Nothing Special   »   [go: up one dir, main page]

JP5565826B2 - Abrasive for blasting and method for producing the same - Google Patents

Abrasive for blasting and method for producing the same Download PDF

Info

Publication number
JP5565826B2
JP5565826B2 JP2009239861A JP2009239861A JP5565826B2 JP 5565826 B2 JP5565826 B2 JP 5565826B2 JP 2009239861 A JP2009239861 A JP 2009239861A JP 2009239861 A JP2009239861 A JP 2009239861A JP 5565826 B2 JP5565826 B2 JP 5565826B2
Authority
JP
Japan
Prior art keywords
slag
abrasive
steelmaking
steelmaking slag
blasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009239861A
Other languages
Japanese (ja)
Other versions
JP2011083869A (en
Inventor
賢一 片山
憲治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009239861A priority Critical patent/JP5565826B2/en
Publication of JP2011083869A publication Critical patent/JP2011083869A/en
Application granted granted Critical
Publication of JP5565826B2 publication Critical patent/JP5565826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、たとえば鋼材の塗装前処理として行われるブラスト処理に用いる研削材およびその製造方法に関する。   The present invention relates to an abrasive used for blasting performed as a pre-coating process for steel, for example, and a method for manufacturing the same.

従来、普通鋼などの錆を生じ易い材料からなる製品や構造物は、その表面を保護し、耐食寿命を増すために塗装されている。普通鋼などに塗装する前に行われる前処理の一つとして、鋼材の表面に研削材を吹付けるブラスト処理がある。ブラスト処理の目的は、被処理材である鋼材表面の酸化層、表面汚染物、旧塗膜層などを除去して清浄表面を形成し、塗料付着性をよくすることにある。   Conventionally, products and structures made of materials that easily cause rust such as ordinary steel have been painted to protect the surface and increase the corrosion resistance life. As one of the pretreatments performed before painting on ordinary steel or the like, there is a blast treatment in which an abrasive is sprayed on the surface of the steel material. The purpose of the blast treatment is to remove the oxide layer, surface contaminants, old paint film layer, etc. on the surface of the steel material, which is the material to be treated, to form a clean surface and improve paint adhesion.

ブラスト処理に用いられる研削材には、けい砂、スチールショット、ガラスビーズなどがある。しかし、けい砂は、吹付けの衝撃で容易に破砕して粉塵を多く発生し、また天然物であるため品質が安定しないという問題がある。また最近では、塵肺の問題からけい砂は使用できなくなってきた。スチールショットは、破砕しにくく粉塵の発生が軽微で、研削能力にも優れているが、極めて錆易く、錆で粒子同士が固着して使用できなくなるという問題がある。ガラスビーズは、脆くて破砕し易いので、粉塵発生量が多く耐久寿命が短いという問題がある。このようなブラスト処理用研削材についての問題を解決する先行技術として、鉄鋼製品の溶製に用いる電気炉または転炉から排出されるスラグを素材とする研削材が提案され(特許文献1参照)、また高炭素フェロクロムを電気炉で製造し精錬する際に生成されるスラグを素材とする研削材が提案されている(特許文献2参照)。   Abrasive materials used for blasting include silica sand, steel shot, and glass beads. However, silica sand is easily crushed by the impact of spraying and generates a lot of dust, and since it is a natural product, its quality is not stable. Recently, silica has become unusable due to pneumoconiosis problems. Steel shots are not easily crushed and generate little dust and have excellent grinding ability. However, they are extremely rusty, and there is a problem that the particles cannot be used because they adhere to each other with rust. Glass beads are brittle and easily crushed, so there is a problem that the amount of dust generated is large and the durability life is short. As a prior art for solving such a blast processing abrasive, an abrasive using slag discharged from an electric furnace or converter used for melting steel products has been proposed (see Patent Document 1). In addition, a grinding material made of slag produced when high carbon ferrochrome is produced and refined in an electric furnace has been proposed (see Patent Document 2).

特許文献1では、電気炉または転炉から排出されるスラグを水冷して急冷硬化させ、該スラグ硬化物を研削材とする。このようなスラグ硬化物は、高硬度であるから研削力に優れ、また粉砕されにくいので粉塵の発生量が少ない利点を有する。また、特許文献2では、風砕処理または水砕処理により急冷凝固させた高炭素フェロクロム精錬スラグを破砕して研削材とする。このような精錬スラグ粒子からなる研削材は、被処理材に衝突しても割れにくく、たとえ割れたとしても粉塵を発生させない内部構造を有し、しかも研削力に優れるので短時間でブラスト処理をすることができるという利点を有する。   In patent document 1, the slag discharged | emitted from an electric furnace or a converter is water-cooled, it is made to quench-harden, and this slag hardened | cured material is used as an abrasive. Such a slag cured product has a high hardness, and thus has an excellent grinding force and is difficult to be crushed, and thus has an advantage of generating less dust. Moreover, in patent document 2, the high carbon ferrochrome refining slag which was rapidly solidified by the air crushing process or the water crushing process is crushed, and it is set as an abrasive. Grinding material made of such refined slag particles is hard to break even when it collides with the material to be treated, has an internal structure that does not generate dust even if it breaks, and has excellent grinding power, so it can be blasted in a short time. Has the advantage of being able to.

特許第3720622号公報Japanese Patent No. 3720622 特許第4049848号公報Japanese Patent No. 4049848

しかし、特許文献1および特許文献2に開示される研削材は、いずれもスラグを水冷装置または強制空冷装置で水砕または風砕して製造される。鉄鋼などの精錬工程で発生するスラグは大量であり、大量のスラグを急速冷却するには冷却能力の大きい装置が必要になる。冷却能力が大きい装置は、工場内で広い設置面積を占めるので作業スペースを狭隘にするとともに、高額であることから設備投資負担を大きくするという問題がある。   However, the abrasives disclosed in Patent Document 1 and Patent Document 2 are both manufactured by subjecting slag to water or air crushing with a water cooling device or a forced air cooling device. A large amount of slag is generated in the refining process of steel and the like, and an apparatus having a large cooling capacity is required to rapidly cool a large amount of slag. An apparatus having a large cooling capacity occupies a large installation area in the factory, so that there is a problem that the work space is narrowed and the capital investment burden is increased due to the high cost.

本発明の目的は、水冷や強制空冷によることなく、製鋼スラグを素材とするブラスト処理用研削材およびその製造方法を提供することである。   The objective of this invention is providing the grinding material for blasting processing which uses steel-making slag as a raw material, and its manufacturing method, without water cooling or forced air cooling.

本発明は、ステンレス鋼の製鋼工程で生成される製鋼スラグを、ノロポットに掻き出して徐冷し、湿式破砕工程を通して生成され、
主成分の組成がCaO:30〜43wt%、MgO:6〜15wt%、Al:5〜17wt%、SiO:20〜35wt%の製鋼スラグを素材とし、
モース硬度が7〜9であり、
粒度が0.1〜3.0mmであることを特徴とするブラスト処理用研削材である。
The present invention is a steelmaking slag produced in the steelmaking process of stainless steel , scraped into a noropot and slowly cooled, produced through a wet crushing process,
The composition of the main component CaO: 30~43wt%, MgO: 6~15wt %, Al 2 O 3: 5~17wt%, SiO 2: the 20~35Wt% of steelmaking slag as the raw material,
Mohs hardness is 7-9,
A blasting abrasive having a particle size of 0.1 to 3.0 mm.

また本発明は、ステンレス鋼の製鋼工程で生成される製鋼スラグを、ノロポットに掻き出して徐冷し、
徐冷後の製鋼スラグを湿式破砕工程で、一定の破砕負荷で破砕して、
モース硬度が7〜9で、0.1〜3.0mmの粒度の砂状スラグに分級することを特徴とするブラスト処理用研削材の製造方法である。
In addition, the present invention, steelmaking slag produced in the steelmaking process of stainless steel , scraped into a Noropot and gradually cooled,
The steelmaking slag after slow cooling is crushed with a constant crushing load in the wet crushing process ,
A method for producing an abrasive for blasting, characterized by classifying into sandy slag having a Mohs hardness of 7 to 9 and a particle size of 0.1 to 3.0 mm.

本発明によれば、ステンレス鋼の製鋼工程で生成される製鋼スラグを、ノロポットに掻き出して徐冷する。徐冷後の製鋼スラグを素材とし、湿式破砕工程を通して、そのモース硬度および粒度を特定の範囲に限定することによって、ブラスト処理用研削材とすることができる。すなわち、水冷設備や強制空冷設備を必要とせず、徐冷される製鋼スラグを研削材にすることができる。このことによって、工場内の作業空間の狭隘化や設備投資が高額化することを防止することができ、またコスト抑制を反映した汎用性のあるブラスト処理用研削材を提供することができる。 According to the present invention, steelmaking slag produced in the steelmaking process of stainless steel is scraped into a noropot and gradually cooled. The steelmaking slag after slow cooling is used as a raw material, and the Mohs hardness and grain size are limited to a specific range through a wet crushing process, whereby a blasting abrasive can be obtained. That is, the steelmaking slag that is gradually cooled can be used as the abrasive without the need for water cooling equipment or forced air cooling equipment. As a result, it is possible to prevent the work space in the factory from being narrowed and the capital investment to be increased, and it is possible to provide a versatile blasting abrasive that reflects cost reduction.

また本発明によれば、ステンレス鋼の製鋼工程で生成される製鋼スラグを、ノロポットに掻き出して徐冷する。徐冷後の製鋼スラグを、湿式破砕工程で、一定の破砕負荷によって特定範囲のモース硬度の砂状スラグを回収し、かつ特定範囲の粒度になるように分級してブラスト処理用研削材を製造する。このように、水冷設備や強制空冷設備を必要としないので、工場内の作業空間の狭隘化や設備投資が高額化するという問題を生ずることなく、製鋼スラグを素材としてブラスト処理用研削材を製造することができる。 Moreover, according to this invention, the steelmaking slag produced | generated at the steelmaking process of stainless steel is scraped out into a noropot, and is cooled slowly . Steelmaking slag after slow cooling is a wet crushing process, and sand slag with a specific range of Mohs hardness is collected with a constant crushing load and classified to a specific range of particle size to produce blasting abrasives To do. In this way, water-cooling equipment and forced air-cooling equipment are not required, so that grinding materials for blasting can be manufactured using steelmaking slag as a raw material without causing problems such as narrowing the work space in the factory and increasing capital investment. can do.

本発明の実施形態であるブラスト処理用研削材を製造する工程を簡略化して示す図である。It is a figure which simplifies and shows the process of manufacturing the abrasive for blasting which is embodiment of this invention. 選鉱工程3内での地金と製鋼スラグとを分別する処理を示す図である。It is a figure which shows the process which separates the ingot and the steelmaking slag in the beneficiation process 3.

図1は、本発明の実施形態であるブラスト処理用研削材を製造する工程を簡略化して示す。ブラスト処理用研削材(以下、単に研削材と称する)を製造する工程は、素材となる製鋼スラグが生成される製鋼工程1と、製鋼スラグの冷却工程2と、製鋼スラグから地金を回収する選鉱工程3と、地金回収後の塊状製鋼スラグを湿式破砕および分級して研削材を製造する研削材製造工程4と、を含む。   FIG. 1 shows a simplified process for manufacturing a blasting abrasive according to an embodiment of the present invention. The process of producing a blasting abrasive (hereinafter simply referred to as an abrasive) includes a steelmaking process 1 in which a steelmaking slag as a raw material is generated, a steelmaking slag cooling process 2, and a metal is recovered from the steelmaking slag. It includes a beneficiation process 3 and an abrasive production process 4 for producing an abrasive by wet crushing and classifying the massive steelmaking slag after the recovery of the metal.

製鋼工程1では、ステンレス鋼が溶製され、その副産物として製鋼スラグが生成される。ステンレス鋼溶製時に生成される製鋼スラグとしては、電気炉で溶解されるステンレス溶鋼を脱硫処理する工程で生成されるスラグ、および脱硫処理後のステンレス溶鋼を真空脱ガス処理などの二次精錬する工程で生成されるスラグがある。これらのスラグのうち、主成分の組成でCaO:30〜43wt%、MgO:6〜15wt%、Al:5〜17wt%、SiO:20〜35wt%の製鋼スラグが素材として使用される。 In the steelmaking process 1, stainless steel is melted and steelmaking slag is generated as a byproduct. As steelmaking slag produced during melting of stainless steel, secondary smelting of slag produced in the desulfurization process of stainless steel melted in an electric furnace and vacuum degassing of the desulfurized stainless steel is performed. There is slag generated in the process. Of these slags, CaO in the composition of the main component: 30~43wt%, MgO: 6~15wt% , Al 2 O 3: 5~17wt%, SiO 2: 20~35wt% of steel slag is used as a material The

このような成分範囲とするのは、次のような理由による。   The reason for setting such a component range is as follows.

CaOの範囲は、ブラスト処理用研削材を製造するに適した値として決ってくるというより、製鋼時の精錬上、必要な成分として添加される値として決ってくることによる。すなわち、精錬反応として、脱硫反応や還元反応に必要な範囲が30〜43wt%である。30wt%未満であれば、十分な脱硫反応や還元反応が達成されない。そこで、石灰(CaO)等のフラックスを添加して成分を調整するが、逆に43wt%を超えると、以下に説明するSiOの範囲では、スラグの流動性が悪化し、除滓作業に支障を来したり、炉内に残り次チャージの溶解に支障を来すため、適正な範囲に調整される。 The range of CaO is determined as a value added as a necessary component in refining during steelmaking, rather than being determined as a value suitable for manufacturing a blasting abrasive. That is, as a refining reaction, a range required for a desulfurization reaction or a reduction reaction is 30 to 43 wt%. If it is less than 30 wt%, sufficient desulfurization reaction or reduction reaction cannot be achieved. Therefore, the component is adjusted by adding a flux such as lime (CaO). Conversely, if it exceeds 43 wt%, the fluidity of the slag deteriorates in the range of SiO 2 described below, which hinders the removal work. Or the remaining charge in the furnace will interfere with the melting of the next charge.

SiOは、ブラスト処理用研削材として要求される硬度を得るためにある程度の濃度が必要とされるからである。最低20wt%は必要であり、これ以上の濃度で、スラグの流動性を確保しつつ、ブラスト処理用研削材としての硬度が得られる。SiO濃度は、高いほど硬度も高くなるが、35wt%を超えると、CaOとのバランスでいわゆる塩基度が低下しすぎて、精錬反応に支障を来す。したがって、SiOは精錬反応とブラスト処理用研削材としてのスラグの硬度を両立させるための最適範囲として、20〜35wt%に調整される。 This is because SiO 2 needs a certain concentration to obtain the hardness required as a grinding material for blast treatment. A minimum of 20 wt% is necessary, and at a concentration higher than this, hardness as a blasting abrasive can be obtained while securing the slag fluidity. The higher the SiO 2 concentration is, the higher the hardness is. However, when it exceeds 35 wt%, so-called basicity decreases too much due to the balance with CaO, which hinders the refining reaction. Thus, SiO 2 as the optimum range for satisfying both the hardness of the slag as a refining reaction and blast processing abrasive is adjusted to 20~35wt%.

MgOは、製鋼原料から入ってくるものもあるが、大部分の起源はレンガ等の耐火物が溶損することによってスラグ成分として含まれるようになる。CaO/SiOの比率によってスラグの融点が変わるので、その結果、耐火物の溶損の度合いが決ってくる。CaOが30〜43wt%で、SiOが20〜35wt%の範囲であれば、大体、MgOは6〜15wt%の範囲となる。 Although some MgO enters from steelmaking raw materials, most of the origin comes to be contained as a slag component by refractory materials such as bricks being melted. Since the melting point of the slag changes depending on the ratio of CaO / SiO 2 , as a result, the degree of refractory melting is determined. If CaO is 30 to 43 wt% and SiO2 is in the range of 20 to 35 wt%, MgO is generally in the range of 6 to 15 wt%.

Alは成分として高い方が硬度を得るためには適しているが、Al成分を増やすためのフラックスを必要とし、コスト的に不利になる。Al起源はMgOと同様で、製鋼原料から入ってくるものもあるが、その起源の大部分はレンガ等の耐火物が溶損することによって決ってくる濃度範囲である。先行特許や参考文献等では、Alを過剰に添加することによってスラグ硬度を得ようとするものもあるが、本発明ではあえて添加せず、自然体で混入してくるAl濃度とし、硬度はCaOとSiOのバランス、さらにスラグの破砕負荷で調整している。 A higher Al 2 O 3 component is suitable for obtaining hardness, but requires a flux for increasing the Al 2 O 3 component, which is disadvantageous in terms of cost. The origin of Al 2 O 3 is the same as that of MgO, and some of it comes from steelmaking raw materials, but most of the origin is in the concentration range determined by the refractory such as bricks being melted. Some prior patents, references, and the like try to obtain slag hardness by excessively adding Al 2 O 3 , but in the present invention, the concentration of Al 2 O 3 mixed in a natural body is not added intentionally. The hardness is adjusted by the balance between CaO and SiO 2 and the slag crushing load.

電気炉や二次精錬炉で生成される製鋼スラグは、溶鋼を出鋼する前にノロポットに掻き出され、冷却工程2で冷却される。冷却工程2では、強制水冷も強制空冷もされることなく、大気中で自然冷却いわゆる徐冷される。あるいは散水程度の徐冷がされる。したがって、研削材の素材とする製鋼スラグの冷却には、強制水冷設備および強制空冷設備を必要としない。徐冷製鋼スラグは、結晶質であり、非晶質スラグを含む水砕または風砕スラグに比較すると平均的には硬度がやや低い。しかし、1チャージの溶製で徐冷して生成される製鋼スラグの中には、種々の硬度のものが混在し、研削材に適する硬度範囲のものも多く含まれる。   Steelmaking slag produced in an electric furnace or a secondary refining furnace is scraped out into a noropot before the molten steel is produced and cooled in the cooling step 2. In the cooling step 2, natural cooling, so-called gradual cooling, is performed in the atmosphere without forced water cooling or forced air cooling. Or it is gradually cooled to the degree of watering. Therefore, forced water cooling equipment and forced air cooling equipment are not required for cooling the steelmaking slag used as the material of the abrasive. Slowly-cooled steel slag is crystalline, and its hardness is slightly lower on average as compared to granulated or air-crushed slag containing amorphous slag. However, steelmaking slag produced by slow cooling with one charge melting is mixed with various hardnesses, and many have a hardness range suitable for abrasives.

選鉱工程3では、湿式破砕工程を行うことが硬度上昇のために好ましい。スラグ中には、フリーのCaOやMgOが含まれており、これが含まれる部分は硬度が低い。水中で(湿式で)破砕処理することにより、フリーのCaOやMgOが水和反応し、
(CaO+HO→Ca(OH)、MgO+HO→Mg(OH)
破砕処理時に破砕されやすくなり、結果的に硬度のある部分だけが残り、ブラスト処理に適した硬度の高いサンド(スラグ粒)が製造できる。また、フリーのCaOやMgOが残っていれば、この軟質部分がブラスト処理時に研削表面に擦りつけられた状態で白く残ることがあるので、これを除去する余計な作業が必要となるので好ましくない。したがって、湿式の破砕工程を通すことがブラスト処理用研削材を製造する上で必要となる。
In the beneficiation process 3, it is preferable to perform a wet crushing process in order to increase hardness. The slag contains free CaO and MgO, and the portion containing this has low hardness. By crushing in water (wet), free CaO and MgO undergo hydration reaction,
(CaO + H 2 O → Ca (OH) 2 , MgO + H 2 O → Mg (OH) 2 )
It becomes easy to be crushed during the crushing process, and as a result, only a hard part remains, and a sand (slag grain) having a high hardness suitable for blasting can be produced. Further, if free CaO or MgO remains, this soft part may remain white in a state of being rubbed against the grinding surface during the blasting process, which is not preferable because an extra work to remove it is necessary. . Therefore, it is necessary to pass the wet crushing process in order to produce the abrasive for blast treatment.

図2は、選鉱工程3内での地金と製鋼スラグとを分別する処理を示す。製鋼スラグは、有用な金属成分を比較的多く含有する。そこで、選鉱工程3では、溶製の副原料として再使用するために、製鋼スラグ中に含まれる金属成分である地金を回収する。製鋼スラグは、ロッドミル破砕工程31で、おおまかな大きさに破砕される。破砕された製鋼スラグは、篩い分級工程32で所定の大きさ以下のものに選り分けられて、湿式の地金回収工程に送られる。なお、篩い分級工程32で篩いを通過しなかった製鋼スラグは、再びロッドミル破砕工程31へ戻される。分級された製鋼スラグは、再度、湿式での破砕工程で破砕され、比重選鉱工程33および磁力選鉱工程34を経て地金5のみが選鉱されて回収される。地金5が選鉱された後の製鋼スラグは、シックナー35で、パウダー状の製鋼スラグ6が回収される。また砂状製鋼スラグは、エーキンス分級工程36で、おおよそ粒度が5mm程度の砂状製鋼スラグ7が回収される。研削材の素材には、砂状製鋼スラグ7が用いられる。粒度調整工程では、エアー分級機41および篩分級機42で粒度が0.1〜3.0mmになるように分級する。また、必要に応じてさらに細かい範囲に分級することもある。   FIG. 2 shows a process of separating the bullion and the steelmaking slag in the beneficiation process 3. Steelmaking slag contains a relatively large amount of useful metal components. Then, in the beneficiation process 3, in order to reuse as a molten auxiliary material, the metal which is a metal component contained in the steelmaking slag is recovered. The steelmaking slag is crushed to a rough size in the rod mill crushing step 31. The crushed steelmaking slag is sorted into those having a predetermined size or less in the sieving classification process 32, and sent to a wet bullion recovery process. The steelmaking slag that has not passed through the sieve in the sieve classification process 32 is returned to the rod mill crushing process 31 again. The classified steelmaking slag is again crushed in a wet crushing process, and only the metal 5 is beneficiated and collected through a specific gravity beneficiation process 33 and a magnetic beneficiation process 34. The steelmaking slag after the mineral metal 5 is beneficiated is the thickener 35, and the powdery steelmaking slag 6 is collected. The sandy steel slag 7 is recovered in the Akins classification step 36 as the sandy steel slag 7 having a particle size of about 5 mm. Sandy steel slag 7 is used as the material for the abrasive. In the particle size adjustment step, the air classifier 41 and the sieve classifier 42 perform classification so that the particle size is 0.1 to 3.0 mm. Moreover, it may be classified into a finer range as necessary.

湿式破砕工程で砂状製鋼スラグを破砕する際、破砕負荷(P/T)を調整することによって、モース硬度が7〜9の砂状スラグを得ることができる。破砕された製鋼スラグのモース硬度を7〜9にする破砕負荷(P/T)の大きさの調整は、破砕動力(kW)を種々のスラグ素材処理量(T)を変動させて破砕し、破砕後の製鋼スラグのモース硬度を測定することによって行う。破砕負荷(P/T)の大きさと、当該破砕負荷(P/T)で破砕された製鋼スラグのモース硬度との関係を予め求めておき、破砕後の製鋼スラグのモース硬度が7〜9になるように破砕負荷(P/T)を設定する。本発明の場合、前述の主成分の組成がCaO:30〜43wt%、MgO:6〜15wt%、Al:5〜17wt%、SiO:20〜35wt%である、徐冷した製鋼スラグを素材とし、破砕負荷(P/T)を(12〜25kWh/T)で設定すれば、粒度が0.1〜3.0mmでモース硬度が7〜9の研削材が得られる。このような破砕負荷(P/T)とすることによって、モース硬度が7未満の軟質製鋼スラグは、粒度が0.1mm未満の細粒砂9に破砕され、モース硬度が9を超える硬質製鋼スラグは、破砕されずに系内を循環し、粒度が3.0mm未満になるまで破砕される。 When crushing sandy steelmaking slag in the wet crushing step, sandy slag having a Mohs hardness of 7 to 9 can be obtained by adjusting the crushing load (P / T). The adjustment of the size of the crushing load (P / T) that makes the Mohs hardness of the crushed steelmaking slag 7-9 is to crush the crushing power (kW) by varying the various slag material throughput (T), This is done by measuring the Mohs hardness of the steelmaking slag after crushing. The relationship between the magnitude of the crushing load (P / T) and the Mohs hardness of the steelmaking slag crushed with the crushing load (P / T) is obtained in advance, and the Mohs hardness of the steelmaking slag after crushing is 7-9. The crushing load (P / T) is set so that For the present invention, CaO is the composition of the aforementioned main components: 30~43wt%, MgO: 6~15wt% , Al 2 O 3: 5~17wt%, SiO 2: a 20~35wt%, gradually cooled steel If slag is used as a raw material and the crushing load (P / T) is set at (12 to 25 kWh / T), an abrasive having a particle size of 0.1 to 3.0 mm and a Mohs hardness of 7 to 9 can be obtained. By using such a crushing load (P / T), soft steelmaking slag having a Mohs hardness of less than 7 is crushed into fine sand 9 having a particle size of less than 0.1 mm, and a hard steelmaking slag having a Mohs hardness of more than 9 is obtained. Circulates in the system without being crushed, and is crushed until the particle size becomes less than 3.0 mm.

エアー分級機41は、スラグ収容箱内の破砕された製鋼スラグに作用するエアーの圧力および流量を調整して、微細な粉末に破砕された製鋼スラグをスラグ収容箱から除去し、排出管を通じて集塵箱へと排出する。最後に、スラグ収容箱に残る製鋼スラグを、篩分級機42で分級する。篩分級機42は、メッシュが3.0mmの篩いと0.1mmの篩いとを含み、製鋼スラグの粒度が0.1〜3.0mmの範囲になるように分級する。分級後の粒度が0.1〜3.0mm、かつモース硬度が7〜9の製鋼スラグを、研削材8とする。0.1mmの篩いを通過した製鋼スラグは、細粒砂9として路盤改良材などの用途に用いられる。   The air classifier 41 adjusts the pressure and flow rate of air acting on the crushed steelmaking slag in the slag containing box, removes the steelmaking slag crushed into fine powder from the slag containing box, and collects it through the discharge pipe. Discharge to the trash can. Finally, the steelmaking slag remaining in the slag storage box is classified by the sieve classifier 42. The sieve classifier 42 includes a sieve having a mesh of 3.0 mm and a sieve of 0.1 mm, and classifies the steelmaking slag so that the particle size is in a range of 0.1 to 3.0 mm. A steelmaking slag having a particle size after classification of 0.1 to 3.0 mm and a Mohs hardness of 7 to 9 is defined as an abrasive 8. Steelmaking slag that has passed through a 0.1 mm sieve is used as a fine-grained sand 9 for applications such as roadbed improvement materials.

以下、徐冷製鋼スラグを素材とする研削材の粒度およびモース硬度の範囲限定理由について説明する。   Hereinafter, the reasons for limiting the range of the grain size and the Mohs hardness of an abrasive made of slowly cooled steel slag will be described.

粒度:0.1〜3.0mm
粒度が0.1mm未満であると、研削材個々の粒子の質量が小さく、ブラスト時の研削力が十分に発揮されない。3.0mmを超えると、研削材が壊れ易くなり、粉化により粉塵が増大するという問題がある。また、研削作業時のノズルの詰まりの原因になりやすい。したがって、粒度を0.1〜3.0mmとする。より好ましい粒度の範囲は、0.5〜2.5mmである。また、必要に応じて、ユーザーの要求や研削目的に応じて、さらに細かい粒度範囲に分級してもよい。
Particle size: 0.1-3.0mm
When the particle size is less than 0.1 mm, the mass of each particle of the abrasive is small, and the grinding force during blasting is not sufficiently exhibited. When the thickness exceeds 3.0 mm, the abrasive is easily broken, and there is a problem that dust increases due to pulverization. In addition, nozzles are likely to be clogged during grinding. Therefore, the particle size is 0.1 to 3.0 mm. A more preferable range of the particle size is 0.5 to 2.5 mm. Moreover, you may classify | categorize into a finer particle size range according to a user's request | requirement and the grinding objective as needed.

モース硬度:7〜9
モース硬度が7未満では、軟質であるため被処理材との衝突で容易に破砕されて粉塵の発生量が増大する。モース硬度が9を超えると、硬質なので研削力に優れるが、ブラスト処理装置の損耗を促進するとともに、ブラスト処理後の被処理材の表面が粗くなり塗料付着性の観点から好ましくない。したがって、モース硬度を7〜9とする。
Mohs hardness: 7-9
If the Mohs hardness is less than 7, since it is soft, it is easily crushed by collision with the material to be processed, and the amount of dust generated increases. When the Mohs hardness exceeds 9, since it is hard, the grinding force is excellent, but the wear of the blasting apparatus is accelerated, and the surface of the treated material after blasting becomes rough, which is not preferable from the viewpoint of paint adhesion. Therefore, the Mohs hardness is 7-9.

以下、本発明の実施例について説明する。ここでは、徐冷製鋼スラグを素材とする実施例の研削材と比較例の3種類の研削材とを用いて、被処理材に対してブラスト処理試験し、その性能を評価した。実施例の研削材としては、前述の図1に示す方法により製造したものを使用した。実施例の研削材の素材である製鋼スラグの組成の概要を表1に示す。   Examples of the present invention will be described below. Here, a blast treatment test was performed on the material to be treated using the grinding material of the example using the slow-cooled steel slag as a raw material and the three types of grinding materials of the comparative example, and the performance was evaluated. As the abrasive of the examples, those manufactured by the method shown in FIG. 1 were used. Table 1 shows an outline of the composition of steelmaking slag, which is a material of the abrasive material of the example.

Figure 0005565826
Figure 0005565826

比較例として使用した研削材の素材は、けい砂、銅精錬スラグおよびフェロニッケルスラグであり、それぞれ比較例1、比較例2、比較例3と呼ぶ。ここで、フェロニッケルスラグは、製鋼の副原料として使用されるフェロニッケルを精錬する際に生成されるスラグである。実施例および比較例1〜3とも、研削材の粒度を1.2〜2.5mmに調整した。実施例および比較例1〜3の研削材のモース硬度を表2に示す。   The abrasive materials used as comparative examples are silica sand, copper smelting slag, and ferronickel slag, which are referred to as Comparative Example 1, Comparative Example 2, and Comparative Example 3, respectively. Here, ferronickel slag is slag produced when refining ferronickel used as an auxiliary material for steelmaking. In both Examples and Comparative Examples 1 to 3, the particle size of the abrasive was adjusted to 1.2 to 2.5 mm. Table 2 shows the Mohs hardness of the abrasives of Examples and Comparative Examples 1 to 3.

Figure 0005565826
Figure 0005565826

実施例および比較例1〜3の研削材を使用したブラスト処理試験を、次のように行った。被処理材には、厚さ300〜350μmの旧塗膜層を有する幅110mmの普通鋼板を使用した。ブラスト処理装置の研削材を噴射するコンプレッサーの噴射圧を0.7MPa、被処理材までの吹付け距離を400〜800mmとし、被処理材の表面仕上げの目標を、日本工業規格(JIS)Z0313に規定されるSa2.0とした。実施例および比較例1〜3ともに25kgの研削材を使用し、上記の条件にて研削材を噴射し尽すまで被処理材に対してブラスト処理を行い、施工効率、仕上り表面粗さ、粉塵発生量およびその他の指標ならびにこれらの指標についての総合評価により、研削材の性能を評価した。   A blasting test using the abrasives of Examples and Comparative Examples 1 to 3 was performed as follows. As the material to be treated, a normal steel plate having a width of 110 mm having an old coating layer having a thickness of 300 to 350 μm was used. The injection pressure of the compressor that injects the abrasive material of the blast treatment device is 0.7 MPa, the spraying distance to the material to be treated is 400 to 800 mm, and the target for the surface finish of the material to be treated is Japanese Industrial Standard (JIS) Z0313 The specified Sa2.0. In both Examples and Comparative Examples 1 to 3, 25 kg of abrasive material is used, and the material to be treated is blasted until the abrasive material is completely jetted under the above conditions, construction efficiency, finished surface roughness, dust generation The performance of the abrasive was evaluated by quantity and other indicators and comprehensive evaluation of these indicators.

以下、各評価指標について説明する。   Hereinafter, each evaluation index will be described.

施工効率;被処理材の表面を、目標とする表面仕上げSa2.0に仕上げることができた被処理材の総長さを求めた。比較例2の銅精錬スラグの研削材で仕上げることができた長さを基準とし、各研削材で仕上げることができた長さの基準長さに対する比を求めて相対的に評価した。したがって、比較例2の施工効率が1.0である。実施例および比較例の各研削材について施工効率を求め、0.8以上であれば良好、0.8未満であれば不良と評価した。   Construction efficiency: The total length of the material to be treated that was able to finish the surface of the material to be treated to the target surface finish Sa2.0 was determined. Based on the length that could be finished with the grinding material of the copper smelting slag of Comparative Example 2, the ratio of the length that could be finished with each grinding material to the reference length was obtained and relatively evaluated. Therefore, the construction efficiency of Comparative Example 2 is 1.0. Construction efficiency was calculated | required about each grinding | polishing material of an Example and a comparative example, and if it was 0.8 or more, it was evaluated that it was favorable if less than 0.8.

仕上り表面粗さ;ブラスト処理後の被処理材の表面を、表面粗さ計(機種名称、メーカー名称)でJIS−B0601(1994)に規定されるRaを測定した。ブラスト処理後の被処理材を再度塗装する際の塗料付着性の観点から、表面粗さが50〜100μmの範囲内であれば良好と評価した。   Finished surface roughness: Ra specified by JIS-B0601 (1994) was measured with a surface roughness meter (model name, manufacturer name) on the surface of the treated material after blasting. From the viewpoint of paint adhesion when the treated material after blasting was painted again, it was evaluated that the surface roughness was in the range of 50 to 100 μm.

粉塵発生量;ブラスト処理時の粉塵を介するようにして白い壁に向って写真を撮影した。撮影した写真を目視観察し、写真の白壁がくもって見える程度に基づいて官能検査により判定した。くもりがなく白壁が明瞭に見える場合を極めて良好(◎)、わずかにくもりがあるけれども白壁が十分に白く見える場合を良好(○)、白壁がくもって見える場合を不良(×)と評価した。   Dust generation amount: A photograph was taken against the white wall through the dust during blasting. The photograph taken was visually observed and judged by a sensory test based on the degree to which the white wall of the photograph was cloudy. The case where there was no clouding and the white wall was clearly visible was evaluated as very good (◎), the case where there was a slight cloudiness but the white wall appeared sufficiently white was evaluated as good (◯), and the case where the white wall appeared cloudy was evaluated as poor (×).

その他の指標;ブラスト処理試験後、ブラスト処理装置の噴射ノズルまで研削材を搬送するホースの内面を目視観察し、その磨耗の程度を評価した。ホース磨耗がほとんど認められない場合を良好、ホース磨耗が若干認められる場合を普通、ホース磨耗が顕著に認められる場合または鋭利な研削材によるホース損傷が認められる場合を不良と評価した。また、被処理材に衝突して粉砕された研削材が、作業者が装着する保護具の中に侵入(以下、便宜上保護具侵入と称する)する程度を作業者の感覚に基づいて評価した。保護具侵入が認められない場合を良好、保護具侵入が若干認められる場合を普通、保護具侵入がやや多い場合を不良と評価した。ホース磨耗と保護具侵入とを合わせてその他の指標とした。その評価は、ホース磨耗および保護具侵入の両方が良好である場合を良好(○)、ホース磨耗および保護具侵入の両方が普通である場合またはいずれか一方が良好で他方が不良の場合を普通(△)、ホース磨耗および保護具侵入の両方が不良である場合またはいずれか一方が普通で他方が不良の場合を不良(×)とした。   Other indicators: After the blast treatment test, the inner surface of the hose that transports the abrasive to the injection nozzle of the blast treatment apparatus was visually observed to evaluate the degree of wear. A case in which hose wear was hardly observed was evaluated as good, a case in which hose wear was slightly recognized, a case in which hose wear was recognized remarkably, or a case in which hose damage due to sharp abrasives was observed was evaluated as poor. Further, the degree to which the grinding material that collided with the material to be treated penetrated into the protective equipment worn by the operator (hereinafter referred to as protective equipment intrusion for convenience) was evaluated based on the operator's sense. The case where the protective device intrusion was not recognized was evaluated as good, the case where the protective device intrusion was slightly recognized was normal, and the case where the protective device intrusion was slightly high was evaluated as defective. Other indicators were combined with hose wear and protective device intrusion. The evaluation is good when both hose wear and protective device penetration are good (○), when both hose wear and protective device penetration are normal, or when either one is good and the other is bad (△), a case where both hose wear and protective device intrusion were defective or one of them was normal and the other was defective was evaluated as defective (x).

総合評価;上記の4つの指標を総合して評価する。すべての指標が良好である場合を良好(○)、普通または不良を一つ含む場合を普通(△)、不良を2つ以上含む場合を不良(×)、と総合評価した。   Comprehensive evaluation: The above four indicators are evaluated in a comprehensive manner. A case where all the indicators were good was evaluated as good (◯), a case where normal or defective was included (normal), and a case where two or more defects were included as poor (×).

実施例および比較例1〜3について、各指標の評価結果を併せて表3に示す。実施例の製鋼スラグを素材とする研削材は、すべての指標について良好であり、総合評価が良好であった。比較例1のけい砂を素材とする研削材は、仕上り表面粗さが良好であったものの、施工効率および粉塵発生量が不良であり、総合評価が不良であった。比較例2の銅精錬スラグを素材とする研削材は、施工効率および仕上り表面粗さが良好、粉塵発生量が極めて良好であったものの、その他の指標が不良であり、総合評価が普通であった。比較例3のフェロニッケルスラグを素材とする研削材は、施工効率、仕上がり表面粗さおよび粉塵発生量が良好であったものの、その他の指標が普通であり、総合評価が普通であった。以上のように、製鋼スラグからなる実施例の研削材が、最も優れた性能を発現することが判る。   Table 3 shows the evaluation results of each index for Examples and Comparative Examples 1 to 3. The abrasives made from the steelmaking slag of the example were good for all the indicators, and the overall evaluation was good. Although the grinding material made from silica sand of Comparative Example 1 had good finished surface roughness, the construction efficiency and the amount of dust generation were poor, and the overall evaluation was poor. The grinding material made from the copper smelting slag of Comparative Example 2 had good construction efficiency and finished surface roughness, and extremely good dust generation, but other indicators were poor and the overall evaluation was normal. It was. The grinding material made of ferronickel slag of Comparative Example 3 had good construction efficiency, finished surface roughness and dust generation, but other indicators were normal and overall evaluation was normal. As mentioned above, it turns out that the grinding material of the Example which consists of steelmaking slag expresses the most outstanding performance.

Figure 0005565826
Figure 0005565826

1 製鋼工程
2 冷却工程
3 選鉱工程
4 研削材製造工程
7 砂状製鋼スラグ
8 研削材
41 エアー分級機
42 篩分級機
DESCRIPTION OF SYMBOLS 1 Steelmaking process 2 Cooling process 3 Mineral processing process 4 Abrasive material manufacturing process 7 Sandy steelmaking slag 8 Abrasive material 41 Air classifier 42 Sieve classifier

Claims (2)

ステンレス鋼の製鋼工程で生成される製鋼スラグを、ノロポットに掻き出して徐冷し、湿式破砕工程を通して生成され、
主成分の組成がCaO:30〜43wt%、MgO:6〜15wt%、Al:5〜17wt%、SiO:20〜3wt%の製鋼スラグを素材とし、
モース硬度が7〜9であり、
粒度が0.1〜3.0mmであることを特徴とするブラスト処理用研削材。
The steelmaking slag generated in the steel making process of the stainless steel, and gradually cooled scrape the Noropotto, it is generated by passing the wet crushing process,
The composition of the main component CaO: 30~43wt%, MgO: 6~15wt %, Al 2 O 3: 5~17wt%, SiO 2: 20~3 a 5 wt% of the steelmaking slag as raw material,
Mohs hardness is 7-9,
A blasting abrasive having a particle size of 0.1 to 3.0 mm.
ステンレス鋼の製鋼工程で生成される製鋼スラグを、ノロポットに掻き出して徐冷し、
徐冷後の製鋼スラグを湿式破砕工程で、一定の破砕負荷で破砕して、
モース硬度が7〜9で、0.1〜3.0mmの粒度の砂状スラグに分級することを特徴とするブラスト処理用研削材の製造方法。
Steelmaking slag produced in the steelmaking process of stainless steel is scraped into a noropot and gradually cooled.
The steelmaking slag after slow cooling is crushed with a constant crushing load in the wet crushing process ,
A method for producing an abrasive for blasting, characterized by classifying sandy slag having a Mohs hardness of 7 to 9 and a particle size of 0.1 to 3.0 mm.
JP2009239861A 2009-10-16 2009-10-16 Abrasive for blasting and method for producing the same Expired - Fee Related JP5565826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239861A JP5565826B2 (en) 2009-10-16 2009-10-16 Abrasive for blasting and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239861A JP5565826B2 (en) 2009-10-16 2009-10-16 Abrasive for blasting and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011083869A JP2011083869A (en) 2011-04-28
JP5565826B2 true JP5565826B2 (en) 2014-08-06

Family

ID=44077209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239861A Expired - Fee Related JP5565826B2 (en) 2009-10-16 2009-10-16 Abrasive for blasting and method for producing the same

Country Status (1)

Country Link
JP (1) JP5565826B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497892B1 (en) * 2012-05-22 2015-03-02 아이치 세이코우 가부시키가이샤 Abrasive material for shot blasting, and method for producing same
CN104141027B (en) * 2014-07-25 2016-08-17 马钢(集团)控股有限公司 A kind of method comprehensively utilizing steelmaking converter wind quenching slag
JP6540466B2 (en) * 2015-11-10 2019-07-10 住友金属鉱山株式会社 Method of regenerating an electrowinning base plate
WO2022144671A1 (en) * 2020-12-28 2022-07-07 Sabic Global Technologies B.V. Steel slag abrasive materials for blasting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239179A (en) * 1985-08-13 1987-02-20 Nippon Jiryoku Senko Kk Sand-blast material and manufacture therefor
JP3720622B2 (en) * 1999-04-09 2005-11-30 株式会社星野産商 Granules for shot blasting
JP4571818B2 (en) * 2004-04-21 2010-10-27 新日本製鐵株式会社 Method for reforming steelmaking slag
JP5640307B2 (en) * 2007-09-20 2014-12-17 愛知製鋼株式会社 Blasting abrasive and method for producing blasting abrasive.

Also Published As

Publication number Publication date
JP2011083869A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5454747B1 (en) Grinding material for shot blasting and its manufacturing method
JP5565826B2 (en) Abrasive for blasting and method for producing the same
WO2006085712A1 (en) Abrasive material made of atomized slag, manufacturing facility and method for the same
CN103370173B (en) Zinc-based alloy shots
CN100366389C (en) Manufacturing method of high-carbon chromium iron slag grinded by wind power and sand-blast material
KR20070105017A (en) The method of abrasives manufacture using molten steel slag and the abrasives manufactured thereof
JP6181953B2 (en) Sand substitute and manufacturing method thereof
JP6900923B2 (en) Manufacturing method of slag material
KR101598448B1 (en) Slag treating apparatus
JP3645818B2 (en) How to recycle refractories
JP3746962B2 (en) Abrasive material and polishing method using the abrasive material
CN101161848B (en) Corrosion resisting alloy sand and preparation method thereof
JP6140423B2 (en) Method for recovering metal containing desulfurized slag
CN103993224B (en) A kind of medium managese steel grinder hammerhead and preparation method thereof
JP6069976B2 (en) Granulated slag and method for producing the same
WO1997014760A1 (en) Method for processing iron-containing materials and products produced thereby
JP2002363544A (en) Process for producing spherical projecting material, and projecting material
US20240042577A1 (en) Steel slag abrasive materials for blasting
JP6315043B2 (en) Granulated slag manufacturing method
JPH1142563A (en) Grinding material
JP2006076834A (en) Slag granulator
JP2001048603A (en) Production of blast-furnace slag fine aggregate
JP2003155511A (en) Method for producing converter slag product
JP4203482B2 (en) Magnesium alloy material recycling method and recycling system
KR101015805B1 (en) Manufacturing method for the abrasive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5565826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350