Nothing Special   »   [go: up one dir, main page]

JP5691457B2 - Gas barrier film and method for producing gas barrier film - Google Patents

Gas barrier film and method for producing gas barrier film Download PDF

Info

Publication number
JP5691457B2
JP5691457B2 JP2010271235A JP2010271235A JP5691457B2 JP 5691457 B2 JP5691457 B2 JP 5691457B2 JP 2010271235 A JP2010271235 A JP 2010271235A JP 2010271235 A JP2010271235 A JP 2010271235A JP 5691457 B2 JP5691457 B2 JP 5691457B2
Authority
JP
Japan
Prior art keywords
gas barrier
barrier film
film
layer
polysilazane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010271235A
Other languages
Japanese (ja)
Other versions
JP2012121149A (en
Inventor
千代子 竹村
千代子 竹村
本田 誠
本田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010271235A priority Critical patent/JP5691457B2/en
Publication of JP2012121149A publication Critical patent/JP2012121149A/en
Application granted granted Critical
Publication of JP5691457B2 publication Critical patent/JP5691457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、主に有機電子デバイス等のパッケージ、または有機エレクトロルミネッセンス素子や太陽電池、液晶等のプラスチック基板といったディスプレイ材料に用いられるガスバリア性フィルムとその製造方法に関するものである。 The present invention relates primarily to organic electronic devices, such as a package or an organic electroluminescence element or solar cell, the gas barrier film used in the display material such a plastic substrate such as a liquid crystal and its manufacturing how.

従来、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を作製したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。   Conventionally, a gas barrier film in which a metal oxide thin film such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging goods and foods that require blocking of various gases such as water vapor and oxygen. It is widely used in packaging applications to prevent the alteration of industrial products and pharmaceuticals.

また、包装用途以外にも液晶表示素子、太陽電池、有機エレクトロルミネッセンス(EL)基板等で使用されている。   In addition to packaging applications, it is used in liquid crystal display elements, solar cells, organic electroluminescence (EL) substrates, and the like.

この様なガスバリア性フィルムを作製する方法として、テトラエトキシシラン(TEOS)に代表される有機珪素化合物を用いて、減圧下の酸素プラズマで酸化しながら基板上に成膜する化学体積法(プラズマCVD)や半導体レーザーを用いて金属Siを蒸発させ酸素の存在下で基板上に堆積するスパッタ法が知られている。   As a method for producing such a gas barrier film, a chemical volume method (plasma CVD) is used in which an organic silicon compound typified by tetraethoxysilane (TEOS) is used to form a film on a substrate while being oxidized with oxygen plasma under reduced pressure. And a sputtering method in which metal Si is evaporated using a semiconductor laser and deposited on a substrate in the presence of oxygen.

これらの方法は、正確な組成の薄膜を基板上に作製できるため、SiOをはじめとする金属酸化物薄膜の作製に好ましく使われてきたが、減圧下での成膜となるため、減圧及び大気開放に時間を要すること、連続生産が難しいこと、設備が大型化することなど著しく生産性が悪いという問題点があった。 These methods have been preferably used for the production of metal oxide thin films including SiO 2 because a thin film having an accurate composition can be produced on the substrate. There were problems such as requiring time to open to the atmosphere, difficulty in continuous production, and significant increase in equipment size.

かかる問題を解決するため、生産性の向上を目的に、珪素含有化合物を塗布し、その塗膜を改質することで酸化シリコン薄膜を作製する方法、及び化学気相成長法(CVD法)でも、大気圧下でプラズマを発生し大気圧下で成膜する試みが行われており、ガスバリア性フィルムにおいても検討されている。   In order to solve such problems, a method of producing a silicon oxide thin film by applying a silicon-containing compound and modifying the coating film for the purpose of improving productivity, and a chemical vapor deposition method (CVD method) Attempts have been made to generate plasma at atmospheric pressure to form a film at atmospheric pressure, and gas barrier films have been studied.

一般的に溶液プロセスで作製可能な酸化ケイ素膜としては、アルコキシド化合物を原料として、ゾル−ゲル法と呼ばれる方法で作製する技術が知られている。   As a silicon oxide film that can be generally produced by a solution process, a technique of producing an alkoxide compound as a raw material by a method called a sol-gel method is known.

このゾル−ゲル法は一般的に高温に加熱する必要があり、更に脱水縮合反応の過程で大きな体積収縮が起こり、膜中に多数の欠陥が生じやすいという問題がある。   This sol-gel method generally requires heating to a high temperature, and further, there is a problem that a large volume shrinkage occurs in the course of the dehydration condensation reaction, and many defects are likely to occur in the film.

これを防ぐために原料溶液に酸化物の作製に直接関与しない有機物などを混合する手法なども見いだされてはいるが、これらの有機物が膜中に残存することによって膜全体のバリア性の低下が懸念されている。   In order to prevent this, methods have been found to mix organic substances that are not directly involved in the production of oxides into the raw material solution. However, these organic substances remain in the film, and there is concern that the barrier properties of the entire film may be reduced. Has been.

これらのことから、ゾル−ゲル法で作製する酸化膜をそのままフレキシブル電子デバイスの保護膜として用いるのは困難であった。   For these reasons, it has been difficult to directly use an oxide film produced by a sol-gel method as a protective film of a flexible electronic device.

その他の方法としては原料にシラザン構造(Si−N)を基本構造とするシラザン化合物を用いて酸化ケイ素を作製することが提案されており、この場合の反応は脱水縮重合ではなく窒素から酸素への直接的な置換反応であるため、反応前後の質量収率が80%から100%以上と大きく、体積収縮による膜中欠陥が少ない緻密な膜が得られることが知られている。   As another method, it has been proposed to produce silicon oxide using a silazane compound having a basic structure of silazane structure (Si-N) as a raw material. In this case, the reaction is not from dehydration condensation polymerization but from nitrogen to oxygen. Since this is a direct substitution reaction, it is known that a dense film having a mass yield before and after the reaction of 80% to 100% or more and few defects in the film due to volume shrinkage can be obtained.

しかしながら、シラザン化合物の置換反応による酸化シリコン薄膜の作製には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板に適応することは不可能である。   However, the production of a silicon oxide thin film by a substitution reaction of a silazane compound requires a high temperature of 450 ° C. or higher and cannot be applied to a flexible substrate such as plastic.

昨今では、シラザン化合物内の原子間結合力より大きい真空紫外光(VUV光)と呼ばれる100nm〜200nmの光エネルギーを用いて、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化シリコン膜の作製をおこなう方法が提案されている。   In recent years, using optical energy of 100 nm to 200 nm called vacuum ultraviolet light (VUV light) larger than the interatomic bonding force in the silazane compound, the bonds of atoms are directly cut by the action of only photons called photon processes. There has been proposed a method for producing a silicon oxide film at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed.

例えば、ポリシラザンを主成分とする塗布液を塗布し、大気圧下で紫外線により表面処理をする技術が開示されており、アミン系の触媒を含有するポリシラザン膜を湿式法で作製し、波長150nm〜200nmのVUV光を照射することでポリシラザン膜を酸化シリコン薄膜に改質し、バリア層を作製する技術が開示され、更に、酸化シリコン膜の進行を十分にするための波長230nm〜300nmの紫外光(UV光)と同時または交互に照射する方法や水蒸気濃度規定、オゾンの追加導入等の方法が開示されている(例えば、特許文献1参照。)。   For example, a technique is disclosed in which a coating liquid containing polysilazane as a main component is applied and surface treatment is performed with ultraviolet rays under atmospheric pressure. A polysilazane film containing an amine-based catalyst is prepared by a wet method, and a wavelength of 150 nm to Disclosed is a technique for modifying a polysilazane film into a silicon oxide thin film by irradiating 200 nm VUV light to produce a barrier layer, and further, ultraviolet light having a wavelength of 230 nm to 300 nm for sufficient progress of the silicon oxide film. A method of irradiating with (UV light) simultaneously or alternately, a method of regulating the water vapor concentration, an additional introduction of ozone, etc. are disclosed (for example, see Patent Document 1).

しかしながら、この方法では、特に高密度改質膜作製のため、改質エネルギー(例えば真空紫外線照射時間を長くする等)を多量に与えると膜面にヒビ割れが発生しやすいこと、また恐らく低密度の触媒を含むことから、触媒が膜内に残る場合には触媒部分が低密度欠陥になり、改質処理のエネルギーにより触媒が膜内から抜ける場合も、触媒が抜けた部分は空隙を作製すると考えられるため改質後の膜密度向上には限界があり水蒸気透過率として、有機光電変換素子には最低限必要とされる1×10−2g/m・dayを大きく下回る様な、ガスバリア性の実現は困難であった。 However, in this method, particularly for producing a high-density modified film, if a large amount of reforming energy (for example, increasing the duration of irradiation with vacuum ultraviolet rays) is applied, the film surface is likely to crack, and possibly low density. When the catalyst remains in the membrane, the catalyst portion becomes a low density defect, and even when the catalyst escapes from the membrane due to the energy of the reforming process, the portion where the catalyst has escaped creates a void. Therefore, there is a limit to improving the film density after modification, and the water vapor transmission rate is such that the gas barrier is much lower than 1 × 10 −2 g / m 2 · day, which is the minimum required for organic photoelectric conversion elements. Realization of sex was difficult.

更には、恐らく、アミン触媒により加水分解が進行し、膜内に多量のSi−OHが存在するため、水との親和性が高い膜となり水蒸気透過率が高い膜になってしまうと考えられる。   Furthermore, it is considered that hydrolysis proceeds with an amine catalyst and a large amount of Si—OH is present in the film, so that the film has a high affinity for water and has a high water vapor transmission rate.

更に、真空紫外線照射時に酸化ガス(例えば、酸素ガス)を導入し、ポリシラザン結合を効率的に切断した後、更に加熱水蒸気や酸化ガス雰囲気で100℃〜400℃で加熱酸化処理し、その後、更に不活性雰囲気で400℃〜1000℃で焼成する技術が開示されている(例えば、特許文献2参照。)。   Furthermore, an oxidizing gas (for example, oxygen gas) is introduced at the time of irradiation with vacuum ultraviolet rays, the polysilazane bond is efficiently cut, and then further heated and oxidized at 100 ° C. to 400 ° C. in a heated steam or oxidizing gas atmosphere. A technique for firing at 400 ° C. to 1000 ° C. in an inert atmosphere is disclosed (for example, see Patent Document 2).

本発明者らが鋭意検討した結果、ポリシラザンの改質を効率的に進めるには適度な酸化ガスの存在とポリシラザン結合を活性化するための適度な光エネルギーの存在が必要であることが判明した。特にエキシマ光を用いて改質を行う場合、雰囲気の酸素濃度によって膜面へ届くエキシマ光の光量が大きく変化するため、効率的な処理を行うには酸素濃度が高くなりすぎないように制御することが必要である。   As a result of intensive studies by the present inventors, it has been found that the presence of an appropriate oxidizing gas and an appropriate light energy for activating the polysilazane bond are necessary in order to efficiently advance the modification of polysilazane. . Especially when reforming using excimer light, the amount of excimer light reaching the film surface varies greatly depending on the oxygen concentration in the atmosphere, so control is performed so that the oxygen concentration does not become too high for efficient processing. It is necessary.

実際、本発明者らが、実際の生産を加味して数分の処理時間内で検討した結果、高濃度酸化ガスのみの酸化では、1×10−2g/m・dayを大きく下回るレベルの水蒸気透過率のガスバリア性膜を得ることはできなかった。 In fact, as a result of investigations within a processing time of several minutes by the present inventors in consideration of actual production, a level that is significantly lower than 1 × 10 −2 g / m 2 · day when only high-concentration oxidizing gas is oxidized. It was not possible to obtain a gas barrier film having a water vapor transmission rate of 5 μm.

更に、特許文献2では、加熱を併用した後酸化処理や焼成処理が開示されているが、加熱温度が非常に高く、安価な汎用プラスチック基材を用いることは実質不可能であった。   Furthermore, Patent Document 2 discloses post-oxidation treatment and baking treatment using heating together, but it is virtually impossible to use an inexpensive general-purpose plastic substrate having a very high heating temperature.

また、透明基材とバリア層及び透明導電性膜とで構成された透明導電膜付きフィルムをディスプレイ等に用いる技術が開示されている(例えば、特許文献3参照。)。しかし、このフィルムの構成では、本発明者らが求めるバリア性が依然として不十分であり、デバイスとして長期に安定な性能を得ることが困難であった。   Moreover, the technique using the film with a transparent conductive film comprised with the transparent base material, the barrier layer, and the transparent conductive film for a display etc. is disclosed (for example, refer patent document 3). However, with this film configuration, the barrier properties required by the present inventors are still insufficient, and it has been difficult to obtain stable performance over a long period of time as a device.

以上、現在開示されている方法では、フレキシブル電子デバイス用途に適用できる、安価で耐久性に優れ、尚且つ高いガスバリア性を持つガスバリア性膜及びガスバリア性フィルムは製造することが困難であり、それらの問題点の解決が要望されている。   As described above, with the currently disclosed methods, it is difficult to produce a gas barrier film and a gas barrier film that can be applied to flexible electronic device applications, are inexpensive, have excellent durability, and have high gas barrier properties. A solution to the problem is desired.

特表2009−503157号公報Special table 2009-503157 特開2009−76869号公報JP 2009-76869 A 特開2008−41640号公報JP 2008-41640 A

本発明は、上記課題に鑑みなされたものであり、その目的は、生産性が高く、高いガスバリア性能と高い耐久性を達成できるガスバリア膜を有するガスバリア性フィルムと、ガスバリア性フィルムの製造方法を提供することにある。 The present invention has been made in view of the above problems, high productivity, and the gas barrier film having a gas barrier film that can achieve a high gas barrier performance and high durability, a manufacturing how the gas barrier film It is to provide.

本発明の上記目的は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.基材上に少なくとも1層のガスバリア性層を有するガスバリア性フィルムの製造方法において、ポリシラザンを含む溶液を塗布して塗膜を形成する工程と、次いで、得られた塗膜を改質処理する工程と、前記改質処理する工程時に、真空紫外線(VUV)照射する工程とを有し、前記ポリシラザンを含む溶液を塗布して塗膜を形成する工程後であって、前記改質処理する工程前、前記改質処理工程中及び前記改質処理工程後から選ばれる少なくとも1つの時期に、150℃以上、基材のTg温度以下で加熱処理する工程を有することを特徴とするガスバリア性フィルムの製造方法。   1. In the method for producing a gas barrier film having at least one gas barrier layer on a substrate, a step of applying a solution containing polysilazane to form a coating film, and then a step of modifying the resulting coating film And a step of irradiating with vacuum ultraviolet rays (VUV) during the step of modifying, and after the step of applying a solution containing the polysilazane to form a coating film, before the step of modifying A gas barrier film production comprising a step of heat-treating at a temperature of 150 ° C. or higher and a Tg temperature of a substrate or lower at least at one time selected from the reforming step and after the reforming step. Method.

2.前記ポリシラザンが、パーヒドロポリシラザンであることを特徴とする前記1に記載のガスバリア性フィルムの製造方法。   2. 2. The method for producing a gas barrier film as described in 1 above, wherein the polysilazane is perhydropolysilazane.

3.前記塗膜を改質処理する工程における湿度を、露点温度0℃以下の雰囲気に調整することを特徴とする前記1または2に記載のガスバリア性フィルムの製造方法。   3. 3. The method for producing a gas barrier film as described in 1 or 2 above, wherein the humidity in the step of modifying the coating film is adjusted to an atmosphere having a dew point temperature of 0 ° C. or lower.

4.前記ポリシラザンを含む溶液における該ポリシラザンの反応触媒の含有量が、5質量%以下であることを特徴とする前記1から3のいずれか1項に記載のガスバリア性フィルムの製造方法。   4). 4. The method for producing a gas barrier film according to any one of 1 to 3, wherein a content of the reaction catalyst of the polysilazane in the solution containing the polysilazane is 5% by mass or less.

5.前記ポリシラザンを含む溶液が、該ポリシラザンの反応触媒を含まないことを特徴とする前記1から4のいずれか1項に記載のガスバリア性フィルムの製造方法。   5. 5. The method for producing a gas barrier film according to any one of 1 to 4, wherein the solution containing the polysilazane does not contain a reaction catalyst for the polysilazane.

6.前記真空紫外線(VUV)照射する工程時の酸素濃度が、500ppm以上、10000ppm以下であることを特徴とする前記1から5のいずれか1項に記載のガスバリア性フィルムの製造方法。   6). 6. The method for producing a gas barrier film according to any one of 1 to 5, wherein an oxygen concentration at the time of the vacuum ultraviolet ray (VUV) irradiation is 500 ppm or more and 10,000 ppm or less.

7.前記真空紫外線(VUV)照射する工程時は、ポリシラザンを含有する塗膜表面における真空紫外線最大照射強度が、100mW/cm以上、200mW/cm以下であることを特徴とする前記1から6のいずれか1項に記載のガスバリア性フィルムの製造方法。 7). 1 to 6 above, wherein the vacuum ultraviolet ray maximum irradiation intensity on the surface of the coating film containing polysilazane is 100 mW / cm 2 or more and 200 mW / cm 2 or less during the vacuum ultraviolet ray (VUV) irradiation step. The manufacturing method of the gas barrier film of any one of Claims 1.

8.前記改質処理する工程時が、塗膜表面における真空紫外線最大照射強度が100mW/cm未満で真空紫外線(VUV)照射する工程を更に有することを特徴とする前記7に記載のガスバリア性フィルムの製造方法。 8). 8. The gas barrier film according to 7 above, wherein the step of modifying further comprises a step of irradiating a vacuum ultraviolet ray (VUV) with a maximum ultraviolet ray irradiation intensity of less than 100 mW / cm 2 on the coating film surface. Production method.

9.前記ガスバリア性フィルムは、前記基材と前記ガスバリア性層の間に中間層を有し、前記ポリシラザンを含む溶液を該中間層上に塗布することにより塗膜が形成されることを特徴とする前記1から8のいずれか1項に記載のガスバリア性フィルムの製造方法。   9. The gas barrier film has an intermediate layer between the base material and the gas barrier layer, and a coating film is formed by applying a solution containing the polysilazane on the intermediate layer. The method for producing a gas barrier film according to any one of 1 to 8.

10.前記中間層は、前記基材上に紫外線硬化樹脂又は熱硬化性樹脂を硬化させて形成されたことを特徴とする前記9に記載のガスバリア性フィルムの製造方法。   10. 10. The method for producing a gas barrier film according to 9, wherein the intermediate layer is formed by curing an ultraviolet curable resin or a thermosetting resin on the substrate.

11.前記1から10のいずれか1項に記載のガスバリア性フィルムの製造方法により製造されたガスバリア性フィルムであって、下記の評価1〜3においてガスバリア性フィルムの水蒸気透過率(WVTR)が、いずれも1×10 −4 g/m /day未満であることを特徴とするガスバリア性フィルム。
〔評価1:屈曲耐性(60℃、90%RH)の評価〕
あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理を施したガスバリア性フィルムについて、以下に示す方法に従って水蒸気透過率を測定する。
真空蒸着装置を用い、ガスバリア性フィルムの蒸着部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させる。
その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させる。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製する。
得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、金属カルシウムの水分と反応した腐食量からセル内に透過した水分量を計算する。
〔評価2:高温高湿耐性(85℃、90%RH)の評価〕
ガスバリア性フィルムについて、屈曲させず、85℃、90%RHに調整した高温高湿槽内に、100時間連続で保管し、その後、上記評価1と同様にして水蒸気透過率を測定する。
〔評価3:サイクルサーモ耐性の評価〕
ガスバリア性フィルムを、JIS C8938に準拠した条件で温湿度サイクル試験を行った後、上記評価1と同様にして水蒸気透過率を測定する。
11. 11. A gas barrier film produced by the method for producing a gas barrier film according to any one of 1 to 10, wherein the water vapor permeability (WVTR) of the gas barrier film in the following evaluations 1 to 3 is A gas barrier film characterized by being less than 1 × 10 −4 g / m 2 / day .
[Evaluation 1: Evaluation of bending resistance (60 ° C., 90% RH)]
The water vapor transmission rate is measured in accordance with the method described below for a gas barrier film that has been subjected to repeated bending 100 times at an angle of 180 degrees in advance so that the curvature has a radius of 10 mm.
Using a vacuum vapor deposition apparatus, metal calcium is vapor-deposited by masking other than the vapor-deposited portion of the gas barrier film (9 locations of 12 mm × 12 mm).
Thereafter, the mask is removed in a vacuum state, and aluminum is vapor deposited from another metal vapor deposition source on the entire surface of one side of the sheet. After sealing with aluminum, the vacuum state is released, and in a dry nitrogen gas atmosphere, quartz glass with a thickness of 0.2 mm is made to face the aluminum sealing side via an ultraviolet curing resin for sealing, and then irradiated with ultraviolet rays. Thus, an evaluation cell is produced.
The obtained sample with both sides sealed is stored under high temperature and high humidity of 60 ° C. and 90% RH, and the amount of moisture permeated into the cell is calculated from the amount of corrosion that has reacted with the moisture of metallic calcium.
[Evaluation 2: Evaluation of high temperature and high humidity resistance (85 ° C., 90% RH)]
The gas barrier film is stored for 100 hours continuously in a high-temperature and high-humidity tank adjusted to 85 ° C. and 90% RH without being bent, and thereafter, the water vapor transmission rate is measured in the same manner as in Evaluation 1 above.
[Evaluation 3: Evaluation of cycle thermo resistance]
The gas barrier film is subjected to a temperature and humidity cycle test under conditions in accordance with JIS C8938, and then the water vapor transmission rate is measured in the same manner as in the evaluation 1.

本発明により、生産性が高く、高いガスバリア性能と高い耐久性を達成できるガスバリア膜を有するガスバリア性フィルム、ガスバリア性フィルムの製造方法を提供することができた。 The present invention, high productivity, a gas barrier film having a gas barrier film that can achieve a high gas barrier performance and high durability, it is possible to provide a manufacturing how the gas barrier film.

バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell which consists of a bulk heterojunction type organic photoelectric conversion element. タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子を有する太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell which has an organic photoelectric conversion element provided with a tandem type bulk heterojunction layer. タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子を有する太陽電池の一例を示す断面図である。It is sectional drawing which shows an example of the solar cell which has an organic photoelectric conversion element provided with a tandem type bulk heterojunction layer.

以下、本発明とその構成要素、及び本発明を実施するための形態について詳細に説明する。   Hereinafter, the present invention, its components, and embodiments for carrying out the present invention will be described in detail.

《ガスバリア性フィルムの製造方法及びガスバリア性フィルム》
本発明のガスバリア性フィルムの製造方法及び該製造方法により製造された本発明のガスバリア性フィルムについて説明する。
<< Production Method of Gas Barrier Film and Gas Barrier Film >>
The manufacturing method of the gas barrier film of the present invention and the gas barrier film of the present invention manufactured by the manufacturing method will be described.

本発明のガスバリア性フィルムの製造方法は、基材上に少なくとも1層のガスバリア性層を有するガスバリア性フィルムの製造方法において、ポリシラザンを含む溶液を塗布して塗膜を形成する工程と、次いで、得られた塗膜を改質処理する工程と、前記改質処理する工程時に、真空紫外線(VUV)照射する工程とを有し、前記ポリシラザンを含む溶液を塗布して塗膜を形成する工程後であって、前記改質処理する工程前、前記改質処理工程中及び前記改質処理工程後から選ばれる少なくとも1つの時期に、150℃以上、基材のTg温度以下で加熱処理する工程を有することを特徴とする。   The method for producing a gas barrier film of the present invention comprises a step of applying a solution containing polysilazane to form a coating film in a method for producing a gas barrier film having at least one gas barrier layer on a substrate, After the step of modifying the obtained coating film and the step of irradiating with vacuum ultraviolet rays (VUV) during the step of modifying treatment, and forming the coating film by applying a solution containing the polysilazane And at least one time selected before the reforming process, during the reforming process process and after the reforming process process, and heat-treating at a temperature not lower than 150 ° C. and not higher than the Tg temperature of the substrate. It is characterized by having.

このような構成により、生産性が高く、高いガスバリア性能と高い耐久性、特には、屈曲耐性、高温高湿耐性(以下、サーモ耐性ともいう)を有するガスバリア性フィルムの製造方法を提供するものである。   With such a configuration, a method for producing a gas barrier film having high productivity, high gas barrier performance and high durability, in particular, bending resistance, high temperature and high humidity resistance (hereinafter also referred to as thermo resistance) is provided. is there.

本発明は、ポリシラザン塗膜を真空紫外線(VUV)照射して改質処理することと、150℃以上の高温で加熱処理することの組み合わせにより、蒸着法やプラズマCVD法、イオンプレーティング法等で形成したバリアでは得られなかった良好な屈曲耐性、サーモ耐性が得られる。これは、真空紫外線(VUV)照射して改質処理したバリア膜の組成が必ずしも単一ではなく、更なるエネルギーの追加によって膜中の分子構造や原子組成が変化する余地があったことが起因していると考えられる。高温加熱により例えば脱水縮合反応を促進してやることで、高温加熱処理との組み合わせがない場合に比べ、バリア性が向上するだけでなく、バリア性能の安定性までもが向上する。すなわち、本願の製造方法により、優れたバリア性フィルムを製造することができ、このバリア性フィルムを封止に用いたデバイスの寿命も向上する。   In the present invention, a combination of a polysilazane coating film modified by irradiation with vacuum ultraviolet rays (VUV) and a heat treatment at a high temperature of 150 ° C. or higher can be used in an evaporation method, a plasma CVD method, an ion plating method, etc. Good bending resistance and thermo resistance not obtained with the formed barrier can be obtained. This is because the barrier film modified by irradiation with vacuum ultraviolet rays (VUV) does not necessarily have a single composition, and there is room for the molecular structure and atomic composition in the film to change due to the addition of additional energy. it seems to do. By promoting the dehydration condensation reaction by high-temperature heating, for example, not only the barrier property is improved but also the stability of the barrier performance is improved as compared with the case where there is no combination with high-temperature heat treatment. That is, an excellent barrier film can be manufactured by the manufacturing method of the present application, and the lifetime of a device using the barrier film for sealing is also improved.

このように、高温加熱との組み合わせによる効果は、ポリシラザンを含む塗膜に真空紫外線(VUV)照射して改質処理したバリア膜に特有の現象であり、前述したような気相法で形成したバリア膜では、バリア性、安定性、デバイス寿命の向上効果は見られない。   Thus, the effect of the combination with high temperature heating is a phenomenon peculiar to the barrier film modified by irradiating the coating film containing polysilazane with vacuum ultraviolet (VUV), and is formed by the vapor phase method as described above. In the barrier film, the effect of improving the barrier property, stability and device life is not seen.

また、バリア層に隣接して導電膜を形成する場合(例えば、前述の特許文献3に記載の方法)、導電性向上のためには高温焼成することが好ましいが、実際には450℃以上のような樹脂基材が耐えられない範囲以上の高温処理でないと効果がなく現実的ではない。しかし、本発明の塗布方式で形成したガスバリア層上に設けた導電膜の場合では、150℃以上、300℃以下の加熱処理であっても、デバイスの寿命が向上する。この特異的な現象は、恐らく低温で形成した塗布型バリア層は更なるエネルギーを与えることで構造変化の余地があるため、この上に導電膜を形成した後、加熱処理を加えることで、たとえ150℃程度の加熱処理であっても、例えば、バリア層と導電膜との密着性が向上するなどして、結果的にデバイスの寿命が向上するのではないかと考えている。また、導電膜形成などのデバイス形成プロセス時における加熱処理が、本発明ではバリア層に対する加熱を兼ねることができるため、工程を簡略化できる上で好ましい。   In addition, when a conductive film is formed adjacent to the barrier layer (for example, the method described in Patent Document 3 described above), it is preferable to perform high-temperature baking for improving conductivity, but in practice, the temperature is 450 ° C. or higher. Such a resin base material is not practical because it is not effective unless it is at a temperature higher than the range that cannot be tolerated. However, in the case of the conductive film provided on the gas barrier layer formed by the coating method of the present invention, the lifetime of the device is improved even by heat treatment at 150 ° C. or higher and 300 ° C. or lower. This peculiar phenomenon is probably because the coating-type barrier layer formed at a low temperature has room for structural change by giving more energy. Even if the heat treatment is performed at about 150 ° C., for example, the adhesion between the barrier layer and the conductive film is improved, and as a result, the lifetime of the device may be improved. In addition, heat treatment during a device formation process such as conductive film formation is also preferable in that the process can be simplified because the present invention can also serve as heating for the barrier layer.

本発明のガスバリア性フィルムの製造方法では、基材の両面にガスバリア層を配置させるため、基材の両面にポリシラザンを含む溶液を塗布して塗膜形成し、改質処理工程を行うことが好ましい。例えば、フレキシブルディスプレイ用途でガスバリア性フィルムを用いる場合、アレイ作製工程でプロセス温度が200℃を超える場合がある。両面にガスバリア性層を形成することにより、高温高湿の過酷な条件下での基材フィルム自身の吸脱湿による寸法変化が抑制され、ガスバリア性層へのストレスが分散軽減し、デバイスの耐久性の向上に寄与する。このような観点からも、ガラス転移点が150℃以上の耐熱性材料を基材として用いられる。すなわち、ポリイミドやポリエーテルイミドに代表される耐熱性樹脂は非結晶性のため、結晶性のポリエチレンテレフタレートやポリエチレンナフタレートと比較して吸水率は大きな値となり、湿度による基材の寸法変化がより大きくなってしまう。耐熱性材料を基材として用いたとき、さらには、基材の表裏側両面にガスバリア性層を設けたとき、高温及び高湿の両方での基材の寸法変化を抑制でき、しいてはバリア性能に寄与する。さらには、高耐熱基材に加えて、本発明に係る中間層として熱硬化性樹脂を用いることも好ましい。   In the method for producing a gas barrier film of the present invention, in order to dispose a gas barrier layer on both surfaces of the substrate, it is preferable to apply a solution containing polysilazane on both surfaces of the substrate to form a coating film, and to perform a modification treatment step. . For example, when a gas barrier film is used for flexible display applications, the process temperature may exceed 200 ° C. in the array manufacturing process. By forming gas barrier layers on both sides, dimensional changes due to moisture absorption and desorption of the base film itself under severe conditions of high temperature and high humidity are suppressed, and stress on the gas barrier layer is reduced and the device durability is improved. Contributes to the improvement of sex. Also from such a viewpoint, a heat-resistant material having a glass transition point of 150 ° C. or higher is used as a base material. In other words, heat-resistant resins represented by polyimide and polyetherimide are non-crystalline, so the water absorption is larger than crystalline polyethylene terephthalate and polyethylene naphthalate, and the dimensional change of the substrate due to humidity is more It gets bigger. When a heat-resistant material is used as the base material, and further, when a gas barrier layer is provided on both the front and back sides of the base material, the dimensional change of the base material at both high temperature and high humidity can be suppressed, and the barrier Contributes to performance. Furthermore, in addition to the high heat-resistant substrate, it is also preferable to use a thermosetting resin as the intermediate layer according to the present invention.

また、本発明でいうガスバリア性とは、JIS K 7129−1992に準拠した方法で測定された水蒸気透過度(60±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下であり、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10−3ml/m・24h・atm以下(1atmとは、1.01325×10Paである)であると定義する。 The gas barrier property referred to in the present invention is a water vapor permeability (60 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method in accordance with JIS K 7129-1992 is 1 × 10. −3 g / (m 2 · 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 ml / m 2 · 24 h · atm or less (1 atm is 1.01325 × 10 5 Pa).

尚、ガスバリア性層(単に、ガスバリア層、バリア層、バリア膜ともいう)は、単層(1塗布で作製可能な層)でも複数の同様な層を積層してもよい。複数の層を設けることで、更にガスバリア性を向上させることができる点でより好ましい。また、基材の片面のみにガスバリア層を設けてもよいが、基材を挟んで両面に同様のガスバリア層を設けると、基材変形が抑えられ、デバイス作製プロセス耐性も向上片面の場合に比べてバリア性も向上する点で、より好ましい。   Note that the gas barrier layer (also simply referred to as a gas barrier layer, a barrier layer, or a barrier film) may be a single layer (a layer that can be formed by one application) or a plurality of similar layers. By providing a plurality of layers, it is more preferable in that the gas barrier property can be further improved. In addition, a gas barrier layer may be provided only on one side of the base material, but if a similar gas barrier layer is provided on both sides of the base material, deformation of the base material is suppressed, and the device fabrication process resistance is also improved compared to the case of a single side. In view of improving barrier properties, it is more preferable.

パーヒドロポリシラザンを含む溶液を塗布して塗膜を形成する工程後から該塗膜を改質処理する工程については、後に詳細に説明する。   The step of modifying the coating after the step of forming a coating by applying a solution containing perhydropolysilazane will be described in detail later.

〔ポリシラザンを含有する塗膜の低湿化処理〕
従来技術では、ポリシラザンの加水分解及び脱水縮合反応をいかに進行させるかが主眼であったのに対し、本発明の好ましい態様では真空紫外線(VUV)照射による改質処理前に、ポリシラザンの加水分解反応をいかに起こさないかを主眼に置いた点が全く異なる。
[Low-humidity treatment of paint film containing polysilazane]
In the prior art, the main point was how to proceed with the hydrolysis and dehydration condensation reaction of polysilazane. In the preferred embodiment of the present invention, however, the hydrolysis reaction of polysilazane prior to the modification treatment by vacuum ultraviolet (VUV) irradiation. The point that focused on how to not cause is completely different.

本発明者らが鋭意検討した結果、改質処理前に加水分解反応が進行し、膜内に多量のSi−OHを含む塗膜をVUV光等で改質処理しても、経時でガスバリア性が劣化することが分かった。   As a result of intensive studies by the present inventors, the hydrolysis reaction proceeds before the reforming treatment, and even if the coating film containing a large amount of Si—OH in the film is reformed with VUV light or the like, the gas barrier property is increased over time. Was found to deteriorate.

また、基材(支持体ともいう)をガラスからプラスチックにした場合、この傾向が更に顕著になることも分かった。   It has also been found that this tendency becomes more prominent when the substrate (also referred to as a support) is made of glass into plastic.

恐らく、膜内に多量に含まれるSi−OH基によって水蒸気との親和性が高まる結果、ガスバリア性が劣化すると推定している。   It is presumed that the gas barrier property deteriorates as a result of the increased affinity with water vapor due to the Si—OH groups contained in a large amount in the film.

即ち、本発明の好ましい態様によれば改質処理を施す際の塗膜内に存在するSi−OH基をなるべく排除することが重要であり、改質処理前に塗膜内の水分量を減らすことで、Si−OHの生成を抑制できる。   That is, according to a preferred embodiment of the present invention, it is important to eliminate as much as possible Si-OH groups present in the coating film during the modification treatment, and the water content in the coating film is reduced before the modification treatment. Thereby, the production | generation of Si-OH can be suppressed.

ポリシラザンを含有する塗布液及び塗膜を一旦、湿度の高い状態に晒してしまうと、その塗布液や塗膜から脱水するのは困難なこと、更には加水分解反応が進行をはじめてしまうことから、塗布液の調整段階から改質処理が終わるまでの間を露点10℃(25℃39%RH)以下の雰囲気、更に好ましくは露点8℃(25℃10%RH)以下の雰囲気で保管若しくは取り扱うことで膜内のSi−OH生成を抑制することが可能となる。より好ましくは露点−31度(25℃1%RH)以下である。また、薄膜が形成されると塗膜体積あたりの表面積が増えて水蒸気の影響が大きくなる事から、特に、ポリシラザン含有溶液塗布からVUV光照射による改質処理までの間は雰囲気湿度の制御が重要である。   Once the coating liquid and coating film containing polysilazane are exposed to a high humidity state, it is difficult to dehydrate from the coating liquid and coating film, and furthermore, the hydrolysis reaction starts to proceed, Storage or handling in an atmosphere with a dew point of 10 ° C. (25 ° C., 39% RH) or less, more preferably an atmosphere with a dew point of 8 ° C. (25 ° C., 10% RH) or less from the coating solution adjustment stage to the end of the modification treatment This makes it possible to suppress the formation of Si—OH in the film. More preferably, the dew point is −31 degrees (25 ° C., 1% RH) or less. In addition, when the thin film is formed, the surface area per volume of the coating film increases and the influence of water vapor increases, so it is particularly important to control the atmospheric humidity between the application of the polysilazane-containing solution and the modification treatment by VUV light irradiation. It is.

尚、露点温度とは雰囲気中の水分量を表す指標であり、露点温度とは、水蒸気を含む空気を冷却したとき、凝結が始まる温度をいう。   The dew point temperature is an index representing the amount of moisture in the atmosphere, and the dew point temperature is a temperature at which condensation starts when air containing water vapor is cooled.

露点温度計により直接測定を行うか、気温と相対湿度から水蒸気圧を求め、その水蒸気圧を飽和水蒸気圧とする温度を求めることにより得ることができる。相対湿度が100%の場合は現在の温度がそのまま露点温度にある。   It can be obtained by measuring directly with a dew point thermometer, or by obtaining the water vapor pressure from the temperature and relative humidity and obtaining the temperature at which the water vapor pressure is the saturated water vapor pressure. When the relative humidity is 100%, the current temperature is directly at the dew point temperature.

〔ポリシラザンを含有する塗布液に含有される反応触媒の濃度〕
本発明に係るポリシラザンを含有する溶液(塗布液とも云う)中には、必要に応じて、反応触媒が、ポリシラザンの質量に対して5質量%以下の範囲で含有されることが好ましい。
[Concentration of reaction catalyst contained in coating solution containing polysilazane]
In the solution containing polysilazane according to the present invention (also referred to as coating solution), the reaction catalyst is preferably contained in a range of 5% by mass or less with respect to the mass of polysilazane, if necessary.

尚、ポリシラザンを含有する溶液(塗布液)の塗布時の調湿度とも密接な関係が有るが、加水分解・脱水縮合を適切に促進するためには、反応触媒の添加量をポリシラザンの質量に対して5質量%以下に含有するように調整することにより、Si−OH基の生成速度の大幅な変化を防ぎ、過剰なSi−OH基により経時変化が大きな膜になることを効果的に防止することができる。   Although there is a close relationship with the humidity control during application of a solution containing polysilazane (coating solution), the amount of reaction catalyst added relative to the mass of polysilazane is appropriate in order to appropriately promote hydrolysis and dehydration condensation. By adjusting the content to 5% by mass or less, a significant change in the generation rate of Si—OH groups can be prevented, and an excessive Si—OH group can effectively prevent the film from changing with time. be able to.

また、真空紫外線(VUV)照射の様な分子結合を切断するのに十分なエネルギーを与えた場合、特にアミン系触媒は分解、蒸発してしまうことがあり、触媒の分解、蒸発が起こると改質膜内に不純物や空隙が含まれることになり、バリア性は劣化する等の問題点が起こる場合もある。   In addition, when sufficient energy is applied to break molecular bonds such as vacuum ultraviolet (VUV) irradiation, amine-based catalysts may decompose and evaporate. Impurities and voids are included in the material film, which may cause problems such as deterioration of barrier properties.

そのような観点から、本発明では、触媒による過剰なシラノール作製、及び膜密度の低下、膜欠陥の増大を避けるため、ポリシラザンに対する反応触媒の含有量を5質量%以下に調整することが好ましいが、更に好ましくは、Si−OH生成を抑制する観点から、ポリシラザンを含有する塗布液は、反応触媒を含有しない(反応触媒を添加しないともいう)ことが好ましい。   From such a viewpoint, in the present invention, it is preferable to adjust the content of the reaction catalyst with respect to polysilazane to 5% by mass or less in order to avoid excessive silanol production by the catalyst, decrease in film density, and increase in film defects. More preferably, from the viewpoint of suppressing the generation of Si—OH, the coating liquid containing polysilazane preferably contains no reaction catalyst (also referred to as no reaction catalyst added).

ここで、ポリシラザンを含有する塗布液が反応触媒を含有しないとは、塗布液中の反応触媒の含有量が0質量%〜0.0001質量%の範囲の場合を示す。   Here, that the coating liquid containing polysilazane does not contain a reaction catalyst means that the content of the reaction catalyst in the coating liquid is in the range of 0% by mass to 0.0001% by mass.

〔真空紫外線(VUV)を用いたポリシラザンを含有する塗膜の改質処理〕
本発明に係るガスバリア層は、ポリシラザンを含有する溶液を基材上に塗布した後、ポリシラザンを含む塗膜に真空紫外線(VUV)を照射する方法で改質処理される。
[Modification treatment of coating film containing polysilazane using vacuum ultraviolet ray (VUV)]
The gas barrier layer according to the present invention is modified by a method of irradiating a coating film containing polysilazane with vacuum ultraviolet rays (VUV) after coating a solution containing polysilazane on a substrate.

この真空紫外線(VUV光)照射により、ポリシラザンの分子結合を切断し、また膜内または雰囲気内に微量に存在する酸素でも効率的にオゾンまたは活性酸素に変換することが可能であり、塗膜のセラミックス化(シリカ改質)が促進され、また得られるセラミックス膜が一層緻密になる。   By this vacuum ultraviolet ray (VUV light) irradiation, the molecular bond of polysilazane is broken, and even a small amount of oxygen in the film or atmosphere can be efficiently converted into ozone or active oxygen. Ceramicization (silica modification) is promoted, and the resulting ceramic film becomes denser.

本発明に係る真空紫外線(VUV)照射は、ポリシラザンを含有する塗膜の作製後であればいずれの時点で実施しても有効である。   Irradiation with vacuum ultraviolet rays (VUV) according to the present invention is effective at any time point as long as it is after the production of a coating film containing polysilazane.

本発明に係る真空紫外線照射には、具体的には100nm〜200nmの真空紫外線(VUV光)が用いられる。   Specifically, vacuum ultraviolet radiation (VUV light) of 100 nm to 200 nm is used for the vacuum ultraviolet irradiation according to the present invention.

真空紫外線の照射は、照射される塗膜を担持している基材がダメージを受けない範囲で照射強度または照射時間を設定する。   In the irradiation with vacuum ultraviolet rays, the irradiation intensity or irradiation time is set within a range in which the substrate carrying the coating film to be irradiated is not damaged.

基材としてプラスチックフィルムを用いた場合を例にとると、基材(支持体)表面の真空紫外線最大照射強度が10mW/cm〜300mW/cmになるように基材−ランプ間距離を設定し、0.1秒〜10分間、好ましくは0.5秒〜3分の照射を行うことが好ましい。 Taking the case of using a plastic film as a base material as an example, the substrate as a vacuum ultraviolet maximum irradiation strength of the substrate (support) surface is 10mW / cm 2 ~300mW / cm 2 - sets the ramp distance And irradiation for 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes.

尚、本発明に係る基材(支持体ともいう)については後に詳細に説明する。   The base material (also referred to as a support) according to the present invention will be described in detail later.

真空紫外線照射装置は、市販のもの(例えば、ウシオ電機製)を使用することが可能である。   A commercially available device (for example, manufactured by USHIO INC.) Can be used as the vacuum ultraviolet irradiation device.

真空紫外線(VUV)照射はバッチ処理にも連続処理にも適合可能であり、被塗布基材の形状によって適宜選定することができる。   Vacuum ultraviolet (VUV) irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be coated.

例えば、バッチ処理の場合には、ポリシラザンを含有する塗膜を表面に有する基材(例、シリコンウェハー)を、真空紫外線発生源を具備した真空紫外線焼成炉で処理することができる。   For example, in the case of batch processing, a substrate (eg, silicon wafer) having a coating film containing polysilazane on the surface (eg, a silicon wafer) can be processed in a vacuum ultraviolet ray baking furnace equipped with a vacuum ultraviolet ray source.

真空紫外線焼成炉自体は一般に知られており、例えば、ウシオ電機(株)製を使用することができる。また、ポリシラザン塗膜を表面に有する基材が長尺フィルム状である場合には、これを搬送させながら上記のような真空紫外線発生源を具備した乾燥ゾーンで連続的に真空紫外線を照射することによりセラミックス化することができる。   The vacuum ultraviolet baking furnace itself is generally known, and for example, Ushio Electric Co., Ltd. can be used. In addition, when the base material having a polysilazane coating film on the surface is in the form of a long film, vacuum ultraviolet rays are continuously irradiated in the drying zone equipped with the vacuum ultraviolet ray generation source as described above while being conveyed. Can be made into ceramics.

該真空紫外光は、ほとんどの物質の原子間結合力より大きいため、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断することが可能であるため好ましく用いることができる。この作用を用いることにより、加水分解を必要とせず低温でかつ効率的に改質処理が可能となる。   Since the vacuum ultraviolet light is larger than the interatomic bonding force of most substances, it can be preferably used because the bonding of atoms can be cut directly by the action of only photons called photon processes. By using this action, the reforming process can be efficiently performed at a low temperature without requiring hydrolysis.

これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。   As a vacuum ultraviolet light source required for this, a rare gas excimer lamp is preferably used.

1.エキシマ発光とは、Xe、Kr、Ar、Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることが出来る。希ガスがキセノンの場合には、
e+Xe→Xe
Xe+2Xe→Xe +Xe
Xe →Xe+Xe+hν(172nm)
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。
1. Excimer light emission is called an inert gas because atoms of rare gases such as Xe, Kr, Ar, and Ne do not form a molecule by chemically bonding. However, noble gas atoms (excited atoms) that have gained energy by discharge or the like can be combined with other atoms to form molecules. When the rare gas is xenon,
e + Xe → Xe *
Xe * + 2Xe → Xe 2 * + Xe
Xe 2 * → Xe + Xe + hν (172 nm)
Thus, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer light of 172 nm is emitted. A feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high.

また、余分な光が放射されないので、対象物の温度を低く保つことができる。更には、始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。   Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.

エキシマ発光を得るには誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro dischargeと呼ばれる放電で、micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。   In order to obtain excimer light emission, a method using dielectric barrier discharge is known. Dielectric barrier discharge refers to lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. When the micro discharge streamer reaches the tube wall (dielectric) in a similar very thin discharge called micro discharge, the electric charge accumulates on the dielectric surface, and the micro discharge disappears.

このmicro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため肉眼でも分かる光のチラツキを生じる。   This micro discharge spreads over the entire tube wall, and is a discharge that is repeatedly generated and extinguished. For this reason, flickering of light that can be seen with the naked eye occurs.

また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。   Moreover, since a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.

効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外に無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は基本的には誘電体バリア放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。   As a method for efficiently obtaining excimer light emission, electrodeless field discharge can be used in addition to dielectric barrier discharge. Electrodeless electric field discharge by capacitive coupling, also called RF discharge. The lamp and electrodes and their arrangement may be basically the same as those of dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz.

無電極電界放電は、このように空間的または時間的に一様な放電が得られるため、チラツキの無い長寿命のランプが得られる。   In the electrodeless field discharge, since a spatially or temporally uniform discharge can be obtained in this way, a long-life lamp without flickering can be obtained.

誘電体バリア放電の場合はmicro dischargeが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。   In the case of dielectric barrier discharge, micro discharge occurs only between the electrodes, so the outer electrode covers the entire outer surface and allows light to pass through in order to extract light to the outside in order to discharge in the entire discharge space. Must.

このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないように出来るだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。   For this reason, an electrode in which a fine metal wire is formed in a net shape is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere.

これを防ぐためには、ランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。ただし、合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。   In order to prevent this, it is necessary to provide an atmosphere of an inert gas such as nitrogen around the lamp, that is, the inside of the irradiation apparatus, and provide a synthetic quartz window to extract the irradiation light. However, synthetic quartz windows are not only expensive consumables, but also cause light loss.

二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば、酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。   Since the double cylindrical lamp has an outer diameter of about 25 mm, the difference in distance to the irradiation surface cannot be ignored between the position directly below the lamp axis and the side surface of the lamp, resulting in a large difference in illuminance. Therefore, even if the lamps are arranged in close contact, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.

無電極電界放電を用いた場合には、外部電極を網状にする必要は無い。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。   When electrodeless field discharge is used, it is not necessary to make the external electrodes mesh. The glow discharge spreads over the entire discharge space simply by providing an external electrode on a part of the outer surface of the lamp.

外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。   As the external electrode, an electrode that also serves as a light reflector made of an aluminum block is usually used on the back of the lamp. However, since the outer diameter of the lamp is as large as in the case of the dielectric barrier discharge, synthetic quartz is required to obtain a uniform illuminance distribution.

細管エキシマランプの最大の特徴は構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。したがって、非常に安価な光源を提供できる。   The biggest feature of the capillary excimer lamp is its simple structure. The quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside. Therefore, a very inexpensive light source can be provided.

二重円筒型ランプは内外管の両端を接続して閉じる加工をしているため、細管ランプに比べ取り扱いや輸送で破損しやすい。細管ランプの管の外径は、始動に高電圧が必要になることを抑制する観点から、6nm〜12mm程度が好ましい。   Since the double cylindrical lamp is processed by connecting both ends of the inner and outer tubes, it is more likely to be damaged during handling and transportation than a thin tube lamp. The outer diameter of the tube of the thin tube lamp is preferably about 6 nm to 12 mm from the viewpoint of suppressing the need for a high voltage for starting.

放電の形態は、誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。   As the form of discharge, either dielectric barrier discharge or electrodeless field discharge can be used. The electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.

尚、エキシマランプは複数社より市販されており、各々、ランプ構造、ランプユニットのデザインや最大照射強度等が異なっているが、目的に応じて適宜選択が可能である。   Excimer lamps are commercially available from a plurality of companies, and each has a different lamp structure, lamp unit design, maximum irradiation intensity, etc., but can be appropriately selected according to the purpose.

Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。   The Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength.

この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。   Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.

また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。   In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability.

この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。   Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane layer can be modified in a short time.

したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。   Therefore, compared with low-pressure mercury lamps with wavelengths of 185 nm and 254 nm and plasma cleaning, it is possible to shorten the process time associated with high throughput, reduce the equipment area, and irradiate organic materials and plastic substrates that are easily damaged by heat. .

エキシマランプは光の発生効率が高いため低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。   Since the excimer lamp has high light generation efficiency, it can be lit with low power. In addition, light with a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the object to be fired is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.

〔真空紫外線の照射強度〕
本発明のガスバリア性フィルムの製造方法において、真空紫外線(VUV)の照射工程は、必要に応じて、真空紫外線最大照射強度が100mW/cm〜200mW/cmの範囲で行われる工程(本発明では、この処理を高照射強度処理という)、あるいは、塗膜表面における真空紫外線最大照射強度が100mW/cm未満で真空紫外線(VUV)照射される工程(本発明では、これを低照射強度処理という)工程が用いられる。
[Vacuum UV irradiation intensity]
The method of manufacturing a gas barrier film of the present invention, the irradiation step of the vacuum ultraviolet (VUV), if necessary, the step of vacuum ultraviolet maximum radiation intensity is performed in the range of 100mW / cm 2 ~200mW / cm 2 ( the present invention Then, this treatment is referred to as high irradiation intensity treatment) or a step of applying vacuum ultraviolet ray (VUV) irradiation with a maximum ultraviolet ray ultraviolet ray irradiation intensity of less than 100 mW / cm 2 on the coating film surface (in the present invention, this is a low irradiation intensity treatment). Process) is used.

〔高照射強度処理と最大照射強度〕
照射強度が高ければ、光子とポリシラザン内の化学結合が衝突する確率が増え、改質反応を短時間化することができる。また、内部まで侵入する光子の数も増加するため、改質膜厚の増加あるいは膜質の良化(高密度化)が可能である。但し、照射時間を長くしすぎると、平面性の劣化やバリア性フィルムの他の材料にダメージを与える場合がある。一般的には、照射強度と照射時間の積で表される積算光量で反応進行具合を判定するが、酸化シリコンの様に組成は同一でも、様々な構造形態をとること材料においては、照射強度の絶対値が重要になる場合もある。
[High irradiation intensity treatment and maximum irradiation intensity]
If the irradiation intensity is high, the probability that the photons and chemical bonds in the polysilazane collide increases, and the modification reaction can be shortened. In addition, since the number of photons penetrating into the interior also increases, it is possible to increase the modified film thickness or improve the film quality (densification). However, if the irradiation time is too long, the flatness may be deteriorated and other materials of the barrier film may be damaged. In general, the progress of the reaction is determined by the integrated light quantity expressed by the product of the irradiation intensity and the irradiation time. However, the irradiation intensity is different for materials that have the same composition but have various structural forms, such as silicon oxide. The absolute value of may be important.

従って、本発明では、VUV照射工程において、基材のダメージ、ランプやランプユニットの部材のダメージを抑制し、改質効率を上昇させ、ガスバリア性能を向上の両方を併せて達成する観点から、少なくとも1回は100mW/cm〜200mW/cmの最大照射強度を与える改質処理を行うことが好ましい。 Therefore, in the present invention, in the VUV irradiation process, from the viewpoint of suppressing both damage to the substrate and damage to the members of the lamp and the lamp unit, increasing the reforming efficiency, and improving both the gas barrier performance, at least once it is preferred to perform the modification process which gives the maximum irradiation intensity of 100mW / cm 2 ~200mW / cm 2 .

〔低照射強度処理〕
本発明では、高照射強度の100mW/cm〜200mW/cmのVUV光照射工程の他に、100mW/cm未満の低照射強度工程を備えることが好ましい。高照射強度のVUV光はポリシラザン膜の改質を短時間で効率よく進める反面、雰囲気状態の影響を最も受け、かつ直接VUV光に晒される膜の表面では、せっかく形成した良質のSiOを、いわゆる表面処理のように親水化状態にし、急速に改質反応を進める結果、構造的な欠陥を形成することがある。
[Low irradiation intensity treatment]
In the present invention, in addition to high illumination intensity of 100mW / cm 2 ~200mW / cm 2 of the VUV light irradiation step, preferably comprises a 100 mW / cm 2 below the lower irradiation intensity step. While high-intensity VUV light efficiently modifies the polysilazane film in a short time, on the surface of the film that is most affected by the atmosphere and is directly exposed to VUV light, high-quality SiO 2 formed with great effort is obtained. A structural defect may be formed as a result of making a hydrophilic state like a so-called surface treatment and proceeding with the reforming reaction rapidly.

この様なガスバリア膜の膜欠陥を修復するためには、本発明者らが鋭意検討した結果、100mW/cm未満の低照度VUV光を照射することで修復できることが分かった。 In order to repair such a film defect of the gas barrier film, the present inventors have intensively studied and found that it can be repaired by irradiating with low illuminance VUV light of less than 100 mW / cm 2 .

また、一方で、100mW/cm未満の低照度VUV光は、改質速度が遅い分、ある程度の均一な膜形成が可能であり、高照度工程の前に予めある程度の均一な構造を形成させておくことで、高照度での改質時間を短縮でき、表面の親水化や構造欠陥の形成を抑制することができる。 On the other hand, low illuminance VUV light of less than 100 mW / cm 2 can form a uniform film to some extent because of the slow modification rate, and a certain degree of uniform structure is formed in advance before the high illuminance process. Thus, the modification time at high illuminance can be shortened, and surface hydrophilicity and structural defect formation can be suppressed.

したがって、前述の観点で、該高照度工程以外に、少なくとも1回照射強度10mW/cm〜100mW/cm未満の低照度のVUV光を照射することが好ましい。 Therefore, in view of the above, it is preferable to irradiate VUV light with low illuminance with an irradiation intensity of 10 mW / cm 2 to less than 100 mW / cm 2 at least once in addition to the high illuminance step.

低照度工程の照度として、より好ましくは30mW/cm〜80mW/cmとすることである。低照度VUVを照射するタイミングは、高照度VUV照射の前後どちらかであっても、両方であっても良い。 As the illuminance of the low illuminance step, more preferably to a 30mW / cm 2 ~80mW / cm 2 . The timing of irradiating the low illuminance VUV may be either before or after the high illuminance VUV irradiation, or both.

〔真空紫外線(VUV)の照射時間〕
本発明に係る真空紫外線(VUV)の照射時間は、該高照度工程及び該低照度工程共に、任意に設定可能であるが、基材ダメージや膜欠陥生成の観点およびガスバリア性能のバラつき低減の観点から、高照度工程での照射時間は0.1秒〜3分間が好ましく、更に好ましくは、0.5秒〜1分である。
[Vacuum ultraviolet (VUV) irradiation time]
The irradiation time of the vacuum ultraviolet ray (VUV) according to the present invention can be arbitrarily set in both the high illuminance process and the low illuminance process, but the viewpoint of substrate damage and film defect generation and the viewpoint of reducing the variation in gas barrier performance. Therefore, the irradiation time in the high illuminance step is preferably from 0.1 second to 3 minutes, and more preferably from 0.5 second to 1 minute.

また、低照度工程においては、プレ構造の形成、欠陥修復の観点から、高照度工程と同等か若しくは多少長めの照射時間とすることが好ましい。すなわち、好ましくは0.5秒〜10分間であり、更に好ましくは1秒〜2分間である。   In the low illuminance process, it is preferable that the irradiation time is equal to or slightly longer than that in the high illuminance process from the viewpoint of pre-structure formation and defect repair. That is, it is preferably 0.5 seconds to 10 minutes, and more preferably 1 second to 2 minutes.

〔真空紫外線(VUV)照射時の酸素濃度〕
本発明に係る真空紫外線(VUV)照射時の酸素濃度は500ppm〜10000ppm(1%)とすることが好ましく、更に好ましくは、1000ppm〜5000ppmである。
[Oxygen concentration during vacuum ultraviolet (VUV) irradiation]
The oxygen concentration at the time of vacuum ultraviolet ray (VUV) irradiation according to the present invention is preferably 500 ppm to 10000 ppm (1%), more preferably 1000 ppm to 5000 ppm.

前記の酸素濃度の範囲に調整することにより、後述するように酸素過多のガスバリア膜の生成を防止してガスバリア性の劣化を防止することができる。   By adjusting the oxygen concentration within the above range, it is possible to prevent the formation of an oxygen-excess gas barrier film and to prevent deterioration of gas barrier properties, as will be described later.

また、大気との置換時間が不必要に長くなるのを防ぎ、同時に、ロール・トゥ・ロールの様な連続生産を行う場合にウエッブ搬送によって真空紫外線(VUV)照射庫内に巻き込む空気量(酸素を含む)の増大を防ぎ、酸素濃度の調整不能になることを防ぐことができる。   In addition, the air replacement time is prevented from becoming unnecessarily long. At the same time, when continuous production such as roll-to-roll is performed, the amount of air (oxygen) entrained in the vacuum ultraviolet (VUV) irradiation chamber by web transport Increase in the oxygen concentration) and the oxygen concentration cannot be adjusted.

また、本発明者らの検討によると、ポリシラザン含有塗膜中には、塗布時に酸素及び微量の水分が混入し、更には塗膜以外の支持体にも吸着酸素や吸着水があり、照射庫内に敢えて酸素を導入しなくとも改質反応に要する酸素を供給する酸素源は十分にあることが分かった。   Further, according to the study by the present inventors, in the polysilazane-containing coating film, oxygen and a small amount of water are mixed at the time of coating, and there are also adsorbed oxygen and adsorbed water on the support other than the coating film, It was found that there are enough oxygen sources to supply oxygen required for the reforming reaction without introducing oxygen into the inside.

むしろ、酸素ガスが多く(数%レベル)含まれる雰囲気でVUV光を照射した場合、改質後のガスバリア膜が酸素過多の構造となり、ガスバリア性が劣化する。   Rather, when the VUV light is irradiated in an atmosphere containing a large amount of oxygen gas (a few percent level), the gas barrier film after the modification has an excessive oxygen structure and the gas barrier properties deteriorate.

また、前述した様に172nmの真空紫外線(VUV)が、酸素により吸収され膜面に到達する172nmの光量が減少してしまい、光による処理の効率を低下しやすい。   Further, as described above, 172 nm vacuum ultraviolet rays (VUV) are absorbed by oxygen and the amount of light at 172 nm reaching the film surface is reduced, so that the efficiency of the light treatment is likely to be lowered.

即ち、真空紫外線(VUVJ)照射時には、できるだけ酸素濃度の低い状態で、VUV光が効率良く塗膜まで到達する状態で改質処理することが好ましい。   That is, it is preferable to perform the modification treatment in a state where the VUV light efficiently reaches the coating film in a state where the oxygen concentration is as low as possible at the time of vacuum ultraviolet (VUVJ) irradiation.

この点はCVD等の原子堆積法の様に、予め制御された組成比の膜を堆積して作製する方法と塗布による前駆体膜作製+改質処理という方法の大きく異なる点であり、大気圧下の塗布法に独特な点である。   This is a significant difference between the method of depositing and producing a film with a composition ratio controlled in advance, such as CVD and the like, and the method of preparing a precursor film by coating and a modification process. This is unique to the application method below.

真空紫外線(VUV)照射時にこれら酸素以外のガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。   As a gas other than oxygen at the time of irradiation with vacuum ultraviolet rays (VUV), a dry inert gas is preferable, and dry nitrogen gas is particularly preferable from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.

〔ポリシラザン塗膜の改質前、改質中または改質後における加熱処理〕
本発明では、ポリシラザン塗膜を形成後、改質処理を実施する前、改質処理の間、または改質処理後の少なくともいずれか1つの時期で、150℃以上にポリシラザン塗膜を加熱する処理を行うことが好ましい。より好ましくは、加熱処理の温度は200℃以上、300℃以下である。この加熱処理は、改質後に実施することが最も好ましい。このような加熱処理を行うため、基材の損壊を防止する観点から、基材はTg150℃〜310℃のものを用いることが望ましい。また、中間層においてもTg200℃以上の材料を用いることが好ましい。
[Heat treatment before, during or after modification of polysilazane coating]
In the present invention, after the polysilazane coating film is formed, the polysilazane coating film is heated to 150 ° C. or more at least one time before the modification treatment, during the modification treatment, or after the modification treatment. It is preferable to carry out. More preferably, the temperature of the heat treatment is 200 ° C. or higher and 300 ° C. or lower. This heat treatment is most preferably performed after the modification. In order to perform such heat treatment, it is desirable to use a substrate having a Tg of 150 ° C. to 310 ° C. from the viewpoint of preventing damage to the substrate. In addition, it is preferable to use a material having a Tg of 200 ° C. or higher in the intermediate layer.

〔ポリシラザンを含有する塗膜〕
本発明に係るポリシラザンを含有する塗膜について説明する。
[Coating film containing polysilazane]
The coating film containing polysilazane according to the present invention will be described.

本発明に係るポリシラザンを含有する塗膜は、基材上に少なくとも1層のポリシラザン化合物を含有する塗布液を湿式塗布することにより作製される。   The coating film containing polysilazane according to the present invention is produced by wet coating a coating solution containing at least one polysilazane compound on a substrate.

塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが好ましくは1nm〜100μm程度、さらに好ましくは10nm〜10μm程度、最も好ましくは10nm〜1μm程度となるように設定され得る。   Any appropriate method can be adopted as a coating method. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method. The coating thickness can be appropriately set according to the purpose. For example, the coating thickness can be set so that the thickness after drying is preferably about 1 nm to 100 μm, more preferably about 10 nm to 10 μm, and most preferably about 10 nm to 1 μm.

本発明で用いられる「ポリシラザン」とは、珪素−窒素結合を持つポリマーで、Si−N、Si−H、N−H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 The “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond, and includes SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y made of Si—N, Si—H, N—H, or the like. Such as a ceramic precursor inorganic polymer.

フィルム基材を損なわないように塗布するためには、特開平8−112879号公報に記載されている下記の一般式(1)で表されるような比較的低温でセラミック化してシリカに変性する化合物が好ましい。   In order not to damage the film base material, it is converted to silica by being ceramicized at a relatively low temperature as represented by the following general formula (1) described in JP-A-8-112879. Compounds are preferred.

一般式(1)
−Si(R)(R)−N(R)−
式中、R、R、Rは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。
General formula (1)
—Si (R 1 ) (R 2 ) —N (R 3 ) —
In the formula, each of R 1 , R 2 and R 3 represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.

本発明では、得られるガスバリア層(単に、バリア膜ともいう)としての緻密性の観点からは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザン(PHPSともいう)が特に好ましい。 In the present invention, perhydropolysilazane (also referred to as PHPS) in which all of R 1 , R 2, and R 3 are hydrogen atoms is particularly preferable from the viewpoint of denseness as a gas barrier layer (also simply referred to as a barrier film) to be obtained. preferable.

一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。   On the other hand, the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane is hard and brittle. The ceramic film can be toughened, and there is an advantage that generation of cracks can be suppressed even when the film thickness is increased. These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.

パーヒドロポリシラザンは直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。   Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.

低温でセラミック化するポリシラザンの別の例としては、上記一般式(1)で表されるポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7−196986号公報)等が挙げられる。   As another example of polysilazane which is ceramicized at low temperature, a silicon alkoxide-added polysilazane obtained by reacting the polysilazane represented by the general formula (1) with a silicon alkoxide (for example, JP-A-5-23827), glycidol A glycidol-added polysilazane obtained by reacting an alcohol (for example, JP-A-6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (for example, JP-A-6-240208), and a metal carboxylate Metal carboxylate-added polysilazane (for example, JP-A-6-299118) obtained, and acetylacetonate complex-added polysilazane (for example, JP-A-6-306329) obtained by reacting a metal-containing acetylacetonate complex. ), Added metal fine particles And metal fine particles added polysilazane obtained (e.g., JP-A-7-196986 JP), and the like.

ポリシラザンを含有する液体を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは好ましくない。具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度、等目的にあわせて選択し、複数の溶剤を混合しても良い。   As an organic solvent for preparing a liquid containing polysilazane, it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane. Specifically, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers and alicyclic ethers can be used. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. These solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of solvents may be mixed.

ポリシラザン含有塗布液中のポリシラザン濃度は目的とするシリカ膜厚や塗布液のポットライフによっても異なるが、0.2質量%〜35質量%程度である。   The polysilazane concentration in the polysilazane-containing coating solution is about 0.2% by mass to 35% by mass, although it varies depending on the target silica film thickness and the pot life of the coating solution.

有機ポリシラザンは、そのSiと結合する水素部分が一部アルキル基等で置換された誘導体であってもよい。アルキル基、特にもっとも分子量の少ないメチル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいシリカ膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる。   The organic polysilazane may be a derivative in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like. By having an alkyl group, especially a methyl group having the smallest molecular weight, the adhesion to the base material can be improved, and the hard and brittle silica film can be toughened, and even if the film thickness is increased, cracks are not generated. Occurrence is suppressed.

酸化珪素化合物への改質を促進するために、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製のアクアミカ NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140などが挙げられる。   In order to promote the modification to a silicon oxide compound, an amine or metal catalyst may be added. Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.

〔ポリシラザン膜の形成工程〕
本発明に係るポリシラザン膜は、改質処理中に水分が除去されていることが好ましい。改質処理中の環境を0℃以下の低露点温度に調整することで、Si−OH基の生成を極力防止することができるためである。
[Process for forming polysilazane film]
The polysilazane film according to the present invention preferably has moisture removed during the modification treatment. This is because the generation of Si—OH groups can be prevented as much as possible by adjusting the environment during the reforming process to a low dew point temperature of 0 ° C. or less.

以下の改質処理中の環境について説明する。   The following environment during the reforming process will be described.

ポリシラザン膜中の水分を除去する方法としては、低湿度環境に維持される形態が好ましい。低湿度環境における湿度は、温度により変化するので温度と湿度の関係は露点温度の規定により好ましい形態が示される。   As a method for removing moisture in the polysilazane film, a mode in which a low humidity environment is maintained is preferable. Since the humidity in the low humidity environment varies depending on the temperature, a preferable form of the relationship between temperature and humidity is shown by the dew point temperature.

好ましい露点温度は0℃以下であり、より好ましい露点温度は−8度(温度25度/湿度10%)以下、さらに好ましい露点温度は(温度25度/湿度1%)−31度以下であり、維持される時間はポリシラザン膜の膜厚によって適宜変わる。ポリシラザン膜厚1.0μm以下の条件においては、好ましい露点温度は−8度以下で、維持される時間は5分以上である。   A preferable dew point temperature is 0 ° C. or less, a more preferable dew point temperature is −8 degrees (temperature 25 degrees / humidity 10%) or less, and a more preferable dew point temperature is (temperature 25 degrees / humidity 1%) −31 degrees or less, The maintained time varies depending on the thickness of the polysilazane film. Under the condition of a polysilazane film thickness of 1.0 μm or less, the preferable dew point temperature is −8 ° C. or less, and the maintained time is 5 minutes or more.

また、水分を取り除きやすくするために減圧乾燥してもよい。減圧乾燥における圧力は常圧〜0.1MPaを選ぶことができる。   Moreover, you may dry under reduced pressure in order to make it easy to remove a water | moisture content. The pressure in the vacuum drying can be selected from normal pressure to 0.1 MPa.

本発明に係るポリシラザン膜は水分が取り除かれた後も、その状態を維持されて改質処理されることが好ましい。   The polysilazane film according to the present invention is preferably subjected to a modification treatment while maintaining its state even after moisture is removed.

(ポリシラザン膜の含水量)
本発明に係るポリシラザン膜の含水率は以下の分析方法で検出できる。
ヘッドスペース−ガスクロマトグラフ/質量分析法
装置:HP6890GC/HP5973MSD
オーブン:40℃(2分)→10℃/分→150℃
カラム:DB−624(0.25mmid×30m)
注入口:230℃
検出器:SIM m/z=18
HS条件:190℃、30分
本発明に係るポリシラザン膜中の含水率は、上記の分析方法により得られる含水量からポリシラザン膜の体積で除した値と定義され、水分が取り除かれた状態において、好ましくは0.1%以下である。更に好ましい含水率は0.01%以下(検出限界以下)である。
(Water content of polysilazane film)
The water content of the polysilazane film according to the present invention can be detected by the following analysis method.
Headspace-gas chromatograph / mass spectrometry apparatus: HP6890GC / HP5973MSD
Oven: 40 ° C (2 minutes) → 10 ° C / minute → 150 ° C
Column: DB-624 (0.25 mmid × 30 m)
Inlet: 230 ° C
Detector: SIM m / z = 18
HS condition: 190 ° C., 30 minutes The water content in the polysilazane film according to the present invention is defined as a value obtained by dividing the water content obtained by the above analysis method by the volume of the polysilazane film. Preferably it is 0.1% or less. A more preferable moisture content is 0.01% or less (below the detection limit).

〔基材(支持体ともいう)〕
本発明に係る基材(支持体)について説明する。
[Base material (also called support)]
The substrate (support) according to the present invention will be described.

本発明のガスバリア性フィルムの基材(支持体)は、後述のバリア性を有するガスバリア膜を保持することができる有機材料で作製されたものであって、ガラス転移温度(Tg)が150℃以上であれば、特に限定されない。   The base material (support) of the gas barrier film of the present invention is made of an organic material capable of holding a gas barrier film having a barrier property described later, and has a glass transition temperature (Tg) of 150 ° C. or higher. If it is, it will not be specifically limited.

