JP5749485B2 - Alumina fiber pulverized product, method for producing the same, and resin composition using the same - Google Patents
Alumina fiber pulverized product, method for producing the same, and resin composition using the same Download PDFInfo
- Publication number
- JP5749485B2 JP5749485B2 JP2010281980A JP2010281980A JP5749485B2 JP 5749485 B2 JP5749485 B2 JP 5749485B2 JP 2010281980 A JP2010281980 A JP 2010281980A JP 2010281980 A JP2010281980 A JP 2010281980A JP 5749485 B2 JP5749485 B2 JP 5749485B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina fiber
- fiber
- pulverized product
- necking
- same
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 92
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000011342 resin composition Substances 0.000 title claims description 10
- 238000010298 pulverizing process Methods 0.000 claims description 13
- 238000003825 pressing Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 description 10
- 239000002202 Polyethylene glycol Substances 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000009987 spinning Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- -1 aluminum oxychloride Chemical compound 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229940057847 polyethylene glycol 600 Drugs 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Fibers (AREA)
Description
本発明は、アルミナ質繊維粉砕品及びその製造方法、並びにそれを用いた樹脂組成物用に関する。 The present invention relates to an alumina fiber pulverized product, a method for producing the same, and a resin composition using the same.
アルミナ質繊維集合体の繊維長を制御する方法は、繊維集合体をロールミルやプレス機等で粉砕する方法が知られているが、繊維長分布がブロードとなる問題点があった。この問題を解決するため、一度粉砕した集合体を気流分級装置などで分級処理する方法が検討されている(特許文献1)。しかしながら、得られる集合体の収率が低いという問題点があった。 As a method for controlling the fiber length of the alumina fiber assembly, a method of pulverizing the fiber assembly with a roll mill or a press machine is known, but there is a problem that the fiber length distribution becomes broad. In order to solve this problem, a method of classifying an aggregate once pulverized with an airflow classifier or the like has been studied (Patent Document 1). However, there is a problem that the yield of the obtained aggregate is low.
こぶ状のふくらみを有する繊維の製造方法としては、Al2O3とSiO2を主成分とする組成物を溶融させる方法(特許文献2)がある。また、塩基性アルミニウム溶液とコロイド状シリカと有機重合体を含む紡糸原液をノズルから吐出させ、前駆体繊維を得て、これを焼成する方法(特許文献3)等が知られている。 As a method for producing a fiber having a knurled bulge, there is a method (Patent Document 2) in which a composition mainly composed of Al 2 O 3 and SiO 2 is melted. Also known is a method (Patent Document 3) or the like in which a spinning solution containing a basic aluminum solution, colloidal silica, and an organic polymer is discharged from a nozzle to obtain a precursor fiber, which is fired.
本発明は、繊維長分布が制御されたアルミナ質繊維粉砕品、及びその粉砕品が容易に得られる製造方法、並びにそれを用いた樹脂組成物を提供することである。 An object of the present invention is to provide an alumina fiber pulverized product having a controlled fiber length distribution, a production method for easily obtaining the pulverized product, and a resin composition using the same.
本発明は、(1)ネッキングを有したアルミナ質繊維集合体を粉砕してなる、繊維長の変動係数が10%以下であるアルミナ質繊維粉砕品、(2)ネッキングの間隔が10〜150μmであるアルミナ質繊維集合体を用いる(1)のアルミナ質繊維粉砕品、(3)粉砕をプレス圧力0.1〜20MPaで行う(1)又は(2)のアルミナ質繊維粉砕品の製造方法、(4)プレスの加圧速度が0.5〜5MPa/秒である(3)のアルミナ質繊維粉砕品の製造方法、(5)圧力の保持時間が30秒以下である(3)又は(4)のアルミナ質繊維粉砕品の製造方法、(6)(1)又は(2)のアルミナ質繊維粉砕品を含有してなる樹脂組成物、である。 The present invention includes (1) an alumina fiber pulverized product having a coefficient of variation of fiber length of 10% or less, obtained by pulverizing an alumina fiber assembly having necking, and (2) an interval between necking of 10 to 150 μm. alumina fiber pulverized products with an alumina fiber aggregate (1), (3) performing pulverizng a press pressure 0.1 to 20 MPa (1) or (2) aluminous method for producing fibers pulverized product of, ( 4 ) The method for producing an alumina fiber pulverized product according to ( 3 ), wherein the pressurization speed is 0.5 to 5 MPa / second, ( 5 ) the pressure holding time is 30 seconds or less ( 3 ) or ( 4 ), And a resin composition comprising the pulverized alumina fiber product of ( 6 ) (1) or (2) .
本発明によれば、繊維長分布が制御されたアルミナ質繊維粉砕品が容易に得られる。また、本発明のアルミナ質繊維粉砕品を使用すると良好な物性の樹脂組成物が得られる。 According to the present invention, an alumina fiber pulverized product having a controlled fiber length distribution can be easily obtained. Moreover, when the alumina fiber pulverized product of the present invention is used, a resin composition having good physical properties can be obtained.
本発明でいうネッキングを有するアルミナ質繊維集合体とは、1本のアルミナ質繊維において繊維径が太い部分と細い部分(ネッキング部分)が連続的に、かつ繊維全体にわたって存在し、太い部分の直径を100とすると、ネッキング部分の直径が90以下となっている繊維のことである。つまり、繊維径が太い部分(図1の1)と繊維径が細いネッキング部(図1の2)が繊維全体にわたり連続している繊維である。
本発明で言うネッキング間隔とはネッキング部で繊維径が最も小さい部分から隣り合うネック部の繊維径が最も小さい部分までの距離(図1の3)のことを言う。
The alumina fiber aggregate having necking as used in the present invention means that one alumina fiber has a thick fiber portion and a thin portion (necking portion) continuously and over the entire fiber, and the diameter of the thick portion. Is 100, the diameter of the necking portion is 90 or less. That is, it is a fiber in which a portion having a large fiber diameter (1 in FIG. 1) and a necking portion having a small fiber diameter (2 in FIG. 1) are continuous over the entire fiber.
The necking interval referred to in the present invention means a distance (3 in FIG. 1) from a portion having the smallest fiber diameter in the necking portion to a portion having the smallest fiber diameter in the adjacent neck portion.
この特定の間隔のネッキングを有するアルミナ質繊維集合体は、特に製造方法は限定されないが、例えば、以下の方法で製造することが可能である。
(1)塩基性塩化アルミニウムをAl2O3換算で25〜35質量%、シリカゾルをSiO2換算で1〜10質量%、ポリビニルアルコールを2〜3.5質量%、ポリエチレングリコールを0.2〜1.8質量%を含み、20℃における粘度が1500〜6000mPa・sの水溶液を調製する工程
(2)上記水溶液を紡糸原液として、回転する中空円盤の側壁に設けられた複数個の細孔から吐出させて液糸化し前駆体繊維とする工程
(3)上記前駆体繊維を集めて焼成した後冷却する工程
を経て、製造することが可能である。
The production method of the alumina fiber aggregate having necking at a specific interval is not particularly limited, but can be produced by the following method, for example.
(1) 25 to 35% by mass of basic aluminum chloride in terms of Al 2 O 3 , 1 to 10% by mass of silica sol in terms of SiO 2, 2 to 3.5% by mass of polyvinyl alcohol, 0.2 to 0.2% of polyethylene glycol Step of preparing an aqueous solution containing 1.8% by mass and having a viscosity at 20 ° C. of 1500 to 6000 mPa · s (2) Using the aqueous solution as a spinning stock solution, a plurality of pores provided on the side wall of the rotating hollow disk It can be manufactured through a step of discharging and liquefying into precursor fibers (3) a step of collecting and firing the precursor fibers and then cooling.
ネッキング間隔の制御は、紡糸原液中のポリビニルアルコールとポリエチレングリコールの質量比などを変えることで制御が可能である。
ポリビニルアルコールは重合度が1000〜5000であることが好ましく、ポリエチレングリコールは分子量が300〜1000であることが好ましく、ポリビニルアルコール:ポリエチレングリコールの質量比が1:0.10〜0.5であることが好ましい。
The necking interval can be controlled by changing the mass ratio of polyvinyl alcohol and polyethylene glycol in the spinning dope.
Polyvinyl alcohol preferably has a degree of polymerization of 1000 to 5000, polyethylene glycol preferably has a molecular weight of 300 to 1000, and a mass ratio of polyvinyl alcohol: polyethylene glycol is 1: 0.10 to 0.5. Is preferred.
本発明は、ネッキングを有するアルミナ質繊維集合体を粉砕することにより得られるアルミナ質繊維粉砕品である。ネッキングの間隔が10〜150μmであるアルミナ質繊維集合体を用いることが好ましく、このことにより、アルミナ質繊維粉砕品の平均繊維長を10〜150μmとすることが可能となる。
平均繊維長が10μmより小さいと樹脂と複合化したとき、充分な補強効果が得られず、150μmを超えると分散性が悪化し、樹脂と均一に混合することが困難となる。また、繊維長の分布がブロードであると均一な補強効果が得られ難くなるため、繊維長の変動係数は10%以下が好ましい。
ネッキングを有するアルミナ質繊維集合体は、繊維径が太い部分に比べ、ネッキング部分の強度が弱い為、圧力をかけると、ネッキング部分から選択的に折れる。その結果、粉砕されたネッキングを有するアルミナ質繊維粉砕品の繊維長は、ほぼネッキング間隔と等しく制御される。
The present invention is an alumina fiber pulverized product obtained by pulverizing an alumina fiber assembly having necking. It is preferable to use an alumina fiber aggregate having a necking interval of 10 to 150 μm, and this enables the average fiber length of the alumina fiber pulverized product to be 10 to 150 μm.
When the average fiber length is less than 10 μm, a sufficient reinforcing effect cannot be obtained when it is combined with the resin, and when it exceeds 150 μm, the dispersibility is deteriorated and it becomes difficult to uniformly mix with the resin. Further, if the fiber length distribution is broad, it is difficult to obtain a uniform reinforcing effect, and therefore the fiber length variation coefficient is preferably 10% or less.
Aluminous fiber aggregates having necking are selectively broken from the necking portion when pressure is applied because the strength of the necking portion is weaker than that of the portion having a large fiber diameter. As a result, the fiber length of the alumina fiber pulverized product having the pulverized necking is controlled to be substantially equal to the necking interval.
本発明のネッキングを有するアルミナ質繊維集合体の粉砕には、プレス粉砕機、ボールミル、攪拌粉砕器、ロールクラッシャーなどを用いることが出来るが、本発明は、プレスで粉砕する方法が好適に使用される。
プレス粉砕とは上下のプレス板の間に原料を投入し上下から圧力を加えて粉砕する方法である。市販品を例示すれば、三庄インダストリー社製商品名「テーブルプレス」、「ロータリープレス」、エヌピーシステム社商品名「ニュートンプレス」などである。
A press pulverizer, a ball mill, a stirring pulverizer, a roll crusher, or the like can be used for pulverizing the alumina fiber aggregate having the necking of the present invention. In the present invention, a method of pulverizing with a press is preferably used. The
Press pulverization is a method in which raw materials are put between upper and lower press plates and pulverized by applying pressure from above and below. Examples of commercially available products include “Table Press”, “Rotary Press”, and “Newton Press” manufactured by NP Systems Co., Ltd.
プレス圧力は0.1〜20MPaが好ましく、より好ましくは1〜10MPaである。圧力が0.1MPa未満では粉砕が不十分となり、ネック部分で粉砕されない繊維が発生し、繊維長分布がブロードになる場合がある。20MPaを超えると、繊維は通常の部分も粉砕され、所望の繊維長分布より短くなる場合がある。 The pressing pressure is preferably from 0.1 to 20 MPa, more preferably from 1 to 10 MPa. If the pressure is less than 0.1 MPa, pulverization becomes insufficient, and fibers that are not pulverized are generated at the neck portion, and the fiber length distribution may become broad. If the pressure exceeds 20 MPa, the normal part of the fiber may be pulverized and may be shorter than the desired fiber length distribution.
プレスの加圧速度は0.5〜5MPa/秒が好ましい。加圧速度が0.5MPaより小さいと粉砕に必要以上に時間がかかり、5MPaより大きいと急激な加圧により粉砕ムラが発生する場合がある。 The pressurization speed of the press is preferably 0.5 to 5 MPa / second. If the pressurization speed is less than 0.5 MPa, it takes more time than necessary for pulverization, and if it is greater than 5 MPa, pulverization unevenness may occur due to rapid pressurization.
プレスの最高圧力での保持時間は30秒以下であることが好ましい。保持時間が長すぎると所望の繊維長より短くなりすぎる場合がある。より好ましい保持時間は5〜20秒である。 The holding time at the maximum pressure of the press is preferably 30 seconds or less. If the holding time is too long, it may be shorter than the desired fiber length. A more preferable holding time is 5 to 20 seconds.
粉砕された繊維の繊維長分布は、市販の粒度・形状分布測定装置(例えば、株式会社セイシン企業社製PITA−1)を用いて測定することができる。粒度・形状測定装置により、水を分散媒として用いて、任意の3000本の繊維長を測定し、その平均値(平均繊維長)と標準偏差を求め、変動係数を以下の式(1)より計算した。なお、繊維長とは、測定繊維の任意の2点間の距離の最大長である。
変動係数(%)=標準偏差/平均繊維長×100
The fiber length distribution of the pulverized fibers can be measured using a commercially available particle size / shape distribution measuring apparatus (for example, PITA-1 manufactured by Seishin Enterprise Co., Ltd.). Using a particle size / shape measuring device, water is used as a dispersion medium to measure an arbitrary 3000 fiber lengths, an average value (average fiber length) and a standard deviation are obtained, and a coefficient of variation is obtained from the following equation (1). Calculated. The fiber length is the maximum length of the distance between any two points on the measurement fiber.
Coefficient of variation (%) = standard deviation / average fiber length × 100
本発明の繊維長が制御されたアルミナ質繊維粉砕品を樹脂組成物と複合化させる場合、樹脂組成は、特に限定されないが、エポキシ、アクリル、フェノール等の樹脂が好適である。 When the pulverized alumina fiber having a controlled fiber length according to the present invention is combined with the resin composition, the resin composition is not particularly limited, but resins such as epoxy, acrylic, and phenol are suitable.
「実験例1」
Al2O3濃度が23.5質量%のオキシ塩化アルミニウム水溶液4783gとSiO2濃度が21.0質量%のシリカゾル1310g、重合度1700のポリビニルアルコールの水溶液(濃度10質量%)1100g、分子量600のポリエチレングリコール18gを混合してから減圧濃縮し、粘度3500mPa・sの紡糸原液を調製した。濃縮後の紡糸原液はAl2O3換算の含有率が29.6質量%、SiO2換算の含有率が7.4質量%、ポリビニルアルコールが2.8質量%、ポリエチレングリコールが0.49質量%であった(ポリビニルアルコール:ポリエチレングリコールの質量比が1:0.16)。
この紡糸原液を、回転する直径350mmの中空円盤の側壁に設けられた直径0.2mm(細孔間隔:3.5mm)から吐出させて液糸化し、200℃の熱風に浮遊させて乾燥させながら、下部から吸引する方式の集綿室に搬送し前駆体繊維を集積した。これを、ローラーハウス炉を用い大気雰囲気下で焼成した。焼成は、雰囲気温度が1000℃までを10℃/分で昇温し、1000℃をこえ1200℃までを15℃/分の速度で昇温し、1200℃で30分間保持して行った。得られたアルミナ短繊維集合体のネッキング間隔は60μmであった。
得られたネッキングを有するアルミナ質繊維集合体を、内径8cm、深さが20cmの鋼製モールドに100g投入し、10MPaでプレス粉砕した。なお、加圧速度は3MPa/秒とし、最高圧力で15秒間保持した。得られたアルミナ質繊維粉砕品の物性を表1に示す。
"Experiment 1"
4783 g of an aluminum oxychloride aqueous solution having an Al 2 O 3 concentration of 23.5% by mass, 1310 g of silica sol having an SiO 2 concentration of 21.0% by mass, 1100 g of an aqueous solution of polyvinyl alcohol having a polymerization degree of 1700 (concentration of 10% by mass), having a molecular weight of 600 After mixing 18 g of polyethylene glycol, the mixture was concentrated under reduced pressure to prepare a spinning dope having a viscosity of 3500 mPa · s. The concentrated spinning solution has an Al 2 O 3 content of 29.6% by mass, an SiO 2 content of 7.4% by mass, polyvinyl alcohol 2.8% by mass, and polyethylene glycol 0.49% by mass. % (The mass ratio of polyvinyl alcohol: polyethylene glycol was 1: 0.16).
This spinning dope is discharged from a diameter of 0.2 mm (pore spacing: 3.5 mm) provided on the side wall of a rotating hollow disk having a diameter of 350 mm to form a liquid yarn, suspended in hot air at 200 ° C. and dried. Then, it was conveyed to a cotton collection chamber using a suction method from the bottom, and the precursor fibers were accumulated. This was fired in an air atmosphere using a roller house furnace. Firing was performed by raising the temperature up to 1000 ° C. at 10 ° C./min, raising the temperature from 1000 ° C. to 1200 ° C. at a rate of 15 ° C./min, and holding at 1200 ° C. for 30 minutes. The necking interval of the obtained alumina short fiber aggregate was 60 μm.
100 g of the obtained alumina fiber assembly having necking was put into a steel mold having an inner diameter of 8 cm and a depth of 20 cm, and press-pulverized at 10 MPa. The pressurization rate was 3 MPa / second and the maximum pressure was maintained for 15 seconds. The physical properties of the obtained alumina fiber pulverized product are shown in Table 1.
[使用材料]
ポリビニルアルコール:電気化学工業株式会社製、デンカポバール、B−17
ポリエチレングリコール:和光純薬工業株式会社製、試薬、ポリエチレングリコール600
オキシ塩化アルミニウム:多木化学株式会社製、タキバイン、#1500
[Materials used]
Polyvinyl alcohol: Denka Poval, B-17, manufactured by Denki Kagaku Kogyo Co., Ltd.
Polyethylene glycol: Wako Pure Chemical Industries, Ltd., reagent, polyethylene glycol 600
Aluminum oxychloride: manufactured by Taki Chemical Co., Ltd., Takibine, # 1500
「実験例2」
ネッキング間隔を変える為、ポリビニルアルコールとポリエチレングリコールの質量比を変え、ネッキング間隔が異なるアルミナ質繊維集合体を製造した。これらの繊維集合体を用いたこと以外は実験例1と同様にアルミナ質繊維粉砕品を製造した。また、比較として、ネッキングのないアルミナ質繊維(電気化学工業社製商品名「デンカアルセンB80L」アルミナ80質量%、シリカ20質量%)を粉砕しアルミナ質繊維粉砕品を製造した。得られたアルミナ質繊維粉砕品の物性を表2に示す。
"Experimental example 2"
In order to change the necking interval, the mass ratio of polyvinyl alcohol and polyethylene glycol was changed to produce alumina fiber assemblies having different necking intervals. An alumina fiber pulverized product was produced in the same manner as in Experimental Example 1 except that these fiber assemblies were used. As a comparison, alumina fiber without a necking (trade name “Denka Alsene B80L” alumina 80 mass%, silica 20 mass% manufactured by Denki Kagaku Kogyo Co., Ltd.) was pulverized to produce an alumina fiber pulverized product. Table 2 shows the physical properties of the obtained pulverized alumina fiber.
「実験例3」
プレス圧力、加圧速度、最高圧力での保持時間等のプレス条件を変えたこと以外は実験例1と同様にアルミナ質繊維粉砕品を製造した。得られたアルミナ質繊維粉砕品の物性を表3に示す。
"Experiment 3"
An alumina fiber pulverized product was produced in the same manner as in Experimental Example 1 except that the pressing conditions such as the pressing pressure, the pressing speed, and the holding time at the maximum pressure were changed. Table 3 shows the physical properties of the obtained pulverized alumina fiber.
表3より、プレス圧力、加圧速度、最高圧力での保持時間を適正化することにより、平均繊維長が制御され、標準偏差が小さく、変動係数の小さいアルミナ質繊維粉砕品が得られることが分かる。 From Table 3, by optimizing the holding time at the pressing pressure, pressing speed, and maximum pressure, it is possible to obtain an alumina fiber pulverized product in which the average fiber length is controlled, the standard deviation is small, and the coefficient of variation is small. I understand.
「実験例4」
実験例1で得られたアルミナ質繊維粉砕品と、市販されているネッキングのないアルミナ質繊維(電気化学工業社製商品名「デンカアルセンB80L」アルミナ80質量%、シリカ20質量%)を実験No.1−1の条件にて粉砕した繊維を各々下記に示す配合割合で各材料を計量し、ビニール袋中でドライブレンドした後、ロール表面温度100℃のミキシングロールを用いて5分間混練を行い、冷却粉砕した。粉砕品をトランスファー成型機(温度175℃、トランスファー出力5.1MPa、成型時間90秒)で直径28mm、厚さ3mmの円板状のエポキシ樹脂硬化体を製造し、熱伝導率測定装置(アグネ社製「ART−TC−1型」)を用い測定環境温度23℃で温度傾斜法にて熱伝導率を測定した。その結果を表4に示す。
"Experimental example 4"
Experiment No. 1 was obtained by pulverizing the alumina fiber obtained in Experimental Example 1 and a commercially available alumina fiber without necking (trade name “Denka Arsen B80L” alumina 80 mass%, silica 20 mass%, manufactured by Denki Kagaku Kogyo Co., Ltd.). . Each material was weighed at the following mixing ratios of the fibers pulverized under the conditions of 1-1, dry blended in a plastic bag, and then kneaded for 5 minutes using a mixing roll having a roll surface temperature of 100 ° C. Cooled and crushed. A crushed product is produced by a transfer molding machine (temperature: 175 ° C., transfer output: 5.1 MPa, molding time: 90 seconds) to produce a disk-shaped epoxy resin cured body having a diameter of 28 mm and a thickness of 3 mm. The thermal conductivity was measured by a temperature gradient method at a measurement environmental temperature of 23 ° C. using “ART-TC-1 type” manufactured by the manufacturer. The results are shown in Table 4.
[使用材料と配合割合]
アルミナ繊維粉砕品:214.7g
アミノ系シランカップリング剤:1.2g(信越化学工業社製商品名「KBE−903」)
エポキシ樹脂:37.2g(ジャパンエポキシレジン社製商品名「YX−4000H」)
エポキシ樹脂:17.1g(日本化薬社製商品名「ECON−1020」)
硬化剤:28.3g(群栄化学工業社製商品名「PSM−4261」)
ワックス:1.9g(クラリアントジャパン社製商品名「WAX−E」)
硬化促進剤:0.7g(北興化学工業社製商品名「TPP」)
[Use materials and blending ratio]
Alumina fiber pulverized product: 214.7 g
Amino-based silane coupling agent: 1.2 g (trade name “KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.)
Epoxy resin: 37.2 g (trade name “YX-4000H” manufactured by Japan Epoxy Resin Co., Ltd.)
Epoxy resin: 17.1 g (trade name “ECON-1020” manufactured by Nippon Kayaku Co., Ltd.)
Curing agent: 28.3 g (trade name “PSM-4261” manufactured by Gunei Chemical Industry Co., Ltd.)
Wax: 1.9 g (trade name “WAX-E” manufactured by Clariant Japan)
Curing accelerator: 0.7 g (trade name “TPP” manufactured by Hokuko Chemical Co., Ltd.)
表4より、本発明のアルミナ質繊維粉砕品を使用することにより、熱伝導率の高い樹脂組成物が得られることが分かる。 From Table 4, it can be seen that a resin composition having high thermal conductivity can be obtained by using the pulverized alumina fiber of the present invention.
本発明のネッキングを有したアルミナ質繊維集合体を用いて粉砕することで得られるアルミナ質繊維粉砕品は、例えば、高熱伝導用の樹脂組成物等のフィラーとして広範に使用することが出来る。 The alumina fiber pulverized product obtained by pulverizing using the alumina fiber aggregate having the necking of the present invention can be widely used as a filler for, for example, a resin composition for high thermal conductivity.
1:太い部分
2:ネッキング部
3:ネッキング間隔
1: Thick part 2: Necking part 3: Necking interval
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010281980A JP5749485B2 (en) | 2010-12-17 | 2010-12-17 | Alumina fiber pulverized product, method for producing the same, and resin composition using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010281980A JP5749485B2 (en) | 2010-12-17 | 2010-12-17 | Alumina fiber pulverized product, method for producing the same, and resin composition using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012127039A JP2012127039A (en) | 2012-07-05 |
JP5749485B2 true JP5749485B2 (en) | 2015-07-15 |
Family
ID=46644375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010281980A Active JP5749485B2 (en) | 2010-12-17 | 2010-12-17 | Alumina fiber pulverized product, method for producing the same, and resin composition using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5749485B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160053090A1 (en) | 2013-03-12 | 2016-02-25 | Japan Vilene Company, Ltd. | Inorganic nanofiber and method for manufacturing same |
JP6076225B2 (en) * | 2013-09-18 | 2017-02-08 | 日本バイリーン株式会社 | Filler-dispersed organic resin composite |
JP6336262B2 (en) * | 2013-10-29 | 2018-06-06 | 日本バイリーン株式会社 | Filler-dispersed organic resin composite |
EP2857407B1 (en) | 2013-10-03 | 2017-02-01 | Shin-Etsu Chemical Co., Ltd. | Organosilicon compound, making method, adhesive composition, and article |
JP6381109B2 (en) * | 2014-03-25 | 2018-08-29 | 東レ・デュポン株式会社 | Aromatic polyamide short fiber for rubber reinforcement |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62231010A (en) * | 1986-03-28 | 1987-10-09 | Ibiden Co Ltd | Fiber having knotlike bulge and production thereof |
US8273816B2 (en) * | 2007-10-11 | 2012-09-25 | Denki Kagaku Kogyo Kabushiki Kaisha | Alumina fiber aggregate, process for producing the same, and use thereof |
-
2010
- 2010-12-17 JP JP2010281980A patent/JP5749485B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012127039A (en) | 2012-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5749485B2 (en) | Alumina fiber pulverized product, method for producing the same, and resin composition using the same | |
Cheewawuttipong et al. | Thermal and mechanical properties of polypropylene/boron nitride composites | |
Martone et al. | Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites | |
CN110229367A (en) | A kind of anisotropy insulating heat-conductive sheet material and preparation method thereof | |
Mao et al. | Gelcasting of alumina using epoxy resin as a gelling agent | |
US11377764B2 (en) | Alumina fiber aggregate | |
JP5658294B2 (en) | Refractory ceramic composite and method for producing the same | |
KR20160002754A (en) | Inorganic nanofiber and method for manufacturing same | |
JP5183639B2 (en) | Alumina fiber assembly, production method and use thereof | |
TW201623379A (en) | Method of producing heat conductive sheet | |
Lemos et al. | 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties | |
Fan et al. | Highly strain tolerant and tough ceramic composite by incorporation of graphene | |
Chen et al. | Electrospun mullite fibers from the sol–gel precursor | |
JP2018167588A (en) | Reinforcing fiber mat | |
CN102911479B (en) | High heat conduction epoxy resin composition applicable to fully wrapped devices and preparation method | |
JPWO2015182768A1 (en) | Vacuum insulation | |
CN109400011A (en) | A kind of nanometer heat insulation material material and its mixed method, nanometer heat insulation material and preparation method thereof | |
JP6336262B2 (en) | Filler-dispersed organic resin composite | |
Zhong et al. | Synthesis of centimeter-scale monolithic SiC nanofoams and pore size effect on mechanical properties | |
Hu et al. | Study on the gel casting of fused silica glass | |
JP6228461B2 (en) | Inorganic fiber and method for producing the same | |
CN106674886A (en) | Enhanced antistatic polyetheretherketone composite material and preparation method thereof | |
CN113416510B (en) | Epoxy resin pouring sealant and preparation method thereof | |
RU2017127988A (en) | PRODUCTION OF COMPOSITE MATERIALS WITH A CERAMIC MATRIX CONTAINING CARBON NANOTUBES AND GRAPHENE | |
US20190270274A1 (en) | Compositions incorporating silica fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150514 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5749485 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |