Nothing Special   »   [go: up one dir, main page]

JP5662649B2 - Ozone generating electrode - Google Patents

Ozone generating electrode Download PDF

Info

Publication number
JP5662649B2
JP5662649B2 JP2009096915A JP2009096915A JP5662649B2 JP 5662649 B2 JP5662649 B2 JP 5662649B2 JP 2009096915 A JP2009096915 A JP 2009096915A JP 2009096915 A JP2009096915 A JP 2009096915A JP 5662649 B2 JP5662649 B2 JP 5662649B2
Authority
JP
Japan
Prior art keywords
electrode
flow path
refrigerant
regulating member
inner electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009096915A
Other languages
Japanese (ja)
Other versions
JP2010248015A (en
Inventor
正樹 田口
正樹 田口
茂充 河井
茂充 河井
英治 酒井
英治 酒井
秀明 西井
秀明 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2009096915A priority Critical patent/JP5662649B2/en
Publication of JP2010248015A publication Critical patent/JP2010248015A/en
Application granted granted Critical
Publication of JP5662649B2 publication Critical patent/JP5662649B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、水処理などに用いられるオゾン発生装置に関し、オゾン発生中に電極で生ずる放電発熱の冷却を図り、効率よくオゾンを発生させることのできるオゾン発生電極の構造に関する。   The present invention relates to an ozone generator used for water treatment and the like, and relates to a structure of an ozone generating electrode capable of efficiently generating ozone by cooling discharge heat generated at an electrode during ozone generation.

オゾン発生装置は、上下水道における水処理に用いられる装置である。   An ozone generator is an apparatus used for water treatment in water and sewage.

従来から使用されているオゾン発生装置としては、二つの平板状の電極を対向させ、対向した電極の少なくとも一方に誘電体が配置され、その間に放電空間を形成して、この放電空間に酸素を含む原料ガスを流しつつ、二つの電極に交流高電圧を印加して酸素からオゾンを発生させる方法がある。また、図に示すように、電極として円筒形状のものを用い、外側に接地電極を設け、接地電極の内部に高電圧電極を配置し、対向した電極の少なくとも一方に誘電体が配置された同軸円筒型のオゾン発生電極も使用されている。 Conventionally used ozone generators have two flat electrodes facing each other, a dielectric is disposed on at least one of the opposed electrodes, a discharge space is formed between them, and oxygen is introduced into this discharge space. There is a method in which ozone is generated from oxygen by applying an alternating high voltage to two electrodes while flowing a raw material gas. Further, as shown in FIG. 7 , a cylindrical electrode is used, a ground electrode is provided outside, a high voltage electrode is disposed inside the ground electrode, and a dielectric is disposed on at least one of the opposed electrodes. A coaxial cylindrical ozone generating electrode is also used.

同軸円筒型のオゾン発生電極の場合には、図に示すように、酸素を含む原料ガス20を接地電極1と高電圧電極3の間の放電空間6に流通させる。接地電極1と高電圧電極3を交流高電圧の電源装置(図示していない)に接続し、この電源装置から供給される電力により放電空間6に無声放電を発生させる。放電による電子衝突により、放電空間6を流れる原料ガス20に含まれる酸素分子から酸素原子が生成され、酸素原子とその周辺にあるほかの酸素分子とが再結合することでオゾンが生成される。生成したオゾン化ガスは放電空間6から図示していないオゾンと接触する被処理物質のある装置や場所に供給される。 In the case of the ozone generating electrode coaxial cylinder type, as shown in FIG. 7, circulating the raw material gas 20 containing oxygen to the discharge space 6 between the grounding electrode 1 and the high voltage electrode 3. The ground electrode 1 and the high voltage electrode 3 are connected to an AC high voltage power supply device (not shown), and silent discharge is generated in the discharge space 6 by the electric power supplied from the power supply device. Oxygen atoms are generated from oxygen molecules contained in the source gas 20 flowing through the discharge space 6 due to electron collision caused by discharge, and ozone is generated by recombination of oxygen atoms and other oxygen molecules in the vicinity thereof. The generated ozonized gas is supplied from the discharge space 6 to an apparatus or a place having a substance to be treated that comes into contact with ozone (not shown).

高電圧電極3には、放電で発生した熱を除去するために、電極を冷却する冷媒の流路が設けられており、ここに冷媒を流通させて高電圧電極3を冷却する。或いは、接地電極1の外側に、図示していないが、接地電極1に隣接して電極を冷却する冷媒の流路を設け、接地電極1を冷却しても良い。   The high voltage electrode 3 is provided with a refrigerant flow path for cooling the electrode in order to remove the heat generated by the discharge, and the high voltage electrode 3 is cooled by circulating the refrigerant therethrough. Alternatively, although not shown, a coolant channel for cooling the electrode may be provided adjacent to the ground electrode 1 outside the ground electrode 1 to cool the ground electrode 1.

このように電極を冷却する目的は、放電により電極が発熱し、この発熱で放電空間6の中で生成したオゾンが再び分解してしまうおそれがあるため、このオゾンの熱分解を防止するためである。   The purpose of cooling the electrode in this way is to prevent the thermal decomposition of ozone because the electrode generates heat by discharge and ozone generated in the discharge space 6 may be decomposed again by this heat generation. is there.

同軸円筒型のオゾン発生電極として、従来からさまざまなものが提案されている。例えば、先行特許文献1には、内部に冷却体を有する同軸円筒型のオゾン発生電極を示している(特許文献1参照)。ここでは発熱による温度上昇や冷却による膨張や収縮によって、ガラスなどの誘電体の管の破損などが破損しないように伸縮ギャップを設けたものを開示している。
ところで、高電圧電極又は接地電極である筒状の内側電極を冷却するために、その内部に空間部を設け、ここに冷却用の冷媒を流して電極を冷却する方法が採用されている。
そして、この場合における内側電極の冷却効率を向上させるために、内側電極内に、冷媒の流路をその筒壁内周部側に規制する柱状の流路規制部材を設けたオゾン発生電極が提案がなされている(特許文献2及び3参照)。
Various types of coaxial cylindrical ozone generating electrodes have been proposed. For example, Patent Document 1 discloses a coaxial cylindrical ozone generating electrode having a cooling body inside (see Patent Document 1). Here, there is disclosed a structure in which an expansion gap is provided so as to prevent breakage of a dielectric tube such as glass due to temperature rise due to heat generation or expansion or contraction due to cooling.
By the way, in order to cool the cylindrical inner electrode which is a high-voltage electrode or a ground electrode, a method is employed in which a space is provided in the inner electrode, and a cooling refrigerant is passed through the space to cool the electrode.
In order to improve the cooling efficiency of the inner electrode in this case, an ozone generating electrode is proposed in which a columnar flow path regulating member for regulating the flow path of the refrigerant to the inner peripheral side of the cylindrical wall is provided in the inner electrode. (See Patent Documents 2 and 3).

特開昭61−14105号公報Japanese Patent Laid-Open No. 61-14105 特開平7−223805号公報JP-A-7-223805 特開平10−182111号公報JP-A-10-182111

ところで、このような従来のオゾン発生電極に対しては、流路規制部材を予め内側電極内で位置決め固定させる手間を省き、これにより、製造の容易化を図ることが要請されている。   By the way, with respect to such a conventional ozone generating electrode, it is required to save the trouble of positioning and fixing the flow path regulating member in the inner electrode in advance, thereby facilitating manufacture.

本発明の目的は、内側電極内に柱状の流路規制部材を設ける場合にも製造の容易化を図ることができるオゾン発生電極、及び、これを用いたオゾン発生装置を提供することにある。   An object of the present invention is to provide an ozone generating electrode capable of facilitating manufacture even when a columnar flow path regulating member is provided in an inner electrode, and an ozone generating apparatus using the same.

即ち、本発明は、以下の内容をその要旨とする発明である。
(1)筒壁部及びその両端側をそれぞれ閉塞させる一対の端壁部を有する筒形状の内側電極と、空間を介して対向するように内側電極の外側に配置された外側電極と、前記外側電極及び前記内側電極の互いに対向する面の少なくとも何れか一方に設けられた誘電体とを備え、前記内側電極が、その各端壁部に冷媒の流入口及び流出口がそれぞれ設けられ、その流入口及び流出口を通じて循環する冷媒によって内側から冷却されることが可能とされたオゾン発生電極であって、前記内側電極内に、冷媒の流路をその筒壁内周部側に規制する柱状の流路規制部材を有しており、前記流路規制部材の側面及び前記筒壁内周部の少なくとも何れか一方が、前記内側電極の筒壁内周部側における冷媒の流れを保持する筒側突起状スペーサを有しており、前記流路規制部材及び前記下流側端壁部の少なくとも何れか一方が、下流側端壁部の前記流出口における冷媒の流れを保持する出口側突起状スペーサを有しており、前記流路規制部材が、前記内側電極の軸線方向に沿って該内側電極内に移動可能に設けられており、かつ、冷媒の流れを受けて前記内側電極内で冷媒の流れを保持する位置に位置決め固定されるものである、オゾン発生電極。
That is, the present invention has the following contents.
(1) A cylindrical inner electrode having a cylindrical wall portion and a pair of end wall portions that respectively close both end sides thereof, an outer electrode disposed outside the inner electrode so as to face each other through a space, and the outer side A dielectric provided on at least one of the electrodes and the mutually facing surfaces of the inner electrode, and the inner electrode is provided with a refrigerant inlet and outlet on each of its end walls, respectively. An ozone generating electrode that can be cooled from the inside by a refrigerant circulating through an inlet and an outlet, and in the inner electrode, a columnar shape that restricts the flow path of the refrigerant to the inner peripheral side of the cylinder wall The cylinder side which has a flow-path control member and at least any one of the side surface of the said flow-path control member and the said cylindrical wall inner peripheral part hold | maintains the flow of the refrigerant | coolant in the cylindrical wall inner peripheral part side of the said inner side electrode It has a protruding spacer, Kiryuro regulating member and at least one of said downstream end wall portion has an outlet projecting spacers to hold the flow of the refrigerant in the outlet of the downstream end wall portion, the flow path regulating The member is provided so as to be movable in the inner electrode along the axial direction of the inner electrode , and is positioned and fixed at a position for receiving the flow of the refrigerant and holding the flow of the refrigerant in the inner electrode. An ozone generating electrode.

)前記筒側突起状スペーサ及び前記出口側突起状スペーサの何れもが、前記流路規制部材に設けられている、上記()に記載のオゾン発生電極。 ( 2 ) The ozone generating electrode according to ( 1 ), wherein each of the cylindrical side protruding spacer and the outlet side protruding spacer is provided on the flow path regulating member.

)前記流路規制部材が、その横断面形状が前記内側電極の内部空間の横断面形状に対し相似形状に形成されている、上記(1)又は(2)に記載のオゾン発生電極。 ( 3 ) The ozone generating electrode according to (1) or (2), wherein the flow path regulating member has a cross-sectional shape similar to that of the inner space of the inner electrode.

)前記内側電極が、円筒状に形成されている、上記(1)〜(3)の何れかに記載のオゾン発生電極。 ( 4 ) The ozone generating electrode according to any one of (1) to (3), wherein the inner electrode is formed in a cylindrical shape.

)前記上流側端壁部が前記下流側端壁部に比して低い位置に設置されている場合において、前記流路規制部材及び前記上流側端壁部の少なくとも何れか一方が、前記流入口における冷媒の流れを保持する入口側突起状スペーサを有している、上記(1)〜(4)の何れかに記載のオゾン発生電極。 ( 5 ) In the case where the upstream end wall portion is installed at a position lower than the downstream end wall portion, at least one of the flow path regulating member and the upstream end wall portion is the The ozone generating electrode according to any one of (1) to (4), further including an inlet-side protruding spacer that holds a refrigerant flow at the inlet.

)上記(1)〜()の何れかに記載のオゾン発生電極を用いた、オゾン発生装置。 ( 6 ) An ozone generator using the ozone generating electrode according to any one of (1) to ( 5 ) above.

本発明に係るオゾン発生電極によれば、内側電極内に、冷媒の流路をその筒壁内周部側に規制する柱状の流路規制部材が軸線方向に沿って移動可能とされ、しかも、内側電極の筒壁内周部側及び下流側端壁部の流出口における冷媒の流れが保持されるので、流路規制部材は、冷媒の流れを受けると直ちに下流側端壁部に対して押し付けられて冷媒のスムースな流れを確保しうる位置に位置決めされ、冷媒の流れの力を利用せずに予め内側電極内で位置決め固定されていたのと同様な機能を発揮することが可能となる。すなわち、このようなオゾン発生電極によれば、流路規制部材を予め内側電極内で位置決め固定させる手間を省くことが可能となり、これにより、製造の容易化を図ることが可能となる。   According to the ozone generating electrode according to the present invention, in the inner electrode, the column-shaped flow path regulating member that regulates the flow path of the refrigerant to the inner peripheral side of the cylinder wall is movable along the axial direction. Since the flow of the refrigerant at the outlet of the inner peripheral side of the inner wall and the downstream end wall of the inner electrode is maintained, the flow path regulating member is pressed against the downstream end wall as soon as the refrigerant flows. Thus, it is positioned at a position where a smooth flow of the refrigerant can be ensured, and it is possible to perform the same function as the positioning and fixing in the inner electrode in advance without using the flow force of the refrigerant. That is, according to such an ozone generating electrode, it is possible to save the trouble of positioning and fixing the flow path regulating member in the inner electrode in advance, thereby facilitating the manufacture.

なお、本発明のように、流路規制部材及び下流側端壁部の少なくとも何れか一方に冷媒流れと同方向に突起物(出口側突起状スペーサ)を設けると、冷媒の流れる流路を狭くして流路を流れる冷媒の流速を大きくすることが可能となり、層流状態ではなく乱流状態で冷媒を流すことができる。そして、内側電極との熱交換効率、冷却効果が向上し、オゾン発生に際して内側電極に放電のために発生する熱を効率よく除去することができ、その結果オゾンの熱分解を防止し、オゾンをより効率よく発生させることができる。また、副次的な効果として、電極を水平状態で使用する場合、冷却用冷媒の流路の中に空気が残留することがあるが、本発明の電極では冷媒の流速が大きくなり、内部の空気も一緒に押し流すことができる。 Incidentally, as in the present invention, when in the same direction as the refrigerant flows in at least one of the flow path regulating member and the downstream end wall portion provided projections (outlet side protruding spacer), the flow path of the flow of the refrigerant The flow rate of the refrigerant flowing through the flow path can be increased by narrowing, and the refrigerant can flow in a turbulent state instead of a laminar state. The heat exchange efficiency with the inner electrode and the cooling effect are improved, and the heat generated by the inner electrode for discharge can be efficiently removed when ozone is generated. As a result, the thermal decomposition of ozone is prevented, It can be generated more efficiently. In addition, as a secondary effect, when the electrode is used in a horizontal state, air may remain in the cooling refrigerant flow path. Air can be swept away.

また、流路規制部材及び上流側端壁部の少なくとも何れか一方が、流入口における冷媒の流れを保持する入口側突起状スペーサを有するものとすれば、オゾン発生電極がその上流側端壁部が下流側端壁部に比して低い位置に設置されているタイプのものである場合にも、上記効果を享受することが可能となる。   In addition, if at least one of the flow path regulating member and the upstream end wall portion has an inlet-side protruding spacer that holds the flow of the refrigerant at the inlet, the ozone generating electrode has its upstream end wall portion. The above-mentioned effect can be enjoyed even when the type is installed at a position lower than the downstream end wall.

本発明のオゾン発生電極に流路規制部材を取り付け、流路規制部材の側面に突起物を取り付けた場合の冷媒流通方向の断面図の一例である。It is an example of sectional drawing of a refrigerant distribution direction when a channel regulation member is attached to an ozone generating electrode of the present invention, and a projection is attached to a side of a channel regulation member. 本発明のオゾン発生電極に流路規制部材を取り付け、流路規制部材の側面に突起物を取り付けた場合の、流路規制部材と内側電極の冷媒流通方向の直角の断面図の例である。It is an example of a cross-sectional view perpendicular to the flow direction of the refrigerant between the flow path regulating member and the inner electrode when the flow path regulating member is attached to the ozone generating electrode of the present invention and the protrusion is attached to the side surface of the flow path regulating member. 本発明のオゾン発生電極に流路規制部材を取り付け、流路規制部材の側面に突起物を取り付けた場合の、流路規制部材と内側電極の冷媒流通方向の直角の断面図の例である。It is an example of a cross-sectional view perpendicular to the flow direction of the refrigerant between the flow path regulating member and the inner electrode when the flow path regulating member is attached to the ozone generating electrode of the present invention and the protrusion is attached to the side surface of the flow path regulating member. 本発明のオゾン発生電極に流路規制部材を取り付け、流路規制部材の側面に突起物を取り付けた場合の固定状態を示す、流路規制部材と内側電極の冷媒流通方向の直角の断面図の例である。FIG. 3 is a cross-sectional view of the flow path regulating member and the inner electrode at right angles in the refrigerant flow direction, showing a fixed state when the flow path regulating member is attached to the ozone generating electrode of the present invention and the protrusion is attached to the side surface of the flow path regulating member. It is an example. 本発明のオゾン発生電極に流路規制部材を取り付け、流路規制部材の側面に突起物を取り付けた場合の固定状態を示す、流路規制部材と内側電極の冷媒流通方向の直角の断面図の例である。FIG. 3 is a cross-sectional view of the flow path regulating member and the inner electrode at right angles in the refrigerant flow direction, showing a fixed state when the flow path regulating member is attached to the ozone generating electrode of the present invention and the protrusion is attached to the side surface of the flow path regulating member. It is an example. 本発明のオゾン発生電極に流路規制部材を取り付け、流路規制部材の側面に突起物を取り付けた場合の固定状態を示す、流路規制部材と内側電極の冷媒流通方向の断面図の一例である。FIG. 3 is an example of a sectional view of the flow path regulating member and the inner electrode in the refrigerant flow direction showing a fixed state when the flow path regulating member is attached to the ozone generating electrode of the present invention and a protrusion is attached to the side surface of the flow path regulating member. is there. 本発明のオゾン発生電極に流路規制部材を取り付け、スパイラル状突出部を取り付けた場合の、流路規制部材と内側電極の冷媒流通方向の断面図の一例である。It is an example of the sectional view of the refrigerant distribution direction of a channel regulation member and an inner side electrode when a channel regulation member is attached to the ozone generating electrode of the present invention, and a spiral projection is attached. 本発明のオゾン発生電極に流路規制部材とその側面に突起物を取り付け、更に冷媒流通方向と同方向に突起物を取り付けた場合の冷媒流通方向の断面図の一例である。It is an example of sectional drawing of a refrigerant distribution direction at the time of attaching a projection to the ozone generation electrode of the present invention, and a projection to the side, and also attaching a projection in the same direction as a refrigerant circulation direction. 従来技術によるオゾン発生電極の冷媒流通方向の断面図の一例である。It is an example of sectional drawing of the refrigerant | coolant distribution direction of the ozone generation electrode by a prior art.

次に、本発明をさらに詳しく説明する。図1は、本発明のオゾン発生電極に流路規制部材を取り付け、流路規制部材の側面に突起物を取り付けた場合の冷媒流通方向の断面図の一例であり、図2(a)(b)は流路規制部材と内側電極の冷媒流通方向と直角方向の断面図の一例である。 Next, the present invention will be described in more detail. Figure 1 is fitted with a flow path regulating member on the ozone generating electrode of the present invention is an example of a cross-sectional view of the refrigerant flow direction when fitted with a projection on the side surface of the flow path regulating member, FIG. 2 (a) (b ) Is an example of a cross-sectional view perpendicular to the refrigerant flow direction of the flow path regulating member and the inner electrode.

本発明に係るオゾン発生電極は、冷媒として冷却液を採用したオゾン発生電極であって、図1〜図に示すように、筒壁部3a及び両端側をそれぞれ閉塞させる一対の端壁部9a,9bを有する円筒形状の内側電極3と、空間を介して対向するように内側電極3の外側に配置された円筒形状の外側電極1と、これらの電極のうち互いに対向した面の少なくとも一方に配置された誘電体とを備え、内側電極3が、その各端壁部9a,9bに冷媒の流入口及び流出口がそれぞれ設けられ、その流入口、流路4及び流出口を通じて循環する冷媒によって内側から冷却されることを可能とされ、内側電極3内の冷媒の流路をその筒壁内周部3b側に規制する柱状の流路規制部材5を備えており、その空間内に酸素を含む原料ガス20を供給し、内側電極3、外側電極1間に交流高電圧を印加して、空間中に放電を発生させて供給した酸素を含んだ原料ガス20からオゾン化ガス21を生成するものとして構成されている。このようなオゾン発生電極においては、流路規制部材5の側部及び筒壁内周部3bの少なくとも何れか一方が、内側電極3の筒壁内周部3b側における冷媒の流れを保持する筒側突起状スペーサ7を有しており、流路規制部材5及び下流側端壁部9aの少なくとも何れか一方が、下流側端壁部9aの流出口における冷媒の流れを保持する形状に形成されており、流路規制部材5が、内側電極3の軸線方向に沿って内側電極3内に摺動可能に設けられている。 The ozone generating electrode according to the present invention is an ozone generating electrode that employs a coolant as a refrigerant, and as shown in FIGS. 1 to 6 , a pair of end wall portions 9a that respectively close the cylindrical wall portion 3a and both end sides. , 9b, a cylindrical inner electrode 3 disposed outside the inner electrode 3 so as to face each other through a space, and at least one of these electrodes facing each other. The inner electrode 3 is provided with a refrigerant inlet and outlet on each of the end walls 9a and 9b, respectively, and the inner electrode 3 is formed by a refrigerant circulating through the inlet, the flow path 4 and the outlet. It is possible to cool from the inside, and is provided with a columnar flow path regulating member 5 that regulates the flow path of the refrigerant in the inner electrode 3 toward the cylindrical wall inner peripheral part 3b side, and oxygen is contained in the space. Supply raw material gas 20 3, by applying an AC high voltage between the outer electrode 1 is configured as generating ozonized gas 21 from the source gas 20 containing oxygen was supplied by generating electrical discharge in the space. In such an ozone generating electrode, at least one of the side portion of the flow path regulating member 5 and the cylindrical wall inner peripheral portion 3b holds the refrigerant flow on the cylindrical wall inner peripheral portion 3b side of the inner electrode 3. has a side projecting spacers 7, at least one of the flow path regulating member 5 and the downstream end wall portion 9a, shaped to hold the flow of the refrigerant in the outlet of the lower flow end wall portion 9a The flow path regulating member 5 is slidably provided in the inner electrode 3 along the axial direction of the inner electrode 3.

より具体的には、図1に示すように、本発明のオゾン発生電極は、互いに対向する外側電極1と内側電極3により放電空間6を形成しており、この内側電極3又は外側電極1の少なくとも一方に誘電体2を設け、かつ内側電極3の内部にまたは隣接して冷媒の流路4を設け、この冷媒の流路4の中に流路規制部材5を挿入したものである。図1の場合には誘電体2は外側電極1の放電空間側に配置している。また、冷媒の流路4は内側電極3の中に設けられている。オゾン化ガスを発生させる場合には、酸素を含む原料ガス20を本発明のオゾン発生電極の片方から導入し、この外側電極1と内側電極3の間に交流高電圧を印加して放電によりオゾン化ガスを生成させる。   More specifically, as shown in FIG. 1, the ozone generating electrode of the present invention forms a discharge space 6 with the outer electrode 1 and the inner electrode 3 facing each other, and the inner electrode 3 or the outer electrode 1 The dielectric 2 is provided on at least one side, and the refrigerant flow path 4 is provided inside or adjacent to the inner electrode 3, and the flow restriction member 5 is inserted into the refrigerant flow path 4. In the case of FIG. 1, the dielectric 2 is disposed on the discharge space side of the outer electrode 1. The refrigerant flow path 4 is provided in the inner electrode 3. In the case of generating ozonized gas, a source gas 20 containing oxygen is introduced from one of the ozone generating electrodes of the present invention, and an alternating high voltage is applied between the outer electrode 1 and the inner electrode 3 to discharge ozone. Generate gas.

このオゾン化ガス生成時に用いる放電により熱が発生するが、この熱によりガスの温度が上昇するとオゾンが分解してしまい、オゾン化ガスの生成効率が低下するので、電極を冷却してできるだけガスの温度上昇を防止する必要がある。このために電極の少なくとも一方の内部にまたは隣接して冷媒の流路4を設けて冷媒を流通させて冷却する必要がある。図1の場合には、冷媒入り口10から冷媒を導入し、これを冷媒の流路4の中を通して冷媒出口11から排出する。このとき内側電極内の冷媒の流路4の中には流路規制部材5が挿入されているため、冷媒は流路規制部材5と内側電極の筒壁内周部との隙間を通り、電極の壁面を冷却する。流路規制部材5が挿入されることにより、冷媒の流路の断面積が小さくなり、冷媒がこの隙間を乱流状態で流通するため、電極の壁面との熱交換効率が向上し、電極壁面を効果的に冷却することができる。   Heat is generated by the discharge used to generate this ozonized gas, but if the temperature of the gas rises due to this heat, the ozone decomposes and the generation efficiency of the ozonized gas decreases. It is necessary to prevent temperature rise. For this purpose, it is necessary to provide a coolant flow path 4 inside or adjacent to at least one of the electrodes to cool the coolant by circulating it. In the case of FIG. 1, the refrigerant is introduced from the refrigerant inlet 10 and discharged from the refrigerant outlet 11 through the refrigerant flow path 4. At this time, since the flow path regulating member 5 is inserted into the refrigerant flow path 4 in the inner electrode, the refrigerant passes through the gap between the flow path regulating member 5 and the inner peripheral portion of the cylindrical wall of the inner electrode. Cool down the wall. By inserting the flow path regulating member 5, the cross-sectional area of the flow path of the refrigerant is reduced, and the refrigerant flows through the gap in a turbulent state, so that the efficiency of heat exchange with the wall surface of the electrode is improved. Can be effectively cooled.

図1では冷媒の流路4が内側電極3の内部に設けられた場合を示しているが、これに加え、冷媒の流路を外側電極1の外側に隣接して設けてもよい。また、誘電体2も、外側電極1の側に設けても、あるいは外側電極1と内側電極3の両方に形成してもよい。また、この内側電極3の形状は、同軸円筒形状だけでなく、同軸多角柱形状など、筒形状に形成されたものであればよい。   Although FIG. 1 shows the case where the refrigerant flow path 4 is provided inside the inner electrode 3, in addition to this, the refrigerant flow path may be provided adjacent to the outside of the outer electrode 1. The dielectric 2 may also be provided on the outer electrode 1 side, or may be formed on both the outer electrode 1 and the inner electrode 3. The inner electrode 3 may be formed in a cylindrical shape such as a coaxial polygonal column shape as well as a coaxial cylindrical shape.

図2(a)(b)には、オゾン発生電極が円筒形状の内側電極3とその中に挿入される流路規制部材5の断面図を示す。図2(a)は内側電極3が円筒形であり、流路規制部材5も円筒形の場合であり、この場合は冷媒の流路4が図に示すように環状となる。オゾン発生電極の形状は、円筒だけでなく、四角柱状や六角柱状などの断面が多角形のものでもよい。また流路規制部材5も、図2(b)のような断面多角形のものや星形その他の幾何学図形の形状のものでもよい。 Figure 2 (a) (b) is a sectional view of the inner electrode 3 and the flow path regulating member 5 inserted therein the ozone generating electrode is cylindrical. FIG. 2A shows the case where the inner electrode 3 is cylindrical and the flow path regulating member 5 is also cylindrical. In this case, the refrigerant flow path 4 is annular as shown in the figure. The shape of the ozone generating electrode is not limited to a cylinder, but may be a polygonal cross section such as a quadrangular prism or hexagonal prism. Further, the flow path regulating member 5 may have a polygonal cross section as shown in FIG. 2B or a star shape or other geometrical figure.

内側電極3の冷媒の流路4の断面形状と流路規制部材5の断面形状とは互いに相似形であることが好ましい。この場合その相似比は、内側電極3の冷媒の流路4の断面形状を1とした場合に流路規制部材5の断面形状が1未満である。   It is preferable that the cross-sectional shape of the refrigerant flow path 4 of the inner electrode 3 and the cross-sectional shape of the flow path regulating member 5 are similar to each other. In this case, the similarity ratio is such that the cross-sectional shape of the flow path regulating member 5 is less than 1 when the cross-sectional shape of the refrigerant flow path 4 of the inner electrode 3 is 1.

外側電極1及び内側電極3を構成する材料はステンレス等オゾンに対して耐性のある材料であることが好ましい。また、冷媒の流路の中に挿入する流路規制部材5の材料は吸水性のない材料であれば特に制限されないが、金属、合成樹脂、セラミックス等が好ましい。特に、耐久性や重量などの点から合成樹脂製のものが好ましく、更には内部を空洞として両端を端壁部で塞いだ構造のものが好ましい。   The material constituting the outer electrode 1 and the inner electrode 3 is preferably a material resistant to ozone such as stainless steel. Moreover, the material of the flow path regulating member 5 inserted into the flow path of the refrigerant is not particularly limited as long as it is a material that does not absorb water, but metals, synthetic resins, ceramics, and the like are preferable. In particular, those made of synthetic resin are preferable from the viewpoint of durability and weight, and further, those having a structure in which the inside is a cavity and both ends are closed by end wall portions are preferable.

に示すように、本発明においては、内側電極3の両端壁部9a,9bが、冷媒の流入口10及び流出口11をそれぞれ有しており、流路規制部材5の側面部あるいは筒壁内周部3bの少なくとも何れか一方に内側電極3の筒壁内周部3b側における冷媒の流れを保持する筒側突起状スペーサ7を有しており、流路規制部材5が、内側電極3の軸線方向に沿って内側電極3内に摺動可能に設けられている。 As shown in FIG. 1 , in the present invention, both end walls 9 a and 9 b of the inner electrode 3 have a refrigerant inlet 10 and an outlet 11, respectively. At least one of the wall inner peripheral parts 3b has a cylinder-side protruding spacer 7 that holds the flow of the refrigerant on the cylinder wall inner peripheral part 3b side of the inner electrode 3, and the flow path regulating member 5 includes the inner electrode 3 is slidably provided in the inner electrode 3 along the axial direction.

このように内側電極3の内側と流路規制部材5の側面部との間に筒側突起状スペーサ7を設けることによって、流路規制部材5の偏りが防止でき、内側電極3の中心部に内側電極3と流路規制部材5との隙間が均一になるように設置することができる。その結果、この隙間を流れる冷却用冷媒の量が電極面全体にわたって均一となり、電極を均一に冷却することができる。   Thus, by providing the cylindrical protrusion 7 between the inner side of the inner electrode 3 and the side surface portion of the flow path regulating member 5, it is possible to prevent the flow path regulating member 5 from being biased, and at the center of the inner electrode 3. It can be installed so that the gap between the inner electrode 3 and the flow path regulating member 5 is uniform. As a result, the amount of the cooling refrigerant flowing through the gap is uniform over the entire electrode surface, and the electrode can be cooled uniformly.

筒側突起状スペーサ7は、図2(a)(b)に示すように流路規制部材5のほうに固定してもよいが、図3(a)(b)に示すように内側電極3のほうに固定してもよい。更に、筒側突起状スペーサ7は流路規制部材5の長さ方向と周囲に複数個を取り付けるのが好ましく、図に示すように長さ方向には2箇所以上、また周方向には3箇所設けることが好ましい。あるいは、図に示すように円筒状の流路規制部材5の周囲にスパイラル状にバネ状の突起物を巻きつける構造としたものでもよい。 The cylinder-side protruding spacer 7 may be fixed to the flow path regulating member 5 as shown in FIGS. 2 (a) and 2 (b) , but the inner electrode 3 as shown in FIGS. 3 (a) and 3 (b). You may fix to the side. Further, it is preferable to install a plurality of cylindrical side protruding spacers 7 in the length direction and the periphery of the flow path regulating member 5, and as shown in FIG. 4 , two or more in the length direction and 3 in the circumferential direction. It is preferable to provide a location. Alternatively, as shown in FIG. 5 , a structure in which a spring-like protrusion is wound around the cylindrical flow path regulating member 5 in a spiral shape may be used.

筒側突起状スペーサ7の材料としては、吸水性のない材料であれば特に制限されないが、金属、合成樹脂、セラミックス、ガラス等が好ましい。   The material of the tube-side protruding spacer 7 is not particularly limited as long as it is a material that does not absorb water, but metals, synthetic resins, ceramics, glass, and the like are preferable.

は、流路規制部材5を挿入し、筒側突起状スペーサ7を取り付け、これに更に冷媒の流れ方向と同方向に設けた出口側突起状スペーサ8aを取り付けた本発明のオゾン発生電極の冷媒流通方向の断面図の一例である。このように流出口側にも出口側突起状スペーサ8aを設けることを要求するのは、流路規制部材5が、冷媒の流れを受け下流側端壁部9aに対して押し付けられた場合でも冷媒のスムースな流れを確保しうる位置に位置決めされるようにすることにより、製造の容易化を図ることが可能なオゾン発生電極とするためである。したがって、このような役割を果たすものであれば、本発明において、流路規制部材5に出口側突起状スペーサ8aを設けたものの代わりに、下流側端壁部9aに出口側突起状スペーサを設けたものその他の流路規制部材及び下流側端壁部の少なくとも何れか一方が、流路規制部材が下流側端壁部の流出口における冷媒の流れを保持する形状に形成されたものを用いても差し支えない。ここで、流路規制部材が下流側端壁部の流出口における冷媒の流れを保持する形状としては、例えば流路規制部材及び下流側端壁部の少なくとも何れか一方を部分的に窪ませることにより、流路規制部材が下流側端壁部に押し付けた状態の流路規制部材及び下流側端壁部の間に流出口に連通する流路が確保されるようにしたものが挙げられる。 FIG. 6 shows the ozone generating electrode of the present invention in which the flow path regulating member 5 is inserted, the cylinder-side protruding spacer 7 is attached, and the outlet-side protruding spacer 8a provided in the same direction as the refrigerant flow direction is further attached. It is an example of sectional drawing of the refrigerant | coolant distribution direction. The reason why the outlet side protruding spacer 8a is required to be provided also on the outlet side in this manner is that the refrigerant is restricted even when the flow path regulating member 5 receives the refrigerant flow and is pressed against the downstream end wall portion 9a. This is because an ozone generating electrode capable of facilitating the manufacture by being positioned at a position where a smooth flow can be ensured. Therefore, if it plays such a role, in the present invention, instead of the flow path regulating member 5 provided with the outlet-side protruding spacer 8a, the downstream end wall portion 9a is provided with the outlet-side protruding spacer. Using at least one of the other flow path regulating member and the downstream end wall portion formed so that the flow path regulating member holds the refrigerant flow at the outlet of the downstream end wall portion. There is no problem. Here, as a shape in which the flow path regulating member holds the refrigerant flow at the outlet of the downstream end wall, for example, at least one of the flow path regulating member and the downstream end wall is partially recessed. Thus, a channel that communicates with the outlet is secured between the channel regulating member in a state where the channel regulating member is pressed against the downstream end wall and the downstream end wall.

なお、筒側突起状スペーサ7と出口側突起状スペーサ8aは、その何れもが流路規制部材5に設けられていることが好ましい。このようにすることにより、内側電極3を加工する際により簡単に製作することが可能である。   In addition, it is preferable that both the cylinder side protruding spacer 7 and the outlet side protruding spacer 8 a are provided in the flow path regulating member 5. By doing so, it is possible to manufacture the inner electrode 3 more easily.

また、上流側端壁部9bが下流側端壁部9aに比して低い位置に設置されている場合においては、流路規制部材5及び上流側端壁部9bの少なくとも何れか一方に、冷媒流れ方向と同方向に設けた入口側突起状スペーサ8bを有していると、冷媒流入口10の側における冷媒の流れをスムースに保持し、流通させることができるので好ましい。   Further, when the upstream end wall portion 9b is installed at a position lower than the downstream end wall portion 9a, a refrigerant is provided in at least one of the flow path regulating member 5 and the upstream end wall portion 9b. Having the inlet-side protruding spacer 8b provided in the same direction as the flow direction is preferable because the refrigerant flow on the refrigerant inlet 10 side can be smoothly held and circulated.

出口側突起状スペーサ8a及び入口側突起状スペーサ8bの材料としては、同じく吸水性のない材料であれば特に制限されないが、金属、合成樹脂、セラミックス、ガラス等が好ましい。出口側突起状スペーサ8a及び入口側突起状スペーサ8bも、筒側突起状スペーサ7と同様に、流路規制部材5に固定してもよく、又は内側電極3の方に固定しても良い。   The material of the outlet-side protruding spacer 8a and the inlet-side protruding spacer 8b is not particularly limited as long as it is a material that does not absorb water as well, but metals, synthetic resins, ceramics, glass, and the like are preferable. The outlet side protruding spacer 8 a and the inlet side protruding spacer 8 b may be fixed to the flow path regulating member 5 or to the inner electrode 3 in the same manner as the cylindrical side protruding spacer 7.

本発明のオゾン発生電極を用いることにより効率よくオゾンを生成することができ、従来からオゾンの利用されている水処理設備などのさまざまな産業分野で、より有効に本発明を利用することができる。   By using the ozone generating electrode of the present invention, ozone can be efficiently generated, and the present invention can be used more effectively in various industrial fields such as water treatment facilities where ozone has been conventionally used. .

1.外側電極、2.誘電体、3.内側電極、3a.筒壁部、3b.筒壁内周部、4.流路、5.流路規制部材、6.放電空間、7.筒側突起状スペーサ、8a.出口側突起状スペーサ、8b.入口側突起状スペーサ、9a.下流側端壁部、9b.上流側端壁部、20.原料ガス、21.オゾン化ガス。 1. Outer electrode, 2. 2. dielectric, Inner electrode, 3a. Cylinder wall, 3b. 3. inner peripheral part of the cylinder wall; 4. flow path; 5. a flow path regulating member; 6. discharge space; Cylinder-side protruding spacer, 8a. Outlet side protruding spacer, 8b. Inlet-side protruding spacer, 9a. Downstream end wall, 9b. Upstream end wall, 20. Source gas, 21. Ozonized gas.

Claims (6)

筒壁部及びその両端側をそれぞれ閉塞させる一対の端壁部を有する筒形状の内側電極と、空間を介して対向するように内側電極の外側に配置された外側電極と、前記外側電極及び前記内側電極の互いに対向する面の少なくとも何れか一方に設けられた誘電体とを備え、前記内側電極が、その各端壁部に冷媒の流入口及び流出口がそれぞれ設けられ、その流入口及び流出口を通じて循環する冷媒によって内側から冷却されることが可能とされたオゾン発生電極であって、
前記内側電極内に、冷媒の流路をその筒壁内周部側に規制する柱状の流路規制部材を有しており、
前記流路規制部材の側部及び前記筒壁内周部の少なくとも何れか一方が、前記内側電極の筒壁内周部側における冷媒の流れを保持する筒側突起状スペーサを有しており、
前記流路規制部材及び前記下流側端壁部の少なくとも何れか一方が、下流側端壁部の前記流出口における冷媒の流れを保持する出口側突起状スペーサを有しており、
前記流路規制部材が、前記内側電極の軸線方向に沿って該内側電極内に移動可能に設けられており、かつ、冷媒の流れを受けて前記内側電極内で冷媒の流れを保持する位置に位置決め固定されるものである、オゾン発生電極。
A cylindrical inner electrode having a cylindrical wall portion and a pair of end wall portions that respectively close both end sides thereof, an outer electrode disposed outside the inner electrode so as to face each other through a space, the outer electrode, A dielectric provided on at least one of the mutually facing surfaces of the inner electrode, and the inner electrode is provided with a refrigerant inlet and outlet on each end wall, respectively. An ozone generating electrode that can be cooled from the inside by a refrigerant circulating through the outlet,
In the inner electrode, it has a columnar flow path regulating member that regulates the flow path of the refrigerant to the inner peripheral side of the cylinder wall,
At least one of the side portion of the flow path regulating member and the inner peripheral portion of the cylindrical wall has a cylindrical protrusion spacer that holds the flow of the refrigerant on the inner peripheral portion side of the inner electrode,
At least one of the flow path regulating member and the downstream end wall portion has an outlet-side protruding spacer that holds the flow of the refrigerant at the outlet of the downstream end wall portion,
The flow path regulating member is provided so as to be movable in the inner electrode along the axial direction of the inner electrode , and at a position for receiving the flow of the refrigerant and holding the flow of the refrigerant in the inner electrode. An ozone generating electrode that is positioned and fixed .
前記筒側突起状スペーサ及び前記出口側突起状スペーサの何れもが、前記流路規制部材に設けられている、請求項に記載のオゾン発生電極。 Any of the cylindrical side projecting spacers and the outlet-side projecting spacer is provided in the flow path regulating member, the ozone generating electrode according to claim 1. 前記流路規制部材が、その横断面形状が前記内側電極の内部空間の横断面形状に対し相似形状に形成されている、請求項1又は2に記載のオゾン発生電極。   The ozone generating electrode according to claim 1 or 2, wherein the flow path regulating member has a cross-sectional shape similar to a cross-sectional shape of the internal space of the inner electrode. 前記内側電極が、円筒状に形成されている、請求項1〜3の何れか1項に記載のオゾン発生電極。   The ozone generating electrode according to any one of claims 1 to 3, wherein the inner electrode is formed in a cylindrical shape. 前記上流側端壁部が前記下流側端壁部に比して低い位置に設置されている場合において、前記流路規制部材及び前記上流側端壁部の少なくとも何れか一方が、前記流入口における冷媒の流れを保持する入口側突起状スペーサを有している、請求項1〜4の何れか1項に記載のオゾン発生電極。   When the upstream end wall portion is installed at a position lower than the downstream end wall portion, at least one of the flow path regulating member and the upstream end wall portion is at the inlet. The ozone generating electrode according to any one of claims 1 to 4, further comprising an inlet-side protruding spacer that holds the flow of the refrigerant. 請求項1〜の何れか1項に記載のオゾン発生電極を用いた、オゾン発生装置。 An ozone generator using the ozone generating electrode according to any one of claims 1 to 5 .
JP2009096915A 2009-04-13 2009-04-13 Ozone generating electrode Active JP5662649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096915A JP5662649B2 (en) 2009-04-13 2009-04-13 Ozone generating electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096915A JP5662649B2 (en) 2009-04-13 2009-04-13 Ozone generating electrode

Publications (2)

Publication Number Publication Date
JP2010248015A JP2010248015A (en) 2010-11-04
JP5662649B2 true JP5662649B2 (en) 2015-02-04

Family

ID=43310843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096915A Active JP5662649B2 (en) 2009-04-13 2009-04-13 Ozone generating electrode

Country Status (1)

Country Link
JP (1) JP5662649B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51104492A (en) * 1975-03-12 1976-09-16 Mo Gasudarusutobennu Uniberush KOSHUHAKANJOOZON HATSUSEIKI
JPS52155196A (en) * 1976-06-18 1977-12-23 Fuji Electric Co Ltd Ozonizer
JPS5746336Y2 (en) * 1978-12-05 1982-10-13
CH660474A5 (en) * 1984-06-27 1987-04-30 Bbc Brown Boveri & Cie TUBE OZONIZER WITH COOLED INTERNAL ELECTRODE.
JPH07223805A (en) * 1994-02-16 1995-08-22 Fuji Electric Co Ltd Double pipe type ozone-generator
JPH08325002A (en) * 1995-05-26 1996-12-10 Fuji Electric Co Ltd Ozonizer
JPH10182111A (en) * 1996-12-19 1998-07-07 Toshiba Fa Syst Eng Kk Ozone generator

Also Published As

Publication number Publication date
JP2010248015A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4015210B2 (en) Ozone generator
US9803289B2 (en) Tube-type ozone generator and manufacturing method therefor
US5871701A (en) Ozone generator with small-diameter dielectric tubes
US6060027A (en) Ozone generator
JP5662649B2 (en) Ozone generating electrode
JP2012206898A (en) Ozone generator
JP5417019B2 (en) Ozone generating electrode
JP5185592B2 (en) Ozone generator
KR101896389B1 (en) ozonier
JP5865955B2 (en) Ozone generator
JP4342991B2 (en) Ozone generator
JP4658298B2 (en) Ozone generator
JP6608571B1 (en) Ozone generator and ozone generator set
JP4206048B2 (en) Ozone generator that suppresses decomposition of ozonized gas
JP2002255514A (en) Ozone generator
JP5202421B2 (en) Manufacturing method of inner electrode of ozone generating electrode
JP5976327B2 (en) Ozone generating electrode
KR102665960B1 (en) Ozonizer with the support member for spacing sustenance
KR101582315B1 (en) Ozone Generator
JP4138684B2 (en) Ozone generation method and ozone generator
JP2020083708A (en) Ozone generator
JP2006083013A (en) Ozone generator
JP2010248018A (en) Ozone producing electrode and apparatus
KR100235140B1 (en) Air cooling type ozone generator
JP5981323B2 (en) Ozone generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141205

R150 Certificate of patent or registration of utility model

Ref document number: 5662649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250