例えば、ポリカーボネート(PC)、ポリアリレート、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila−DEC、チッソ株式会社製)、更には前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。   For example, each resin film such as polycarbonate (PC), polyarylate, aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, polyimide, polyetherimide, and silsesquioxane having an organic-inorganic hybrid structure is used as a basic skeleton. And a heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation), and a resin film formed by laminating two or more layers of the resin.

また、光学的透明性、耐熱性、無機層、ガスバリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムやポリイミド等が好ましく用いることができる。このような耐熱基材(ex.Tg>200℃)を用いることにより、デバイス作製工程での高温処理が可能となり、デバイスの大面積化やデバイスの動作効率向上のために必要な透明導電層若しくは金属ナノ粒子によるパターン層の低抵抗化が達成可能となる。すなわちデバイスの初期特性が大幅に改善することが可能となるからである。支持体の厚みは5μm〜500μm程度が好ましく、更に好ましくは25μm〜250μmである。   Further, in terms of optical transparency, heat resistance, adhesion to an inorganic layer, and a gas barrier layer, a heat-resistant transparent film or a polyimide based on a silsesquioxane having an organic-inorganic hybrid structure is preferably used. it can. By using such a heat-resistant substrate (ex. Tg> 200 ° C.), a high-temperature treatment in the device manufacturing process becomes possible, and a transparent conductive layer or the like necessary for increasing the area of the device and improving the operation efficiency of the device The resistance of the pattern layer can be reduced by the metal nanoparticles. That is, the initial characteristics of the device can be greatly improved. The thickness of the support is preferably about 5 μm to 500 μm, more preferably 25 μm to 250 μm.

また、本発明に係る基材(支持体)は透明であることが好ましい。   Moreover, it is preferable that the base material (support body) which concerns on this invention is transparent.

ここで、基材が透明とは、可視光(400nm〜700nm)の光透過率が80%以上であることを示す。   Here, the base material being transparent means that the light transmittance of visible light (400 nm to 700 nm) is 80% or more.

基材(支持体)が透明であり、支持体上に作製する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。   Since the base material (support) is transparent and the layer formed on the support is also transparent, a transparent gas barrier film can be obtained. Therefore, a transparent substrate such as an organic EL element can be used. This is because it becomes possible.

本発明に係る基材(支持体ともいう)は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。   The base material (also referred to as a support) according to the present invention can be produced by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.

また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材(延伸支持体ともいう)を製造することができる。   Further, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc. A stretched substrate (also referred to as a stretched support) can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).

この場合の延伸倍率は、基材(支持体)の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2倍〜10倍が好ましい。   The draw ratio in this case can be appropriately selected according to the resin used as the raw material of the substrate (support), but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction, respectively.

更には、延伸フィルムに於いて基板の寸法安定性を向上するために、延伸後の緩和処理をすることが好ましい。   Furthermore, in order to improve the dimensional stability of the substrate in the stretched film, it is preferable to perform a relaxation treatment after stretching.

また、本発明に係る基材(支持体ともいう)においては、塗膜を作製する前にコロナ処理してもよい。   Moreover, in the base material (it is also called a support body) which concerns on this invention, you may corona-process before producing a coating film.

〔中間層〕
本発明に係る中間層とは、層構成になっていれば特に限定されないが、例えば、アンカーコート層、平滑層、ブリードアウト層等を指す。また中間層としては、耐熱材料を有することが好ましい。中間層に耐熱材料を用いることで、150℃以上の高温で加熱を行っても、中間層の変色や基材及び/又は第1のバリア層との剥離を抑制することが可能となるからである。さらには、熱硬化性材料を用いてよく、150℃以上の高温加熱が可能となることで、バリア層との層間密着性が向上し、ガスバリア性能も向上する。熱硬化材料を用いると、中間層が、より緻密な膜に変化しガスバリア性が向上に寄与すると同時にバリア層との界面での重合反応が進行し密着性も向上したと推察している。耐熱性の材料もしくは熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディックV−8000シリーズ、EPICLON EXA−4710(超高耐熱性エポキシ樹脂)、信越化学社製の各種シリコーン樹脂、日東紡社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特にエポキシ樹脂であることが好ましい。
[Middle layer]
The intermediate layer according to the present invention is not particularly limited as long as it has a layer structure, and includes, for example, an anchor coat layer, a smooth layer, a bleed-out layer, and the like. The intermediate layer preferably has a heat resistant material. By using a heat-resistant material for the intermediate layer, it is possible to suppress discoloration of the intermediate layer and peeling from the base material and / or the first barrier layer even when heating at a high temperature of 150 ° C. or higher. is there. Furthermore, a thermosetting material may be used, and by allowing high-temperature heating at 150 ° C. or higher, interlayer adhesion with the barrier layer is improved, and gas barrier performance is also improved. When the thermosetting material is used, it is presumed that the intermediate layer changes to a denser film and contributes to the improvement of gas barrier properties, and at the same time, the polymerization reaction proceeds at the interface with the barrier layer and the adhesion is improved. Specific examples of heat-resistant materials or thermosetting materials include Tutprom series (Organic polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nano Hybrid Silicone manufactured by Adeka, DIC Corporation Unidic V-8000 series manufactured by EPICLON EXA-4710 (ultra-high heat resistant epoxy resin), various silicone resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG coat manufactured by Nittobo Co., Ltd., acrylic polyol and isocyanate prepolymer Examples thereof include thermosetting urethane resins composed of polymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins. Among these, an epoxy resin is particularly preferable.

(アンカーコート層)
本発明に係る支持体表面には、塗膜との密着性の向上を目的として、中間層の一つとしてアンカーコート層を配置してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及びアルキルチタネート等を1または2種以上併せて使用することができる。
(Anchor coat layer)
On the surface of the support according to the present invention, an anchor coat layer may be disposed as one of the intermediate layers for the purpose of improving the adhesion with the coating film. Examples of the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One or two or more can be used in combination.

これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1g/m〜5g/m(乾燥状態)程度が好ましい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 g / m 2 to 5 g / m 2 (dry state).

(平滑層)
本発明のガスバリア性フィルムは、中間層として平滑層を有してもよい。
(Smooth layer)
The gas barrier film of the present invention may have a smooth layer as an intermediate layer.

本発明に用いられる平滑層は、突起等が存在する透明樹脂フィルム支持体の粗面を平坦化し、あるいは、透明樹脂フィルム支持体に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には上記した熱硬化性樹脂や感光性樹脂を硬化させて作製される。   The smooth layer used in the present invention flattens the rough surface of the transparent resin film support on which protrusions and the like are present, or has irregularities and pinholes generated in the transparent inorganic compound layer due to the protrusions on the transparent resin film support. Provided to fill and planarize. Such a smooth layer is basically produced by curing the above-mentioned thermosetting resin or photosensitive resin.

平滑層の感光性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。   As the photosensitive resin of the smooth layer, for example, a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.

光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、及び、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいはその他の化合物との混合物として使用することができる。   Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, and n-pentyl. Acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-decyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxyethylene glycol acrylate, cyclohexyl acrylate, dicyclo Pentanyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, glycy Acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, isodexyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, phenoxyethyl acrylate, stearyl acrylate, Ethylene glycol diacrylate, diethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6-hexadiol diacrylate, 1,3-propanediol acrylate, 1,4-cyclohexanediol Diacrylate, 2,2-dimethylolpropane diacrylate, glycerol diacrylate, tripropylene Glycol diacrylate, glycerol triacrylate, trimethylolpropane triacrylate, polyoxyethyltrimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ethylene oxide modified pentaerythritol triacrylate, ethylene oxide modified pentaerythritol tetraacrylate, propion Oxide modified pentaerythritol triacrylate, propion oxide modified pentaerythritol tetraacrylate, triethylene glycol diacrylate, polyoxypropyltrimethylolpropane triacrylate, butylene glycol diacrylate, 1,2,4-butanediol triacrylate, 2,2, 4-to Limethyl-1,3-pentadiol diacrylate, diallyl fumarate, 1,10-decanediol dimethyl acrylate, pentaerythritol hexaacrylate, and acrylate replaced with acrylate, γ-methacryloxypropyltrimethoxysilane, Examples thereof include 1-vinyl-2-pyrrolidone and the like. Said reactive monomer can be used as a 1 type, 2 or more types of mixture, or a mixture with another compound.

感光性樹脂の組成物は光重合開始剤を含有する。光重合開始剤としては、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノアセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−t−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。   The composition of the photosensitive resin contains a photopolymerization initiator. Examples of the photopolymerization initiator include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, α-aminoacetophenone, 4,4-dichlorobenzophenone, 4 -Benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p-tert-butyl Dichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmethoxyethyl acetal, benzoin methyl ether Ter, benzoin butyl ether, anthraquinone, 2-t-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, anthrone, benzanthrone, dibenzsuberone, methyleneanthrone, 4-azidobenzylacetophenone, 2,6-bis (p-azidobenzylidene) ) Cyclohexane, 2,6-bis (p-azidobenzylidene) -4-methylcyclohexanone, 2-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- ( o-ethoxycarbonyl) oxime, 1,3-diphenyl-propanetrione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propanetrione-2- (o-benzoyl) oxime, Michlerketo 2-methyl [4- (methylthio) phenyl] -2-monoforino-1-propane, 2-benzyl-2-dimethylamino-1- (4-monoforinophenyl) -butanone-1, naphthalenesulfonyl chloride, quinoline Sulfonyl chloride, n-phenylthioacridone, 4,4-azobisisobutyronitrile, diphenyl disulfide, benzthiazole disulfide, triphenylphosphine, camphorquinone, carbon tetrabromide, tribromophenyl sulfone, benzoin peroxide, eosin And a combination of a photoreductive dye such as methylene blue and a reducing agent such as ascorbic acid or triethanolamine. These photopolymerization initiators can be used alone or in combination of two or more.

平滑層の作製方法は特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により作製することが好ましい。   The method for producing the smooth layer is not particularly limited, but it is preferably produced by a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as an evaporation method.

平滑層の作製では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。   In the production of the smooth layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. In addition, regardless of the position where the smooth layer is laminated, in any smooth layer, an appropriate resin or additive may be used in order to improve the film formability and prevent the generation of pinholes in the film.

感光性樹脂を溶媒に溶解または分散させた塗布液を用いて平滑層を作製する際に使用する溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。   Solvents used when producing a smooth layer using a coating solution in which a photosensitive resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and propylene glycol, α -Or terpenes such as β-terpineol, etc., ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aroma such as toluene, xylene, tetramethylbenzene Group hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropiate Glycol ethers such as lenglycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, Acetic esters such as ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, 3-methoxybutyl acetate, diethylene glycol Dialkyl ether, dipropylene glycol Alkyl ethers, ethyl 3-ethoxypropionate, methyl benzoate, N, N- dimethylacetamide, N, may be mentioned N- dimethylformamide.

平滑層の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。この範囲よりも値が小さい場合には、後述のケイ素化合物を塗布する段階で、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合に塗布性が損なわれる場合がある。また、この範囲よりも大きい場合には、ケイ素化合物を塗布した後の凹凸を平滑化することが難しくなる場合がある。   The smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less. If the value is smaller than this range, the coating property is impaired when the coating means comes into contact with the surface of the smooth layer in the coating method such as a wire bar or wireless bar at the stage of coating the silicon compound described later. There is. Moreover, when larger than this range, it may become difficult to smooth the unevenness | corrugation after apply | coating a silicon compound.

表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。   The surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of μm many times.

好ましい態様の一つは、前述の感光性樹脂中に表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」とも言う)を含むものである。   One preferred embodiment includes reactive silica particles (hereinafter also simply referred to as “reactive silica particles”) in which a photosensitive group having photopolymerization reactivity is introduced on the surface of the above-described photosensitive resin.

ここで光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基等を挙げることができる。また感光性樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むものであってもよい。   Here, examples of the photopolymerizable photosensitive group include polymerizable unsaturated groups represented by a (meth) acryloyloxy group. The photosensitive resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an unsaturated organic compound having a polymerizable unsaturated group. It may be.

また、感光性樹脂としては、このような反応性シリカ粒子や重合性不飽和基を有する不飽和有機化合物に、適宜汎用の希釈溶剤を混合することによって固形分を調製したものを用いることができる。   Further, as the photosensitive resin, a resin whose solid content is prepared by appropriately mixing a general-purpose diluting solvent with such reactive silica particles or an unsaturated organic compound having a polymerizable unsaturated group can be used. .

ここで反応性シリカ粒子の平均粒子径としては、0.001μm〜0.1μmの平均粒子径であることが好ましい。平均粒子径をこのような範囲にすることにより、後述する平均粒子径1〜10μmの無機粒子からなるマット剤と組み合わせて用いることによって、本発明の効果である防眩性と解像性とをバランス良く満たす光学特性と、ハードコート性とを兼ね備えた平滑層を作製し易くなる。   Here, the average particle size of the reactive silica particles is preferably 0.001 μm to 0.1 μm. By setting the average particle size in such a range, the antiglare property and the resolution, which are the effects of the present invention, can be obtained by using in combination with a matting agent composed of inorganic particles having an average particle size of 1 to 10 μm described later. It becomes easy to produce a smooth layer having both optical properties satisfying a good balance and hard coat properties.

なお、このような効果をより得易くする観点からは、更に平均粒子径として0.001μm〜0.01μmのものを用いることがより好ましい。本発明に用いられる平滑層中には、上述の様な無機粒子を質量比として20%以上60%以下含有することが好ましい。20%以上添加することで、ガスバリア層との密着性が向上する。また、60%を超えるとフィルムを湾曲させたり、加熱処理を行った場合にクラックが生じたり、ガスバリア性フィルムの透明性や屈折率等の光学的物性に影響を及ぼすことがある。   From the viewpoint of making it easier to obtain such an effect, it is more preferable to use an average particle diameter of 0.001 μm to 0.01 μm. The smooth layer used in the present invention preferably contains 20% or more and 60% or less of the inorganic particles as described above as a mass ratio. Addition of 20% or more improves adhesion with the gas barrier layer. On the other hand, if it exceeds 60%, the film may be bent, cracks may occur when heat treatment is performed, and optical properties such as transparency and refractive index of the gas barrier film may be affected.

本発明では、重合性不飽和基修飾加水分解性シランが加水分解性シリル基の加水分解反応によって、シリカ粒子との間にシリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。   In the present invention, a polymerizable unsaturated group-modified hydrolyzable silane is chemically bonded to a silica particle by generating a silyloxy group by a hydrolysis reaction of a hydrolyzable silyl group. It can be used as reactive silica particles.

加水分解性シリル基としては、例えば、アルコキシリル基、アセトキシリル基等のカルボキシリレートシリル基、クロシリル基等のハロゲン化シリル基、アミノシリル基、オキシムシリル基、ヒドリドシリル基等が挙げられる。   Examples of the hydrolyzable silyl group include a carboxylylate silyl group such as an alkoxylyl group and an acetoxysilyl group, a halogenated silyl group such as a chlorosilyl group, an aminosilyl group, an oxime silyl group, and a hydridosilyl group.

重合性不飽和基としては、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニイル基、シンナモイル基、マレート基、アクリルアミド基等が挙げられる。   Examples of the polymerizable unsaturated group include acryloyloxy group, methacryloyloxy group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, malate group, and acrylamide group.

本発明における平滑層の厚みとしては、1μm〜10μm、好ましくは2μm〜7μmであることが望ましい。1μm以上にすることにより平滑層を有するフィルムとしての平滑性を十分なものにし易くなり、10μm以下にすることにより平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面にのみ設けた場合における平滑フィルムのカールを抑え易くすることができるようになる。   The thickness of the smooth layer in the present invention is 1 μm to 10 μm, preferably 2 μm to 7 μm. By making it 1 μm or more, it becomes easy to make the smoothness as a film having a smooth layer sufficiently, and by making it 10 μm or less, it becomes easy to adjust the balance of optical properties of the smooth film, and the smooth layer is made of a transparent polymer film. It becomes possible to easily suppress curling of the smooth film when it is provided only on one of the surfaces.

(ブリードアウト防止層)
本発明においては、中間層の一つとしてブリードアウト防止層を設けることができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム支持体中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば基本的に平滑層と同じ構成をとっても構わない。
(Bleed-out prevention layer)
In the present invention, a bleed-out prevention layer can be provided as one of the intermediate layers. The bleed-out prevention layer is a smooth layer for the purpose of suppressing the phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the film support to the surface and contaminate the contact surface. On the opposite surface of the substrate. The bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.

ブリードアウト防止層に含有させることが可能な重合性不飽和基を有する不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物または分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。   The unsaturated organic compound having a polymerizable unsaturated group that can be contained in the bleed-out prevention layer is a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule or 1 in the molecule. Examples thereof include monounsaturated organic compounds having a single polymerizable unsaturated group.

ここで多価不飽和有機化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。   Here, examples of the polyunsaturated organic compound include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, 1,4-butanediol di ( (Meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dicyclopentanyl di (meth) acrylate, pentaerythritol tri (meth) Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, ditrimethylolpropane Tiger (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate.

また、単価不飽和有機化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。   Moreover, as a unit price unsaturated organic compound, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, Lauryl (meth) acrylate, stearyl (meth) acrylate, allyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (Meth) acrylate, glycerol (meth) acrylate, glycidyl (meth) acrylate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (2-e Xoxyethoxy) ethyl (meth) acrylate, butoxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2- Examples include methoxypropyl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, and polypropylene glycol (meth) acrylate. .

その他の添加剤として、マット剤を含有してもよい。マット剤としては平均粒子径が0.1μm〜5μm程度の無機粒子が好ましい。   As other additives, a matting agent may be contained. As the matting agent, inorganic particles having an average particle diameter of about 0.1 μm to 5 μm are preferable.

無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。   As the inorganic particles, one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination.

ここで無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。   Here, the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 18 parts per 100 parts by mass of the solid content of the hard coat agent. It is desirable that they are mixed in a proportion of not more than part by mass, more preferably not more than 16 parts by mass.

また、ブリードアウト防止層は、ハードコート剤及びマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。   The bleed-out prevention layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator, and the like as other components of the hard coat agent and the mat agent.

このような熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。   Examples of such thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof. Vinyl resins such as polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, polycarbonates Examples thereof include resins.

また、熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。   Moreover, as a thermosetting resin, the thermosetting urethane resin which consists of an acrylic polyol and an isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, a silicone resin etc. are mentioned.

また、電離放射線硬化性樹脂としては、光重合性プレポリマーもしくは光重合性モノマー等の1種または2種以上を混合した電離放射線硬化塗料に電離放射線(紫外線または電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。   Moreover, as an ionizing radiation curable resin, it hardens | cures by irradiating ionizing radiation (an ultraviolet ray or an electron beam) to the ionizing radiation hardening coating material which mixed 1 type (s) or 2 or more types, such as a photopolymerizable prepolymer or a photopolymerizable monomer. You can use what you want. Here, as the photopolymerizable prepolymer, an acrylic prepolymer having two or more acryloyl groups in one molecule and having a three-dimensional network structure by crosslinking and curing is particularly preferably used.

このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また、光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。   As this acrylic prepolymer, urethane acrylate, polyester acrylate, epoxy acrylate, melamine acrylate and the like can be used. As the photopolymerizable monomer, the polyunsaturated organic compounds described above can be used.

また、光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−(4−モルフォリニル)−1−プロパン、α−アシロキシムエステル、チオキサンソン類等が挙げられる。   Examples of the photopolymerization initiator include acetophenone, benzophenone, Michler's ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl). ) -1-propane, α-acyloxime ester, thioxanthone and the like.

以上のようなブリードアウト防止層は、ハードコート剤、マット剤、及び必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を支持体フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより作製することができる。   The bleed-out prevention layer as described above is mixed with a hard coat agent, a matting agent, and other components as necessary, and is prepared as a coating solution by using a diluent solvent as necessary, and supports the coating solution. It can be produced by coating the body film surface with a conventionally known coating method and then curing it by irradiating with ionizing radiation.

尚、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100nm〜400nm、好ましくは200nm〜400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。   In addition, as a method of irradiating with ionizing radiation, ultraviolet rays having a wavelength region of 100 nm to 400 nm, preferably 200 nm to 400 nm emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, etc. are irradiated or scanned. The irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a type or curtain type electron beam accelerator.

ブリードアウト防止層の厚みとしては、フィルムの耐熱性向上させ、フィルムの光学特性のバランス調整を容易にし、且つ、ガスバリア性フィルムの片面のみにブリードアウト防止層を設けた場合のカールを防止する観点から、1μm〜10μmの範囲が好ましく、更に好ましくは、2μm〜7μmの範囲にすることが好ましい。   As the thickness of the bleed-out prevention layer, it is possible to improve the heat resistance of the film, facilitate the balance adjustment of the optical properties of the film, and prevent curling when the bleed-out prevention layer is provided only on one side of the gas barrier film. Therefore, the range of 1 μm to 10 μm is preferable, and the range of 2 μm to 7 μm is more preferable.

《ガスバリア性フィルムの用途》
本発明のガスバリア性フィルムの用途について説明する。
<< Use of gas barrier film >>
The use of the gas barrier film of the present invention will be described.

本発明のガスバリア性フィルムの用途としては、主に電子デバイス等のパッケージ、または有機EL素子や太陽電池、液晶等のプラスチック基板といったディスプレイ材料に用いられるガスバリア性フィルム及びガスバリア性フィルムを用いた各種デバイス用樹脂基材、及び各種有機電子デバイス素子が挙げられる。   The gas barrier film of the present invention is mainly used in packages such as electronic devices, or gas barrier films used for display materials such as organic EL elements, solar cells, and liquid crystal plastic substrates, and various devices using the gas barrier film. Resin base materials and various organic electronic device elements.

本発明のガスバリア性フィルムは、種々の封止用材料、フィルムとして用いることができる。   The gas barrier film of the present invention can be used as various sealing materials and films.

上記の中でも、本発明のガスバリア性フィルムは、有機電子デバイスに用いることができるAmong the above, the gas barrier film of the present invention can be used for an organic electronic device.

以下、本発明のガスバリア性フィルムを有する有機電子デバイスの一例として、有機光電変換素子、該素子を有する太陽電池について説明する。   Hereinafter, as an example of an organic electronic device having the gas barrier film of the present invention, an organic photoelectric conversion element and a solar cell having the element will be described.

〔有機光電変換素子〕
本発明に係る有機光電変換素子について説明する。
[Organic photoelectric conversion element]
The organic photoelectric conversion element according to the present invention will be described.

本発明に係る有機光電変換素子は、本発明のガスバリア性フィルムを構成として有するが、有機光電変換素子に用いる際に、本発明のガスバリア性フィルムは透明であることが好ましく、具体的には、透明であるガスバリア性フィルムを有機光電変換素子の支持体の構成部材として用い、ガスバリア性フィルムの側から太陽光の受光を行うように構成することが好ましい。   The organic photoelectric conversion element according to the present invention has the gas barrier film of the present invention as a component, but when used for the organic photoelectric conversion element, the gas barrier film of the present invention is preferably transparent, specifically, It is preferable to use a transparent gas barrier film as a constituent member of the support of the organic photoelectric conversion element and to receive sunlight from the gas barrier film side.

ここで、『透明』とは、可視光(400nm〜700nm)の光透過率が80%以上であることを意味する。   Here, “transparent” means that the light transmittance of visible light (400 nm to 700 nm) is 80% or more.

即ち、このガスバリア性フィルム上に、例えば、ITO等の透明導電性薄膜を透明電極として設け、有機光電変換素子用樹脂支持体を構成することができる。そして、支持体上に設けられたITO透明導電膜を陽極としてこの上に多孔質半導体層を設け、更に金属膜からなる陰極を作製して有機光電変換素子を作製し、この上に別の封止材料を(同じでもよいが)重ねて、前記ガスバリア性フィルム支持体と周囲を接着、素子を封じ込めることで有機光電変換素子を封止することができ、これにより外気の湿気や酸素等のガスによる素子への影響を封じることができる。   That is, on this gas barrier film, for example, a transparent conductive thin film such as ITO can be provided as a transparent electrode to constitute a resin support for an organic photoelectric conversion element. Then, an ITO transparent conductive film provided on the support is used as an anode, a porous semiconductor layer is provided thereon, and a cathode made of a metal film is prepared to produce an organic photoelectric conversion element. The organic photoelectric conversion element can be sealed by stacking a stop material (although it may be the same), adhering the gas barrier film support and the periphery, and encapsulating the element. The influence on the element due to can be sealed.

有機光電変換素子用樹脂支持体は、このようにして作製されたガスバリア性フィルムのガスバリア層(単にバリア層ともいう)上に、透明導電性膜を作製することによって得られる。透明導電膜の作製は、真空蒸着法やスパッタリング法等を用いることにより、またインジウム、スズ等の金属アルコキシド等を用いたゾルゲル法等塗布法によっても製造できる。   The resin support for organic photoelectric conversion elements is obtained by producing a transparent conductive film on the gas barrier layer (also simply referred to as a barrier layer) of the gas barrier film produced in this manner. The transparent conductive film can be produced by using a vacuum deposition method, a sputtering method, or the like, or by a coating method such as a sol-gel method using a metal alkoxide such as indium or tin.

透明導電膜の膜厚としては、0.1nm〜1000nmの範囲が好ましい。   As a film thickness of a transparent conductive film, the range of 0.1 nm-1000 nm is preferable.

次いで、これらガスバリア性フィルム、またこれに透明導電膜が作製された有機光電変換素子用樹脂支持体を用いた有機光電変換素子について説明する。   Next, an organic photoelectric conversion element using these gas barrier films and a resin support for an organic photoelectric conversion element on which a transparent conductive film is produced will be described.

(封止フィルムとその製造方法)
本発明は、前記ガスバリア層(単にバリア層ともいう)を有するガスバリア性フィルムを基板として用いることが好ましい。
(Sealing film and its manufacturing method)
In the present invention, it is preferable to use a gas barrier film having the gas barrier layer (also simply referred to as a barrier layer) as a substrate.

前記バリア層を有するガスバリア性フィルムにおいて、バリア層上に更に透明導電膜を作製し、これを陽極としてこの上に有機光電変換素子を構成する層、陰極となる層とを積層し、この上に更にもう一つのガスバリア性フィルムを封止フィルムとして、重ね接着することで封止する。   In the gas barrier film having the barrier layer, a transparent conductive film is further formed on the barrier layer, and the layer constituting the organic photoelectric conversion element and the layer serving as the cathode are laminated on the transparent conductive film. Furthermore, another gas barrier film is used as a sealing film to be sealed by overlapping.

用いられるもう一つの封止材料(封止フィルム)としては、本発明のガスバリア性フィルムを用いることができる。また、例えば、包装材等に使用される公知のガスバリア性フィルム、例えば、プラスチックフィルム上に酸化ケイ素や、酸化アルミニウムを蒸着したもの、緻密なセラミック層と、柔軟性を有する衝撃緩和ポリマー層を交互に積層した構成のガスバリア性フィルム等を封止フィルムとして用いることができる。   As another sealing material (sealing film) used, the gas barrier film of the present invention can be used. Also, for example, known gas barrier films used for packaging materials, such as plastic films deposited with silicon oxide or aluminum oxide, dense ceramic layers, and flexible impact relaxation polymer layers alternately A gas barrier film or the like laminated on the substrate can be used as the sealing film.

また、特に樹脂ラミネート(ポリマー膜)された金属箔は、光取り出し側のガスバリア性フィルムとして用いることはできないが、低コストで更に透湿性の低い封止材料であり、光取り出しを意図しない(透明性を要求されない)場合、封止フィルムとして好ましい。   In particular, a resin-laminated (polymer film) metal foil cannot be used as a gas barrier film on the light extraction side, but is a low-cost and further moisture-permeable sealing material and does not intend to extract light (transparent When the property is not required), it is preferable as a sealing film.

本発明において、金属箔とはスパッタや蒸着等で作製された金属薄膜や、導電性ペースト等の流動性電極材料から作製された導電膜と異なり、圧延等で作製された金属の箔またはフィルムを指す。   In the present invention, a metal foil is a metal foil or film made by rolling or the like, unlike a metal thin film made by sputtering or vapor deposition, or a conductive film made from a fluid electrode material such as a conductive paste. Point to.

金属箔としては金属の種類に特に限定はなく、例えば、銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としてはAl箔が挙げられる。   There is no particular limitation on the type of metal as the metal foil. For example, copper (Cu) foil, aluminum (Al) foil, gold (Au) foil, brass foil, nickel (Ni) foil, titanium (Ti) foil, copper alloy Examples thereof include foil, stainless steel foil, tin (Sn) foil, and high nickel alloy foil. Among these various metal foils, a particularly preferred metal foil is an Al foil.

金属箔の厚さは6〜50μmが好ましい。6μm未満の場合は、金属箔に用いる材料によっては使用時にピンホールが空き、必要とするバリア性(透湿度、酸素透過率)が得られなくなる場合がある。50μmを越えた場合は、金属箔に用いる材料によってはコストが高くなり、有機光電変換素子が厚くなりフィルムのメリットが少なくなる場合がある。   The thickness of the metal foil is preferably 6 to 50 μm. If the thickness is less than 6 μm, depending on the material used for the metal foil, pinholes may be vacant during use, and required barrier properties (moisture permeability, oxygen permeability) may not be obtained. When the thickness exceeds 50 μm, the cost increases depending on the material used for the metal foil, and the merit of the film may be reduced because the organic photoelectric conversion element becomes thick.

樹脂フィルム(ポリマー膜)がラミネートされた金属箔において、樹脂フィルムとしては機能性包装材料の新展開(株式会社東レリサーチセンター)に記載の各種材料を使用することが可能であり、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン−ビニルアルコール共重合体系樹脂、エチレン−酢酸ビニル共重合体系樹脂、アクリロニトリル−ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。ポリプロピレン系樹脂、ナイロン系樹脂等の樹脂は延伸されていてもよく、更に塩化ビニリデン系樹脂をコートされていてもよい。また、ポリエチレン系樹脂は低密度あるいは高密度のものも用いることができる。   In a metal foil laminated with a resin film (polymer film), various materials described in the new development of functional packaging materials (Toray Research Center, Inc.) can be used as the resin film. Resin, polypropylene resin, polyethylene terephthalate resin, polyamide resin, ethylene-vinyl alcohol copolymer resin, ethylene-vinyl acetate copolymer resin, acrylonitrile-butadiene copolymer resin, cellophane resin, vinylon resin, chloride Examples thereof include vinylidene resins. Resins such as polypropylene resins and nylon resins may be stretched and further coated with a vinylidene chloride resin. In addition, a polyethylene resin having a low density or a high density can be used.

後述するが、2つのフィルムの封止方法としては、例えば、一般に使用されるインパルスシーラー熱融着性の樹脂層をラミネートして、インパルスシーラーで融着させ、封止する方法が好ましく、この場合、ガスバリア性フィルム同士の封止は、フィルム膜厚が300μmを超えると封止作業時のフィルムの取り扱い性が悪化するのとインパルスシーラー等による熱融着が困難となるため膜厚としては300μm以下が望ましい。   As will be described later, as a method for sealing the two films, for example, a method of laminating a commonly used impulse sealer heat-fusible resin layer, fusing with an impulse sealer, and sealing is preferable. In addition, when sealing the gas barrier films, if the film thickness exceeds 300 μm, the film handling property deteriorates during sealing work and it becomes difficult to heat-seal with an impulse sealer or the like, so the film thickness is 300 μm or less. Is desirable.

〔有機光電変換素子の封止の好ましい態様〕
本発明に係る有機電子デバイスの一つである有機光電変換素子に用いられる封止の好ましい態様について説明する。
[Preferred embodiment of sealing of organic photoelectric conversion element]
The preferable aspect of sealing used for the organic photoelectric conversion element which is one of the organic electronic devices concerning this invention is demonstrated.

本発明に係る有機光電変換素子の作製の一例としては、バリア層を有する本発明のガスバリア性フィルム上に透明導電膜を形成し、有機光電変換素子用樹脂支持体上に有機光電変換素子各層を形成した後、上記封止フィルムを用いて、不活性ガスによりパージされた環境下で、上記封止フィルムで陰極面を覆うようにして、有機光電変換素子を封止することができる。   As an example of production of the organic photoelectric conversion device according to the present invention, a transparent conductive film is formed on the gas barrier film of the present invention having a barrier layer, and each layer of the organic photoelectric conversion device is formed on the resin support for the organic photoelectric conversion device. After the formation, the organic photoelectric conversion element can be sealed using the sealing film so as to cover the cathode surface with the sealing film in an environment purged with an inert gas.

不活性ガスとしては、Nの他、He、Ar等の希ガスが好ましく用いられるが、HeとArを混合した希ガスも好ましく、気体中に占める不活性ガスの割合は90体積%〜99.9体積%であることが好ましい。不活性ガスによりパージされた環境下で封止することにより、保存性が改良される。 As the inert gas, a rare gas such as He and Ar is preferably used in addition to N 2 , but a rare gas in which He and Ar are mixed is also preferable, and the ratio of the inert gas in the gas is 90% by volume to 99%. It is preferably 9% by volume. Preservability is improved by sealing in an environment purged with an inert gas.

また、前記の樹脂フィルム(ポリマー膜)がラミネートされた金属箔を用いて、有機光電変換素子を封止するにあたっては、ラミネートされた樹脂フィルム面ではなく、金属箔上にセラミック層を作製し、このセラミック層面を有機光電変換素子の陰極に貼り合わせることが好ましい。封止フィルムのポリマー膜面を有機光電変換素子の陰極に貼り合わせると、部分的に導通が発生することがある。   Moreover, in sealing the organic photoelectric conversion element using the metal foil laminated with the resin film (polymer film), a ceramic layer is produced on the metal foil instead of the laminated resin film surface, The ceramic layer surface is preferably bonded to the cathode of the organic photoelectric conversion element. When the polymer film surface of the sealing film is bonded to the cathode of the organic photoelectric conversion element, conduction may occur partially.

封止フィルムを有機光電変換素子の陰極に貼り合わせる封止方法としては、一般に使用されるインパルスシーラーで融着可能な樹脂フィルム、例えば、エチレン酢酸ビニルコポリマー(EVA)やポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム等の熱融着性フィルムを積層して、インパルスシーラーで融着させ封止する方法がある。   As a sealing method of bonding the sealing film to the cathode of the organic photoelectric conversion element, a resin film that can be fused with a commonly used impulse sealer, for example, ethylene vinyl acetate copolymer (EVA), polypropylene (PP) film, polyethylene There is a method in which a heat-fusible film such as a (PE) film is laminated and fused with an impulse sealer and sealed.

接着方法としてはドライラミネート方式が作業性の面で優れている。この方法は、一般には1.0μm〜2.5μm程度の硬化性の接着剤層を使用する。但し、接着剤の塗設量が多すぎる場合には、トンネル、浸み出し、縮緬皺等が発生することがあるため、好ましくは接着剤量を乾燥膜厚で3μm〜5μmになるように調節することが好ましい。   As an adhesion method, the dry laminating method is excellent in terms of workability. This method generally uses a curable adhesive layer of about 1.0 μm to 2.5 μm. However, if the amount of adhesive applied is too large, tunneling, leaching, crimping, etc. may occur, so the amount of adhesive is preferably adjusted to 3 μm to 5 μm in dry film thickness. It is preferable to do.

ホットメルトラミネーションとは、ホットメルト接着剤を溶融し支持体に接着層を塗設する方法であるが、接着剤層の厚さは一般に1μm〜50μmと広い範囲で設定可能な方法である。一般に使用されるホットメルト接着剤のベースレジンとしては、EVA、EEA、ポリエチレン、ブチルラバー等が使用され、ロジン、キシレン樹脂、テルペン系樹脂、スチレン系樹脂等が粘着付与剤として、ワックス等が可塑剤として添加される。   Hot melt lamination is a method in which a hot melt adhesive is melted and an adhesive layer is coated on a support, and the thickness of the adhesive layer is generally a method that can be set in a wide range of 1 μm to 50 μm. Commonly used base resins for hot melt adhesives include EVA, EEA, polyethylene, butyl rubber, etc., rosin, xylene resin, terpene resin, styrene resin, etc. as tackifiers, wax etc. It is added as an agent.

エクストルージョンラミネート法とは、高温で溶融した樹脂をダイスにより支持体上に塗設する方法であり、樹脂層の厚さは一般に10μm〜50μmと広い範囲で設定可能である。エクストルージョンラミネートに使用される樹脂としては、一般にLDPE、EVA、PP等が使用される。   The extrusion laminating method is a method in which a resin melted at a high temperature is coated on a support with a die, and the thickness of the resin layer can generally be set in a wide range of 10 μm to 50 μm. As a resin used for the extrusion laminate, LDPE, EVA, PP, etc. are generally used.

次いで、有機光電変換素子を構成する有機光電変換素子材料各層(構成層)について説明する。   Next, each layer (constituent layer) of the organic photoelectric conversion element material constituting the organic photoelectric conversion element will be described.

〔有機光電変換素子及び太陽電池の構成〕
本発明に係る有機電子デバイスの一例として、有機光電変換素子及び太陽電池の好ましい態様を説明するが、本発明はこれらに限定されない。
[Configuration of organic photoelectric conversion element and solar cell]
Although the preferable aspect of an organic photoelectric conversion element and a solar cell is demonstrated as an example of the organic electronic device which concerns on this invention, this invention is not limited to these.

尚、以下、本発明に係る有機光電変換素子の好ましい態様について詳細に説明するが、本発明に係る太陽電池は本発明に係る有機光電変換素子をその構成として有するものであり、太陽電池の好ましい構成も同様に記載することができる。 Hereinafter will be described in detail preferred embodiments of the organic photoelectric conversion element according to the present invention, a solar cell according to the present invention are those having an organic photoelectric conversion element according to the present invention as a constituent, preferably a solar cell The configuration can be similarly described.

有機光電変換素子としては、特に制限がなく、陽極と陰極と、両者に挟まれた発電層(p型半導体とn型半導体が混合された層、バルクヘテロジャンクション層、i層とも言う)が少なくとも1層以上あり、光を照射すると電流を発生する素子であればよい。   The organic photoelectric conversion element is not particularly limited, and has at least one anode and cathode, and a power generation layer (also referred to as a p-type semiconductor and n-type semiconductor mixed layer, a bulk heterojunction layer, or an i layer) sandwiched therebetween. Any element that has more than one layer and generates current when irradiated with light may be used.

有機光電変換素子の層構成(太陽電池の好ましい層構成も同様である)の好ましい具体例を以下に示す。   The preferable specific example of the layer structure of an organic photoelectric conversion element (The preferable layer structure of a solar cell is also the same) is shown below.

(i)陽極/発電層/陰極
(ii)陽極/正孔輸送層/発電層/陰極
(iii)陽極/正孔輸送層/発電層/電子輸送層/陰極
(iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極
(v)陽極/正孔輸送層/第1発電層/電子輸送層/中間電極/正孔輸送層/第2発電層/電子輸送層/陰極。
(I) Anode / power generation layer / cathode (ii) Anode / hole transport layer / power generation layer / cathode (iii) Anode / hole transport layer / power generation layer / electron transport layer / cathode (iv) Anode / hole transport layer / P-type semiconductor layer / power generation layer / n-type semiconductor layer / electron transport layer / cathode (v) anode / hole transport layer / first power generation layer / electron transport layer / intermediate electrode / hole transport layer / second power generation layer / Electron transport layer / cathode.

ここで、発電層は、正孔を輸送できるp型半導体材料と電子を輸送できるn型半導体材料を含有していることが必要であり、これらは実質2層でヘテロジャンクションを作製していてもよいし、1層の内部で混合された状態となっているバルクヘテロジャンクションを作製してもよいが、バルクヘテロジャンクション構成のほうが、光電変換効率が高いため好ましい。発電層に用いられるp型半導体材料、n型半導体材料については後述する。   Here, the power generation layer needs to contain a p-type semiconductor material capable of transporting holes and an n-type semiconductor material capable of transporting electrons, and even if these layers form a heterojunction with substantially two layers. Alternatively, a bulk heterojunction in a mixed state in one layer may be manufactured, but a bulk heterojunction configuration is preferable because of higher photoelectric conversion efficiency. A p-type semiconductor material and an n-type semiconductor material used for the power generation layer will be described later.

有機EL素子同様、発電層を正孔輸送層、電子輸送層で挟み込むことで、正孔及び電子の陽極・陰極への取り出し効率を高めることができるため、それらを有する構成((ii)、(iii))の方が好ましい。また、発電層自体も正孔と電子の整流性(キャリア取り出しの選択性)を高めるため、(iv)のようにp型半導体材料とn型半導体材料単体からなる層で発電層を挟み込むような構成(p−i−n構成とも言う)であってもよい。また、太陽光の利用効率を高めるため、異なる波長の太陽光をそれぞれの発電層で吸収するような、タンデム構成((v)の構成)であってもよい。   Like the organic EL element, the efficiency of taking out holes and electrons to the anode / cathode can be increased by sandwiching the power generation layer between the hole transport layer and the electron transport layer. Therefore, the structure having them ((ii), ( iii)) is preferred. Further, in order to improve the rectification of holes and electrons (selection of carrier extraction), the power generation layer itself is sandwiched between layers of a p-type semiconductor material and a single n-type semiconductor material as shown in (iv). A configuration (also referred to as a pin configuration) may be used. Moreover, in order to improve the utilization efficiency of sunlight, the tandem configuration (configuration (v)) in which sunlight of different wavelengths is absorbed by each power generation layer may be employed.

太陽光利用率(光電変換効率)の向上を目的として、以下に説明する図1に示す有機光電変換素子10におけるサンドイッチ構造に代わって、一対の櫛歯状電極上にそれぞれ正孔輸送層14、電子輸送層16を作製し、その上に光電変換部15を配置するといった、バックコンタクト型の有機光電変換素子が構成とすることもできる。   For the purpose of improving the sunlight utilization rate (photoelectric conversion efficiency), instead of the sandwich structure in the organic photoelectric conversion element 10 shown in FIG. 1 described below, a hole transport layer 14 on each of the pair of comb-like electrodes, A back-contact type organic photoelectric conversion element in which the electron transport layer 16 is produced and the photoelectric conversion unit 15 is disposed thereon can also be configured.

更に、詳細な本発明に係る有機光電変換素子の好ましい態様を下記に説明する。   Furthermore, the preferable aspect of the organic photoelectric conversion element which concerns on detailed this invention is demonstrated below.

図1は、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。   FIG. 1 is a cross-sectional view showing an example of a solar cell composed of a bulk heterojunction organic photoelectric conversion element.

図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、陽極12、正孔輸送層17、バルクヘテロジャンクション層の発電層14、電子輸送層18及び陰極13が順次積層されている。   In FIG. 1, a bulk heterojunction organic photoelectric conversion element 10 has an anode 12, a hole transport layer 17, a power generation layer 14 of a bulk heterojunction layer, an electron transport layer 18, and a cathode 13 sequentially stacked on one surface of a substrate 11. Has been.

基板11は、順次積層された陽極12、発電層14及び陰極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、即ち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、発電層14の両面に陽極12及び陰極13を作製することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。   The substrate 11 is a member that holds the anode 12, the power generation layer 14, and the cathode 13 that are sequentially stacked. In the present embodiment, since light that is photoelectrically converted enters from the substrate 11 side, the substrate 11 can transmit the light that is photoelectrically converted, that is, with respect to the wavelength of the light to be photoelectrically converted. It is a transparent member. As the substrate 11, for example, a glass substrate or a resin substrate is used. The substrate 11 is not essential. For example, the bulk heterojunction organic photoelectric conversion element 10 may be configured by forming the anode 12 and the cathode 13 on both surfaces of the power generation layer 14.

発電層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は相対的に電子供与体(ドナー)として機能し、n型半導体材料は相対的に電子受容体(アクセプタ)として機能する。   The power generation layer 14 is a layer that converts light energy into electrical energy, and includes a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed. The p-type semiconductor material relatively functions as an electron donor (donor), and the n-type semiconductor material relatively functions as an electron acceptor (acceptor).

図1において、基板11を介して陽極12から入射された光は、発電層14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が作製される。発生した電荷は、内部電界、例えば、陽極12と陰極13の仕事関数が異なる場合では陽極12と陰極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。   In FIG. 1, light incident from the anode 12 through the substrate 11 is absorbed by the electron acceptor or electron donor in the bulk heterojunction layer of the power generation layer 14, and electrons move from the electron donor to the electron acceptor. A pair of holes and electrons (charge separation state) is produced. The generated electric charge is caused by an internal electric field, for example, when the work function of the anode 12 and the cathode 13 is different, the electrons pass between the electron acceptors and the holes are electron donors due to the potential difference between the anode 12 and the cathode 13. The photocurrent is detected by passing through different electrodes to different electrodes.

例えば、陽極12の仕事関数が陰極13の仕事関数よりも大きい場合では、電子は陽極12へ、正孔は陰極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、陽極12と陰極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。   For example, when the work function of the anode 12 is larger than that of the cathode 13, electrons are transported to the anode 12 and holes are transported to the cathode 13. If the magnitude of the work function is reversed, electrons and holes are transported in the opposite direction. In addition, the transport direction of electrons and holes can be controlled by applying a potential between the anode 12 and the cathode 13.

なお、図1には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。   Although not shown in FIG. 1, other layers such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer may be included.

更に好ましい構成としては、前記発電層14が、所謂p−i−nの三層構成となっている構成(図2)である。通常のバルクヘテロジャンクション層は、p型半導体材料とn型半導体層が混合したi層単体であるが、p型半導体材料単体からなるp層、及びn型半導体材料単体からなるn層で挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。   As a more preferable configuration, the power generation layer 14 has a so-called p-i-n three-layer configuration (FIG. 2). A normal bulk heterojunction layer is a single i layer in which a p-type semiconductor material and an n-type semiconductor layer are mixed. By sandwiching between a p-layer composed of a single p-type semiconductor material and an n-layer composed of a single n-type semiconductor material, Further, the rectification property of holes and electrons is further increased, loss due to recombination of charge-separated holes and electrons is reduced, and higher photoelectric conversion efficiency can be obtained.

更に、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層したタンデム型の構成としてもよい。   Furthermore, it is good also as a tandem-type structure which laminated | stacked such a photoelectric conversion element for the purpose of the improvement of sunlight utilization factor (photoelectric conversion efficiency).

図3は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板11上に、順次透明電極12、第1の発電層14′を積層した後、電荷再結合層15を積層した後、第2の発電層16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の発電層16は、第1の発電層14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また、第1の発電層14′、第2の発電層16がともに前述のp−i−nの三層構成であってもよい。   FIG. 3 is a cross-sectional view showing a solar cell composed of an organic photoelectric conversion element including a tandem bulk heterojunction layer. In the case of the tandem configuration, the transparent electrode 12 and the first power generation layer 14 ′ are sequentially stacked on the substrate 11, the charge recombination layer 15 is stacked, the second power generation layer 16, and then the counter electrode 13 are stacked. By stacking, a tandem structure can be obtained. The second power generation layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first power generation layer 14 ′ or may be a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum. Further, both the first power generation layer 14 ′ and the second power generation layer 16 may have the above-described three-layer structure of pin.

以下に、これらの層を構成する材料について述べる。   Below, the material which comprises these layers is described.

〔有機光電変換素子材料〕
本発明に係る有機光電変換素子の発電層(光電変換層ともいう)の形成に用いられる材料について説明する。
[Organic photoelectric conversion element material]
The material used for formation of the electric power generation layer (it is also called a photoelectric converting layer) of the organic photoelectric conversion element concerning this invention is demonstrated.

(p型半導体材料)
本発明に係る有機光電変換素子の発電層(バルクヘテロジャンクション層)として好ましく用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマー・オリゴマーが挙げられる。
(P-type semiconductor material)
Examples of the p-type semiconductor material preferably used as the power generation layer (bulk heterojunction layer) of the organic photoelectric conversion device according to the present invention include various condensed polycyclic aromatic low molecular compounds and conjugated polymers / oligomers.

縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。   Examples of the condensed polycyclic aromatic low-molecular compound include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zesulene, Compounds such as heptazeslen, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF ) -Perchloric acid complexes, and derivatives and precursors thereof.

また、上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号、国際公開第03/28125号、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。   Examples of the derivative having the above condensed polycycle include International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, Japanese Patent Application Laid-Open No. 2004-107216. A pentacene derivative having a substituent as described in U.S. Pat. No. 2003/136964, J. Pat. Amer. Chem. Soc. , Vol127. No. 14.4986, J. MoI. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, acene-based compounds substituted with a trialkylsilylethynyl group described in 2706 and the like.

共役系ポリマーとしては、例えば、ポリ3−ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン−チエノチオフェン共重合体、WO2008000664に記載のポリチオフェン−ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン−チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。   As the conjugated polymer, for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and an oligomer thereof, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer described in WO2008000664, a polythiophene-diketopyrrolopyrrole copolymer described in WO2008000664, a polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007p4160, Nature Mat. vol. 6 (2007), p497 described in PCPDTBT, etc., polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as σ-conjugated polymers such as polysilane and polygermane.

また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。   In addition, oligomeric materials instead of polymer materials include thiophene hexamer α-sexual thiophene α, ω-dihexyl-α-sexual thiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3 Oligomers such as -butoxypropyl) -α-sexithiophene can be preferably used.

これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、且つ乾燥後は、結晶性薄膜を作製し、高い移動度を達成することが可能な化合物が好ましい。   Among these compounds, a compound that is highly soluble in an organic solvent to the extent that a solution process is possible and that can produce a crystalline thin film and achieve high mobility after drying is preferable.

また、発電層上に電子輸送層を塗布で成膜する場合、電子輸送層溶液が発電層を溶かしてしまうという課題があるため、溶液プロセスで塗布した後に不溶化できるような材料を用いてもよい。   In addition, when the electron transport layer is formed on the power generation layer by coating, there is a problem that the electron transport layer solution dissolves the power generation layer. Therefore, a material that can be insolubilized after coating by a solution process may be used. .

このような材料としては、Technical Digest of the International PVSEC−17, Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許第2003/136964号明細書、及び特開2008−16834号公報等に記載されているような、熱等のエネルギーを加えることによって、可溶性置換基が反応して不溶化する(顔料化する)材料等を挙げることができる。   Examples of such a material include materials that can be insolubilized by polymerizing and crosslinking the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or by applying energy such as heat, as described in US 2003/136964 and JP-A 2008-16834, etc., the soluble substituent reacts to insolubilize (pigmentation). Material) and the like.

(n型半導体材料)
本発明に係るバルクヘテロジャンクション層に用いられるn型半導体材料としては特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物や、そのイミド化物を骨格として含む高分子化合物等を挙げることができる。
(N-type semiconductor material)
The n-type semiconductor material used for the bulk heterojunction layer according to the present invention is not particularly limited. For example, a perfluoro compound (perfluoropentacene or the like) in which a hydrogen atom of a p-type semiconductor such as fullerene or octaazaporphyrin is substituted with a fluorine atom. Perfluorophthalocyanine, etc.), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide and other aromatic carboxylic acid anhydrides, and polymers containing such imidized compounds as a skeleton A compound etc. can be mentioned.

しかし、各種のp型半導体材料と高速(〜50fs)、且つ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。   However, fullerene derivatives that can perform charge separation efficiently with various p-type semiconductor materials at high speed (˜50 fs) are preferable. Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc. Partially by hydrogen atom, halogen atom, substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, cycloalkyl group, silyl group, ether group, thioether group, amino group, silyl group, etc. Examples thereof include substituted fullerene derivatives.

中でも、[6,6]−フェニルC61−ブチリックアシッドメチルエステル(略称PCBM)、[6,6]−フェニルC61−ブチリックアシッド−nブチルエステル(PCBnB)、[6,6]−フェニルC61−ブチリックアシッド−イソブチルエステル(PCBiB)、[6,6]−フェニルC61−ブチリックアシッド−nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis−PCBM、特開2006−199674号公報等のアミノ化フラーレン、特開2008−130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。   Among them, [6,6] -phenyl C61-butyric acid methyl ester (abbreviation PCBM), [6,6] -phenyl C61-butyric acid-nbutyl ester (PCBnB), [6,6] -phenyl C61- Butyric acid-isobutyl ester (PCBiB), [6,6] -phenyl C61-butyric acid-n-hexyl ester (PCBH), Adv. Mater. , Vol. 20 (2008), p2116, etc., aminated fullerenes such as JP-A 2006-199674, metallocene fullerenes such as JP-A 2008-130889, US Pat. No. 7,329,709, etc. It is preferable to use a fullerene derivative having a substituent and having improved solubility, such as fullerene having a cyclic ether group such as a calligraphy.

(正孔輸送層・電子ブロック層)
本発明の有機光電変換素子10は、バルクヘテロジャンクション層と陽極との中間には正孔輸送層17を、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
(Hole transport layer / electron block layer)
In the organic photoelectric conversion element 10 of the present invention, the hole transport layer 17 can be taken out between the bulk heterojunction layer and the anode, and charges generated in the bulk heterojunction layer can be taken out more efficiently. It is preferable to have.

これらの層を構成する材料としては、例えば、正孔輸送層17としては、スタルクヴイテック製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、国際公開第06/19270号パンフレット等に記載のシアン化合物、等を用いることができる。   As a material constituting these layers, for example, as the hole transport layer 17, PEDOT such as Product name BaytronP manufactured by Stark Vitec, polyaniline and its doped material, described in WO 06/19270, etc. Cyanide compounds can be used.

なお、バルクヘテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクヘテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する電子ブロック機能が付与される。   Note that the hole transport layer having a LUMO level shallower than the LUMO level of the n-type semiconductor material used for the bulk heterojunction layer has a rectifying effect that prevents electrons generated in the bulk heterojunction layer from flowing to the anode side. The electronic block function is provided.

このような正孔輸送層は電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用するほうが好ましい。このような材料としては、特開平5−271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。   Such a hole transport layer is also called an electron block layer, and it is preferable to use a hole transport layer having such a function. As such a material, a triarylamine compound described in JP-A-5-271166 or a metal oxide such as molybdenum oxide, nickel oxide, or tungsten oxide can be used.

また、バルクヘテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を作製する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を作製する前に、下層に塗布膜を作製すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。   A layer made of a single p-type semiconductor material used for the bulk heterojunction layer can also be used. As a means for producing these layers, either a vacuum vapor deposition method or a solution coating method may be used, but a solution coating method is preferable. It is preferable to produce a coating film in the lower layer before producing the bulk heterojunction layer because it has the effect of leveling the application surface and reduces the influence of leakage and the like.

(電子輸送層・正孔ブロック層)
有機光電変換素子10は、バルクヘテロジャンクション層と陰極との中間には電子輸送層18を作製することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
(Electron transport layer / hole blocking layer)
Since the organic photoelectric conversion element 10 is capable of extracting charges generated in the bulk heterojunction layer more efficiently by forming the electron transport layer 18 between the bulk heterojunction layer and the cathode, these layers It is preferable to have.

また、電子輸送層18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様にバルクヘテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクヘテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する正孔ブロック機能が付与される。   As the electron transport layer 18, octaazaporphyrin, a p-type semiconductor perfluoro product (perfluoropentacene, perfluorophthalocyanine, or the like) can be used. Similarly, a p-type semiconductor material used for a bulk heterojunction layer is used. The electron transport layer having a HOMO level deeper than the HOMO level is given a hole blocking function having a rectifying effect so that holes generated in the bulk heterojunction layer do not flow to the cathode side.

このような電子輸送層は正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。   Such an electron transport layer is also called a hole blocking layer, and it is preferable to use an electron transport layer having such a function.

このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。   Examples of such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and titanium oxide. N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.

また、バルクヘテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。これらの層を作製する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。   A layer made of a single n-type semiconductor material used for the bulk heterojunction layer can also be used. As a means for producing these layers, either a vacuum vapor deposition method or a solution coating method may be used, but a solution coating method is preferable.

(その他の層)
エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層等を挙げることができる。
(Other layers)
For the purpose of improving energy conversion efficiency and improving the lifetime of the element, a structure having various intermediate layers in the element may be employed. Examples of the intermediate layer include a hole block layer, an electron block layer, a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.

(透明電極(第1電極))
本発明に係る透明電極は、陰極、陽極は特に限定せず、素子構成により選択することができるが、好ましくは透明電極を陽極として用いることである。例えば、陽極として用いる場合、好ましくは380nm〜800nmの光を透過する電極である。
(Transparent electrode (first electrode))
In the transparent electrode according to the present invention, the cathode and the anode are not particularly limited and can be selected depending on the element configuration, but preferably the transparent electrode is used as the anode. For example, when used as an anode, it is preferably an electrode that transmits light of 380 nm to 800 nm.

材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ用いることができる。 As the material, for example, transparent conductive metal oxides such as indium tin oxide (ITO), SnO 2 and ZnO, metal thin films such as gold, silver and platinum, metal nanowires, and carbon nanotubes can be used.

また、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。   Also selected from the group consisting of derivatives of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene. Conductive polymers can also be used. A plurality of these conductive compounds can be combined to form a transparent electrode.

(対電極(第2電極))
対電極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。対電極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。
(Counter electrode (second electrode))
The counter electrode may be a single layer of a conductive material, but in addition to a conductive material, a resin that holds these may be used in combination. As the conductive material of the counter electrode, a material having a small work function (4 eV or less) metal, alloy, electrically conductive compound and a mixture thereof is used.

このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.

これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。 Among these, from the viewpoint of electron extraction performance and durability against oxidation, etc., a mixture of these metals and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.

対電極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を作製させることにより、作製することができる。また、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。   The counter electrode can be produced by producing a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.

対電極の導電材として金属材料を用いれば、対電極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。   If a metal material is used as the conductive material of the counter electrode, the light coming to the counter electrode side is reflected and reflected to the first electrode side, and this light can be reused and absorbed again by the photoelectric conversion layer, and more photoelectric conversion is performed. Efficiency is improved and preferable.

また、対電極13は、金属(例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤ、ナノ構造体であってもよく、ナノワイヤの分散物であれば、透明で導電性の高い対電極を塗布法により作製でき好ましい。   Further, the counter electrode 13 may be a metal (for example, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), a nanoparticle made of carbon, a nanowire, or a nanostructure. A dispersion is preferable because a transparent and highly conductive counter electrode can be produced by a coating method.

また、対電極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の対電極に適した導電性材料を薄く1〜20nm程度の膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性対電極とすることができる。   Moreover, when making the counter electrode side light-transmitting, for example, after forming a conductive material suitable for the counter electrode such as aluminum and aluminum alloy, silver and silver compound in a thin film thickness of about 1 to 20 nm, By providing a film of the conductive light transmissive material mentioned in the description of the transparent electrode, a light transmissive counter electrode can be obtained.

(中間電極)
また、前記(v)(または図3)のようなタンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層またはナノ粒子・ナノワイヤを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
(Intermediate electrode)
In addition, the material of the intermediate electrode required in the case of the tandem configuration as in (v) (or FIG. 3) is preferably a layer using a compound having both transparency and conductivity. (Such as ITO, AZO, FTO, transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, PEDOT: PSS, polyaniline, etc. Or the like can be used.

なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層作製する工程を省くことができ好ましい。   In addition, in the hole transport layer and the electron transport layer described above, there is also a combination that works as an intermediate electrode (charge recombination layer) by appropriately stacking them. Is preferable.

(金属ナノワイヤ)
本発明において、導電性繊維としては、金属でコーティングした有機繊維や無機繊維、導電性金属酸化物繊維、金属ナノワイヤ、炭素繊維、カーボンナノチューブ等を用いることができるが、金属ナノワイヤが好ましい。
(Metal nanowires)
In the present invention, organic fibers and inorganic fibers coated with metal, conductive metal oxide fibers, metal nanowires, carbon fibers, carbon nanotubes, and the like can be used as the conductive fibers, but metal nanowires are preferred.

一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする線状構造体のことを言う。特に、本発明における金属ナノワイヤとはnmサイズの直径を有する線状構造体を意味する。   In general, a metal nanowire refers to a linear structure having a metal element as a main component. In particular, the metal nanowire in the present invention means a linear structure having a diameter of nm size.

本発明において、金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを作製するために、また、適度な光散乱性を発現するために、平均長さが3μm以上であることが好ましく、更には3μm〜500μmが好ましく、特に3μm〜300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。   In the present invention, the metal nanowires preferably have an average length of 3 μm or more in order to produce a long conductive path with one metal nanowire and to exhibit appropriate light scattering properties. 3 μm to 500 μm are preferable, and 3 μm to 300 μm are particularly preferable. In addition, the relative standard deviation of the length is preferably 40% or less.

また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10nm〜300nmが好ましく、30nm〜200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。   Moreover, it is preferable that an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint. In the present invention, the average diameter of the metal nanowires is preferably 10 nm to 300 nm, and more preferably 30 nm to 200 nm. In addition, the relative standard deviation of the diameter is preferably 20% or less.

本発明において、金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。   In the present invention, the metal composition of the metal nanowire is not particularly limited, and can be composed of one or more metals of a noble metal element and a base metal element, but noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity.

また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明において、金属ナノワイヤが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。   In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. In the present invention, when the metal nanowire includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.

本発明において、金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。   In the present invention, the means for producing the metal nanowire is not particularly limited, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used.

例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833〜837;Chem.Mater.,2002,14,4736〜4745等、Auナノワイヤの製造方法としては特開2006−233252号公報等、Cuナノワイヤの製造方法としては特開2002−266007号公報等、Coナノワイヤの製造方法としては特開2004−149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。   For example, as a method for producing Ag nanowires, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. , 2002, 14, 4736-4745, etc. As a method for producing Co nanowires, a method for producing Au nanowires is disclosed in JP 2006-233252A, and a method for producing Cu nanowires is disclosed in JP 2002-266007 A, etc. Reference can be made to Japanese Unexamined Patent Publication No. 2004-149871. In particular, Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in (1) can be easily produced in an aqueous system, and since the conductivity of silver is the highest among metals, it is preferable as the method for producing metal nanowires according to the present invention. Can be applied.

本発明においては、金属ナノワイヤが互いに接触し合うことにより3次元的な導電ネットワークを作製し、高い導電性を発現するとともに、金属ナノワイヤが存在しない導電ネットワークの窓部を光が透過することが可能となり、更に金属ナノワイヤの散乱効果によって、有機発電層部からの発電を効率的に行うことが可能となる。第1電極において金属ナノワイヤを有機発電層部に近い側に設置すれば、この散乱効果がより有効に利用できるのでより好ましい実施形態である。   In the present invention, metal nanowires come into contact with each other to create a three-dimensional conductive network, exhibit high conductivity, and allow light to pass through the window of the conductive network where there is no metal nanowire. In addition, the power generation from the organic power generation layer portion can be efficiently performed by the scattering effect of the metal nanowires. If a metal nanowire is installed in the 1st electrode at the side close | similar to an organic electric power generation layer part, since this scattering effect can be utilized more effectively, it is more preferable embodiment.

(光学機能層)
本発明に係る有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてもよい。光学機能層としては、例えば、反射防止層、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層等を設けてもよい。
(Optical function layer)
The organic photoelectric conversion element according to the present invention may have various optical function layers for the purpose of more efficient light reception of sunlight. As the optical functional layer, for example, a light condensing layer such as an antireflection layer or a microlens array, or a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again may be provided. .

反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。   Various known antireflection layers can be provided as the antireflection layer. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ˜1.63 because the interface reflection between the film substrate and the easy adhesion layer can be reduced and the transmittance can be improved. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.

集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。   As the condensing layer, for example, it is processed to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.

マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。   As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it is smaller than this, the effect of diffraction is generated and colored.

また、光拡散層としては、各種のアンチグレア層、金属または各種無機酸化物等のナノ粒子・ナノワイヤ等を無色透明なポリマーに分散した層等を挙げることができる。   Examples of the light diffusion layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.

(成膜方法・表面処理方法)
電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層、及び輸送層・電極の作製方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、バルクヘテロジャンクション層の作製方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。
(Film formation method / surface treatment method)
Examples of a method for producing a bulk heterojunction layer in which an electron acceptor and an electron donor are mixed, and a transport layer / electrode include a vapor deposition method and a coating method (including a cast method and a spin coat method). Among these, examples of the method for producing the bulk heterojunction layer include a vapor deposition method and a coating method (including a casting method and a spin coating method).

このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また、塗布法は製造速度にも優れている。   Among these, the coating method is preferable in order to increase the area of the interface where charges and electrons are separated from each other as described above and to produce a device having high photoelectric conversion efficiency. Also, the coating method is excellent in production speed.

この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。更には、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。   Although there is no restriction | limiting in the coating method used in this case, For example, a spin coat method, the cast method from a solution, a dip coat method, a blade coat method, a wire bar coat method, a gravure coat method, a spray coat method etc. are mentioned. Furthermore, patterning can also be performed by a printing method such as an inkjet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, a flexographic printing method, or the like.

塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために、加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。   After application, it is preferable to perform heating in order to cause removal of residual solvent, moisture, and gas and increase mobility and absorption longwave by crystallization of the semiconductor material. When annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized, and the bulk heterojunction layer can have an appropriate phase separation structure. As a result, the carrier mobility of the bulk heterojunction layer is improved and high efficiency can be obtained.

発電層(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで作製することが可能となる。   The power generation layer (bulk heterojunction layer) 14 may be composed of a single layer in which an electron acceptor and an electron donor are uniformly mixed, but a plurality of layers in which the mixing ratio of the electron acceptor and the electron donor is changed. You may comprise. In this case, it can be manufactured by using a material that can be insolubilized after coating as described above.

(パターニング)
本発明において、電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
(Patterning)
In the present invention, the method and process for patterning the electrode, the power generation layer, the hole transport layer, the electron transport layer, and the like are not particularly limited, and known methods can be appropriately applied.

バルクヘテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。   If it is a soluble material such as a bulk heterojunction layer and a transport layer, only unnecessary portions may be wiped after the entire surface of die coating, dip coating, etc., or direct patterning at the time of coating using a method such as an ink jet method or screen printing. May be.

電極材料等の不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行う方法、エッチングまたはリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に作製したパターンを転写することによってパターンを作製してもよい。   In the case of an insoluble material such as an electrode material, the electrode can be patterned by a known method such as mask vapor deposition during vacuum deposition, etching or lift-off. Alternatively, the pattern may be produced by transferring a pattern produced on another substrate.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.

実施例1
《ガスバリア性フィルム1の作製》
以下に記載のように、基材を作製し、次いで、基材上にバリア層を形成する工程を経て、本発明のガスバリア性フィルム1を作製した。
Example 1
<< Production of Gas Barrier Film 1 >>
As described below, a gas barrier film 1 of the present invention was produced through a process of producing a base material and then forming a barrier layer on the base material.

〔基材の作製〕
耐熱性樹脂支持体である、両面に易接着加工された200μm厚みの透明ポリイミド系フィルム(三菱瓦斯化学株式会社製、ネオプリムL、PI L−3430と称す、Tg:303℃)を用いて、該フィルムを30m/分の速度で搬送しながら、下記に示すように、支持体両面に平滑層を形成した後に、その表面に粘着性保護フィルムを貼合したロール状のフィルムを基材として用いた。
[Preparation of substrate]
Using a 200 μm thick transparent polyimide film (manufactured by Mitsubishi Gas Chemical Co., Ltd., called Neoprim L, PI L-3430, Tg: 303 ° C.) that is a heat-resistant resin support and is easily bonded on both sides, As shown below, while transporting the film at a speed of 30 m / min, after forming a smooth layer on both sides of the support, a roll-shaped film having an adhesive protective film bonded to the surface was used as a base material. .

〔平滑層1、2の形成〕
(平滑層塗布液の作製)
トリメチロールプロパントリグリシジルエーテル(エポライト100MF 共栄社化学社製)を8.0g、エチレングリコールジグリシジルエーテル(エポライト40E 共栄社化学社製)を5.0g、オキセタニル基を有するシルセスキオキサン:OX−SQ−H(東亞合成社製)を12.0g、3−グリシドキシプロピルトリメトキシシランを32.5g、Al(III)アセチルアセトネートを2.2g、メタノールシリカゾル(日産化学社製、固形分濃度30質量%)134.0g、BYK333(BYKケミー社製)を0.1g、ブチルセロソルブを125.0g、0.1モル/Lの塩酸水を15.0g混合し、充分に攪拌した。これを室温でさらに静置脱気して、平滑層塗布液を得た。
[Formation of smooth layers 1 and 2]
(Preparation of smooth layer coating solution)
8.0 g of trimethylolpropane triglycidyl ether (Epolite 100MF manufactured by Kyoeisha Chemical Co., Ltd.), 5.0 g of ethylene glycol diglycidyl ether (Epolite 40E manufactured by Kyoeisha Chemical Co., Ltd.), silsesquioxane having an oxetanyl group: OX-SQ- 12.0 g of H (manufactured by Toagosei Co., Ltd.), 32.5 g of 3-glycidoxypropyltrimethoxysilane, 2.2 g of Al (III) acetylacetonate, methanol silica sol (manufactured by Nissan Chemical Co., Ltd., solid content concentration 30) (Mass%) 134.0 g, BYK333 (manufactured by BYK Chemie) 0.1 g, butyl cellosolve 125.0 g and 0.1 mol / L hydrochloric acid water 15.0 g were mixed and sufficiently stirred. This was further left standing and deaerated at room temperature to obtain a smooth layer coating solution.

(平滑層1の形成)
上記基材の片面に、定法によりコロナ放電処理を行った後、上記調製した平滑層塗布液を、乾燥後の膜厚が4.0μmとなる条件で塗布した後、80℃で3分間乾燥した。さらに120℃で10分間加熱処理を行って、平滑層を形成した。
(Formation of smooth layer 1)
After performing a corona discharge treatment by a conventional method on one side of the substrate, the prepared smooth layer coating solution was applied under the condition that the film thickness after drying was 4.0 μm, and then dried at 80 ° C. for 3 minutes. . Further, a heat treatment was performed at 120 ° C. for 10 minutes to form a smooth layer.

(平滑層2の形成)
上記方法で基材の片面に平滑層1を形成した後、基材の平滑層1を形成した面とは反対側の面に、上記平滑層塗布液を用いて平滑層1と同様にして平滑層2を形成した。
(Formation of smooth layer 2)
After the smooth layer 1 is formed on one surface of the substrate by the above method, the surface of the substrate opposite to the surface on which the smooth layer 1 is formed is smoothed in the same manner as the smooth layer 1 using the smooth layer coating liquid. Layer 2 was formed.

得られた平滑層1および平滑層2の表面粗さは、JIS B 0601で規定されるRzで約20nmであった。   The surface roughness of the obtained smooth layer 1 and smooth layer 2 was about 20 nm in Rz defined by JIS B 0601.

表面粗さは、SII社製のAFM(原子間力顕微鏡)SPI3800N DFMを用いて測定した。一回の測定範囲は80μm×80μmとし、測定箇所を変えて三回の測定を行って、それぞれの測定で得られたRtの値を平均したものを測定値とした。   The surface roughness was measured using an AFM (Atomic Force Microscope) SPI3800N DFM manufactured by SII. The measurement range at one time was 80 μm × 80 μm, and the measurement location was changed three times, and the average of the Rt values obtained in each measurement was taken as the measurement value.

〔バリア層の作製〕
次に、基材の平滑層1上に、下記の工程(a)、(b)によりバリア層を形成した。
[Preparation of barrier layer]
Next, a barrier layer was formed on the smooth layer 1 of the substrate by the following steps (a) and (b).

工程(a):パーヒドロポリシラザン層の形成
パーヒドロポリシラザン(PHPS)を含有する溶液として、20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NN120−20(PHPS)、アミン触媒(N,N,N′,N′−テトラメチル−1,6−ジアミノヘキサン)を5質量%含有するNAX120−20)を混合することで、パーヒドロポリシラザン(PHPS)濃度に対してアミン触媒の含有量が1.0質量%になるように調整した後、ジブチルエーテル溶媒にて10質量%に希釈した液を用いてスピンコート法により塗布後、得られた塗膜を80℃、5分で乾燥し、乾燥後膜厚150nmのパーヒドロポリシラザン含有層を作製した。
Step (a): Formation of perhydropolysilazane layer As a solution containing perhydropolysilazane (PHPS), a 20% by mass dibutyl ether solution (Aquamica NN120-20 (PHPS) manufactured by AZ Electronic Materials Co., Ltd.), an amine catalyst (N , N, N ′, N′-tetramethyl-1,6-diaminohexane) containing 5% by mass of NAX120-20), the content of amine catalyst relative to the perhydropolysilazane (PHPS) concentration Is adjusted to 1.0 mass%, and is applied by spin coating using a solution diluted to 10 mass% with a dibutyl ether solvent, and the resulting coating film is dried at 80 ° C. for 5 minutes. A perhydropolysilazane-containing layer having a thickness of 150 nm after drying was prepared.

工程(b):パーヒドロポリシラザン層の改質処理(酸化)によるバリア層の作製
上記の工程(a)で得られたパーヒドロポリシラザン層を有するフィルム基材をオーブンに投入し200℃の加熱処理を施した後、下記に記載の真空紫外線(VUV)照射を行い、バリア層を形成した。
Step (b): Preparation of barrier layer by modification treatment (oxidation) of perhydropolysilazane layer The film base material having the perhydropolysilazane layer obtained in the above step (a) is placed in an oven and heated at 200 ° C. After the above, the vacuum ultraviolet ray (VUV) irradiation described below was performed to form a barrier layer.

尚、工程(b)における雰囲気の露点温度は−40℃であった。   In addition, the dew point temperature of the atmosphere in a process (b) was -40 degreeC.

この工程(a)と工程(b)を2度繰り返して、バリア層を積層した本発明のガスバリア性フィルム1を作製した。   This process (a) and the process (b) were repeated twice, and the gas barrier film 1 of this invention which laminated | stacked the barrier layer was produced.

〈真空紫外線(VUV)照射処理条件〉
真空紫外線(VUV)の照射条件は下記の装置を用いランプと試料との間隔(Gapともいう)を1mmとなるように試料を設置し、照射した。照射時間は、可動ステージの可動速度を調整して変化した。
<Vacuum ultraviolet (VUV) irradiation treatment conditions>
The irradiation conditions of vacuum ultraviolet rays (VUV) were set and irradiated using the following apparatus so that the distance between the lamp and the sample (also referred to as Gap) was 1 mm. The irradiation time was changed by adjusting the movable speed of the movable stage.

また、真空紫外線(VUV)照射時の酸素濃度の調整は、照射庫内に導入する窒素ガス、及び酸素ガスの流量をフローメーターにより測定し、庫内に導入するガスの窒素ガス/酸素ガス流量比により調整した。   The oxygen concentration during vacuum ultraviolet (VUV) irradiation is adjusted by measuring the flow rate of nitrogen gas and oxygen gas introduced into the irradiation chamber with a flow meter, and the nitrogen gas / oxygen gas flow rate of the gas introduced into the chamber. Adjusted by ratio.

真空紫外線照射装置:ステージ可動型キセノンエキシマ照射装置(MDエキシマ社製、MECL−M−1−200)
照度:140mW/cm
ステージ温度:100℃
処理環境:ドライ窒素ガス雰囲気下
処理環境の酸素濃度:0.1%
ステージ可動速度:10mm/秒で10回搬送
《ガスバリア性フィルム2の作製》
上記ガスバリア性フィルム1の作製において、支持体をポリアクリルアミド系フィルム(東レ社製、PA ミクトロン、Tg:304℃)に変更した以外は同様にして、本発明のガスバリア性フィルム2を作製した。
Vacuum ultraviolet irradiation device: Stage movable xenon excimer irradiation device (MD excimer, MECL-M-1-200)
Illuminance: 140 mW / cm 2
Stage temperature: 100 ° C
Processing environment: Under dry nitrogen gas atmosphere Oxygen concentration in processing environment: 0.1%
Stage moving speed: 10 times transported at 10 mm / sec << Preparation of gas barrier film 2 >>
A gas barrier film 2 of the present invention was produced in the same manner as in the production of the gas barrier film 1 except that the support was changed to a polyacrylamide film (PA Mikutron, Tg: 304 ° C.).

《ガスバリア性フィルム3の作製》
ガスバリア性フィルム1の作製において、支持体をJSR株式会社製のHF−6301(Tg:280℃)に変更した以外は同様にして、本発明のガスバリア性フィルム3を作製した。
<< Production of Gas Barrier Film 3 >>
In the production of the gas barrier film 1, the gas barrier film 3 of the present invention was produced in the same manner except that the support was changed to HF-6301 (Tg: 280 ° C.) manufactured by JSR Corporation.

《ガスバリア性フィルム4の作製》
ガスバリア性フィルム1の作製において、支持体を昭和電工株式会社製、AF−100(Tg:250<)に変更した以外は同様にして、本発明のガスバリア性フィルム4を作製した。
<< Production of Gas Barrier Film 4 >>
In producing the gas barrier film 1, the gas barrier film 4 of the present invention was produced in the same manner except that the support was changed to AF-100 (Tg: 250 <) manufactured by Showa Denko KK.

《ガスバリア性フィルム5の作製》
ガスバリア性フィルム1の作製において、支持体を透明ポリイミド系フィルム(東洋紡株式会社製、タイプHM、Tg:225℃)に変更した以外は同様にして、本発明のガスバリア性フィルム5を作製した。
<< Production of Gas Barrier Film 5 >>
In the production of the gas barrier film 1, the gas barrier film 5 of the present invention was produced in the same manner except that the support was changed to a transparent polyimide film (Toyobo Co., Ltd., type HM, Tg: 225 ° C.).

《ガスバリア性フィルム6の作製》
ガスバリア性フィルム1の作製において、支持体をポリエーテルサルホン系フィルム(住友ベークライト株式会社製、FST−5353、Tg:223℃)に変更した以外は同様にして、本発明のガスバリア性フィルム6を作製した。
<< Production of Gas Barrier Film 6 >>
In the production of the gas barrier film 1, the gas barrier film 6 of the present invention was prepared in the same manner except that the support was changed to a polyethersulfone film (Sumitomo Bakelite Co., Ltd., FST-5353, Tg: 223 ° C.). Produced.

《ガスバリア性フィルム7の作製》
ガスバリア性フィルム1の作製において、支持体をポリカーボネート系フィルム(帝人株式会社製、SS−120、Tg:215℃)に変更した以外は同様にして、本発明のガスバリア性フィルム7を作製した。
<< Production of Gas Barrier Film 7 >>
In the production of the gas barrier film 1, the gas barrier film 7 of the present invention was produced in the same manner except that the support was changed to a polycarbonate film (SS-120, Tg: 215 ° C., manufactured by Teijin Limited).

《ガスバリア性フィルム8の作製》
ガスバリア性フィルム1の作製において、支持体にポリカーボネート系フィルム(帝人株式会社製、HT−100、Tg:115)を用い、ポリシラザン塗膜への加熱温度を150℃に変更した以外は同様にして、本発明のガスバリア性フィルム8を作製した。
<< Production of Gas Barrier Film 8 >>
In the production of the gas barrier film 1, a polycarbonate film (HT-100, Tg: 115, manufactured by Teijin Limited) was used as a support, and the heating temperature to the polysilazane coating film was changed to 150 ° C. in the same manner. A gas barrier film 8 of the present invention was produced.

《ガスバリア性フィルム9の作製》
ガスバリア性フィルム1の作製において、ポリシラザン塗膜への加熱は行わず、エキシマ改質時のステージ温度を200℃に変更した以外は同様にして、本発明のガスバリア性フィルム9を作製した。
<< Production of Gas Barrier Film 9 >>
In the production of the gas barrier film 1, the polysilazane coating film was not heated, and the gas barrier film 9 of the present invention was produced in the same manner except that the stage temperature during the excimer modification was changed to 200 ° C.

《ガスバリア性フィルム10の作製》
ガスバリア性フィルム1の作製において、ポリシラザン塗膜への加熱は行わず、エキシマ改質後のガスバリア層への加熱処理をオーブン中200℃にて行った以外は同様にして、本発明のガスバリア性フィルム10を作製した。
<< Production of Gas Barrier Film 10 >>
In the production of the gas barrier film 1, heating to the polysilazane coating film is not performed, and the gas barrier film of the present invention is similarly manufactured except that the heat treatment to the gas barrier layer after the excimer modification is performed at 200 ° C. in an oven. 10 was produced.

《ガスバリア性フィルム11の作製》
ガスバリア性フィルム1上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積した後、200℃の加熱焼成を行うことで、本発明の透明導電膜付きのガスバリア性フィルム11を作製した。
<< Production of Gas Barrier Film 11 >>
After depositing 150 nm of an indium tin oxide (ITO) transparent conductive film on the gas barrier film 1, the gas barrier film 11 with the transparent conductive film of the present invention was produced by heating and baking at 200 ° C.

《ガスバリア性フィルム12の作製》
上記ガスバリア性フィルム11の作製において、加熱焼成温度を250℃に変更した以外は同様にして、本発明の透明導電膜付きのガスバリア性フィルム12を作製した。
<< Production of Gas Barrier Film 12 >>
In the production of the gas barrier film 11, the gas barrier film 12 with a transparent conductive film of the present invention was produced in the same manner except that the heating and baking temperature was changed to 250 ° C.

《ガスバリア性フィルム13の作製》
上記ガスバリア性フィルム12の作製において、積層バリア層を、支持体を挟んで両面(中間層1上及び中間層2上)に形成した後、一方のバリア面に透明導電膜を形成した以外は同様にして、本発明の透明導電膜付きのガスバリア性フィルム13を作製した。
<< Production of Gas Barrier Film 13 >>
The production of the gas barrier film 12 is the same except that a laminated barrier layer is formed on both surfaces (on the intermediate layer 1 and the intermediate layer 2) with a support interposed therebetween, and then a transparent conductive film is formed on one barrier surface. Thus, a gas barrier film 13 with a transparent conductive film of the present invention was produced.

《ガスバリア性フィルム14の作製》
上記ガスバリア性フィルム13の作製において、ポリシラザン層を形成する際に用いる塗布液に、NN120−20(無触媒タイプ)を10質量%に希釈した液を用いた以外は同様にして、本発明の透明導電膜付きのガスバリア性フィルム14を作製した。
<< Production of Gas Barrier Film 14 >>
In the production of the gas barrier film 13, the transparent liquid of the present invention was similarly used except that the coating liquid used for forming the polysilazane layer was a liquid obtained by diluting NN120-20 (non-catalytic type) to 10% by mass. A gas barrier film 14 with a conductive film was produced.

《ガスバリア性フィルム15の作製》
上記ガスバリア性フィルム13の作製において、ポリシラザン層を形成する際に用いる塗布液に、NAX120−20(アミン触媒5%含有タイプ)を10質量%に希釈した液を用いた以外は同様にして、本発明の透明導電膜付きのガスバリア性フィルム15を作製した。
<< Production of Gas Barrier Film 15 >>
In the production of the gas barrier film 13, the present invention is the same except that a liquid obtained by diluting NAX120-20 (containing 5% amine catalyst) to 10% by mass is used as a coating liquid used when forming the polysilazane layer. A gas barrier film 15 with a transparent conductive film of the invention was produced.

《ガスバリア性フィルム16の作製》
上記ガスバリア性フィルム13の作製において、真空紫外線(VUV)照射による改質処理時の処理環境の露点温度を5℃に調整した以外は同様にして、本発明の透明導電膜付きのガスバリア性フィルム16を作製した。
<< Production of Gas Barrier Film 16 >>
In the production of the gas barrier film 13, the gas barrier film 16 with a transparent conductive film of the present invention was similarly used except that the dew point of the treatment environment during the modification treatment by vacuum ultraviolet (VUV) irradiation was adjusted to 5 ° C. Was made.

《ガスバリア性フィルム17の作製》
上記ガスバリア性フィルム13の作製において、真空紫外線(VUV)照射による改質前のポリシラザン塗膜への加熱を温度250℃にて行った以外は同様にして、本発明の透明導電膜付きのガスバリア性フィルム17を作製した。
<< Production of Gas Barrier Film 17 >>
In the production of the gas barrier film 13, the gas barrier property with the transparent conductive film of the present invention was similarly used except that the polysilazane coating film before the modification by vacuum ultraviolet ray (VUV) irradiation was heated at a temperature of 250 ° C. Film 17 was produced.

《ガスバリア性フィルム18の作製》
上記ガスバリア性フィルム13の作製において、真空紫外線(VUV)照射による改質前のポリシラザン塗膜への加熱、改質処理中のステージ温度、導電膜を形成した後の加熱焼成を全て温度250℃にて行った以外は同様にして、本発明の透明導電膜付きのガスバリア性フィルム18を作製した。
<< Production of Gas Barrier Film 18 >>
In the production of the gas barrier film 13, the heating to the polysilazane coating film before modification by vacuum ultraviolet (VUV) irradiation, the stage temperature during the modification treatment, and the heating and baking after the formation of the conductive film are all performed at a temperature of 250 ° C. In the same manner as described above, a gas barrier film 18 with a transparent conductive film of the present invention was produced.

《ガスバリア性フィルム19の作製》
上記ガスバリア性フィルム13の作製において、支持体にポリエチレンテレフタレート系フィルム(帝人社製、ST504、Tg:78℃)を用い、ポリシラザン塗膜への加熱は行わなかった以外は同様にして、比較のガスバリア性フィルム19を作製した。
<< Production of Gas Barrier Film 19 >>
In the production of the gas barrier film 13, a comparative gas barrier was similarly prepared except that a polyethylene terephthalate film (manufactured by Teijin Ltd., ST504, Tg: 78 ° C.) was used as the support and the polysilazane coating was not heated. The conductive film 19 was produced.

《ガスバリア性フィルム20の作製》
支持体としてガスバリア性フィルム1の作製に用いたのと同じポリイミド系フィルムを用い、バリア層の形成方法を、特開2008−41640号公報の実施例に記載の試料15のバリア層作製方法(イオンプレーティング法)に変更した以外は同様にして、比較のガスバリア性フィルム20を作製した。
<< Production of Gas Barrier Film 20 >>
The same polyimide-based film used for the production of the gas barrier film 1 as the support is used, and the method for forming the barrier layer is the same as the method for producing the barrier layer of sample 15 (ion) described in the examples of JP-A-2008-41640. A comparative gas barrier film 20 was produced in the same manner except that the plating method was changed.

《ガスバリア性フィルム21の作製》
ガスバリア性フィルム20の作製において、バリア層への加熱処理をオーブン中200℃にて行った以外は同様にして比較のガスバリア性フィルム21を作製した。
<< Production of Gas Barrier Film 21 >>
In the production of the gas barrier film 20, a comparative gas barrier film 21 was produced in the same manner except that the heat treatment for the barrier layer was performed in an oven at 200 ° C.

尚、パーヒドロポリシラザン層の塗布時の触媒濃度、塗布後の調湿度、真空紫外線(VUV)照射時の条件等は表1に記載した。   In addition, the catalyst concentration at the time of application | coating of a perhydropolysilazane layer, the humidity control after application | coating, the conditions at the time of vacuum ultraviolet-ray (VUV) irradiation, etc. were described in Table 1.

以上により作製した各ガスバリア性フィルムの構成を、表1に示す。   Table 1 shows the configuration of each gas barrier film produced as described above.

なお、表1に略称でした構成要素の詳細は、以下の通りである。   Details of the components abbreviated in Table 1 are as follows.

(バリア層)
〈形成方法〉
形成法1:前駆体塗布後に改質処理
形成法2:イオンプレーティング法
〈前駆体材料〉
前駆体1:パーヒドロポリシラザン(アミン触媒 1.0%含有)
前駆体2:パーヒドロポリシラザン(アミン触媒 未含有)
前駆体3:パーヒドロポリシラザン(アミン触媒 5.0%含有)
〈支持体〉
L−3430:透明ポリイミド系フィルム(三菱瓦斯化学株式会社製、ネオプリムL、L−3430、Tg:303℃)
ミクロトロン:ポリアクリルアミド系フィルム(東レ社製、PA ミクトロン、Tg:304℃)
HF−6301:JSR株式会社製のHF−6301(Tg:280℃)
AF−100:昭和電工株式会社製、AF−100(Tg:250<)
タイプHM:透明ポリイミド系フィルム(東洋紡株式会社製、タイプHM、Tg:225℃)
FST:ポリエーテルサルホン系フィルム(住友ベークライト株式会社製、FST−5353、Tg:223℃)
SS−120:ポリカーボネート系フィルム(帝人株式会社製、SS−120、Tg:215℃)
HT−100:ポリカーボネート系フィルム(帝人株式会社製、HT−100、Tg:115)
ST504:ポリエチレンテレフタレート系フィルム(帝人社製、ST504、Tg:78℃)
《ガスバリア性フィルムの水蒸気透過率(WVTR)特性の評価》
〔評価1:屈曲耐性(60℃、90%RH)の評価〕
ガスバリア性フィルム1〜21について、屈曲前後のガスバリア性の変化を確認するために、あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理を施したガスバリア性フィルムと、上記屈曲の処理を行わなかったガスバリア性フィルムについて、以下に示す方法に従って水蒸気透過率(WVTR)を測定し、下記に示すように7段階のランク評価を行い、ガスバリア性を評価した。
(Barrier layer)
<Formation method>
Forming method 1: Modification treatment after precursor coating Forming method 2: Ion plating method <Precursor material>
Precursor 1: Perhydropolysilazane (containing 1.0% amine catalyst)
Precursor 2: Perhydropolysilazane (no amine catalyst)
Precursor 3: Perhydropolysilazane (containing 5.0% amine catalyst)
<Support>
L-3430: Transparent polyimide film (manufactured by Mitsubishi Gas Chemical Company, Neoprim L, L-3430, Tg: 303 ° C.)
Microtron: Polyacrylamide film (Toray Industries, PA Mictron, Tg: 304 ° C.)
HF-6301: HF-6301 (Tg: 280 ° C.) manufactured by JSR Corporation
AF-100: Showa Denko KK, AF-100 (Tg: 250 <)
Type HM: Transparent polyimide film (Toyobo Co., Ltd., Type HM, Tg: 225 ° C.)
FST: Polyethersulfone film (Sumitomo Bakelite Co., Ltd., FST-5353, Tg: 223 ° C.)
SS-120: Polycarbonate film (manufactured by Teijin Limited, SS-120, Tg: 215 ° C.)
HT-100: Polycarbonate film (manufactured by Teijin Limited, HT-100, Tg: 115)
ST504: Polyethylene terephthalate film (manufactured by Teijin Limited, ST504, Tg: 78 ° C.)
<< Evaluation of water vapor transmission rate (WVTR) characteristics of gas barrier film >>
[Evaluation 1: Evaluation of bending resistance (60 ° C., 90% RH)]
For the gas barrier films 1 to 21, in order to confirm the change in gas barrier properties before and after bending, a gas barrier film that has been subjected to repeated bending 100 times at an angle of 180 degrees in advance so as to have a radius of curvature of 10 mm; The gas barrier film which was not subjected to the above bending treatment was measured for water vapor transmission rate (WVTR) according to the method described below, and was subjected to a seven-level rank evaluation to evaluate the gas barrier property.

(水蒸気透過率の測定装置)
蒸着装置:日本電子(株)製真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
(原材料)
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
(蒸気バリア性評価用セルの作製)
真空蒸着装置(日本電子製真空蒸着装置 JEE−400)を用い、透明導電膜を付ける前のガスバリア性フィルム(ガスバリア性フィルム1〜18、比較のガスバリア性フィルム19〜21の各々)試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。
(Measurement device of water vapor transmission rate)
Vapor deposition apparatus: Vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
(raw materials)
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor-impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of vapor barrier evaluation cell)
Using a vacuum vapor deposition device (JEOL-made vacuum vapor deposition device JEE-400), vapor-deposited samples of gas barrier films (gas barrier films 1 to 18 and comparative gas barrier films 19 to 21) before attaching a transparent conductive film. Masking was performed except for the desired portion (9 locations of 12 mm × 12 mm), and metallic calcium was deposited.

その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。   Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.

得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005−283561号公報記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。   The obtained sample with both sides sealed is stored at 60 ° C. and 90% RH under high temperature and high humidity, and moisture permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. The amount was calculated.

(ランク評価)
7:1×10−5g/m/day未満
6:1×10−5g/m/day以上、5×10−5g/m/day未満
5:5×10−5g/m/day以上、1×10−4g/m/day未満
4:1×10−4g/m/day以上、1×10−3g/m/day未満
3:1×10−3g/m/day以上、1×10−2g/m/day未満
2:1×10−2g/m/day以上、1×10−1g/m/day未満
1:1×10−1g/m/day以上
ランク評価において、実用上許容される品質は、ランク3以上である。
(Rank evaluation)
7: Less than 1 × 10 −5 g / m 2 / day 6: 1 × 10 −5 g / m 2 / day or more, less than 5 × 10 −5 g / m 2 / day 5: 5 × 10 −5 g / m 2 / day or more, 1 × 10 −4 g / m 2 / day or less 4: 1 × 10 −4 g / m 2 / day or more, 1 × 10 −3 g / m 2 / day or less 3: 1 × 10 -3 g / m 2 / day or more, less than 1 × 10 −2 g / m 2 / day 2: 1 × 10 −2 g / m 2 / day or more, less than 1 × 10 −1 g / m 2 / day 1 : 1 × 10 −1 g / m 2 / day or higher In the rank evaluation, the practically acceptable quality is rank 3 or higher.

〔評価2:高温高湿耐性の評価〕
得られたガスバリア性フィルム1〜21について、屈曲させず、85℃、90%RHに調整した高温高湿槽(恒温恒湿度オーブン:Yamato Humidic ChamberIG47M)内に、100時間連続で保管し、その後、上記評価1と同様にして水蒸気透過率を測定し、同様のランク評価を行った。
[Evaluation 2: Evaluation of resistance to high temperature and high humidity]
About the obtained gas barrier films 1 to 21, without being bent, stored in a high-temperature and high-humidity tank (constant temperature and humidity oven: Yamato Humidic Chamber IG47M) adjusted to 85 ° C. and 90% RH for 100 hours continuously, The water vapor transmission rate was measured in the same manner as in the above evaluation 1, and the same rank evaluation was performed.

〔評価3:サイクルサーモ耐性の評価〕
各ガスバリア性フィルムを、JIS C8938に準拠した条件で温湿度サイクル試験を行った後、上記評価1と同様にして水蒸気透過率を測定し、同様のランク評価を行った。
[Evaluation 3: Evaluation of cycle thermo resistance]
Each gas barrier film was subjected to a temperature / humidity cycle test under conditions in accordance with JIS C8938, and then the water vapor transmission rate was measured in the same manner as in Evaluation 1 above, and the same rank evaluation was performed.

以上により得られた結果を、表1に示す。   The results obtained as described above are shown in Table 1.

Figure 0005691457
Figure 0005691457

表1に記載の結果より明らかなように、比較のガスバリアフィルム19〜21に比べて、本発明のガスバリアフィルム1〜18は、各々、ガスバリア性(水蒸気透過率が低い)が高く、また、高温高湿化であっても、さらに幅広い温度帯域で保存しても、優れたバリア性を示し、屈曲性(ヒビ割れ耐性)も優れていることが明らかである。   As is clear from the results shown in Table 1, the gas barrier films 1 to 18 of the present invention each have a high gas barrier property (low water vapor transmission rate) and a high temperature compared to the comparative gas barrier films 19 to 21. It is clear that even when the humidity is increased or stored in a wider temperature range, it exhibits excellent barrier properties and excellent flexibility (cracking resistance).

実施例2
《有機光電変換素子1〜21の作製》
実施例1で作製したガスバリア性フィルム1〜10、19〜21に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)(導電膜形成前に加熱処理したもの)及び、すでに透明導電膜を付与したガスバリア性フィルム11〜18(導電膜形成後に加熱処理したもの)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて2mm幅にパターニングして、第1の電極を作製した。
Example 2
<< Production of Organic Photoelectric Conversion Elements 1-21 >>
Indium tin oxide (ITO) transparent conductive film deposited to 150 nm (sheet resistance 10Ω / □) on the gas barrier films 1 to 10 and 19 to 21 produced in Example 1 (heat treatment was performed before forming the conductive film) 1) and gas barrier films 11 to 18 having already been provided with a transparent conductive film (heat-treated after formation of the conductive film) are patterned to a width of 2 mm using a normal photolithography technique and wet etching. An electrode was prepared.

パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。   The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.

この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を膜厚が30nmになるように塗布乾燥した後、150℃で30分間熱処理させ正孔輸送層を製膜した。   On this transparent substrate, Baytron P4083 (manufactured by Starck Vitec), which is a conductive polymer, was applied and dried to a film thickness of 30 nm, and then heat treated at 150 ° C. for 30 minutes to form a hole transport layer. .

これ以降は、基板を窒素チャンバー中に持ち込み、窒素雰囲気下で作製した。   Thereafter, the substrate was brought into a nitrogen chamber and manufactured in a nitrogen atmosphere.

まず、窒素雰囲気下で上記基板を150℃で10分間加熱処理した。次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ−3−ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:6,6−フェニル−C61−ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過しながら膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を製膜した。 First, the substrate was heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere. Next, P3HT in chlorobenzene (plectrovirus Toro Nix Co., Ltd. regioregular poly-3-hexylthiophene) and PCBM (manufactured by Frontier Carbon Corporation: 6,6-phenyl -C 61 - butyric acid methyl ester) and 3.0 wt% Then, a liquid mixed at 1: 0.8 was prepared so that the film thickness was 100 nm while being filtered through a filter, and the film was allowed to stand at room temperature and dried. Subsequently, a heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer.

次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10−4Pa以下に真空蒸着装置内を減圧した後、蒸着速度0.01nm/秒でフッ化リチウムを0.6nm積層し、更に続けて、2mm幅のシャドウマスクを通して(受光部が2×2mmに成るように直行させて蒸着)、蒸着速度0.2nm/秒でAlメタルを100nm積層することで第2の電極を形成した。 Next, the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 × 10 −4 Pa or less, and then fluorinated at a deposition rate of 0.01 nm / second. Laminate 0.6 nm of lithium, and then continue to deposit 100 nm of Al metal at a deposition rate of 0.2 nm / sec through a shadow mask with a width of 2 mm (vaporization is performed so that the light receiving part is 2 × 2 mm). A second electrode was formed.

得られた各々の有機光電変換素子を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が2×2mmサイズの有機光電変換素子1〜21を作製した。   Each obtained organic photoelectric conversion element is moved to a nitrogen chamber and sealed with a sealing cap and a UV curable resin to produce organic photoelectric conversion elements 1 to 21 having a light receiving portion of 2 × 2 mm size. did.

次いで、下記の方法に従って封止用のガスバリアフィルム試料の作製及び有機光電変換素子の封止を行った。   Subsequently, the gas barrier film sample for sealing and the organic photoelectric conversion element were sealed according to the following method.

窒素ガス(不活性ガス)によりパージされた環境下で、ガスバリア性フィルム1〜21の各二枚を用い、ガスバリア層を設けた面に、シール材としてエポキシ系光硬化型接着剤を塗布したものを、各々対応する有機光電変換素子1〜21の各々の封止用フィルム1〜21として作製した。   In an environment purged with nitrogen gas (inert gas), two gas barrier films 1 to 21 are used, and an epoxy-based photocurable adhesive is applied as a sealing material to the surface provided with the gas barrier layer Were produced as the respective sealing films 1 to 21 of the corresponding organic photoelectric conversion elements 1 to 21.

次いで、上記の有機光電変換素子1〜21を、上記接着剤を塗布した二枚のガスバリアフィルム試料の接着剤塗布面の間に挟み込んで密着させた後、片側の基板側からUV光を照射して硬化させ、有機光電変換素子1〜21の封止処理を行い、本発明のガスバリア性フィルムを有する有機光電変換素子1〜18と、比較の有機光電変換素子19〜21を得た。 Next, the organic photoelectric conversion elements 1 to 21 are sandwiched and adhered between the adhesive application surfaces of the two gas barrier film samples coated with the adhesive, and then irradiated with UV light from one substrate side. Then, the organic photoelectric conversion elements 1 to 21 were sealed, and organic photoelectric conversion elements 1 to 18 having the gas barrier film of the present invention and comparative organic photoelectric conversion elements 19 to 21 were obtained.

《太陽電池の作製及びエネルギー変換効率の評価》
上記で得られた有機光電変換素子1〜18、比較の有機光電変換素子19〜21の評価は、各々の素子を用いて、太陽電池1〜18、比較の太陽電池19〜21を各々作製し、エネルギー変換効率を求め、各々に素子としての耐久性を評価した。
<< Production of solar cells and evaluation of energy conversion efficiency >>
Evaluation of the organic photoelectric conversion elements 1 to 18 obtained above and the comparative organic photoelectric conversion elements 19 to 21 is performed by using the respective elements to produce solar cells 1 to 18 and comparative solar cells 19 to 21, respectively. The energy conversion efficiency was obtained, and the durability as an element was evaluated for each.

尚、有機光電変換素子1〜18、比較の有機光電変換素子19〜21の各々の評価は、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、太陽電池1〜18、比較の太陽電池19〜21としてのIV特性を各々評価した。 In addition, each evaluation of the organic photoelectric conversion elements 1-18 and the comparative organic photoelectric conversion elements 19-21 irradiates the light of the intensity | strength of 100 mW / cm < 2 > of a solar simulator (AM1.5G filter), and the effective area is 4 A mask having a thickness of 0.0 mm 2 was placed on the light receiving portion, and the IV characteristics of the solar cells 1 to 18 and the comparative solar cells 19 to 21 were evaluated.

具体的には、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)及びフィルファクターFF(%)を、素子上に形成した4箇所の受光部をそれぞれ測定し、下記式1に従って求めたエネルギー変換効率PCE(%)の4点平均値を見積もった。 Specifically, the short-circuit current density Jsc (mA / cm 2 ), the open circuit voltage Voc (V), and the fill factor FF (%) were measured for each of the four light receiving portions formed on the element, and according to the following formula 1. A four-point average value of the obtained energy conversion efficiency PCE (%) was estimated.

式1
PCE(%)=〔Jsc(mA/cm)×Voc(V)×FF(%)〕/100mW/cm
得られた初期電池特性としての変換効率を測定し、性能の経時的低下の度合いを、温度60℃、湿度90%RH環境で2000時間保存した強制劣化試験後の変換効率残存率として、強制劣化試験後の変換効率/初期変換効率の比として求め、下記の基準に従って、耐久性の評価を行った。
Formula 1
PCE (%) = [Jsc (mA / cm 2 ) × Voc (V) × FF (%)] / 100 mW / cm 2
The conversion efficiency as an initial battery characteristic obtained was measured, and the degree of deterioration over time was measured as the conversion efficiency remaining rate after the forced deterioration test stored for 2000 hours in a temperature 60 ° C., humidity 90% RH environment. It calculated | required as ratio of the conversion efficiency / initial conversion efficiency after a test, and durability was evaluated according to the following reference | standard.

5:変換効率残存率が、90%以上
4:変換効率残存率が、70%以上、90%未満
3:変換効率残存率が、40%以上、70%未満
2:変換効率残存率が、20%以上、40%未満
1:変換効率残存率が、20%未満
尚、実用上に耐えうるのはランク3以上である。
5: Conversion efficiency residual ratio is 90% or more 4: Conversion efficiency residual ratio is 70% or more and less than 90% 3: Conversion efficiency residual ratio is 40% or more and less than 70% 2: Conversion efficiency residual ratio is 20 % Or more and less than 40% 1: The conversion efficiency remaining rate is less than 20%. It is rank 3 or more that can withstand practical use.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

Figure 0005691457
Figure 0005691457

表2に記載の結果より明らかなように、比較の有機光電変換素子19〜21を備えた比較太陽電池19〜21に対し、本発明のガスバリア性フィルムを有する有機光電変換素子1〜18を各々用いて作製した太陽電池1〜18は、60℃、90%RHという極めて過酷な環境(高温高湿条件下)においても極めて高い耐久性を示すことが分かった。 As is clear from the results shown in Table 2, each of the organic photoelectric conversion elements 1 to 18 having the gas barrier film of the present invention was compared with the comparative solar cells 19 to 21 provided with the comparative organic photoelectric conversion elements 19 to 21. solar cells 1 to 18 produced using the, 60 ° C., were found to exhibit a very high durability even in an extremely harsh environment of 90% RH (high temperature and high humidity conditions).

10 バルクヘテロジャンクション型の有機光電変換素子
11 基板
12 透明電極
13 対極
14 光電変換部(バルクヘテロジャンクション層)
14p p層
14i i層
14n n層
14′ 第1の光電変換部
15 電荷再結合層
16 第2の光電変換部
17 正孔輸送層
18 電子輸送層
DESCRIPTION OF SYMBOLS 10 Bulk heterojunction type organic photoelectric conversion element 11 Substrate 12 Transparent electrode 13 Counter electrode 14 Photoelectric conversion part (bulk hetero junction layer)
14p p layer 14i i layer 14n n layer 14 'first photoelectric conversion unit 15 charge recombination layer 16 second photoelectric conversion unit 17 hole transport layer 18 electron transport layer

Claims (11)

基材上に少なくとも1層のガスバリア性層を有するガスバリア性フィルムの製造方法において、ポリシラザンを含む溶液を塗布して塗膜を形成する工程と、次いで、得られた塗膜を改質処理する工程と、前記改質処理する工程時に、真空紫外線(VUV)照射する工程とを有し、前記ポリシラザンを含む溶液を塗布して塗膜を形成する工程後であって、前記改質処理する工程前、前記改質処理工程中及び前記改質処理工程後から選ばれる少なくとも1つの時期に、150℃以上、基材のTg温度以下で加熱処理する工程を有することを特徴とするガスバリア性フィルムの製造方法。   In the method for producing a gas barrier film having at least one gas barrier layer on a substrate, a step of applying a solution containing polysilazane to form a coating film, and then a step of modifying the resulting coating film And a step of irradiating with vacuum ultraviolet rays (VUV) during the step of modifying, and after the step of applying a solution containing the polysilazane to form a coating film, before the step of modifying A gas barrier film production comprising a step of heat-treating at a temperature of 150 ° C. or higher and a Tg temperature of a substrate or lower at least at one time selected from the reforming step and after the reforming step. Method. 前記ポリシラザンが、パーヒドロポリシラザンであることを特徴とする請求項1に記載のガスバリア性フィルムの製造方法。   The method for producing a gas barrier film according to claim 1, wherein the polysilazane is perhydropolysilazane. 前記塗膜を改質処理する工程における湿度を、露点温度0℃以下の雰囲気に調整することを特徴とする請求項1または2に記載のガスバリア性フィルムの製造方法。   The method for producing a gas barrier film according to claim 1 or 2, wherein the humidity in the step of modifying the coating film is adjusted to an atmosphere having a dew point temperature of 0 ° C or lower. 前記ポリシラザンを含む溶液における該ポリシラザンの反応触媒の含有量が、5質量%以下であることを特徴とする請求項1から3のいずれか1項に記載のガスバリア性フィルムの製造方法。   The method for producing a gas barrier film according to any one of claims 1 to 3, wherein a content of the reaction catalyst of the polysilazane in the solution containing the polysilazane is 5% by mass or less. 前記ポリシラザンを含む溶液が、該ポリシラザンの反応触媒を含まないことを特徴とする請求項1から4のいずれか1項に記載のガスバリア性フィルムの製造方法。   The method for producing a gas barrier film according to any one of claims 1 to 4, wherein the solution containing the polysilazane does not contain a reaction catalyst for the polysilazane. 前記真空紫外線(VUV)照射する工程時の酸素濃度が、500ppm以上、10000ppm以下であることを特徴とする請求項1から5のいずれか1項に記載のガスバリア性フィルムの製造方法。   6. The method for producing a gas barrier film according to claim 1, wherein an oxygen concentration at the time of the vacuum ultraviolet ray (VUV) irradiation is 500 ppm or more and 10,000 ppm or less. 前記真空紫外線(VUV)照射する工程時は、ポリシラザンを含有する塗膜表面における真空紫外線最大照射強度が、100mW/cm2以上、200mW/cm2以下であることを特徴とする請求項1から6のいずれか1項に記載のガスバリア性フィルムの製造方法。   The vacuum ultraviolet ray maximum irradiation intensity on the coating film surface containing polysilazane is 100 mW / cm 2 or more and 200 mW / cm 2 or less during the vacuum ultraviolet (VUV) irradiation step. A method for producing a gas barrier film according to claim 1. 前記改質処理する工程時が、塗膜表面における真空紫外線最大照射強度が100mW/cm2未満で真空紫外線(VUV)照射する工程を更に有することを特徴とする請求項7に記載のガスバリア性フィルムの製造方法。   8. The gas barrier film according to claim 7, wherein the modifying step further includes a step of irradiating a vacuum ultraviolet ray (VUV) with a maximum vacuum ultraviolet ray irradiation intensity of less than 100 mW / cm 2 on the coating film surface. Production method. 前記ガスバリア性フィルムは、前記基材と前記ガスバリア性層の間に中間層を有し、前記ポリシラザンを含む溶液を該中間層上に塗布することにより塗膜が形成されることを特徴とする請求項1から8のいずれか1項に記載のガスバリア性フィルムの製造方法。   The gas barrier film has an intermediate layer between the base material and the gas barrier layer, and a coating film is formed by applying a solution containing the polysilazane on the intermediate layer. Item 9. The method for producing a gas barrier film according to any one of Items 1 to 8. 前記中間層は、前記基材上に紫外線硬化樹脂又は熱硬化性樹脂を硬化させて形成されたことを特徴とする請求項9に記載のガスバリア性フィルムの製造方法。   The method for producing a gas barrier film according to claim 9, wherein the intermediate layer is formed by curing an ultraviolet curable resin or a thermosetting resin on the substrate. 請求項1から10のいずれか1項に記載のガスバリア性フィルムの製造方法により製造されたガスバリア性フィルムであって、下記の評価1〜3においてガスバリア性フィルムの水蒸気透過率(WVTR)が、いずれも1×10 −4 g/m /day未満であることを特徴とするガスバリア性フィルム。
〔評価1:屈曲耐性(60℃、90%RH)の評価〕
あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理を施したガスバリア性フィルムについて、以下に示す方法に従って水蒸気透過率を測定する。
真空蒸着装置を用い、ガスバリア性フィルムの蒸着部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させる。
その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させる。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製する。
得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、金属カルシウムの水分と反応した腐食量からセル内に透過した水分量を計算する。
〔評価2:高温高湿耐性(85℃、90%RH)の評価〕
ガスバリア性フィルムについて、屈曲させず、85℃、90%RHに調整した高温高湿槽内に、100時間連続で保管し、その後、上記評価1と同様にして水蒸気透過率を測定する。
〔評価3:サイクルサーモ耐性の評価〕
ガスバリア性フィルムを、JIS C8938に準拠した条件で温湿度サイクル試験を行った後、上記評価1と同様にして水蒸気透過率を測定する。
It is a gas barrier film manufactured by the manufacturing method of the gas barrier film of any one of Claim 1 to 10 , Comprising: In the following evaluations 1-3, the water vapor transmission rate (WVTR) of a gas barrier film is Is less than 1 × 10 −4 g / m 2 / day .
[Evaluation 1: Evaluation of bending resistance (60 ° C., 90% RH)]
The water vapor transmission rate is measured in accordance with the method described below for a gas barrier film that has been subjected to repeated bending 100 times at an angle of 180 degrees in advance so that the curvature has a radius of 10 mm.
Using a vacuum vapor deposition apparatus, metal calcium is vapor-deposited by masking other than the vapor-deposited portion of the gas barrier film (9 locations of 12 mm × 12 mm).
Thereafter, the mask is removed in a vacuum state, and aluminum is vapor deposited from another metal vapor deposition source on the entire surface of one side of the sheet. After sealing with aluminum, the vacuum state is released, and in a dry nitrogen gas atmosphere, quartz glass with a thickness of 0.2 mm is made to face the aluminum sealing side via an ultraviolet curing resin for sealing, and then irradiated with ultraviolet rays. Thus, an evaluation cell is produced.
The obtained sample with both sides sealed is stored under high temperature and high humidity of 60 ° C. and 90% RH, and the amount of moisture permeated into the cell is calculated from the amount of corrosion that has reacted with the moisture of metallic calcium.
[Evaluation 2: Evaluation of high temperature and high humidity resistance (85 ° C., 90% RH)]
The gas barrier film is stored for 100 hours continuously in a high-temperature and high-humidity tank adjusted to 85 ° C. and 90% RH without being bent, and thereafter, the water vapor transmission rate is measured in the same manner as in Evaluation 1 above.
[Evaluation 3: Evaluation of cycle thermo resistance]
The gas barrier film is subjected to a temperature and humidity cycle test under conditions in accordance with JIS C8938, and then the water vapor transmission rate is measured in the same manner as in the evaluation 1.
JP2010271235A 2010-12-06 2010-12-06 Gas barrier film and method for producing gas barrier film Expired - Fee Related JP5691457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271235A JP5691457B2 (en) 2010-12-06 2010-12-06 Gas barrier film and method for producing gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271235A JP5691457B2 (en) 2010-12-06 2010-12-06 Gas barrier film and method for producing gas barrier film

Publications (2)

Publication Number Publication Date
JP2012121149A JP2012121149A (en) 2012-06-28
JP5691457B2 true JP5691457B2 (en) 2015-04-01

Family

ID=46503160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271235A Expired - Fee Related JP5691457B2 (en) 2010-12-06 2010-12-06 Gas barrier film and method for producing gas barrier film

Country Status (1)

Country Link
JP (1) JP5691457B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069548A1 (en) * 2012-11-02 2014-05-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device electrode, method for forming the same, power storage device, and electrical device
WO2014208471A1 (en) * 2013-06-28 2014-12-31 コニカミノルタ株式会社 Method for producing gas barrier film
JPWO2015133620A1 (en) * 2014-03-06 2017-04-06 コニカミノルタ株式会社 Gas barrier film
JP6287634B2 (en) * 2014-06-27 2018-03-07 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
KR101864723B1 (en) * 2016-12-08 2018-07-13 한국생산기술연구원 Preparing method of gas barrier film using UV Pulse and Gas barrier film thereof
JP7025585B1 (en) 2021-03-18 2022-02-24 大日本印刷株式会社 Barrier film for wavelength conversion sheet, wavelength conversion sheet using this, backlight and liquid crystal display device
CN113877785B (en) * 2021-09-10 2022-08-02 哈尔滨工业大学 High-permeability hydrophobic dustproof thin film and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3449798B2 (en) * 1994-10-14 2003-09-22 東燃ゼネラル石油株式会社 Method for producing SiO2-coated plastic film
JPH10279362A (en) * 1997-03-31 1998-10-20 Tonen Corp Formation of sio2 ceramic film
JP2003059643A (en) * 2001-08-22 2003-02-28 Dainippon Printing Co Ltd Electroluminescence element
DE102005034817A1 (en) * 2005-07-26 2007-02-01 Clariant International Limited Process for producing a thin vitreous coating on substrates to reduce gas permeation
JP2007237588A (en) * 2006-03-09 2007-09-20 Kyodo Printing Co Ltd Gas-barrier film and method for producing the film
JP2009095989A (en) * 2007-10-12 2009-05-07 Fujifilm Corp Gas barrier film and environmental susceptible device
JP2009255040A (en) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd Flexible gas barrier film and method for manufacturing the same
WO2010026869A1 (en) * 2008-09-02 2010-03-11 コニカミノルタホールディングス株式会社 Composite film, gas-barrier film and method for production thereof, and organic electroluminescence element
KR101133063B1 (en) * 2008-11-19 2012-04-04 주식회사 엘지화학 Multi-layered Plastic Substrate and Fabrication Method Thereof
EP2626378B1 (en) * 2009-03-17 2019-02-27 LINTEC Corporation Molded article, process for producing the molded article, member for electronic device, and electronic device
US20130146860A1 (en) * 2010-08-25 2013-06-13 Konica Minolta Holdings, Inc. Method of manufacturing gas barrier film and organic photoelectric conversion element

Also Published As

Publication number Publication date
JP2012121149A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5585267B2 (en) Gas barrier film, method for producing the same, and organic photoelectric conversion element using the same
JP5515847B2 (en) Method for producing gas barrier film
JP5659477B2 (en) Barrier film, manufacturing method thereof, and organic photoelectric conversion element
JP5853954B2 (en) Method for producing gas barrier film
JP5447022B2 (en) Gas barrier film, production method thereof, and organic photoelectric conversion element using the gas barrier film
JP5691457B2 (en) Gas barrier film and method for producing gas barrier film
JP5712509B2 (en) Barrier film manufacturing method
JP5267467B2 (en) Barrier film, method for producing barrier film, organic photoelectric conversion element having barrier film, and solar cell having the element
JP5540788B2 (en) Gas barrier film, method for producing the same, organic photoelectric conversion device using the same, and solar cell
JP6237752B2 (en) Gas barrier film, method for producing the same, organic photoelectric conversion device and organic electroluminescence device using the same
JP5585592B2 (en) Gas barrier film, method for producing gas barrier film, organic photoelectric conversion element having gas barrier film, and solar cell having the element
JP5516582B2 (en) Barrier film, organic photoelectric conversion element and method for producing barrier film
JPWO2011043315A1 (en) Gas barrier film, method for producing gas barrier film, organic photoelectric conversion element having the gas barrier film, and solar cell having the organic photoelectric conversion element
JP2011143551A (en) Gas barrier film, method of manufacturing the same and organic photoelectric conversion element
JP2011036779A (en) Method of manufacturing gas barrier film and organic photoelectric conversion element
JP5975142B2 (en) Gas barrier film, method for producing the same, and organic photoelectric conversion element using the same
JP5736644B2 (en) Gas barrier film, method for producing the same, and organic photoelectric conversion element using the same
JP2011073417A (en) Barrier film, method of producing barrier film, and organic photoelectric conversion element
JP5696667B2 (en) Organic photoelectric conversion element
JP5600981B2 (en) Gas barrier film, method for producing organic device, and organic device
JP2012116960A (en) Gas barrier film, method for producing the same, and organic electronic device
JP5487894B2 (en) Gas barrier film and organic photoelectric conversion element
JP5888314B2 (en) Gas barrier film and electronic device using the gas barrier film
JP5552975B2 (en) Gas barrier film and organic electronic device having gas barrier film
JP5578270B2 (en) Gas barrier film, production method thereof, and organic photoelectric conversion element using the gas barrier film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees