Nothing Special   »   [go: up one dir, main page]

JP5755371B2 - Ultra-thin copper foil with carrier, copper-clad laminate and coreless substrate - Google Patents

Ultra-thin copper foil with carrier, copper-clad laminate and coreless substrate Download PDF

Info

Publication number
JP5755371B2
JP5755371B2 JP2014526311A JP2014526311A JP5755371B2 JP 5755371 B2 JP5755371 B2 JP 5755371B2 JP 2014526311 A JP2014526311 A JP 2014526311A JP 2014526311 A JP2014526311 A JP 2014526311A JP 5755371 B2 JP5755371 B2 JP 5755371B2
Authority
JP
Japan
Prior art keywords
carrier
copper foil
foil
release layer
ultrathin copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014526311A
Other languages
Japanese (ja)
Other versions
JPWO2014132947A1 (en
Inventor
諒太 藤田
諒太 藤田
岳夫 宇野
岳夫 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2014526311A priority Critical patent/JP5755371B2/en
Application granted granted Critical
Publication of JP5755371B2 publication Critical patent/JP5755371B2/en
Publication of JPWO2014132947A1 publication Critical patent/JPWO2014132947A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • C25D1/22Separating compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing & Machinery (AREA)

Description

本発明はコアレス基板の製造に好適なキャリア付き極薄銅箔、及び該キャリア付き極薄銅箔の極薄銅箔で構成する銅張積層板に関するものである。   The present invention relates to an ultrathin copper foil with a carrier suitable for manufacturing a coreless substrate, and a copper-clad laminate composed of the ultrathin copper foil of the ultrathin copper foil with a carrier.

電子機器の小型・薄型化の進展に伴い、回路基板メーカーではコアレス基板と呼ばれる薄型化が可能な基板を使用する多層積層板の製造が検討されており、半導体パッケージ等に用いられているビルドアップ基板の一部がコアレス基板に置き換えられる動きがある。しかし、コアレス基板は配線層を支持するコアが存在しないことで剛性に乏しく、配線層形成中に折れ、反り、割れ等の不良が発生することが懸念されている。そこで、キャリア付き極薄銅箔のキャリア箔を支持体として、極薄銅箔側にビルドアップ回路基板を積層し、最終的にキャリア付き極薄銅箔のキャリア箔を剥がして、コアレス基板のみを取り出す新規製法が検討されている。   As electronic devices become smaller and thinner, circuit board manufacturers are studying the production of multilayer laminates that use thinner substrates, called coreless substrates, and build-ups used in semiconductor packages, etc. There is a movement to replace a part of the substrate with a coreless substrate. However, since the coreless substrate does not have a core that supports the wiring layer, the coreless substrate has poor rigidity, and there is a concern that defects such as bending, warping, and cracking may occur during the formation of the wiring layer. Therefore, using the carrier foil of the ultrathin copper foil with carrier as a support, the build-up circuit board is laminated on the ultrathin copper foil side, finally peeling off the carrier foil of the ultrathin copper foil with carrier, A new manufacturing method to be taken out is being studied.

ビルドアップ基板は、支持体であるコア層の上下に微細な配線層(ビルドアップ層)を積み重ねた、高密度の配線が形成されている。しかし、前記コア層にはガラスエポキシ樹脂等を用いた従来のプリント基板技術が採用されており、電気特性を劣化させる原因となっている。特に、コア層を貫通するめっきスルーホールが持つ大きなインダクタンス成分は、半導体チップの電源ノイズを増大させる要因になっている。そのため、このコア層をなくしたコアレス基板を採用する動きが急速に進んでいる。   The build-up substrate is formed with high-density wiring in which fine wiring layers (build-up layers) are stacked above and below a core layer that is a support. However, a conventional printed circuit board technology using a glass epoxy resin or the like is employed for the core layer, which causes the electrical characteristics to deteriorate. In particular, the large inductance component of the plated through hole penetrating the core layer is a factor that increases the power supply noise of the semiconductor chip. Therefore, the movement to adopt the coreless substrate without the core layer is rapidly progressing.

キャリア付き極薄銅箔を支持体とするコアレス基板の具体的な製造工程を説明する。コアレス基板は図1の(a)から(g)の順の工程を経て製造される。キャリア付き極薄銅箔3の極薄銅箔2上に、プリプレグ4を張りあわせる。プリプレグ4上に微細配線形成用のキャリア付き極薄銅箔7を張りあわせる。微細配線形成用のキャリア付き極薄銅箔のキャリア箔5を剥離し、極薄銅箔6を所定の配線パターンにエッチングし、微細配線8を形成する。微細配線8上に再びプリプレグ4を張り合わせ、コアレス基板の一層目が完成する。(b)〜(d)の工程を繰り返し、支持体となっているキャリア付き極薄銅箔上にコアレス基板9を形成する。その後支持体となっているキャリア箔1を剥離し、最後に最外層の極薄銅箔2をエッチング等で除去し、(g)のようなコアレス基板のみを取り出すことで製造される。   A specific manufacturing process of a coreless substrate using an ultrathin copper foil with a carrier as a support will be described. The coreless substrate is manufactured through steps in order from (a) to (g) in FIG. A prepreg 4 is laminated on the ultrathin copper foil 2 of the ultrathin copper foil 3 with a carrier. An ultrathin copper foil 7 with a carrier for forming fine wiring is laminated on the prepreg 4. The carrier foil 5 of an ultrathin copper foil with a carrier for forming fine wiring is peeled off, and the ultrathin copper foil 6 is etched into a predetermined wiring pattern to form fine wiring 8. The prepreg 4 is again laminated on the fine wiring 8, and the first layer of the coreless substrate is completed. The steps (b) to (d) are repeated, and the coreless substrate 9 is formed on the ultrathin copper foil with a carrier serving as a support. Thereafter, the carrier foil 1 serving as the support is peeled off, and the outermost ultrathin copper foil 2 is finally removed by etching or the like, and only the coreless substrate as shown in (g) is taken out.

上記コアレス基板の製造では、内層に形成される微細配線形成においてもキャリア付き極薄銅箔が使用される。図1の工程(b)の後にキャリア箔5を引き剥がす際、キャリア付き極薄銅箔3のキャリアピール強度が高くなければ、支持体として使用されているキャリア箔1がコアレス基板製造工程中の意図しない段階で剥離することが懸念される。またキャリアピール強度が高すぎると、積層工程が終了してコアレス基板を剥離する際に強い力を必要とし、コアレス基板に折りや反りなどを生じてダメージを与えることが懸念される。そのためキャリア付き極薄銅箔3のキャリア箔1を極薄銅箔2から剥離する剥離強度は、めっき又はエッチング等の製造工程において適度の密着性が必要であるが、最終的には機械的にコアレス基板にダメージを与えずに剥がすことが必要であるので0.05kN/m〜0.15kN/mであることが望ましい。   In the manufacture of the coreless substrate, an ultrathin copper foil with a carrier is used also in forming fine wiring formed in the inner layer. When the carrier foil 5 is peeled off after the step (b) in FIG. 1, the carrier foil 1 used as a support is in the process of manufacturing the coreless substrate unless the carrier peel strength of the ultrathin copper foil 3 with a carrier is high. There is concern about peeling at an unintended stage. On the other hand, if the carrier peel strength is too high, a strong force is required when the coreless substrate is peeled off after the lamination process, and there is a concern that the coreless substrate may be bent or warped. Therefore, the peel strength at which the carrier foil 1 of the ultrathin copper foil 3 with a carrier is peeled from the ultrathin copper foil 2 requires appropriate adhesion in a manufacturing process such as plating or etching, but ultimately mechanically. Since it is necessary to peel off the coreless substrate without damaging it, it is desirable that it be 0.05 kN / m to 0.15 kN / m.

キャリア付き極薄銅箔の剥離層については、例えば特許文献1及び2に記載された発明があるが、何れもコアレス基板の作製を意図した発明ではなく、これらの提案をそのままコアレス基板の製造に適用すると予期しない不具合が生ずる恐れがあることを本発明者らは認識した。
例えば、特許文献1(WO2010/27052号公報)には、多層積層板を製造する際に負荷される温度を考慮し、300℃〜400℃の高温下での環境に置かれてもキャリア箔と極薄銅箔とを容易に剥がすことを目的として、剥離界面を2層とし、2層からなる剥離層の金属比を規定して容易に剥がすことを主眼としている。
Regarding the peeling layer of the ultra-thin copper foil with carrier, for example, there are inventions described in Patent Documents 1 and 2, but neither is an invention intended to produce a coreless substrate. The present inventors have recognized that unexpected problems can occur when applied.
For example, in Patent Document 1 (WO2010 / 27052), in consideration of the temperature applied when manufacturing a multilayer laminate, even when placed in an environment at a high temperature of 300 ° C. to 400 ° C., the carrier foil For the purpose of easily peeling off the ultrathin copper foil, the main purpose is to peel off easily by defining two layers of peeling interfaces and defining the metal ratio of the peeling layer composed of two layers.

また、特許文献2(特開2007−186781号公報)は、剥離強度が低く、かつフクレの発生を抑制するために必要な、剥離層を構成する2種類の金属AとBの含有量を規定している。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-188671) defines the contents of two types of metals A and B constituting the release layer, which are required to suppress the occurrence of swelling and have low peel strength. doing.

しかしこれらの提案は、本願発明とは逆に、積層板作製の際に負荷される高温(300℃〜400℃)加熱下でプレスを行った後でも、キャリアピール強度を低く維持することを目的として開発したものであり、このようなキャリアピール強度が低いキャリア付き銅箔を使用して積層板、特にコアレス基板を作製しようとすると、積層工程中にかかる力により、積層工程中の意図しない段階で、支持体となるキャリア箔と極薄銅箔との間で剥離が生じる不具合発生の危険性があった。   However, contrary to the present invention, these proposals aim to keep the carrier peel strength low even after pressing under high temperature (300 ° C. to 400 ° C.) heating that is applied during the production of the laminate. When using a copper foil with a carrier having such a low carrier peel strength to produce a laminated board, particularly a coreless substrate, the force applied during the lamination process causes an unintended stage in the lamination process. Thus, there is a risk of occurrence of a problem that peeling occurs between the carrier foil serving as the support and the ultrathin copper foil.

WO2010/27052号公報WO2010 / 27052 特開2007−186781号公報JP 2007-186781 A

上述したように、積層板の積層工程中の意図しない段階でのキャリア箔と銅箔との剥離を防止するためにキャリアピール強度の高いキャリア付き極薄銅箔が求められている。
特に、コアレス基板作製時に印加される比較的低温(主として、ガラスエポキシ樹脂基板やビスマレイミドトリアジン樹脂基板のプレスに必要な150℃〜220℃)での加熱後において、適度の高キャリアピール強度となるキャリア付き極薄銅箔が求められている。
本発明は、このような要求を満足するキャリア付き極薄銅箔を提供し、該キャリア付き極薄銅箔を用いた積層板を提供することを目的とする。
As described above, an ultrathin copper foil with a carrier having a high carrier peel strength is required in order to prevent the carrier foil and the copper foil from being peeled off at an unintended stage in the laminating process of the laminate.
In particular, after heating at a relatively low temperature (mainly 150 ° C. to 220 ° C. required for pressing a glass epoxy resin substrate or a bismaleimide triazine resin substrate) applied during the production of a coreless substrate, a moderately high carrier peel strength is obtained. There is a need for an ultra-thin copper foil with a carrier.
An object of this invention is to provide the ultra-thin copper foil with a carrier which satisfies such a request | requirement, and to provide the laminated board using this ultra-thin copper foil with a carrier.

本発明によれば、キャリア箔と極薄銅箔と、前記キャリア箔と前記極薄銅箔との間に形成され、MoまたはWから1種類選択される金属Aと、Fe、Co、Niから1種類選択される金属Bからなる剥離層とを有するキャリア付き極薄銅箔であって、
前記剥離層は、2層、すなわち、前記キャリア箔側に形成された第一剥離層と、前記極薄銅箔側に形成された第二剥離層とで構成され
前記第一剥離層における金属Aの元素比x1と金属Bの元素比y1とが
70(%)<{y1/(x1+y1)}×100≦79(%)
であり、かつ前記第二剥離層における金属Aの元素比x2と金属Bの元素比y2とが
80(%)<{y2/(x2+y2)}×100≦88(%)
であるキャリア付き極薄銅箔が提供される。
According to the present invention, a carrier foil, an ultrathin copper foil, a metal A formed between the carrier foil and the ultrathin copper foil, one selected from Mo or W , and Fe, Co, Ni An ultrathin copper foil with a carrier having a release layer made of one type of metal B,
The release layer, two layers, i.e., the a first release layer which is formed on the carrier foil side, the is composed of a second release layer which is formed on the ultra-thin copper foil side,
The element ratio x1 of metal A and element ratio y1 of metal B in the first release layer is 70 (%) <{y1 / (x1 + y1)} × 100 ≦ 79 (%)
And the element ratio x2 of the metal A and the element ratio y2 of the metal B in the second release layer is 80 (%) <{y2 / (x2 + y2)} × 100 ≦ 88 (%)
A very thin copper foil with a carrier is provided.

本発明のキャリア付き極薄銅箔は、150℃以上220℃以下の温度で1時間〜2時間の加熱処理後における前記キャリア箔と前記極薄銅箔との剥離強度が、0.05kN/m以上0.15kN/m以下であることが好ましい。   The ultrathin copper foil with a carrier of the present invention has a peel strength of 0.05 kN / m between the carrier foil and the ultrathin copper foil after heat treatment at 150 to 220 ° C. for 1 to 2 hours. It is preferable that it is 0.15 kN / m or less.

本発明のキャリア付き極薄銅箔は、前記キャリア箔と前記剥離層の間に拡散防止層を有することが好ましい。   The ultra-thin copper foil with a carrier of the present invention preferably has a diffusion prevention layer between the carrier foil and the release layer.

本発明のキャリア付き極薄銅箔は、前記拡散防止層がFe、Ni、Co、Cr、これらの元素を含む合金の群から選択された少なくとも1つの金属又は合金で形成されていることが好ましい。   In the ultrathin copper foil with a carrier of the present invention, the diffusion prevention layer is preferably formed of at least one metal or alloy selected from the group of Fe, Ni, Co, Cr, and alloys containing these elements. .

本発明のキャリア付き極薄銅箔は、前記キャリア箔が銅又は銅合金であることが好ましい。   In the ultrathin copper foil with a carrier of the present invention, the carrier foil is preferably copper or a copper alloy.

本発明の銅張積層基板は、前記記載のキャリア付き極薄銅箔を樹脂基材に積層してなる銅張積層基板である。   The copper-clad laminate of the present invention is a copper-clad laminate obtained by laminating the ultrathin copper foil with a carrier described above on a resin base material.

本発明のキャリア付き極薄銅箔は、該キャリア付き極薄銅箔を用いて作製する多層積層板の積層工程中における意図しない段階でのキャリア箔と銅箔との剥離を防止し、生産工程の安定化と歩留まりの向上を達成することができる。   The ultra-thin copper foil with a carrier of the present invention prevents peeling of the carrier foil and the copper foil at an unintended stage during the laminating process of the multilayer laminate produced using the ultra-thin copper foil with the carrier, and the production process Stabilization and improvement in yield can be achieved.

図1はキャリア付き極薄銅箔を支持体としたコアレス基板の製造プロセスの模式図である。FIG. 1 is a schematic view of a manufacturing process of a coreless substrate using an ultrathin copper foil with a carrier as a support. 図2は本願のキャリア付き極薄銅箔の実施形態を示す模式図である。FIG. 2 is a schematic view showing an embodiment of an ultrathin copper foil with a carrier of the present application. 図3は本願のキャリア付き極薄銅箔を作製するときのめっき時の電流密度条件を示す図である。FIG. 3 is a diagram showing current density conditions during plating when producing an ultrathin copper foil with a carrier of the present application.

図2は本願のキャリア付き極薄銅箔の実施形態で、該キャリア付き極薄銅箔10はキャリア箔11と、該キャリア箔11の表面に形成された拡散防止層12と、拡散防止層12の表面に形成された剥離層13と、剥離層13の表面に形成された極薄銅箔16からなる。剥離層13は前記キャリア箔側に形成された第一剥離層14と前記極薄銅箔側に形成された第二剥離層15とからなる。キャリア箔から極薄銅箔を引き剥がした際、前記第一剥離層14はキャリア箔側に残り、前記第二剥離層15は前記極薄銅箔側に残る。剥離層は上記第一剥離層14のみの一層構成でも本願と同様な高キャリアピール強度化が期待されるが、第一剥離層14は次工程の銅ストライクめっき時のめっき溶液で容易に溶解してしまうので、これを防ぐため第二剥離層15を形成して、第一剥離層14が銅ストライクめっき溶液に直接触れないようにすることが必要である。   FIG. 2 shows an embodiment of an ultrathin copper foil with a carrier of the present application. The ultrathin copper foil with a carrier 10 is a carrier foil 11, a diffusion prevention layer 12 formed on the surface of the carrier foil 11, and a diffusion prevention layer 12. The release layer 13 is formed on the surface of the release layer 13 and the ultrathin copper foil 16 is formed on the surface of the release layer 13. The release layer 13 includes a first release layer 14 formed on the carrier foil side and a second release layer 15 formed on the ultrathin copper foil side. When the ultrathin copper foil is peeled off from the carrier foil, the first release layer 14 remains on the carrier foil side, and the second release layer 15 remains on the ultrathin copper foil side. Although the release layer is expected to have the same high carrier peel strength as that of the present application even when only the first release layer 14 is formed, the first release layer 14 is easily dissolved in the plating solution at the time of copper strike plating in the next step. Therefore, in order to prevent this, it is necessary to form the second release layer 15 so that the first release layer 14 does not directly contact the copper strike plating solution.

キャリア付き極薄銅箔10用のキャリア箔11としては一般に、アルミニウム箔、アルミニウム合金箔、ステンレス鋼箔、チタン箔、チタン合金箔、銅箔、銅合金箔等が使用可能であるが、その取扱いの簡便さの点から、電解銅箔、電解銅合金箔、圧延銅箔または圧延銅合金箔が好ましい。   As the carrier foil 11 for the ultrathin copper foil 10 with a carrier, aluminum foil, aluminum alloy foil, stainless steel foil, titanium foil, titanium alloy foil, copper foil, copper alloy foil, etc. can be generally used. From the viewpoint of simplicity, electrolytic copper foil, electrolytic copper alloy foil, rolled copper foil or rolled copper alloy foil is preferable.

コアレス基板の製造工程の支持体となるキャリア箔11に、厚さが7μm以下の薄い銅箔を採用すると、このキャリア箔11の機械的強度が弱いためにコアレス基板の製造時に基板の皺や折れ目が発生しやすく、支持体として十分な機能を果たさない。またキャリア箔の厚さが200μm以上になると単位コイル当たりの重量(コイル単重)が増すことで生産コストが増すことになるので好ましくない。従って、キャリア箔の厚さとしては7μm〜200μmのものが好適である。   When a thin copper foil having a thickness of 7 μm or less is used for the carrier foil 11 that is a support in the manufacturing process of the coreless substrate, the mechanical strength of the carrier foil 11 is weak, so that the substrate may be wrinkled or bent during the manufacture of the coreless substrate. Eyes are easily generated and do not function sufficiently as a support. On the other hand, when the thickness of the carrier foil is 200 μm or more, the weight per unit coil (coil single weight) increases, which increases the production cost. Therefore, the thickness of the carrier foil is preferably 7 μm to 200 μm.

剥離層13は、剥離性を保持する金属Aと、極薄銅箔のめっきを容易にする金属Bとで構成する。
前記剥離層を構成する金属AとしてはMo、Ta、V、Mn、W、Cr又はこれらの元素を含む合金の群から選択する。この中でも、処理に使用する薬液の生体への安全性の観点からは、Mo、Ta、V、Mn、W又はこれらの元素を含む合金の群から選択することが特に好ましい。とりわけ、金属Aは、MoまたはWから1種類選択されることが望ましい。
また、金属BはFe、Co、Ni又はこれらの元素を含む合金の群から選択する。
The release layer 13 is composed of a metal A that retains peelability and a metal B that facilitates plating of an ultrathin copper foil.
The metal A constituting the release layer is selected from the group of Mo, Ta, V, Mn, W, Cr, or an alloy containing these elements. Among these, it is particularly preferable to select from the group of Mo, Ta, V, Mn, W or an alloy containing these elements from the viewpoint of the safety of the chemical solution used for the treatment to the living body. In particular, the metal A is desirably selected from one of Mo and W.
Further, the metal B is selected from the group of Fe, Co, Ni, or an alloy containing these elements.

前記剥離層13は図2に模式的に示すように、2層、すなわち、キャリア箔11側に設ける第一剥離層14と極薄銅箔16側に設ける第二剥離層15とからなっている。
剥離層13を構成する第一剥離層14の、剥離性を保持する金属Aと、極薄銅箔のめっきを容易にする金属Bの組成比(元素比)は、発明者らの鋭意研究の結果、
70(%)<{y1/(x1+y1)}×100≦79(%)
の比率とすることが最適であることが見出された。なお、x1は金属Aの元素比、y1は金属Bの元素比である。
As schematically shown in FIG. 2, the release layer 13 includes two layers, that is, a first release layer 14 provided on the carrier foil 11 side and a second release layer 15 provided on the ultrathin copper foil 16 side. .
The composition ratio (element ratio) of the metal A that maintains the releasability of the first release layer 14 that constitutes the release layer 13 and the metal B that facilitates the plating of the ultrathin copper foil is the subject of earnest research by the inventors. result,
70 (%) <{y1 / (x1 + y1)} × 100 ≦ 79 (%)
It was found that the ratio of X1 is the element ratio of metal A, and y1 is the element ratio of metal B.

上記比率が70%以下であると、キャリアピールが低くなり過ぎて積層板の積層工程中において意図しない段階でのキャリア箔と銅箔との剥離が発生するおそれがあり、また、上記比率が79%より大きくなると、キャリアピールが高くなり過ぎて極薄銅箔を剥離できなくなる問題が生じる。   If the ratio is 70% or less, the carrier peel becomes too low, and the carrier foil and the copper foil may be peeled off at an unintended stage during the lamination process of the laminate, and the ratio is 79. If it exceeds 50%, the carrier peel becomes too high, causing a problem that the ultrathin copper foil cannot be peeled off.

剥離層13を構成する第二剥離層15の、剥離性を保持する金属Aと、極薄銅箔のめっきを容易にする金属Bの組成比(元素比)については、発明者らの鋭意研究の結果、
80(%)<{y2/(x2+y2)}×100≦88(%)
の比率とすることが最適であることが見出された。なお、x2は金属Aの元素比、y2は金属Bの元素比である。
Regarding the composition ratio (element ratio) of the metal A that maintains the peelability of the second release layer 15 constituting the release layer 13 and the metal B that facilitates the plating of the ultrathin copper foil, the inventors' diligent research Result in
80 (%) <{y2 / (x2 + y2)} × 100 ≦ 88 (%)
It was found that the ratio of X2 is the element ratio of metal A, and y2 is the element ratio of metal B.

上記比率が80%以下であると、極薄銅箔のめっきを容易にする金属Bの含有割合が少なく、製膜される極薄銅箔にピンホールが発生し、或いはフクレが発生するため好ましくなく、88%以上になると、キャリアピール強度が高くなり過ぎて、キャリア箔から極薄銅箔を剥離できなくなる問題が生じるためである。   When the ratio is 80% or less, the content ratio of the metal B for facilitating the plating of the ultrathin copper foil is small, and pinholes are generated in the ultrathin copper foil to be formed or blisters are generated. However, if it is 88% or more, the carrier peel strength becomes too high, which causes a problem that the ultrathin copper foil cannot be peeled off from the carrier foil.

なお、金属Aあるいは金属Bにおける同種属の金属が2種類以上含まれている場合には、同種属の金属の元素比を足し合わせたものをその元素比とする。   In addition, when two or more types of metals of the same genus in the metal A or the metal B are included, the element ratio is the sum of the element ratios of the metals of the same genus.

拡散防止層の形成
極薄銅箔16の剥離性を安定させるために、キャリア箔11の表面に拡散防止層を形成してもよい。このように拡散防止層12を設けることで剥離層13の剥離性が安定し効果的である。本願実施例ではNiを拡散防止層として用いているが、Fe及びCoでも同様の効果が得られる。
Formation of Diffusion Prevention Layer A diffusion prevention layer may be formed on the surface of the carrier foil 11 in order to stabilize the peelability of the ultrathin copper foil 16. By providing the diffusion preventing layer 12 in this way, the peelability of the release layer 13 is stabilized and effective. In this embodiment, Ni is used as the diffusion preventing layer, but the same effect can be obtained with Fe and Co.

剥離層の形成
キャリア付き極薄銅箔10の作製の一例としては、キャリア箔11の表面に先ずキャリア箔の元素の拡散を防止する拡散防止層12を形成し、次いで第一剥離層14及び第二剥離層15を形成する。
上記各剥離層14、15は電解めっきで形成することができる。
各剥離層14、15の金属組成を変化させるには、電解浴に添加する金属Aと金属Bとの濃度比率(電解浴組成)を変えることで可能となる。
或いは電解浴組成を変えなくとも、めっき条件を変えることにより金属組成を変えることもできる。例えば、電流密度を変化させることで各剥離層の金属組成を変えることができる。
Formation of Release Layer As an example of the production of the ultrathin copper foil 10 with a carrier, a diffusion prevention layer 12 for preventing diffusion of the elements of the carrier foil is first formed on the surface of the carrier foil 11, and then the first release layer 14 and the first release layer 14 are formed. Two release layers 15 are formed.
Each of the release layers 14 and 15 can be formed by electrolytic plating.
In order to change the metal composition of each peeling layer 14 and 15, it becomes possible by changing the concentration ratio (electrolytic bath composition) of the metal A and the metal B added to the electrolytic bath.
Alternatively, the metal composition can be changed by changing the plating conditions without changing the electrolytic bath composition. For example, the metal composition of each release layer can be changed by changing the current density.

極薄銅箔の製膜
極薄銅箔16の形成は、硫酸銅浴、ピロリン酸銅浴、スルファミン酸銅浴、シアン化銅浴などを使用し、第二剥離層15上に電解めっきで形成する。なお、第二剥離層15を構成する元素によっては、極薄銅箔を製膜する電解めっき工程において、めっき液中への浸漬時間、電流密度、めっき後の液切り時、水洗時、及びめっき液のpHによっては第二剥離層にダメージが与えられことがあるため、めっき浴組成、めっき条件等については第二剥離層を構成する元素との関係で注意して選択する必要がある。
Formation of ultrathin copper foil The ultrathin copper foil 16 is formed on the second release layer 15 by electrolytic plating using a copper sulfate bath, a copper pyrophosphate bath, a copper sulfamate bath, a copper cyanide bath, or the like. To do. Depending on the elements constituting the second release layer 15, in the electrolytic plating process for forming an ultrathin copper foil, the immersion time in the plating solution, the current density, the time of draining after plating, the time of washing with water, and the plating Depending on the pH of the solution, the second release layer may be damaged, so the plating bath composition, plating conditions, etc. must be carefully selected in relation to the elements constituting the second release layer.

また、第二剥離層上への極薄銅箔の製膜においては、剥離層へ均一なめっきを行うことが難しく、製箔した極薄銅箔にピンホールが存在することや、フクレが発生することがある。
このように均一なめっきが困難な時には、先ず第二剥離層15の表面にピロリン酸銅浴などでストライク銅めっきを行うことにより、金属Aの酸化物を還元しつつ密着性が良好で緻密な下地めっきを形成し、その上に通常の銅めっきを施すことで第二剥離層上に均一なめっきを施すことができ、極薄銅箔に生じるピンホールの数を低減させ、フクレの発生を防止することができる。
In addition, in the formation of ultra-thin copper foil on the second release layer, it is difficult to perform uniform plating on the release layer, and pinholes are present in the formed ultra-thin copper foil and blistering occurs. There are things to do.
When uniform plating is difficult in this way, first, the surface of the second release layer 15 is subjected to strike copper plating in a copper pyrophosphate bath or the like, thereby reducing the metal A oxide while maintaining good and dense adhesion. By forming the base plating and applying normal copper plating on it, uniform plating can be applied on the second release layer, reducing the number of pinholes generated in the ultra-thin copper foil and generating blisters. Can be prevented.

前記ストライクめっきで付着させる銅めっき厚は0.01μm〜0.5μmが好ましく浴種によってその条件はいろいろであるが、電流密度としては、0.1A/dm〜20A/dm、めっき時間としては0.1秒以上が好ましい。電流密度が0.1A/dm以下では、剥離層上にめっきを均一にのせることが難しく、また20A/dm以上ではめっき液の金属濃度を薄めているストライクめっきでは、ヤケめっきが発生し、均一な銅めっき層が得られず、好ましくない。めっき時間については、0.1秒以下では、十分なめっき層を得るためには短時間過ぎて好ましくない。ストライクめっきにより剥離層上に形成する銅めっき厚は、剥離層の剥離性を損なわない厚さとすることが必要であり、0.01〜0.5μmとすることが好ましい。このストライクめっき層を形成した後、所望の厚さに銅めっきを行い、極薄銅箔とする。The copper plating thickness to be deposited by the strike plating is preferably 0.01 μm to 0.5 μm, and the conditions vary depending on the bath type. The current density is 0.1 A / dm 2 to 20 A / dm 2 , and the plating time is Is preferably 0.1 seconds or longer. When the current density is 0.1 A / dm 2 or less, it is difficult to uniformly deposit the plating on the release layer, and when the current density is 20 A / dm 2 or more, the strike plating, in which the metal concentration of the plating solution is reduced, causes burn plating. In addition, a uniform copper plating layer cannot be obtained, which is not preferable. With respect to the plating time, 0.1 seconds or less is not preferable because it takes a short time to obtain a sufficient plating layer. The copper plating thickness formed on the release layer by strike plating needs to be a thickness that does not impair the peelability of the release layer, and is preferably 0.01 to 0.5 μm. After forming this strike plating layer, copper plating is performed to a desired thickness to obtain an ultrathin copper foil.

コアレス基板の製造ではプレス工程で負荷される温度は150℃〜220℃である。
本実施形態のキャリア付き極薄銅箔はこのような温度領域を経た後でキャリアピール強度が最適となり、かつ、コアレス基板製造工程でキャリア付き極薄銅箔に回路を形成するエッチング処理、積層するプレス処理等の負荷に対してキャリアピール強度が充分に耐えられる強さを有する高いキャリアピール強度を有する。
In the manufacture of the coreless substrate, the temperature applied in the pressing process is 150 ° C to 220 ° C.
The ultrathin copper foil with a carrier of this embodiment has an optimum carrier peel strength after passing through such a temperature region, and an etching process is performed to form a circuit on the ultrathin copper foil with a carrier in a coreless substrate manufacturing process. It has a high carrier peel strength that is strong enough to withstand the carrier peel strength against a load such as press treatment.

本発明のキャリア付き極薄銅箔の剥離現象は、金属Aの酸化物の存在により剥離界面が形成されることで起こると考えられる。金属Aの酸化物の析出メカニズムについて発明者らの鋭意研究の結果、剥離界面となる金属酸化物は水素ガス共存下でないと析出しないことが判明した。水素ガスは水素過電圧より卑な電位で分極(めっき)することで発生し、十分に卑な電位で行うと水素ガスが定常的に発生するが、水素過電圧付近で分極すると水素ガスの発生が非定常的になり、十分に卑な電位で行った場合と比較して水素ガス発生量が減少する。めっき時の電位は電流密度を変更することで制御が可能である。カソード電流を増加させると電位が卑な方向へシフトするが、例えば本願の実施例で用いたMo−Co合金めっき浴では、カソード電流密度が0.4A/dmで電位が−1.12V(vs.Ag/AgCl/sat.KCl)となり、カソードからの非定常的な水素ガス発生が始まる。その後電流密度を上昇させると、1.0A/dm(−1.22V(vs.Ag/AgCl/sat.KCl))までは分極曲線の傾きは−1.18V/decadeの一定の値を示していたが、1.0A/dmより電流密度を高くすると分極曲線の傾きは小さくなり、分極曲線の傾きが−1.18V/decadeの領域と比較して水素発生量が急増し、定常的なガス発生が見られた。本願で規定するキャリアピール強度は、図3に示すように第一剥離層を分極曲線上で−1.18V/decadeの傾きを有する電位(0.4A/dm〜1.0A/dmのカソード電流)領域で作製を行うことで実現される。
また単にめっき時間を短くすることでも金属Aの析出量は減少するので、電流密度と時間を調整して金属Aの酸化物の析出量を制御することが必要である。特許文献1及び2のめっき条件を再調査したところ、本願の実施形態よりも水素ガスが定常的に発生する条件で、かつ長い時間めっきを行っており、剥離層中の金属Aの割合が本願の請求範囲よりも高いことが判明した。それに対し本願の実施形態では、金属Aの酸化物の析出量が少なく、相対的に金属Bの析出割合が高くなる新規のめっき条件とすることにより、密着性の弱い剥離面を形成されにくくして、目的とする高い剥離強度を実現している。
It is considered that the peeling phenomenon of the ultrathin copper foil with a carrier of the present invention occurs when a peeling interface is formed due to the presence of the metal A oxide. As a result of intensive studies by the inventors on the precipitation mechanism of the metal A oxide, it has been found that the metal oxide serving as the peeling interface does not precipitate unless coexisting with hydrogen gas. Hydrogen gas is generated by polarization (plating) at a base potential lower than the hydrogen overvoltage, and hydrogen gas is constantly generated when performed at a sufficiently low base potential. As a result, the amount of hydrogen gas generated is reduced as compared with the case where the operation is performed at a sufficiently low potential. The potential during plating can be controlled by changing the current density. When the cathode current is increased, the potential shifts in a base direction. For example, in the Mo—Co alloy plating bath used in the examples of the present application, the cathode current density is 0.4 A / dm 2 and the potential is −1.12 V ( vs. Ag / AgCl / sat.KCl), and unsteady generation of hydrogen gas from the cathode starts. Thereafter, when the current density is increased, the slope of the polarization curve shows a constant value of −1.18 V / decade up to 1.0 A / dm 2 (−1.22 V (vs. Ag / AgCl / sat. KCl)). However, when the current density is made higher than 1.0 A / dm 2, the slope of the polarization curve decreases, and the amount of hydrogen generation increases rapidly compared to the region where the slope of the polarization curve is −1.18 V / decade, which is steady. Gas generation was observed. Carrier peel strength defined by the present, the potential having an inclination of -1.18V / decade on the polarization curve of the first separation layer as shown in FIG. 3 (a 0.4A / dm 2 ~1.0A / dm 2 This is realized by manufacturing in the cathode current) region.
Also, simply reducing the plating time reduces the amount of metal A deposited, so it is necessary to control the amount of metal A deposited by adjusting the current density and time. When the plating conditions in Patent Documents 1 and 2 were reviewed, the plating was performed for a longer time under conditions where hydrogen gas was steadily generated than in the embodiment of the present application, and the ratio of the metal A in the release layer was the present application. It was found to be higher than the claims. On the other hand, in the embodiment of the present application, a new plating condition in which the deposition amount of the metal A oxide is small and the deposition ratio of the metal B is relatively high is made difficult to form a peeling surface with weak adhesion. This achieves the desired high peel strength.

以下本発明を実施例によりさらに詳しく説明する。
[実施例]
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example]

[実施例1]
片面の表面粗さRzが1.1μmの銅箔(厚さ:18μm)をキャリア箔とし、キャリア箔上にNiめっき処理を行い、拡散防止層を形成した。
Niめっき条件
Ni 120g/L
BO 30g/L
pH 3.5
浴温 50℃
電流密度 20A/dm
めっき時間 14.8s
[Example 1]
A copper foil (thickness: 18 μm) having a surface roughness Rz of 1.1 μm on one side was used as a carrier foil, and Ni plating treatment was performed on the carrier foil to form a diffusion prevention layer.
Ni plating condition Ni 120g / L
H 3 BO 3 30 g / L
pH 3.5
Bath temperature 50 ° C
Current density 20A / dm 2
Plating time 14.8s

拡散防止層を形成したキャリア箔上に、Co−Moめっき浴を用い、電流密度0.4A/dmで、めっき時間を6.0sで第一剥離層形成を行った。
Co−Moめっき条件
Mo 8.0g/L
Co 4.0g/L
クエン酸三ナトリウム 60g/L
pH 5.2
浴温 25℃
On the carrier foil on which the diffusion preventing layer was formed, a first release layer was formed using a Co—Mo plating bath at a current density of 0.4 A / dm 2 and a plating time of 6.0 s.
Co-Mo plating condition Mo 8.0g / L
Co 4.0g / L
Trisodium citrate 60g / L
pH 5.2
Bath temperature 25 ° C

第一剥離層形成を行った後、Co−Mo液中に5.0s浸漬し、めっき液への浸漬後、電流密度0.3A/dmで、めっき時間を12.0sで第二剥離層形成を行った。
次いで、この剥離層上にピロリン酸銅めっき条件で銅ストライクめっきを行い、その上に薄銅箔めっき条件により銅めっきを行い、3μm厚さの極薄銅箔を形成してキャリア付き極薄銅箔とした。
After the first release layer is formed, the second release layer is immersed in a Co-Mo solution for 5.0 s, immersed in a plating solution, and at a current density of 0.3 A / dm 2 and a plating time of 12.0 s. Formation was performed.
Next, copper strike plating is performed on this release layer under copper pyrophosphate plating conditions, and then copper plating is performed under thin copper foil plating conditions to form an ultrathin copper foil having a thickness of 3 μm. A foil was used.

ピロリン酸銅めっき条件
ピロリン酸銅 19g/L
ピロリン酸カリウム 250g/L
pH 8.5
浴温 40℃
電流密度 1.2A/dm
めっき時間 59.2s
極薄銅箔製箔条件
Cu 70g/L
SO 50g/L
Cl 25ppm
電流密度 16.3A/dm
めっき時間 59.2s
Copper pyrophosphate plating conditions Copper pyrophosphate 19g / L
Potassium pyrophosphate 250g / L
pH 8.5
Bath temperature 40 ° C
Current density 1.2A / dm 2
Plating time 59.2s
Ultra-thin copper foil condition Cu 70g / L
H 2 SO 4 50 g / L
Cl 25ppm
Current density 16.3 A / dm 2
Plating time 59.2s

[実施例2〜5]
実施例1の第一剥離層形成のめっき条件、第二剥離層形成のめっき条件を表1に示す通りに変更した以外は実施例1と同様にしてキャリア付き極薄銅箔を作製した。
[Examples 2 to 5]
An ultrathin copper foil with a carrier was prepared in the same manner as in Example 1 except that the plating conditions for forming the first release layer and the plating conditions for forming the second release layer in Example 1 were changed as shown in Table 1.

[実施例6]
実施例1と同様のキャリア箔に、実施例1と同様の拡散防止層を形成した。拡散防止層を形成したキャリア箔上に、Mo−Feめっき浴を用いて第一剥離層形成を行った。
Mo−Feめっき条件
Mo 8.0g/L
Fe 3.7g/L
クエン酸三ナトリウム 60g/L
pH 4.0
浴温 35℃
電流密度 0.5A/dm
めっき時間 6.0s
[Example 6]
A diffusion preventing layer similar to that of Example 1 was formed on the same carrier foil as that of Example 1. On the carrier foil on which the diffusion preventing layer was formed, a first release layer was formed using a Mo—Fe plating bath.
Mo-Fe plating conditions Mo 8.0 g / L
Fe 3.7 g / L
Trisodium citrate 60g / L
pH 4.0
Bath temperature 35 ° C
Current density 0.5A / dm 2
Plating time 6.0s

第一剥離層形成を行った後、Mo−Fe液中に5.0s浸漬した。めっき液への浸漬後、電流密度0.3A/dm、めっき時間12.0sで第二剥離層形成を行った。次いで、この剥離層上に実施例1と同様に銅ストライクめっきと銅めっきを行い、3μm厚さの極薄銅箔を形成してキャリア付き極薄銅箔とした。After the first release layer was formed, it was immersed in a Mo—Fe solution for 5.0 s. After immersion in the plating solution, a second release layer was formed at a current density of 0.3 A / dm 2 and a plating time of 12.0 s. Next, copper strike plating and copper plating were performed on the release layer in the same manner as in Example 1 to form an ultrathin copper foil having a thickness of 3 μm to obtain an ultrathin copper foil with a carrier.

[実施例7]
実施例1と同様のキャリア箔に、実施例1と同様の拡散防止層を形成した。拡散防止層を形成したキャリア箔上に、Mo−Niめっき浴を用い第一剥離層形成を行った。
Mo−Niめっき条件
Mo 24.0g/L
Ni 11.2g/L
クエン酸三ナトリウム 60g/L
pH 10
浴温 25℃
電流密度 0.8A/dm
めっき時間 6.0s
[Example 7]
A diffusion preventing layer similar to that of Example 1 was formed on the same carrier foil as that of Example 1. On the carrier foil on which the diffusion preventing layer was formed, a first release layer was formed using a Mo—Ni plating bath.
Mo-Ni plating conditions Mo 24.0 g / L
Ni 11.2g / L
Trisodium citrate 60g / L
pH 10
Bath temperature 25 ° C
Current density 0.8A / dm 2
Plating time 6.0s

第一剥離層形成を行った後、Mo−Ni液中に5.0s浸漬した。めっき液への浸漬後、電流密度0.3A/dmで、めっき時間を12.0sで第二剥離層形成を行った。次いで、この剥離層上に実施例1と同様に銅ストライクめっきと銅めっきを行い、3μm厚さの極薄銅箔を形成してキャリア付き極薄銅箔とした。After the first release layer was formed, it was immersed in a Mo—Ni solution for 5.0 s. After immersion in the plating solution, a second release layer was formed at a current density of 0.3 A / dm 2 and a plating time of 12.0 s. Next, copper strike plating and copper plating were performed on the release layer in the same manner as in Example 1 to form an ultrathin copper foil having a thickness of 3 μm to obtain an ultrathin copper foil with a carrier.

[実施例8]
実施例1と同様のキャリア箔に、実施例1と同様の拡散防止層を形成した。拡散防止層を形成したキャリア箔上に、W−Niめっき浴を用い第一剥離層形成を行った。
W−Niめっき条件
W 27.9g/L
Ni 11.2g/L
クエン酸三ナトリウム 60g/L
pH 10
浴温 25℃
電流密度 0.7A/dm
めっき時間 6.0s
[Example 8]
A diffusion preventing layer similar to that of Example 1 was formed on the same carrier foil as that of Example 1. A first release layer was formed on a carrier foil on which a diffusion prevention layer was formed using a W-Ni plating bath.
W-Ni plating conditions W 27.9g / L
Ni 11.2g / L
Trisodium citrate 60g / L
pH 10
Bath temperature 25 ° C
Current density 0.7A / dm 2
Plating time 6.0s

第一剥離層形成を行った後、W−Ni液中に5.0s浸漬した。めっき液への浸漬後、電流密度0.3A/dmで、めっき時間を12.0sで第二剥離層形成を行った。次いで、この剥離層上に実施例1と同様に銅ストライクめっきと銅めっきを行い、3μm厚さの極薄銅箔を形成してキャリア付き極薄銅箔とした。After the first release layer was formed, it was immersed in W-Ni liquid for 5.0 s. After immersion in the plating solution, a second release layer was formed at a current density of 0.3 A / dm 2 and a plating time of 12.0 s. Next, copper strike plating and copper plating were performed on the release layer in the same manner as in Example 1 to form an ultrathin copper foil having a thickness of 3 μm to obtain an ultrathin copper foil with a carrier.

[比較例]
[比較例1及び2]
実施例1と同様のキャリア箔に、実施例1と同様の拡散防止層を形成した。拡散防止層を形成したキャリア箔上に、Mo−Coめっき浴を用いて水素発生量が実施例1より明らかに少なくなる、または多くなる表1の電流密度条件(実施例より貴な電位となる分極条件及びより卑な電位となる分極条件)で第一剥離層形成を行った。
第一剥離層形成を行った後、Mo−Co液中に5.0s浸漬した。めっき液への浸漬後、表1の電流密度条件で第二剥離層形成を行った。次いで、この剥離層上に実施例1と同様に銅ストライクめっきと銅めっきを行い、3μm厚さの極薄銅箔を形成してキャリア付き極薄銅箔とした。
[Comparative example]
[Comparative Examples 1 and 2]
A diffusion preventing layer similar to that of Example 1 was formed on the same carrier foil as that of Example 1. On the carrier foil on which the diffusion preventing layer is formed, the amount of hydrogen generation is clearly less than or greater than that in Example 1 using a Mo—Co plating bath (the current density condition in Table 1 is a noble potential from the example). The first release layer was formed under the polarization condition and the polarization condition at a lower potential.
After the first release layer was formed, it was immersed in a Mo—Co solution for 5.0 s. After immersion in the plating solution, a second release layer was formed under the current density conditions shown in Table 1. Next, copper strike plating and copper plating were performed on the release layer in the same manner as in Example 1 to form an ultrathin copper foil having a thickness of 3 μm to obtain an ultrathin copper foil with a carrier.

[比較例3及び4]
実施例1と同様のキャリア箔に、実施例1と同様の拡散防止層を形成した。拡散防止層を形成したキャリア箔上に、Mo−Coめっき浴を用いて表1の電流密度条件で第一剥離層形成を行った。
第一剥離層形成を行った後、Mo−Co液中に5.0s浸漬した。めっき液への浸漬後、表1の電流密度条件(実施例より貴な電位となる分極条件及びより卑な電位となる分極条件)で第二剥離層形成を行った。次いで、この剥離層上に実施例1と同様に銅ストライクめっきと銅めっきを行い、3μm厚さの極薄銅箔を形成してキャリア付き極薄銅箔とした。
[Comparative Examples 3 and 4]
A diffusion preventing layer similar to that of Example 1 was formed on the same carrier foil as that of Example 1. On the carrier foil on which the diffusion preventing layer was formed, a first release layer was formed under the current density conditions shown in Table 1 using a Mo—Co plating bath.
After the first release layer was formed, it was immersed in a Mo—Co solution for 5.0 s. After immersion in the plating solution, the second release layer was formed under the current density conditions shown in Table 1 (polarization conditions with a more noble potential than the examples and polarization conditions with a lower base potential). Next, copper strike plating and copper plating were performed on the release layer in the same manner as in Example 1 to form an ultrathin copper foil having a thickness of 3 μm to obtain an ultrathin copper foil with a carrier.

作製したキャリア付き極薄銅箔を150℃×1時間、180℃×1時間及び220℃×2時間の熱履歴で、プレス圧30kgf/cmの条件で、プレスを行い極薄銅箔と樹脂基材を張り合わせた。その後10mm幅の回路を作製し、キャリアピール強度をJIS C 6481−1996に基づいた引っ張り試験機(東洋ボールドウイン製、UTM−4−100)を用い、キャリア箔を90度方向に引き剥がすことで測定した。測定結果を表1に示す。The produced ultrathin copper foil with a carrier was pressed under the conditions of a heat pressure of 150 ° C. × 1 hour, 180 ° C. × 1 hour, and 220 ° C. × 2 hours under a pressing pressure of 30 kgf / cm 2. The substrate was laminated. Then, a circuit having a width of 10 mm was prepared, and the carrier peel strength was peeled off in a 90-degree direction using a tensile tester (manufactured by Toyo Baldwin, UTM-4-100) based on JIS C 6481-1996. It was measured. The measurement results are shown in Table 1.

作製した試料の極薄銅箔をキャリア箔から引き剥がし、極薄銅箔側及びキャリア箔側に残存している元素(Mo、Co、Ni、W、Fe)付着量を、蛍光X線分析装置を用いて測定した。測定結果を表1に示す。   The ultrathin copper foil of the prepared sample is peeled off from the carrier foil, and the amount of attached elements (Mo, Co, Ni, W, Fe) remaining on the ultrathin copper foil side and the carrier foil side is measured with a fluorescent X-ray analyzer. It measured using. The measurement results are shown in Table 1.

Figure 0005755371
Figure 0005755371

評価結果
[実施例1〜8]
実施例1〜8は、キャリア箔と極薄銅箔を引き剥がした際に、キャリア箔及び極薄銅箔上に残存する剥離層成分のうち、金属Bが占める割合がそれぞれ70%〜79%及び80%〜89%となった。150℃×1時間、180℃×1時間及び220℃×2時間の加熱後のキャリアピール強度が0.050kN/m〜0.150kN/mとなっており、コアレス基板製造に適しているキャリアピール強度が得られた。
Evaluation results [Examples 1 to 8]
In Examples 1 to 8, when the carrier foil and the ultrathin copper foil were peeled off, the ratio of the metal B to the release layer component remaining on the carrier foil and the ultrathin copper foil was 70% to 79%, respectively. And 80% to 89%. Carrier peel strength after heating at 150 ° C. × 1 hour, 180 ° C. × 1 hour, and 220 ° C. × 2 hours is from 0.050 kN / m to 0.150 kN / m, and is suitable for coreless substrate manufacturing. Strength was obtained.

[比較例1]
比較例1は、キャリア箔と極薄銅箔を引き剥がした際に、キャリア箔及び極薄銅箔上に残存する剥離層成分のうち、金属Bが占める割合がそれぞれ79.6%及び85.9%となり、キャリア箔側における金属Bの割合が本願の規定を超えている。このため150℃×1時間、180℃×1時間及び220℃×2時間加熱後のキャリアピール強度が0.150kN/mより高く、高キャリアピール強度化が実現されているが、キャリアピール強度が高すぎて、キャリア箔を引き剥がす際にコアレス基板に曲げや折れ等のダメージを与えるおそれがあり、実用上に問題がある。
[Comparative Example 1]
In Comparative Example 1, when the carrier foil and the ultrathin copper foil were peeled off, the ratio of the metal B to the release layer component remaining on the carrier foil and the ultrathin copper foil was 79.6% and 85.85%, respectively. The ratio of metal B on the carrier foil side exceeds 9%. For this reason, the carrier peel strength after heating at 150 ° C. × 1 hour, 180 ° C. × 1 hour, and 220 ° C. × 2 hours is higher than 0.150 kN / m, and high carrier peel strength is realized. When the carrier foil is peeled off, the coreless substrate may be damaged such as bending or bending when it is peeled off, which causes a problem in practical use.

[比較例2]
比較例2は、キャリア箔と極薄銅箔を引き剥がした際に、キャリア箔に残存する剥離層成分のうち、金属Bが占める割合が70%以下となり、本願の規定以下の値となっている。このため150℃×1時間、180℃×1時間及び220℃×2時間加熱後のキャリアピール強度が0.050kN/m未満となり、高キャリアピール化が実現されなかった。
[Comparative Example 2]
In Comparative Example 2, when the carrier foil and the ultrathin copper foil were peeled off, the ratio of the metal B in the peeling layer component remaining in the carrier foil was 70% or less, which was a value below the specification of the present application. Yes. Therefore, the carrier peel strength after heating at 150 ° C. × 1 hour, 180 ° C. × 1 hour, and 220 ° C. × 2 hours was less than 0.050 kN / m, and a high carrier peel was not realized.

[比較例3]
比較例3は、キャリア箔と極薄銅箔を引き剥がした際に、極薄銅箔上に残存する剥離層成分のうち、金属Bが占める割合が88%以上となり、極薄銅箔側における金属Bの割合が本願の規定以上となっている。このため150℃×1時間、180℃×1時間及び220℃×2時間加熱後のキャリアピール強度が0.150kN/mより高く、高キャリアピール強度化が実現されているが、キャリアピール強度が高すぎて、キャリア箔を引き剥がす際にコアレス基板に曲げや折れ等のダメージを与えるおそれがあり、実用上に問題がある。
[Comparative Example 3]
In Comparative Example 3, when the carrier foil and the ultrathin copper foil were peeled off, the ratio of the metal B in the release layer component remaining on the ultrathin copper foil was 88% or more, and the ultrathin copper foil side The ratio of metal B is equal to or greater than the provisions of the present application. For this reason, the carrier peel strength after heating at 150 ° C. × 1 hour, 180 ° C. × 1 hour, and 220 ° C. × 2 hours is higher than 0.150 kN / m, and high carrier peel strength is realized. When the carrier foil is peeled off, the coreless substrate may be damaged such as bending or bending when it is peeled off, which causes a problem in practical use.

[比較例4]
比較例4は、キャリア箔と極薄銅箔を引き剥がした際に、極薄銅箔上に残存する剥離層成分のうち、金属Bが占める割合が80%以下となり、極薄銅箔側における金属Bの割合が本願の規定以下となっている。このため150℃×1時間、180℃×1時間及び220℃×2時間加熱後のキャリアピール強度が0.050kN/m未満となり、高キャリアピール化が実現されなかった。
[Comparative Example 4]
In Comparative Example 4, when the carrier foil and the ultrathin copper foil were peeled off, the ratio of the metal B in the peeling layer component remaining on the ultrathin copper foil was 80% or less, and the ultrathin copper foil side The ratio of metal B is not more than the provisions of the present application. Therefore, the carrier peel strength after heating at 150 ° C. × 1 hour, 180 ° C. × 1 hour, and 220 ° C. × 2 hours was less than 0.050 kN / m, and a high carrier peel was not realized.

実施例1で作製したキャリア付き極薄銅箔を使用して前記コアレス基板作製ステップに従いコアレス基板を作製した結果、製造工程でトラブルなく、剥離工程でも支障なく剥離することができた。   As a result of producing a coreless substrate in accordance with the coreless substrate production step using the ultrathin copper foil with a carrier produced in Example 1, it was possible to exfoliate without any trouble in the production process and in the exfoliation process.

1 支持体用キャリア付き極薄銅箔のキャリア箔
2 支持体用キャリア付き極薄銅箔の極薄銅箔
3 支持体用キャリア付き極薄銅箔
4 プリプレグ
5 微細配線形成用キャリア付き極薄銅箔のキャリア箔
6 微細配線形成用キャリア付き極薄銅箔の極薄銅箔
7 微細配線形成用キャリア付き極薄銅箔
8 微細配線
9 コアレス基板
10 キャリア付き極薄銅箔
11 キャリア箔
12 拡散防止層
13 剥離層
14 第一剥離層
15 第二剥離層
16 極薄銅箔
DESCRIPTION OF SYMBOLS 1 Carrier foil of ultrathin copper foil with carrier for support 2 Ultrathin copper foil of ultrathin copper foil with carrier for support 3 Ultrathin copper foil with carrier for support 4 Prepreg 5 Ultrathin copper with carrier for fine wiring formation Foil carrier foil 6 Ultrathin copper foil with carrier for fine wiring formation 7 Ultrathin copper foil with carrier for fine wiring formation 8 Fine wiring 9 Coreless substrate 10 Ultrathin copper foil with carrier 11 Carrier foil 12 Diffusion prevention Layer 13 Release layer 14 First release layer 15 Second release layer 16 Ultrathin copper foil

Claims (7)

キャリア箔と極薄銅箔と、前記キャリア箔と前記極薄銅箔との間に形成され、MoまたはWから1種類選択される金属Aと、Fe、Co、Niから1種類選択される金属Bからなる剥離層とを有するキャリア付き極薄銅箔であって、
前記剥離層は、2層、すなわち、前記キャリア箔側に形成された第一剥離層と、前記極薄銅箔側に形成された第二剥離層とで構成され、
前記第一剥離層における金属Aの元素比x1と金属Bの元素比y1とが
70(%)<{y1/(x1+y1)}×100≦79(%)
であり、かつ前記第二剥離層における金属Aの元素比x2と金属Bの元素比y2とが
80(%)<{y2/(x2+y2)}×100≦88(%)
であるキャリア付き極薄銅箔。
Metal A formed between a carrier foil and an ultrathin copper foil, the carrier foil and the ultrathin copper foil, one selected from Mo or W, and one selected from Fe, Co, and Ni An ultrathin copper foil with a carrier having a release layer made of B,
The release layer is composed of two layers, that is, a first release layer formed on the carrier foil side and a second release layer formed on the ultrathin copper foil side,
The element ratio x1 of metal A and element ratio y1 of metal B in the first release layer is 70 (%) <{y1 / (x1 + y1)} × 100 ≦ 79 (%)
And the element ratio x2 of the metal A and the element ratio y2 of the metal B in the second release layer is 80 (%) <{y2 / (x2 + y2)} × 100 ≦ 88 (%)
An ultra-thin copper foil with a carrier.
150℃以上220℃以下の温度で1〜2時間の加熱処理後における前記キャリア箔と前記極薄銅箔との常温における剥離強度が、0.05kN/m以上0.15kN/m以下である請求項1に記載のキャリア付き極薄銅箔。   The peel strength at normal temperature between the carrier foil and the ultrathin copper foil after heat treatment for 1 to 2 hours at a temperature of 150 ° C. or more and 220 ° C. or less is 0.05 kN / m or more and 0.15 kN / m or less. Item 6. An ultrathin copper foil with a carrier according to Item 1. 前記キャリア箔と前記剥離層の間に拡散防止層を有する請求項1または2に記載のキャリア付き極薄銅箔。   The ultrathin copper foil with a carrier of Claim 1 or 2 which has a diffusion prevention layer between the said carrier foil and the said peeling layer. 前記拡散防止層がFe、Ni、Co、Cr、これらの元素を含む合金の群から選択された少なくとも1つの金属又は合金で形成されている請求項3に記載のキャリア付き極薄銅箔。   The ultrathin copper foil with a carrier according to claim 3, wherein the diffusion prevention layer is formed of at least one metal or alloy selected from the group of alloys containing Fe, Ni, Co, Cr, and these elements. 前記キャリア箔が銅又は銅合金である請求項1〜4のいずれかに記載のキャリア付き極薄銅箔。   The said carrier foil is copper or a copper alloy, The ultra-thin copper foil with a carrier in any one of Claims 1-4. 請求項1〜5のいずれかに記載のキャリア付き極薄銅箔を樹脂基材に積層してなる銅張積層板。   The copper clad laminated board formed by laminating | stacking the ultra-thin copper foil with a carrier in any one of Claims 1-5 on a resin base material. 請求項1〜5のいずれかに記載のキャリア付き極薄銅箔を使用して作製されたコアレス基板。 The coreless board | substrate produced using the ultra-thin copper foil with a carrier in any one of Claims 1-5 .
JP2014526311A 2013-02-26 2014-02-25 Ultra-thin copper foil with carrier, copper-clad laminate and coreless substrate Active JP5755371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526311A JP5755371B2 (en) 2013-02-26 2014-02-25 Ultra-thin copper foil with carrier, copper-clad laminate and coreless substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013035852 2013-02-26
JP2013035852 2013-02-26
PCT/JP2014/054457 WO2014132947A1 (en) 2013-02-26 2014-02-25 Ultrathin copper foil with carrier, copper-clad laminate, and coreless substrate
JP2014526311A JP5755371B2 (en) 2013-02-26 2014-02-25 Ultra-thin copper foil with carrier, copper-clad laminate and coreless substrate

Publications (2)

Publication Number Publication Date
JP5755371B2 true JP5755371B2 (en) 2015-07-29
JPWO2014132947A1 JPWO2014132947A1 (en) 2017-02-02

Family

ID=51428211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014526311A Active JP5755371B2 (en) 2013-02-26 2014-02-25 Ultra-thin copper foil with carrier, copper-clad laminate and coreless substrate

Country Status (5)

Country Link
JP (1) JP5755371B2 (en)
KR (1) KR101664993B1 (en)
CN (1) CN105074058B (en)
TW (1) TWI593830B (en)
WO (1) WO2014132947A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009237A (en) * 2016-07-15 2018-01-18 Jx金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, laminate, method for producing laminate, method for manufacturing printed wiring board and method for manufacturing electronic equipment
KR101944783B1 (en) * 2017-01-16 2019-04-18 일진머티리얼즈 주식회사 Copper foil attached to the carrier foil
WO2018181516A1 (en) * 2017-03-29 2018-10-04 日立化成株式会社 Coreless substrate prepreg, coreless substrate, coreless substrate manufacturing method and semiconductor package
KR102137068B1 (en) * 2019-11-27 2020-07-23 와이엠티 주식회사 Carrier foil with metal foil, manufacturing method of the same, and laminate comprising the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089892A (en) * 1999-09-21 2001-04-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, its producing method and copper-covered laminated sheet using the electrolytic copper foil with carrier foil
US6893742B2 (en) * 2001-02-15 2005-05-17 Olin Corporation Copper foil with low profile bond enhancement
LU90804B1 (en) * 2001-07-18 2003-01-20 Circuit Foil Luxembourg Trading Sarl Process for manufacturing a composite foil suitable for manufacturing multi-layer printed circuit boards
TW200609109A (en) * 2004-08-02 2006-03-16 Nippon Denkai Ltd Composite copper foil and method for production thereof
CN1984526B (en) * 2005-12-15 2011-01-12 古河电气工业株式会社 Ultrathin copper foil with carrier and printed circuit board
JP4934409B2 (en) * 2005-12-15 2012-05-16 古河電気工業株式会社 Ultra-thin copper foil with carrier and printed wiring board
JP4927503B2 (en) * 2005-12-15 2012-05-09 古河電気工業株式会社 Ultra-thin copper foil with carrier and printed wiring board
JP4805300B2 (en) * 2008-03-31 2011-11-02 古河電気工業株式会社 Manufacturing method of Fe-Ni alloy foil with carrier for circuit board lamination, manufacturing method of composite foil with carrier for circuit board lamination, alloy foil with carrier, composite foil with carrier, metal-clad board, printed wiring board, and printed wiring laminated board
JP4805304B2 (en) * 2008-05-12 2011-11-02 Jx日鉱日石金属株式会社 Metal foil with carrier and method for producing multilayer coreless circuit board
CN102203326A (en) * 2008-09-05 2011-09-28 古河电气工业株式会社 Ultrathin copper foil with carrier, and copper laminated board or printed wiring board
WO2012133638A1 (en) * 2011-03-30 2012-10-04 三井金属鉱業株式会社 Multilayer printed wiring board manufacturing method, and multilayer printed wiring board obtained by said manufacturing method
JP5666384B2 (en) * 2011-05-31 2015-02-12 日本電解株式会社 Ultrathin copper foil with support and method for producing the same
US8980414B2 (en) * 2011-08-31 2015-03-17 Jx Nippon Mining & Metals Corporation Carrier-attached copper foil

Also Published As

Publication number Publication date
JPWO2014132947A1 (en) 2017-02-02
CN105074058B (en) 2016-11-23
KR101664993B1 (en) 2016-10-11
CN105074058A (en) 2015-11-18
KR20150122632A (en) 2015-11-02
TWI593830B (en) 2017-08-01
TW201437436A (en) 2014-10-01
WO2014132947A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5830635B1 (en) Ultra-thin copper foil with carrier, and copper-clad laminate, printed wiring board and coreless board manufactured using the same
JP5959149B2 (en) Ultra-thin copper foil with carrier and copper-laminated laminate or printed wiring board
JP4303291B2 (en) Composite copper foil and method for producing the same
JP5358740B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP2004169181A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP5859155B1 (en) Composite metal foil, method for producing the same, and printed wiring board
JP2006022406A (en) Ultrathin copper foil with carrier
JP5352748B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP5755371B2 (en) Ultra-thin copper foil with carrier, copper-clad laminate and coreless substrate
JP3816508B2 (en) Capacitor layer forming material and printed wiring board with built-in capacitor layer obtained using the capacitor layer forming material
JPWO2011086972A1 (en) Electronic circuit, method for forming the same, and copper-clad laminate for forming electronic circuit
JP2014100904A (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board and method producing printed wiring board
JP5346040B2 (en) Flexible laminate and flexible electronic circuit board formed using the laminate
JP7201621B2 (en) Copper foil with carrier
CN112969581A (en) Laminated body
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
TW201247041A (en) Method for forming electronic circuit, electronic circuit, and copper-clad laminated board for forming electronic circuit
US20210274650A1 (en) Multilayer body
KR102018942B1 (en) Metal foil with carrier, laminate, method of manufacturing printed wiring board, method of manufacturing electronic device and method of manufacturing metal foil with carrier
JP5380615B1 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, printed circuit board, and printed wiring board manufacturing method
JP2004243551A (en) Laminated foil

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R151 Written notification of patent or utility model registration

Ref document number: 5755371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350