calculated according to the operating conditions, and the target motor speed is calculated based on the deviation between the target camshaft phase (target valve timing) and the actual camshaft phase (actual valve timing) and the engine speed. The calculated target motor rotation speed signal is output to a motor drive circuit (hereinafter referred to as “EDU”) 31. The EDU 31 feedback-controls the energization duty ratio (energization control amount) of the motor 26 so as to reduce the deviation between the target motor rotation speed and the actual motor rotation speed, thereby feedbacking the actual cam shaft phase to the target cam shaft phase. Control. Note that the function of the EDU 31 may be incorporated in the ECU 30.

可変バルブタイミング装置18のモータ26の通電を制御するEDU31は、エンジン11に搭載された可変バルブタイミング装置18に組み付けられるか又は可変バルブタイミング装置18の近傍に設置され、このEDU31には、モータ26の通電制御用のスイッチング素子としてMOSFET32(Metal Oxide Semiconductor Field Effect Transistor )が実装された基板33が設けられている。   The EDU 31 for controlling the energization of the motor 26 of the variable valve timing device 18 is assembled to the variable valve timing device 18 mounted on the engine 11 or installed in the vicinity of the variable valve timing device 18. A substrate 33 on which a MOSFET 32 (Metal Oxide Semiconductor Field Effect Transistor) is mounted is provided as a switching element for energization control.

また、本実施例1では、ECU30(或はECU30とEDU31)により後述する図4及び図5の各ルーチンを実行することで、エンジン運転状態等に基づいてエンジン11の油温(潤滑油の温度)を推定して、この推定した油温に基づいて基板温度(基板33の温度)を推定し、この推定した基板温度に基づいてMOS温度(MOSFET32の温度)が所定の許容上限温度(例えば150℃)を越えないようにMOS電流(MOSFET32に流れる電流)を制限する電流制限制御を実行する。   In the first embodiment, the ECU 30 (or the ECU 30 and the EDU 31) executes the routines shown in FIGS. 4 and 5 to be described later, so that the oil temperature of the engine 11 (the temperature of the lubricating oil) is based on the engine operating state and the like. ) And the substrate temperature (the temperature of the substrate 33) is estimated based on the estimated oil temperature, and the MOS temperature (the temperature of the MOSFET 32) is set to a predetermined allowable upper limit temperature (for example, 150) based on the estimated substrate temperature. Current limit control is performed to limit the MOS current (current flowing through the MOSFET 32) so as not to exceed (° C.).

油温の影響を受けて基板温度が変化するため、推定した油温に基づいて基板温度を推定すれば、基板温度を精度良く推定することができる。また、基板温度とMOS温度との間にはある程度の相関関係があるため、推定した基板温度に基づいてMOS温度が許容上限温度を越えないようにMOS電流を制限すれば、MOSFET32が過熱状態になることを防止することができる。   Since the substrate temperature changes due to the influence of the oil temperature, the substrate temperature can be accurately estimated by estimating the substrate temperature based on the estimated oil temperature. In addition, since there is a certain degree of correlation between the substrate temperature and the MOS temperature, if the MOS current is limited so that the MOS temperature does not exceed the allowable upper limit temperature based on the estimated substrate temperature, the MOSFET 32 becomes overheated. Can be prevented.

具体的には、図3のタイムチャートに示すように、エンジン11の冷却水温が所定値以下の期間(油温が冷却水温に追従して変化する期間)は、油温の推定値を冷却水温と同じ値(又は冷却水温をなまし処理した値)に設定する。   Specifically, as shown in the time chart of FIG. 3, during a period in which the coolant temperature of the engine 11 is equal to or less than a predetermined value (a period in which the oil temperature changes following the coolant temperature), the estimated value of the oil temperature is used as the coolant temperature. To the same value (or a value obtained by smoothing the cooling water temperature).

その後、冷却水温が所定値よりも高い期間(油温が冷却水温よりも高くなる期間)は、エンジン運転状態(例えばエンジン回転速度と負荷)に基づいて冷却水温に対する油温上昇分(潤滑油の温度上昇分)をマップ等により算出し、冷却水温に油温度上昇分を加算してベース油温を求め、このベース油温をなまし処理して油温を求めることで油温を推定する。これにより、油温が冷却水温よりも高くなる領域でも、冷却水温に対する油温度上昇分を考慮に入れて油温を精度良く推定することができる。   Thereafter, during a period when the cooling water temperature is higher than the predetermined value (period during which the oil temperature is higher than the cooling water temperature), the oil temperature rise relative to the cooling water temperature (the lubricating oil temperature) Temperature rise) is calculated from a map or the like, the oil temperature rise is added to the cooling water temperature to obtain the base oil temperature, the base oil temperature is smoothed to obtain the oil temperature, and the oil temperature is estimated. Thereby, even in a region where the oil temperature is higher than the cooling water temperature, the oil temperature can be accurately estimated in consideration of the oil temperature increase with respect to the cooling water temperature.

更に、推定した油温と冷却水温(エンジンルーム内の温度の代用情報)とに基づいてベース基板温度を算出し、このベース基板温度をなまし処理して基板温度を求めることで基板温度を推定する。これにより、油温と冷却水温の両方を考慮に入れて基板温度を精度良く推定することができる。   Furthermore, the substrate temperature is estimated by calculating the base substrate temperature based on the estimated oil temperature and the cooling water temperature (substitute information of the temperature in the engine room), and calculating the substrate temperature by smoothing the base substrate temperature. To do. Thereby, the substrate temperature can be accurately estimated in consideration of both the oil temperature and the cooling water temperature.

そして、推定した基板温度が所定の上側判定値(例えばMOS温度が許容上限温度となる基板温度よりも少し低い温度)よりも高くなった時点t1 で、MOS電流を所定の上限ガード値で制限することでMOS温度が許容上限温度を越えないようにMOS電流を制限する電流制限制御を実行する。   Then, at the time t1 when the estimated substrate temperature becomes higher than a predetermined upper determination value (for example, a temperature slightly lower than the substrate temperature at which the MOS temperature becomes the allowable upper limit temperature), the MOS current is limited by the predetermined upper limit guard value. Thus, current limit control is performed to limit the MOS current so that the MOS temperature does not exceed the allowable upper limit temperature.

その後、基板温度が所定の下側判定値(例えば上側判定値よりも所定のヒステリシス分だけ低い温度)よりも低くなった時点t2 で、MOS電流の制限を解除して電流制限制御を停止する。   Thereafter, at the time t2 when the substrate temperature becomes lower than a predetermined lower determination value (for example, a temperature lower than the upper determination value by a predetermined hysteresis), the limitation on the MOS current is released and the current limitation control is stopped.

以上説明した本実施例1の基板温度に基づいた電流制限制御は、ECU30(或はECU30とEDU31)によって図4及び図5の各ルーチンに従って実行される。以下、これらの各ルーチンの処理内容を説明する。   The current limiting control based on the substrate temperature of the first embodiment described above is executed by the ECU 30 (or the ECU 30 and the EDU 31) according to the routines shown in FIGS. Hereinafter, the processing content of each of these routines will be described.

[基板温度推定ルーチン]
図4に示す基板温度推定ルーチンは、ECU30の電源オン期間中に所定周期で繰り返し実行される。本ルーチンが起動されると、まず、ステップ101で、冷却水温センサ(図示せず)で検出したエンジン11の冷却水温が所定値よりも高いか否かを判定する。ここで、所定値は、例えば、油温が冷却水温を追い抜くときの温度に設定されている。
[Substrate temperature estimation routine]
The substrate temperature estimation routine shown in FIG. 4 is repeatedly executed at a predetermined period during the power-on period of the ECU 30. When this routine is started, first, at step 101, it is determined whether or not the coolant temperature of the engine 11 detected by a coolant temperature sensor (not shown) is higher than a predetermined value. Here, the predetermined value is set to a temperature at which the oil temperature overtakes the cooling water temperature, for example.

このステップ101で、冷却水温が所定値以下であると判定された場合には、油温が冷却水温に追従して変化する期間であると判断して、ステップ102に進み、油温(i) の推定値を冷却水温と同じ値(又は冷却水温をなまし処理した値)に設定する。
油温(i) =冷却水温
If it is determined in step 101 that the cooling water temperature is equal to or lower than the predetermined value, it is determined that the oil temperature is a period that changes following the cooling water temperature, and the process proceeds to step 102 where the oil temperature (i) is determined. Is set to the same value as the cooling water temperature (or a value obtained by smoothing the cooling water temperature).
Oil temperature (i) = Cooling water temperature

その後、上記ステップ101で、冷却水温が所定値よりも高いと判定された場合には、油温が冷却水温よりも高くなる期間であると判断して、ステップ103に進み、冷却水温に対する油温上昇分のマップを参照して、エンジン運転状態(例えばエンジン回転速度と負荷)に応じた油温上昇分を算出する。油温上昇分のマップは、予め試験データや設計データ等に基づいて作成され、ECU30のROMに記憶されている。更に、外気温、吸気温、点火時期、空燃比、バルブタイミング等のうちの少なくとも1つに応じて油温上昇分を補正するようにしても良い。   Thereafter, when it is determined in step 101 that the cooling water temperature is higher than the predetermined value, it is determined that the oil temperature is higher than the cooling water temperature, the process proceeds to step 103, and the oil temperature relative to the cooling water temperature is determined. With reference to the map of the increase, the oil temperature increase corresponding to the engine operating state (for example, engine speed and load) is calculated. The oil temperature rise map is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 30. Furthermore, the oil temperature increase may be corrected according to at least one of the outside air temperature, intake air temperature, ignition timing, air-fuel ratio, valve timing, and the like.

この後、ステップ104に進み、冷却水温に油温上昇分を加算してベース油温を求める。
ベース油温=冷却水温+油温上昇分
Thereafter, the process proceeds to step 104, and the base oil temperature is obtained by adding the oil temperature increase to the cooling water temperature.
Base oil temperature = Cooling water temperature + Oil temperature rise

この後、ステップ105に進み、前回の油温(i-1) となまし率aを用いて、次式によりベース油温をなまし処理して今回の油温(i) を求めることで油温(i) を推定する。
油温(i) =油温(i-1) ×a+ベース油温×(1−a)
これらのステップ103〜105の処理が特許請求の範囲でいう油温推定手段としての役割を果たす。
Thereafter, the process proceeds to step 105, where the base oil temperature is smoothed by the following equation using the previous oil temperature (i-1) and the annealing rate a to obtain the current oil temperature (i). Estimate the temperature (i).
Oil temperature (i) = oil temperature (i-1) × a + base oil temperature × (1-a)
The processing of these steps 103 to 105 serves as oil temperature estimating means in the claims.

この後、ステップ106に進み、今回の油温(i) と前回の基板温度(i-1) と冷却水温(エンジンルーム内の温度の代用情報)と反映率bを用いて、次式によりベース基板温度を求める。
ベース基板温度=油温(i) −{基板温度(i-1) −冷却水温}×b
Thereafter, the process proceeds to step 106, where the current oil temperature (i), the previous substrate temperature (i-1), the cooling water temperature (substitute information on the temperature in the engine room), and the reflection rate b are used to calculate Determine the substrate temperature.
Base substrate temperature = oil temperature (i) − {substrate temperature (i−1) −cooling water temperature} × b

この後、ステップ107に進み、前回の基板温度(i-1) となまし率cを用いて、次式によりベース基板温度をなまし処理して今回の基板温度(i) を求めることで基板温度(i) を推定する。
基板温度(i) =基板温度(i-1) ×c+ベース基板温度×(1−c)
これらのステップ106,107の処理が特許請求の範囲でいう基板温度推定手段としての役割を果たす。
Thereafter, the process proceeds to step 107, and the base substrate temperature is smoothed by the following equation using the previous substrate temperature (i-1) and the annealing rate c to obtain the current substrate temperature (i). Estimate temperature (i).
Substrate temperature (i) = Substrate temperature (i−1) × c + Base substrate temperature × (1-c)
The processing in these steps 106 and 107 serves as substrate temperature estimation means in the claims.

[電流制限制御ルーチン]
図5に示す電流制限制御ルーチンは、ECU30の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう電流制限制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ201で、推定した基板温度が所定の上側判定値よりも高いか否かを判定する。ここで、上側判定値は、例えば、MOS温度が許容上限温度となる基板温度よりも少し低い温度に設定されている。
[Current limit control routine]
The current limit control routine shown in FIG. 5 is repeatedly executed at a predetermined period during the power-on period of the ECU 30, and serves as current limit control means in the claims. When this routine is started, first, in step 201, it is determined whether or not the estimated substrate temperature is higher than a predetermined upper determination value. Here, the upper determination value is set to a temperature slightly lower than the substrate temperature at which the MOS temperature becomes the allowable upper limit temperature, for example.

このステップ201で、基板温度が上側判定値以下であると判定された場合には、ステップ202以降の処理を実行することなく、本ルーチンを終了する。   If it is determined in step 201 that the substrate temperature is equal to or lower than the upper determination value, this routine is terminated without executing the processing from step 202 onward.

その後、上記ステップ201で、基板温度が上側判定値よりも高いと判定された時点で、ステップ202に進み、MOS電流を所定の上限ガード値で制限することでMOS温度が許容上限温度を越えないようにMOS電流を制限する電流制限制御を実行する。更に、カム軸位相を強制的に可変バルブタイミング装置18の可動範囲の限界位置(例えば最遅角位置)に変化させるように可変バルブタイミング装置18(モータ26)を制御してそのときのカム軸位相を基準位置(例えば最遅角位置)として学習する基準位置学習を禁止することでMOS電流を制限するようにしても良い。   Thereafter, when it is determined in step 201 that the substrate temperature is higher than the upper determination value, the process proceeds to step 202, where the MOS current does not exceed the allowable upper limit temperature by limiting the MOS current with a predetermined upper limit guard value. Thus, current limit control for limiting the MOS current is executed. Further, the variable valve timing device 18 (motor 26) is controlled so that the cam shaft phase is forcibly changed to the limit position (for example, the most retarded position) of the movable range of the variable valve timing device 18, and the cam shaft at that time is controlled. The MOS current may be limited by prohibiting reference position learning in which the phase is learned as a reference position (for example, the most retarded angle position).

この後、ステップ203に進み、基板温度が所定の下側判定値よりも低いか否かを判定する。ここで、下側判定値は、例えば、上側判定値よりも所定のヒステリシス分だけ低い温度に設定されている。   Thereafter, the process proceeds to step 203, where it is determined whether or not the substrate temperature is lower than a predetermined lower determination value. Here, the lower determination value is set to a temperature lower than the upper determination value by a predetermined hysteresis, for example.

このステップ203で、基板温度が下側判定値以上であると判定された場合には、上記ステップ202に戻り、電流制限制御を継続する。
その後、上記ステップ203で、基板温度が下側判定値よりも低いと判定された時点で、ステップ204に進み、MOS電流の制限を解除して電流制限制御を停止する。
If it is determined in step 203 that the substrate temperature is equal to or higher than the lower determination value, the process returns to step 202 and the current limit control is continued.
Thereafter, when it is determined in step 203 that the substrate temperature is lower than the lower determination value, the process proceeds to step 204, where the limitation of the MOS current is released and the current limit control is stopped.

以上説明した本実施例1では、エンジン運転状態等に基づいてエンジン11の油温を推定して、この推定した油温に基づいて基板温度を推定し、この推定した基板温度が上側判定値よりも高くなったときに、MOS電流を上限ガード値で制限することでMOS温度が許容上限温度を越えないようにMOS電流を制限する電流制限制御を実行するようにしたので、MOSFET32が過熱状態になることを防止することができる。しかも、油温、基板温度、MOS温度等を検出する温度センサを設ける必要がないため、低コスト化の要求を満たすことができる。   In the first embodiment described above, the oil temperature of the engine 11 is estimated based on the engine operating state and the like, the substrate temperature is estimated based on the estimated oil temperature, and the estimated substrate temperature is determined from the upper determination value. Since the current limit control is performed to limit the MOS current so that the MOS temperature does not exceed the allowable upper limit temperature by limiting the MOS current with the upper limit guard value, the MOSFET 32 is in an overheated state. Can be prevented. In addition, since there is no need to provide a temperature sensor for detecting the oil temperature, the substrate temperature, the MOS temperature, etc., it is possible to satisfy the demand for cost reduction.

また、一般に、基板温度は、MOS温度に比べて緩やかに変化するため、基板温度を判定値と比較して電流制限制御を実行するようにすれば、電流制限制御の実行と停止を判定するための上側判定値と下側判定値との差(ヒステリシス分)をあまり大きくしなくても、電流制限制御の実行と停止が頻繁に切り換わるハンチングを防止することができ、ハンチングによるバルブタイミング(カム軸位相)の変動やエンジン出力の変動を防止することができる。   In general, since the substrate temperature changes more slowly than the MOS temperature, if the current limit control is executed by comparing the substrate temperature with the determination value, the execution and stop of the current limit control are determined. Even if the difference between the upper judgment value and the lower judgment value (hysteresis) is not increased too much, hunting in which the current limit control is frequently switched between execution and stop can be prevented. (Axis phase) fluctuations and engine output fluctuations can be prevented.

次に、図6及び図7を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU30(或はECU30とEDU31)により後述する図7の基板温度推定ルーチンを実行することで、図6のタイムチャートに示すように、冷却水温が所定値よりも高い期間に油温を推定する際に、エンジン運転状態(例えばエンジン回転速度と負荷)に基づいてエンジン11の燃焼温度をマップ等により算出し、この燃焼温度に基づいて冷却水温に対する油温上昇分を算出する。そして、冷却水温に油温度上昇分を加算してベース油温を求め、このベース油温をなまし処理して油温を求めることで油温を推定するようにしている。   In the second embodiment, the ECU 30 (or the ECU 30 and the EDU 31) executes a substrate temperature estimation routine of FIG. 7 to be described later, so that the cooling water temperature is higher than a predetermined value as shown in the time chart of FIG. When estimating the oil temperature, the combustion temperature of the engine 11 is calculated by a map or the like based on the engine operating state (for example, the engine speed and load), and the oil temperature increase with respect to the cooling water temperature is calculated based on the combustion temperature. . Then, the base oil temperature is obtained by adding the oil temperature increase to the cooling water temperature, and the oil temperature is estimated by smoothing the base oil temperature to obtain the oil temperature.

本実施例2で実行する図7のルーチンは、前記実施例1で説明した図4のルーチンのステップ103の処理を、ステップ103a,103bの処理に変更したものであり、それ以外の各ステップの処理は図4と同じである。   The routine of FIG. 7 executed in the second embodiment is obtained by changing the process of step 103 of the routine of FIG. 4 described in the first embodiment to the processes of steps 103a and 103b. The processing is the same as in FIG.

図7の基板温度推定ルーチンでは、ステップ101で、冷却水温が所定値よりも高いと判定された場合には、ステップ103aに進み、燃焼温度のマップを参照して、エンジン運転状態(例えばエンジン回転速度と負荷)に応じた燃焼温度を算出する。燃焼温度のマップは、予め試験データや設計データ等に基づいて作成され、ECU30のROMに記憶されている。更に、外気温、吸気温、点火時期、空燃比、バルブタイミング等のうちの少なくとも1つに応じて燃焼温度を補正するようにしても良い。   In the substrate temperature estimation routine of FIG. 7, when it is determined in step 101 that the cooling water temperature is higher than the predetermined value, the process proceeds to step 103a, and the engine operating state (for example, engine rotation) is referred to by referring to the combustion temperature map. Calculate the combustion temperature according to the speed and load. The combustion temperature map is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 30. Furthermore, the combustion temperature may be corrected according to at least one of the outside air temperature, intake air temperature, ignition timing, air-fuel ratio, valve timing, and the like.

この後、ステップ103bに進み、燃焼温度と前回の油温(i-1) と反映率fを用いて、次式により冷却水温に対する油温上昇分を求める。
油温上昇分={燃焼温度−油温(i-1) }×f
Thereafter, the process proceeds to step 103b, and the oil temperature increase with respect to the cooling water temperature is obtained by the following equation using the combustion temperature, the previous oil temperature (i-1) and the reflection rate f.
Oil temperature rise = {combustion temperature-oil temperature (i-1)} × f

この後、ステップ104で、冷却水温に油温上昇分を加算してベース油温を求めた後、ステップ105で、前回の油温(i-1) となまし率aを用いてベース油温をなまし処理して今回の油温(i) を求めることで油温(i) を推定する。
これらのステップ103a〜105の処理が特許請求の範囲でいう油温推定手段としての役割を果たす。
Thereafter, in step 104, the oil temperature increase is added to the cooling water temperature to obtain the base oil temperature, and in step 105, the base oil temperature is calculated using the previous oil temperature (i-1) and the rate of a. The oil temperature (i) is estimated by calculating the oil temperature (i).
The processing of these steps 103a to 105 serves as oil temperature estimation means in the claims.

この後、ステップ106で、今回の油温(i) と前回の基板温度(i-1) と冷却水温と反映率bを用いてベース基板温度を求めた後、ステップ107で、前回の基板温度(i-1) となまし率cを用いてベース基板温度をなまし処理して今回の基板温度(i) を求めることで基板温度(i) を推定する。   Thereafter, in step 106, the base substrate temperature is obtained using the current oil temperature (i), the previous substrate temperature (i-1), the cooling water temperature, and the reflection rate b, and then in step 107, the previous substrate temperature. (i-1) The substrate temperature (i) is estimated by smoothing the base substrate temperature using the annealing rate c and obtaining the current substrate temperature (i).

以上説明した本実施例2では、油温を推定する際に、エンジン運転状態に基づいてエンジン11の燃焼温度を算出して、この燃焼温度に基づいて冷却水温に対する油温度上昇分を算出し、冷却水温に油温度上昇分を加算してベース油温を求め、このベース油温をなまし処理して油温を求めることで油温を推定するようにしたので、エンジン運転状態に応じて変化する燃焼温度も考慮に入れて油温を更に精度良く推定することができ、油温に基づいた基板温度の推定精度を向上させることができる。   In the second embodiment described above, when estimating the oil temperature, the combustion temperature of the engine 11 is calculated based on the engine operating state, and the oil temperature increase with respect to the cooling water temperature is calculated based on the combustion temperature. The oil temperature is estimated by adding the oil temperature rise to the cooling water temperature, and the base oil temperature is smoothed to obtain the oil temperature. The oil temperature can be estimated with higher accuracy in consideration of the combustion temperature to be performed, and the estimation accuracy of the substrate temperature based on the oil temperature can be improved.

次に、図8乃至図10を用いて本発明の実施例3を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例3では、ECU30(或はECU30とEDU31)により後述する図9のMOS温度推定ルーチン及び図10の電流制限制御ルーチンを実行することで、前記実施例1と同じ方法で基板温度を推定して、この推定した基板温度に基づいてMOS温度を推定し、この推定したMOS温度に基づいてMOS温度が許容上限温度を越えないようにMOS電流を制限する電流制限制御を実行するようにしている。   In the third embodiment, the substrate temperature is estimated by the same method as in the first embodiment by executing a MOS temperature estimation routine of FIG. 9 and a current limit control routine of FIG. 10 described later by the ECU 30 (or ECU 30 and EDU 31). Then, the MOS temperature is estimated based on the estimated substrate temperature, and the current limiting control is performed to limit the MOS current so that the MOS temperature does not exceed the allowable upper limit temperature based on the estimated MOS temperature. Yes.

具体的には、図8のタイムチャートに示すように、冷却水温が所定値よりも高い期間は、エンジン運転状態(例えばエンジン回転速度と負荷)に基づいて冷却水温に対する油温上昇分を算出し、冷却水温に油温度上昇分を加算してベース油温を求め、このベース油温をなまし処理して油温を求めることで油温を推定する。この推定した油温と冷却水温とに基づいてベース基板温度を算出し、このベース基板温度をなまし処理して基板温度を求めることで基板温度を推定する。   Specifically, as shown in the time chart of FIG. 8, during a period when the cooling water temperature is higher than a predetermined value, an oil temperature increase with respect to the cooling water temperature is calculated based on the engine operating state (for example, engine speed and load). The base oil temperature is obtained by adding the oil temperature rise to the cooling water temperature, and the oil temperature is estimated by smoothing the base oil temperature to obtain the oil temperature. A base substrate temperature is calculated based on the estimated oil temperature and cooling water temperature, and the substrate temperature is estimated by performing a smoothing process on the base substrate temperature to obtain the substrate temperature.

更に、MOS電流に基づいてMOS温度上昇分(MOSFET32の自己発熱による温度上昇分)を算出し、基板温度にMOS温度上昇分を加算してMOS温度を求めることでMOS温度を推定する。これにより、MOSFET32の自己発熱による温度上昇分を考慮に入れてMOS温度を精度良く推定することができる。   Further, a MOS temperature rise (temperature rise due to self-heating of the MOSFET 32) is calculated based on the MOS current, and the MOS temperature is estimated by adding the MOS temperature rise to the substrate temperature to obtain the MOS temperature. As a result, the MOS temperature can be accurately estimated in consideration of the temperature rise due to the self-heating of the MOSFET 32.

そして、推定したMOS温度が所定の上側判定値(例えばMOS温度の許容上限温度よりも少し低い温度)よりも高くなった時点t1 で、MOS電流を所定の上限ガード値で制限することでMOS温度が許容上限温度を越えないようにMOS電流を制限する電流制限制御を実行する。   Then, at the time t1 when the estimated MOS temperature becomes higher than a predetermined upper determination value (for example, a temperature slightly lower than the allowable upper limit temperature of the MOS temperature), the MOS current is limited by the predetermined upper limit guard value. Current limit control is performed to limit the MOS current so that does not exceed the allowable upper limit temperature.

その後、MOS温度が所定の下側判定値(例えば上側判定値よりも所定のヒステリシス分だけ低い温度)よりも低くなった時点t2 で、MOS電流の制限を解除して電流制限制御を停止する。   Thereafter, at the time t2 when the MOS temperature becomes lower than a predetermined lower determination value (for example, a temperature lower than the upper determination value by a predetermined hysteresis), the limitation on the MOS current is released and the current limitation control is stopped.

以上説明した本実施例3のMOS温度に基づいた電流制限制御は、ECU30(或はECU30とEDU31)によって図9及び図10の各ルーチンに従って実行される。以下、これらの各ルーチンの処理内容を説明する。尚、本実施例3で実行する図9のルーチンのステップ301〜307の処理は、前記実施例1で説明した図4のルーチンのステップ101〜107の処理と実質的に同一であるため、説明を簡略化する。   The current limiting control based on the MOS temperature of the third embodiment described above is executed by the ECU 30 (or the ECU 30 and the EDU 31) according to the routines shown in FIGS. Hereinafter, the processing content of each of these routines will be described. The processing of steps 301 to 307 of the routine of FIG. 9 executed in the third embodiment is substantially the same as the processing of steps 101 to 107 of the routine of FIG. 4 described in the first embodiment. To simplify.

図9に示すMOS温度推定ルーチンでは、まず、ステップ301で、冷却水温が所定値よりも高いか否かを判定し、冷却水温が所定値以下であると判定された場合には、ステップ302に進み、油温(i) の推定値を冷却水温と同じ値(又は冷却水温をなまし処理した値)に設定する。   In the MOS temperature estimation routine shown in FIG. 9, first, in step 301, it is determined whether or not the cooling water temperature is higher than a predetermined value. If it is determined that the cooling water temperature is equal to or lower than the predetermined value, step 302 is executed. Then, the estimated value of the oil temperature (i) is set to the same value as the cooling water temperature (or a value obtained by smoothing the cooling water temperature).

その後、上記ステップ301で、冷却水温が所定値よりも高いと判定された場合には、ステップ303に進み、冷却水温に対する油温上昇分のマップを参照して、エンジン運転状態(例えばエンジン回転速度と負荷)に応じた油温上昇分を算出する。更に、外気温、吸気温、点火時期、空燃比、バルブタイミング等のうちの少なくとも1つに応じて油温上昇分を補正するようにしても良い。   Thereafter, if it is determined in step 301 that the cooling water temperature is higher than the predetermined value, the process proceeds to step 303, and the engine operating state (for example, the engine speed) is referred to with reference to the map of the oil temperature increase with respect to the cooling water temperature. And the oil temperature rise according to the load). Furthermore, the oil temperature increase may be corrected according to at least one of the outside air temperature, intake air temperature, ignition timing, air-fuel ratio, valve timing, and the like.

この後、ステップ304で、冷却水温に油温上昇分を加算してベース油温を求めた後、ステップ305で、前回の油温(i-1) となまし率aを用いてベース油温をなまし処理して今回の油温(i) を求めることで油温(i) を推定する。   Thereafter, in step 304, the oil temperature increase is added to the cooling water temperature to obtain the base oil temperature, and in step 305, the base oil temperature is calculated using the previous oil temperature (i-1) and the rate of a. The oil temperature (i) is estimated by calculating the oil temperature (i).

この後、ステップ306で、今回の油温(i) と前回の基板温度(i-1) と冷却水温と反映率bを用いてベース基板温度を求めた後、ステップ307で、前回の基板温度(i-1) となまし率cを用いてベース基板温度をなまし処理して今回の基板温度(i) を求めることで基板温度(i) を推定する。   Thereafter, in step 306, the base substrate temperature is obtained using the current oil temperature (i), the previous substrate temperature (i-1), the cooling water temperature, and the reflection rate b, and then in step 307, the previous substrate temperature. (i-1) The substrate temperature (i) is estimated by smoothing the base substrate temperature using the annealing rate c and obtaining the current substrate temperature (i).

この後、ステップ308に進み、MOS電流に係数d(MOS電流に対するMOSFET32の温度上昇率)を乗算してベースMOS温度上昇分を求める。
ベースMOS温度上昇分=MOS電流×d
Thereafter, the process proceeds to step 308, in which the MOS current is multiplied by a coefficient d (temperature increase rate of the MOSFET 32 with respect to the MOS current) to obtain a base MOS temperature increase.
Base MOS temperature rise = MOS current x d

この後、ステップ309に進み、前回のMOS温度上昇分(i-1) となまし率eとを用いて、次式によりベースMOS温度上昇分をなまし処理して今回のMOS温度上昇分(i) を求める。   Thereafter, the process proceeds to step 309, where the base MOS temperature increase is smoothed by the following equation using the previous MOS temperature increase (i-1) and the annealing rate e, and the current MOS temperature increase ( i)

MOS温度上昇分(i) =MOS温度上昇分(i-1) ×e
+ベースMOS温度上昇分×(1−e)
MOS temperature rise (i) = MOS temperature rise (i-1) xe
+ Base MOS temperature rise x (1-e)

この後、ステップ310に進み、基板温度にMOS温度上昇分を加算してMOS温度を求めることでMOS温度を推定する。
MOS温度=基板温度+MOS温度上昇分
これらのステップ308〜309の処理が特許請求の範囲でいうスイッチング素子温度推定手段としての役割を果たす。
Thereafter, the process proceeds to step 310, where the MOS temperature is estimated by adding the MOS temperature increase to the substrate temperature to obtain the MOS temperature.
MOS temperature = substrate temperature + MOS temperature increase The processing of these steps 308 to 309 serves as switching element temperature estimation means in the claims.

図10に示す電流制限制御ルーチンでは、まず、ステップ401で、推定したMOS温度が所定の上側判定値よりも高いか否かを判定する。ここで、上側判定値は、例えば、MOS温度の許容上限温度よりも少し低い温度に設定されている。   In the current limit control routine shown in FIG. 10, first, in step 401, it is determined whether or not the estimated MOS temperature is higher than a predetermined upper determination value. Here, the upper determination value is set to a temperature slightly lower than the allowable upper limit temperature of the MOS temperature, for example.

このステップ401で、MOS温度が上側判定値以下であると判定された場合には、ステップ402以降の処理を実行することなく、本ルーチンを終了する。   If it is determined in step 401 that the MOS temperature is equal to or lower than the upper determination value, this routine is terminated without executing the processing from step 402 onward.

その後、上記ステップ401で、MOS温度が上側判定値よりも高いと判定された時点で、ステップ402に進み、MOS電流を所定の上限ガード値で制限することでMOS温度が許容上限温度を越えないようにMOS電流を制限する電流制限制御を実行する。更に、基準位置学習を禁止することでMOS電流を制限するようにしても良い。   Thereafter, when it is determined in step 401 that the MOS temperature is higher than the upper determination value, the process proceeds to step 402, where the MOS current does not exceed the allowable upper limit temperature by limiting the MOS current with a predetermined upper limit guard value. Thus, current limit control for limiting the MOS current is executed. Further, the MOS current may be limited by prohibiting the reference position learning.

この後、ステップ403に進み、MOS温度が所定の下側判定値よりも低いか否かを判定する。ここで、下側判定値は、例えば、上側判定値よりも所定のヒステリシス分だけ低い温度に設定されている。   Thereafter, the process proceeds to step 403, where it is determined whether or not the MOS temperature is lower than a predetermined lower determination value. Here, the lower determination value is set to a temperature lower than the upper determination value by a predetermined hysteresis, for example.

このステップ403で、MOS温度が下側判定値以上であると判定された場合には、上記ステップ402に戻り、電流制限制御を継続する。   If it is determined in step 403 that the MOS temperature is equal to or higher than the lower determination value, the process returns to step 402 and current limit control is continued.

その後、上記ステップ403で、MOS温度が下側判定値よりも低いと判定された時点で、ステップ404に進み、MOS電流の制限を解除して電流制限制御を停止する。   Thereafter, when it is determined in step 403 that the MOS temperature is lower than the lower determination value, the process proceeds to step 404, where the limitation of the MOS current is released and the current limit control is stopped.

以上説明した本実施例3では、推定した基板温度に基づいてMOS温度を推定し、この推定したMOS温度が上側判定値よりも高くなったときに、MOS電流を上限ガード値で制限することでMOS温度が許容上限温度を越えないようにMOS電流を制限する電流制限制御を実行するようにしたので、MOS温度が許容上限温度を越えないようにMOS電流を制限する電流制限制御を精度良く行うことができる。   In the third embodiment described above, the MOS temperature is estimated based on the estimated substrate temperature, and when the estimated MOS temperature becomes higher than the upper determination value, the MOS current is limited by the upper limit guard value. Since the current limit control for limiting the MOS current is performed so that the MOS temperature does not exceed the allowable upper limit temperature, the current limit control for limiting the MOS current is performed with high accuracy so that the MOS temperature does not exceed the allowable upper limit temperature. be able to.

次に、図11及び図12を用いて本発明の実施例4を説明する。但し、前記実施例3と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例3と異なる部分について説明する。   Next, Embodiment 4 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as in the third embodiment will be omitted or simplified, and different parts from the third embodiment will be mainly described.

本実施例4では、ECU30(或はECU30とEDU31)により後述する図12のMOS温度推定ルーチンを実行することで、図11のタイムチャートに示すように、冷却水温が所定値よりも高い期間に油温を推定する際に、エンジン運転状態(例えばエンジン回転速度と負荷)に基づいてエンジン11の燃焼温度をマップ等により算出し、この燃焼温度に基づいて冷却水温に対する油温上昇分を算出する。そして、冷却水温に油温度上昇分を加算してベース油温を求め、このベース油温をなまし処理して油温を求めることで油温を推定するようにしている。   In the fourth embodiment, the ECU 30 (or the ECU 30 and the EDU 31) executes a MOS temperature estimation routine shown in FIG. 12, which will be described later, so that the cooling water temperature is higher than a predetermined value as shown in the time chart of FIG. When estimating the oil temperature, the combustion temperature of the engine 11 is calculated by a map or the like based on the engine operating state (for example, the engine speed and load), and the oil temperature increase with respect to the cooling water temperature is calculated based on the combustion temperature. . Then, the base oil temperature is obtained by adding the oil temperature increase to the cooling water temperature, and the oil temperature is estimated by smoothing the base oil temperature to obtain the oil temperature.

本実施例4で実行する図12のルーチンは、前記実施例3で説明した図9のルーチンのステップ303の処理を、ステップ303a,303bの処理に変更したものであり、それ以外の各ステップの処理は図9と同じである。   The routine of FIG. 12 executed in the fourth embodiment is obtained by changing the process of step 303 of the routine of FIG. 9 described in the third embodiment to the processes of steps 303a and 303b. The processing is the same as in FIG.

図12のMOS温度推定ルーチンでは、ステップ301で、冷却水温が所定値よりも高いと判定された場合には、ステップ303aに進み、燃焼温度のマップを参照して、エンジン運転状態(例えばエンジン回転速度と負荷)に応じた燃焼温度を算出する。更に、外気温、吸気温、点火時期、空燃比、バルブタイミング等のうちの少なくとも1つに応じて燃焼温度を補正するようにしても良い。   In the MOS temperature estimation routine of FIG. 12, when it is determined in step 301 that the cooling water temperature is higher than a predetermined value, the process proceeds to step 303a, and the engine operating state (for example, engine rotation) is referred to by referring to the combustion temperature map. Calculate the combustion temperature according to the speed and load. Furthermore, the combustion temperature may be corrected according to at least one of the outside air temperature, intake air temperature, ignition timing, air-fuel ratio, valve timing, and the like.

この後、ステップ303bに進み、燃焼温度と前回の油温(i-1) と反映率fを用いて、次式により冷却水温に対する油温上昇分を求める。
油温上昇分={燃焼温度−油温(i-1) }×f
Thereafter, the process proceeds to step 303b, and the oil temperature increase with respect to the cooling water temperature is obtained by the following equation using the combustion temperature, the previous oil temperature (i-1) and the reflection rate f.
Oil temperature rise = {combustion temperature-oil temperature (i-1)} × f

この後、ステップ304で、冷却水温に油温上昇分を加算してベース油温を求めた後、ステップ305で、前回の油温(i-1) となまし率aを用いてベース油温をなまし処理して今回の油温(i) を求めることで油温(i) を推定する。   Thereafter, in step 304, the oil temperature increase is added to the cooling water temperature to obtain the base oil temperature, and in step 305, the base oil temperature is calculated using the previous oil temperature (i-1) and the rate of a. The oil temperature (i) is estimated by calculating the oil temperature (i).

この後、ステップ306で、今回の油温(i) と前回の基板温度(i-1) と冷却水温と反映率bを用いてベース基板温度を求めた後、ステップ307で、前回の基板温度(i-1) となまし率cを用いてベース基板温度をなまし処理して今回の基板温度(i) を求めることで基板温度(i) を推定する。   Thereafter, in step 306, the base substrate temperature is obtained using the current oil temperature (i), the previous substrate temperature (i-1), the cooling water temperature, and the reflection rate b, and then in step 307, the previous substrate temperature. (i-1) The substrate temperature (i) is estimated by smoothing the base substrate temperature using the annealing rate c and obtaining the current substrate temperature (i).

この後、ステップ308で、MOS電流に係数d(MOS電流に対するMOSFET32の温度上昇率)を乗算してベースMOS温度上昇分を求めた後、ステップ309で、前回のMOS温度上昇分(i-1) となまし率eとを用いてベースMOS温度上昇分をなまし処理して今回のMOS温度上昇分(i) を求める。この後、ステップ310で、基板温度にMOS温度上昇分を加算してMOS温度を求めることでMOS温度を推定する。   Thereafter, in step 308, the MOS current is multiplied by a coefficient d (the rate of temperature rise of the MOSFET 32 with respect to the MOS current) to obtain the base MOS temperature rise, and in step 309, the previous MOS temperature rise (i-1). ) The base MOS temperature rise is smoothed using the annealing rate e to obtain the current MOS temperature rise (i). Thereafter, in step 310, the MOS temperature is estimated by adding the increase in the MOS temperature to the substrate temperature to obtain the MOS temperature.

以上説明した本実施例4おいても、前記実施例2と同じようにエンジン運転状態に応じて変化する燃焼温度も考慮に入れて油温を更に精度良く推定することができ、油温に基づいた基板温度の推定精度及びMOS温度の推定精度を向上させることができる。   In the fourth embodiment described above, the oil temperature can be estimated with higher accuracy in consideration of the combustion temperature that changes in accordance with the engine operating state as in the second embodiment. In addition, the estimation accuracy of the substrate temperature and the estimation accuracy of the MOS temperature can be improved.

尚、上記各実施例1〜4では、モータ26の通電制御用のスイッチング素子としてMOSFET32を用いたシステムに本発明を適用したが、これに限定されず、モータ26の通電制御用のスイッチング素子としてMOSFET以外のFET(電解効果トランジスタ)やトランジスタ等を用いたシステムに本発明を適用にしても良い。   In each of the first to fourth embodiments, the present invention is applied to a system using the MOSFET 32 as a switching element for energization control of the motor 26. However, the present invention is not limited to this, and the switching element for energization control of the motor 26 is used. The present invention may be applied to a system using an FET (electrolytic effect transistor) or a transistor other than the MOSFET.

また、上記各実施例1〜4では、本発明を吸気バルブの可変バルブタイミング装置に適用したが、排気バルブの可変バルブタイミング装置に本発明を適用しても良い。更に、可変バルブタイミング装置の位相可変機構は、上記実施例で説明した構成(図2参照)に限定されず、他の方式の位相可変機構を用いても良く、要は、モータでクランク軸に対するカム軸の回転位相を変化させてバルブタイミングを変化させる電動式の可変バルブタイミング装置であれば良い。   In the first to fourth embodiments, the present invention is applied to a variable valve timing device for an intake valve. However, the present invention may be applied to a variable valve timing device for an exhaust valve. Furthermore, the phase variable mechanism of the variable valve timing device is not limited to the configuration described in the above embodiment (see FIG. 2), and other types of phase variable mechanisms may be used. Any electric variable valve timing device that changes the valve timing by changing the rotational phase of the cam shaft may be used.

11…エンジン(内燃機関)、18…可変バルブタイミング装置、26…モータ、30…ECU(油温推定手段,基板温度推定手段,電流制限制御手段,スイッチング素子温度推定手段)、31…EDU、32…MOSFET(スイッチング素子)、33…基板   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 18 ... Variable valve timing apparatus, 26 ... Motor, 30 ... ECU (oil temperature estimation means, board | substrate temperature estimation means, current limiting control means, switching element temperature estimation means), 31 ... EDU, 32 ... MOSFET (switching element), 33 ... Substrate

Claims (6)

内燃機関のバルブタイミングをモータにより変化させる電動式可変バルブタイミング装置の制御装置において、
前記内燃機関の潤滑油の温度を推定する油温推定手段と、
前記油温推定手段で推定した潤滑油の温度に基づいて前記モータの通電制御用のスイッチング素子が実装された基板の温度を推定する基板温度推定手段と、
前記基板温度推定手段で推定した基板の温度に基づいて前記スイッチング素子の温度が所定の許容上限温度を越えないように前記スイッチング素子に流れる電流を制限する電流制限制御手段とを備え
前記基板温度推定手段は、前記油温推定手段で推定した潤滑油の温度と前記内燃機関の冷却水温とに基づいてベース基板温度を算出し、該ベース基板温度をなまし処理して前記基板の温度を求めることを特徴とする電動式可変バルブタイミング装置の制御装置。
In a control device for an electric variable valve timing device that changes a valve timing of an internal combustion engine by a motor,
Oil temperature estimating means for estimating the temperature of the lubricating oil of the internal combustion engine;
Board temperature estimating means for estimating the temperature of the board on which the switching element for energization control of the motor is mounted based on the temperature of the lubricating oil estimated by the oil temperature estimating means;
Current limit control means for limiting the current flowing through the switching element so that the temperature of the switching element does not exceed a predetermined allowable upper limit temperature based on the substrate temperature estimated by the substrate temperature estimation means ;
The substrate temperature estimating means calculates a base substrate temperature based on the temperature of the lubricating oil estimated by the oil temperature estimating means and the cooling water temperature of the internal combustion engine, and performs a smoothing process on the base substrate temperature. A control device for an electric variable valve timing device characterized by obtaining a temperature .
前記電流制限制御手段は、前記基板温度推定手段で推定した基板の温度が所定の判定値よりも高くなったときに前記スイッチング素子に流れる電流を所定の上限ガード値で制限することを特徴とする請求項1に記載の電動式可変バルブタイミング装置の制御装置。   The current limit control means limits a current flowing through the switching element with a predetermined upper limit guard value when the substrate temperature estimated by the substrate temperature estimation means becomes higher than a predetermined determination value. The control device for the electric variable valve timing device according to claim 1. 前記基板温度推定手段で推定した基板の温度に基づいて前記スイッチング素子の温度を推定するスイッチング素子温度推定手段を備え、
前記電流制限制御手段は、前記スイッチング素子温度推定手段で推定したスイッチング素子の温度が所定の判定値よりも高くなったときに前記スイッチング素子に流れる電流を所定の上限ガード値で制限することを特徴とする請求項1に記載の電動式可変バルブタイミング装置の制御装置。
Switching element temperature estimating means for estimating the temperature of the switching element based on the substrate temperature estimated by the substrate temperature estimating means,
The current limit control means limits the current flowing through the switching element with a predetermined upper limit guard value when the temperature of the switching element estimated by the switching element temperature estimation means becomes higher than a predetermined determination value. The control device for the electric variable valve timing device according to claim 1.
前記スイッチング素子温度推定手段は、前記スイッチング素子に流れる電流に基づいて前記スイッチング素子の自己発熱による温度上昇分を算出し、前記基板温度推定手段で推定した基板の温度に前記スイッチング素子の温度上昇分を加算して前記スイッチング素子の温度を求めることを特徴とする請求項3に記載の電動式可変バルブタイミング装置の制御装置。   The switching element temperature estimation means calculates a temperature increase due to self-heating of the switching element based on a current flowing through the switching element, and adds the temperature increase of the switching element to the substrate temperature estimated by the substrate temperature estimation means. The control device for an electric variable valve timing device according to claim 3, wherein the temperature of the switching element is obtained by adding. 前記油温推定手段は、前記内燃機関の運転状態に基づいて前記内燃機関の冷却水温に対する前記潤滑油の温度上昇分を算出し、前記冷却水温に前記潤滑油の温度上昇分を加算した値をなまし処理して前記潤滑油の温度を求めることを特徴とする請求項1乃至のいずれかに記載の電動式可変バルブタイミング装置の制御装置。 The oil temperature estimating means calculates a temperature rise of the lubricating oil with respect to a cooling water temperature of the internal combustion engine based on an operating state of the internal combustion engine, and adds a value obtained by adding the temperature rise of the lubricating oil to the cooling water temperature. smoothing process to the control device of an electric variable valve timing apparatus according to any one of claims 1 to 4, wherein the determination of the temperature of the lubricating oil. 前記油温推定手段は、前記内燃機関の運転状態に基づいて前記内燃機関の燃焼温度を算出して、該燃焼温度に基づいて前記冷却水温に対する前記潤滑油の温度上昇分を算出し、前記冷却水温に前記潤滑油の温度上昇分を加算した値をなまし処理して前記潤滑油の温度を求めることを特徴とする請求項1乃至のいずれかに記載の電動式可変バルブタイミング装置の制御装置。 The oil temperature estimating means calculates a combustion temperature of the internal combustion engine based on an operating state of the internal combustion engine, calculates a temperature rise of the lubricating oil with respect to the cooling water temperature based on the combustion temperature, and The control of the electric variable valve timing device according to any one of claims 1 to 4 , wherein the temperature of the lubricating oil is obtained by smoothing a value obtained by adding a temperature rise of the lubricating oil to a water temperature. apparatus.
JP2012015145A 2012-01-27 2012-01-27 Control device for electric variable valve timing device Active JP5761572B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012015145A JP5761572B2 (en) 2012-01-27 2012-01-27 Control device for electric variable valve timing device
US13/750,023 US20130192549A1 (en) 2012-01-27 2013-01-25 Control system for variable valve timing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015145A JP5761572B2 (en) 2012-01-27 2012-01-27 Control device for electric variable valve timing device

Publications (2)

Publication Number Publication Date
JP2013155630A JP2013155630A (en) 2013-08-15
JP5761572B2 true JP5761572B2 (en) 2015-08-12

Family

ID=48869161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015145A Active JP5761572B2 (en) 2012-01-27 2012-01-27 Control device for electric variable valve timing device

Country Status (2)

Country Link
US (1) US20130192549A1 (en)
JP (1) JP5761572B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406091B2 (en) * 2015-03-27 2018-10-17 株式会社デンソー Variable valve system
JP6398865B2 (en) * 2015-05-15 2018-10-03 株式会社デンソー Motor control device
DE102017218333B4 (en) * 2017-10-13 2022-11-17 Vitesco Technologies GmbH Method and device for controlling a camshaft adjuster
JP7461235B2 (en) * 2020-07-01 2024-04-03 株式会社アイシン Valve opening/closing timing control device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695023B2 (en) * 1996-11-27 2005-09-14 日産自動車株式会社 Electric vehicle overload prevention device
JPH10227235A (en) * 1997-02-13 1998-08-25 Denso Corp Valve timing controller for internal combustion engine
DE69916363T2 (en) * 1998-05-29 2005-03-24 Toyota Jidosha K.K., Toyota Fuel supply for internal combustion engine
JP3730809B2 (en) * 1999-01-28 2006-01-05 三菱電機株式会社 Valve timing control device for internal combustion engine
JP3059170B1 (en) * 1999-09-13 2000-07-04 三菱電機株式会社 Valve timing control device for internal combustion engine
JP4106201B2 (en) * 2001-06-21 2008-06-25 株式会社日立製作所 Variable valve device for engine
JP4304468B2 (en) * 2004-01-22 2009-07-29 株式会社デンソー Oil temperature estimation device for internal combustion engine
JP2007195343A (en) * 2006-01-19 2007-08-02 Nissan Motor Co Ltd Inverter device
JP4678545B2 (en) * 2008-07-25 2011-04-27 株式会社デンソー Motor drive device
JP5270525B2 (en) * 2009-12-22 2013-08-21 日立オートモティブシステムズ株式会社 Control valve device
US8602001B2 (en) * 2010-09-17 2013-12-10 GM Global Technology Operations LLC Torque limiting engine lubrication protection system

Also Published As

Publication number Publication date
JP2013155630A (en) 2013-08-15
US20130192549A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP4641985B2 (en) Variable valve timing control device for internal combustion engine
JP4596481B2 (en) Variable valve timing control device for internal combustion engine
JP4196294B2 (en) Variable valve timing control device for internal combustion engine
KR100893842B1 (en) Variable valve timing controller for internal combustion engine
US7980214B2 (en) Control device for electrically driven variable valve timing apparatus
JP2008031973A (en) Variable valve timing control device for internal combustion engine
JP4641986B2 (en) Variable valve timing control device for internal combustion engine
JP2009138650A (en) Variable valve timing control device for internal combustion engine
JP5761572B2 (en) Control device for electric variable valve timing device
JP2010138898A (en) Variable valve gear
JP4003187B2 (en) Variable valve timing control device for internal combustion engine
JPH10227235A (en) Valve timing controller for internal combustion engine
JP2016109116A (en) Method and system for controlling continuously variable valve timing
JP2009024542A (en) Variable valve gear control device
JP6390578B2 (en) Variable valve timing device
KR100779843B1 (en) Method for controlling pulse width modulation of variable valve timing apparatus
JP2011007114A (en) Oil temperature estimating device for internal combustion engine
JP2011094581A (en) Control device for electric variable valve timing device
JP5720855B2 (en) Control device for internal combustion engine
JP2009079578A (en) Ignition timing control device of spark ignition internal combustion engine
JPH11270368A (en) Valve timing control device for internal combustion engine
JP2011252450A (en) Variable valve timing control device
JP2004251254A (en) Valve timing controller for internal combustion engine
JP2008286055A (en) Control device for actuator
JP2009085147A (en) Control device for variable valve train

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R151 Written notification of patent or utility model registration

Ref document number: 5761572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250