Nothing Special   »   [go: up one dir, main page]

JP5401661B2 - Atomic diffusion bonding method and structure bonded by the above method - Google Patents

Atomic diffusion bonding method and structure bonded by the above method Download PDF

Info

Publication number
JP5401661B2
JP5401661B2 JP2008214240A JP2008214240A JP5401661B2 JP 5401661 B2 JP5401661 B2 JP 5401661B2 JP 2008214240 A JP2008214240 A JP 2008214240A JP 2008214240 A JP2008214240 A JP 2008214240A JP 5401661 B2 JP5401661 B2 JP 5401661B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
continuous thin
microcrystalline
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008214240A
Other languages
Japanese (ja)
Other versions
JP2010046696A (en
Inventor
武仁 島津
和夫 宮本
Original Assignee
株式会社ムサシノエンジニアリング
武仁 島津
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ムサシノエンジニアリング, 武仁 島津 filed Critical 株式会社ムサシノエンジニアリング
Priority to JP2008214240A priority Critical patent/JP5401661B2/en
Publication of JP2010046696A publication Critical patent/JP2010046696A/en
Application granted granted Critical
Publication of JP5401661B2 publication Critical patent/JP5401661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/8383Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/83895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は原子拡散接合方法,及び前記方法により接合された構造体に関し,より詳細には,例えばIC基板の積層化やパッケージの封止,各種デバイスの複合化等,被接合材である2つの基体間を強固に接合する際に使用される接合方法において,少なくとも一方の基体の接合面に形成された微結晶連続薄膜を介して2つの基体を接合することにより,接合界面および結晶粒界において原子拡散を生じさせることにより基体間を接合する新規な接合方法,及び前記方法により接合された構造体に関する。   The present invention relates to an atomic diffusion bonding method and a structure bonded by the above-described method, and more specifically, for example, two materials to be bonded such as stacking of IC substrates, sealing of packages, and composite of various devices. In a bonding method used when strongly bonding between substrates, by bonding two substrates via a microcrystalline continuous thin film formed on the bonding surface of at least one substrate, at a bonding interface and a grain boundary The present invention relates to a novel bonding method for bonding substrates by causing atomic diffusion, and a structure bonded by the method.

なお,本明細書において「微結晶」には「多結晶」の他,「アモルファス」を含む。また,「結晶粒界」とは原子配列の規則性の断続部分を言い,多結晶における結晶粒の境界(一般的な意味での「結晶粒界」)の他,長距離秩序(数10原子程度以上の原子集団における配列の規則性)を有しないが,短距離秩序(数10原子以下の原子集団における配列の規則性)を有する前述のアモルファスにあっては,この「短距離秩序」の断続部分が本発明における「結晶粒界」であると共に,アモルファス金属膜中に空隙があり,体積率(充填率)が100%よりも低い場合,その空隙とアモルファス金属の界面も,高い原子拡散係数を有すると考えられることから,上述の短距離秩序の断続部分と同様に本発明における「結晶粒界」に相当する。   In this specification, “microcrystal” includes “polycrystalline” and “amorphous”. In addition, the term “grain boundary” refers to an intermittent portion of the regularity of atomic arrangement. In addition to the boundary of crystal grains in a polycrystal (“grain boundary” in a general sense), long-range order (several tens atoms) The above-mentioned amorphous structure having a short-range order (arrangement regularity in an atomic group of several tens of atoms or less) that does not have a degree of order in the atomic group of more than about) When the interrupted portion is the “crystal grain boundary” in the present invention, and there are voids in the amorphous metal film, and the volume ratio (filling rate) is lower than 100%, the interface between the void and the amorphous metal also has high atomic diffusion. Since it is considered to have a coefficient, it corresponds to the “crystal grain boundary” in the present invention as in the intermittent portion of the short-range order described above.

2つ以上の被接合材を貼り合わせる接合技術が各種の分野において利用されており,例えば電子部品の分野において,ウエハのボンディング,パッケージの封止等においてこのような接合技術が利用されている。   Joining techniques for bonding two or more materials to be joined are used in various fields. For example, in the field of electronic components, such joining techniques are used for wafer bonding, package sealing, and the like.

一例として,前述のウエハボンディング技術を例にとり説明すれば,従来の一般的なウエハボンディング技術では,重ね合わせたウエハ間に高圧,高熱を加えて接合する方法が一般的である。   As an example, the above-described wafer bonding technique will be described as an example. In the conventional general wafer bonding technique, a method of applying high pressure and high heat between stacked wafers is generally used.

しかし,この方法による接合では,熱や圧力に弱い電子デバイス等が形成された基板の接合や集積化を行うことができず,そのため,このような物理的なダメージを与えることなく被接合材相互を接合する技術が要望されている。   However, in this method, it is not possible to bond or integrate substrates on which electronic devices or the like that are sensitive to heat or pressure are formed. Therefore, the materials to be bonded can be bonded to each other without causing such physical damage. There is a demand for a technique for joining the two.

このように,被接合材間を常温,無加圧で接合する技術としては,被接合材の接合面のそれぞれに対し,いずれも希ガス等のイオンビームを照射して接合面における酸化物や有機物等を除去することで,接合面表面の原子を化学的結合を形成し易い活性な状態(活性化)とし,この状態において被接合材の接合面相互を重ね合わせることにより,加熱することなく,かつ,接着剤等を使用することなしに常温での接合を可能とする常温接合法が,例えばシリコンウエハ等の接合に用いられている(特許文献1参照)。   As described above, as a technique for joining the materials to be joined at room temperature and without applying pressure, each of the joining surfaces of the materials to be joined is irradiated with an ion beam such as a rare gas to form oxides or By removing organic matter, etc., the atoms on the surface of the bonding surface are activated (activated) to easily form chemical bonds, and in this state, the bonding surfaces of the materials to be bonded are overlapped without heating. In addition, a room temperature bonding method that enables bonding at room temperature without using an adhesive or the like is used for bonding silicon wafers, for example (see Patent Document 1).

この発明の先行技術文献情報としては,次のものがある。
特許第2791429号公報
Prior art document information of the present invention includes the following.
Japanese Patent No. 2791429

上記特許文献1に記載の方法では,被接合材の接合面に対して希ガスビームなどを照射して接合面を洗浄して活性な状態とした後,両接合面を接合することにより強固な接合力を得ることができるものの,接合できる材料が一部の金属と金属,一部の金属と化合物間に限定されており,用途が限定される。   In the method described in Patent Document 1, the bonding surface of the material to be bonded is irradiated with a rare gas beam or the like to clean the bonding surface to be in an active state, and then the two bonding surfaces are bonded to achieve strong bonding. Although power can be obtained, the materials that can be joined are limited between some metals and metals, and some metals and compounds, which limits the application.

また,前記方法により接合を行う場合,接合面は巨視的には接合がされていたとしても,接合面の粗さやうねり等によって微視的には接合されていない部分が存在し,ウエハレベルでの積層化,集積化のための接合に使用することができない。   In addition, when bonding is performed by the above method, even if the bonding surface is macroscopically bonded, there is a portion that is not microscopically bonded due to the roughness or waviness of the bonding surface, and at the wafer level. It cannot be used for bonding for stacking and integration.

このように,部分的に接合されていない部分が発生することを防止するために,接合面を研磨等してその表面粗さを抑制することも考えられるが,研磨によって抑制し得る接合面の粗さやうねりには限度がある。   In this way, in order to prevent the occurrence of a part that is not partially bonded, it is conceivable to suppress the surface roughness by polishing the bonding surface, but the bonding surface that can be suppressed by polishing is also considered. There are limits to roughness and swell.

そのため,上記従来の常温接合方法により,接合されない部分の発生を減少しようとすれば,被接合材相互を重合する際に加圧して圧着する等の処理を行う必要があり,被接合材に物理的なダメージを与えるおそれがある。   For this reason, if the conventional room temperature bonding method is used to reduce the occurrence of unbonded parts, it is necessary to perform processing such as pressurization and pressure bonding when polymerizing the materials to be joined. Damage may occur.

なお,上記方法による接合では,両基体の表面を前述のように活性化させることで,接触界面においてのみ原子間に金属又は化学結合を生じさせるものであり,接合界面や結晶粒界におけるダイナミックな原子拡散を伴うものではない。   In the bonding by the above method, the surfaces of both substrates are activated as described above to generate a metal or chemical bond between atoms only at the contact interface. It does not involve atomic diffusion.

そのため,接着自体は比較的強固に行うことはできるものの,両基体の接合部分には依然として接合界面が存在し,また,接合に際して接合界面に酸化被膜等の変質層が形成されることにより,例えば電子デバイス等として使用する際,このような接合界面や変質層が電子の通過を妨げる障壁等として作用する等,性能の低下をもたらすものとなっている。   For this reason, although the bonding itself can be performed relatively firmly, there is still a bonding interface at the bonding portion of both substrates, and an altered layer such as an oxide film is formed at the bonding interface at the time of bonding. When used as an electronic device or the like, such a bonding interface or an altered layer acts as a barrier or the like that prevents the passage of electrons, resulting in a decrease in performance.

そこで本発明は上記従来技術の欠点を解消するためになされたものであり,前述した従来技術における活性化による接合とは異なり,原子拡散という新規な方法により異種材質間の接合を含む広範な材質間の接合に使用することができ,かつ,接合対象とする基体に物理的なダメージを与えることなく接合を行うことがでる原子拡散接合方法を提供することを目的とする。 Therefore, the present invention has been made in order to eliminate the above-mentioned disadvantages of the prior art. Unlike the above-described joining by activation in the prior art, a wide range of materials including joining between different materials by a novel method called atomic diffusion are provided. can be used for bonding between, and aims to provide a Ki that atomic diffusion bonding method out to perform the bonding without giving physical damage to the substrate to be bonded target.

上記目的を達成するために,本発明の原子拡散接合方法は,真空容器内において,平滑面を有する2つの基体それぞれの前記平滑面に,室温(27℃(300K))における自己拡散又は相互拡散を含む体拡散係数が1×10-80m2/s以上の材料から成り,結晶粒の薄膜面内方向の平均粒径が50nm以下で,かつ,密度が80%以上である高密度の微結晶連続薄膜(超塑性合金膜を除く。)を形成(不活性ガスイオンビーム又は不活性ガス中性原子ビームを前記基体に照射して形成したものを除く。)すると共に,前記2つの基体に形成された前記微結晶連続薄膜同士が接触するように前記2つの基体を重ね合わせることにより,前記微結晶連続薄膜の接合界面及び結晶粒界に原子拡散に伴う再結晶を生じさせ又はアモルファスに変化させて前記2つの基体を接合することを特徴とする(請求項1)。 In order to achieve the above object, the atomic diffusion bonding method of the present invention includes self-diffusion or interdiffusion at room temperature (27 ° C. (300 K)) on each smooth surface of two substrates having a smooth surface in a vacuum vessel. Is a high-density fine particle having a body diffusion coefficient of 1 × 10 −80 m 2 / s or more, an average grain size in the in-plane direction of crystal grains of 50 nm or less, and a density of 80% or more. A continuous crystal thin film (excluding a superplastic alloy film) is formed ( except that formed by irradiating the substrate with an inert gas ion beam or an inert gas neutral atom beam), and the two substrates are formed. By superimposing the two substrates so that the formed microcrystalline continuous thin films are in contact with each other, recrystallization due to atomic diffusion occurs at the bonding interface and grain boundaries of the microcrystalline continuous thin film, or changes to an amorphous state. Let me Two substrates are joined (claim 1).

なお,本発明において微結晶連続薄膜の密度(%)とは,微結晶連続薄膜が占める空間に対する,空隙等の形成部分を除いた微結晶連続薄膜を構成する金属が占める体積の割合(体積率あるいは充填率)を百分率によって表示したものである。   In the present invention, the density (%) of the microcrystalline continuous thin film is the ratio of the volume occupied by the metal constituting the microcrystalline continuous thin film excluding the formation of voids to the space occupied by the microcrystalline continuous thin film (volume ratio). Alternatively, the filling rate is expressed as a percentage.

また,本発明の別の原子拡散接合方法は,真空容器内において,一方の基体の平滑面に室温における体拡散係数が1×10-80m2/s以上の材料から成り,結晶粒の薄膜面内方向の平均粒径が50nm以下で,かつ,密度が80%以上である高密度の微結晶連続薄膜(超塑性合金膜を除く。)を形成(不活性ガスイオンビーム又は不活性ガス中性原子ビームを前記基体に照射して形成したものを除く。)すると共に,少なくとも表面が微結晶構造を有する平滑面を備えた他方の基体の前記平滑面に前記一方の基体に形成された前記微結晶連続薄膜が接触するように前記一方,他方の2つの基体を重ね合わせることにより,前記微結晶連続薄膜と前記他方の基体の前記平滑面との接合界面及び結晶粒界に原子拡散に伴う再結晶を生じさせ又はアモルファスに変化させることにより前記2つの基体を接合することを特徴とする(請求項2)。 In another atomic diffusion bonding method of the present invention, a smooth surface of one substrate is made of a material having a body diffusion coefficient at room temperature of 1 × 10 −80 m 2 / s or more in a vacuum vessel, and a thin film of crystal grains Forms a high-density microcrystalline continuous thin film (excluding superplastic alloy film) with an average grain size in the in-plane direction of 50 nm or less and a density of 80% or more (in an inert gas ion beam or inert gas) And at least the surface of the other substrate provided with a smooth surface having a microcrystalline structure is formed on the one substrate. By superimposing the one and the other two substrates so that the microcrystalline continuous thin film is in contact with each other, atomic diffusion occurs at the bonding interface and the crystal grain boundary between the microcrystalline continuous thin film and the smooth surface of the other substrate. Cause recrystallization or amorph By varying the scan, characterized in that bonding the two substrates (claim 2).

上記原子拡散接合方法において,上記基体を重ね合わせる際の前記基体温度を室温以上400℃以下の範囲で加熱して拡散係数を上昇させるものとすることができ(請求項3),特に,前記微結晶連続薄膜の形成材料の室温における体拡散係数が1×10-40m2/s以下の場合にこのような加熱を行うことが好ましい(請求項4)。 In the atomic diffusion bonding method, the substrate temperature when the substrates are overlaid can be heated in a range of room temperature to 400 ° C. to increase the diffusion coefficient. Such heating is preferably performed when the body diffusion coefficient at room temperature of the material for forming the continuous crystal thin film is 1 × 10 −40 m 2 / s or less.

また,前記基体の重ね合わせは,前記基体を加熱することなく行うものとしても良く(請求項5),特に前記微結晶連続薄膜の形成材料の室温における体拡散係数が1×10-40m2/sを越える場合には,加熱することなく接合した場合にあっても,接合界面の消失する程の原子拡散による接合を行うことが可能である。 Further, the superposition of the substrates may be performed without heating the substrates (Claim 5). In particular, the body diffusion coefficient of the material for forming the microcrystalline continuous thin film at room temperature is 1 × 10 −40 m 2. When exceeding / s, it is possible to perform bonding by atomic diffusion to the extent that the bonding interface disappears even when bonding is performed without heating.

更に,前述の原子拡散接合方法において,到達真空圧力が1×10-4Pa〜1×10-8Paの真空容器内で前記微結晶連続薄膜の形成及び/又は前記基体の重ね合わせを行うことが好ましく(請求項6),また,前記微結晶連続薄膜の形成と,前記基体の重ね合わせを同一真空中で行うことが好ましい(請求項7)。 Further, in the above-described atomic diffusion bonding method, the microcrystalline continuous thin film is formed and / or the substrate is superposed in a vacuum vessel having an ultimate vacuum pressure of 1 × 10 −4 Pa to 1 × 10 −8 Pa. (Claim 6) and the formation of the microcrystalline continuous thin film and the superposition of the substrate are preferably performed in the same vacuum (Claim 7).

前述の微結晶連続薄膜は,これをAl,Si,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ga,Ge,Zr,Nb,Mo,Ru,Rh,Pd,Ag,In,Sn,Hf,Ta,Pt,Auの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成することができる(請求項8)。   The aforementioned microcrystalline continuous thin film is made of Al, Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, It can be formed of any one single metal selected from the element group of Sn, Hf, Ta, Pt, Au, or can be formed of an alloy containing one or more elements selected from the element group. Item 8).

また,前記微結晶連続薄膜を形成する前に,前記微結晶連続薄膜の形成と同一真空中において,前記微結晶連続薄膜の形成を行う基体の平滑面に生じている変質層,例えばガス吸着層や自然酸化層を逆スパッタリング等のドライプロセスで除去することが好ましく(請求項9),特に基体に対する付着強度が低いAl,Cu,Ag,Pt等の微結晶連続薄膜を形成する場合には,付着強度を向上させる上で変質層の除去を行うことは効果的である。   Further, before forming the microcrystalline continuous thin film, an altered layer formed on the smooth surface of the substrate on which the microcrystalline continuous thin film is formed, for example, a gas adsorption layer, in the same vacuum as the formation of the microcrystalline continuous thin film And the natural oxide layer are preferably removed by a dry process such as reverse sputtering (Claim 9), particularly when a microcrystalline continuous thin film of Al, Cu, Ag, Pt or the like having low adhesion strength to the substrate is formed. In order to improve the adhesion strength, it is effective to remove the deteriorated layer.

なお,基体表面の変質層の除去は,微結晶連続薄膜の形成を行う真空容器外において,例えば薬液による洗浄等のウェットプロセスによって行うこともでき,この場合には,変質層除去後の基体表面を水素終端化等により変質層の再形成が生じ難い状態とすることが好ましい。   The removal of the altered layer on the surface of the substrate can also be performed by a wet process such as cleaning with a chemical solution outside the vacuum vessel in which the microcrystalline continuous thin film is formed. Is preferably in a state in which it is difficult for the altered layer to re-form due to hydrogen termination or the like.

更に,前記微結晶連続薄膜が形成される前記基体の平滑面に,前記微結晶連続薄膜とは異なる材料の薄膜から成る下地層を1層以上形成し,当該下地層上に前記微結晶連続薄膜を形成することが好ましく(請求項10),前述した変質層の除去と同様,特に基体に対する付着強度が低いAl,Cu,Ag,Pt等の微結晶連続薄膜を形成する場合には,付着強度を向上させる上で前記下地層の形成は効果的である。   Furthermore, at least one underlayer made of a thin film of a material different from the microcrystalline continuous thin film is formed on the smooth surface of the substrate on which the microcrystalline continuous thin film is formed, and the microcrystalline continuous thin film is formed on the underlayer. (Claim 10), in the same manner as the removal of the deteriorated layer described above, particularly when a microcrystalline continuous thin film of Al, Cu, Ag, Pt or the like having low adhesion strength to the substrate is formed. The formation of the base layer is effective in improving the thickness.

この下地層は,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成することができ(請求項11),特に,形成する微結晶連続薄膜よりも融点が高く,且つ,その融点の差が大きい材料により形成することが好ましい(請求項12)。   The underlayer is formed of any one single metal selected from the element group of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, or one or more selected from the element group (Claim 11), and in particular, it is preferably formed of a material having a melting point higher than that of the microcrystalline continuous thin film to be formed and having a large difference in melting point. ).

なお,前記微結晶連続薄膜の膜厚は,0.2nm〜1μmとすることができる(請求項13)。   The film thickness of the microcrystalline continuous thin film can be 0.2 nm to 1 μm.

更に,本発明には,前述した原子拡散接合方法により接合された構造体を含む(請求項14)。   Furthermore, the present invention includes a structure bonded by the above-described atomic diffusion bonding method (claim 14).

以上説明した本発明の構成により,本発明の原子拡散接合方法によれば,以下のような顕著な効果を得ることができた。   With the configuration of the present invention described above, the following remarkable effects can be obtained according to the atomic diffusion bonding method of the present invention.

2つの基体の平滑面に形成した微結晶連続薄膜同士,又は一方の基体に形成した微結晶連続薄膜と少なくとも表面に微結晶構造を有する平滑面を有する他方の基体の平滑面とを接触させることにより,接合界面及び結晶粒界に原子拡散を生じさせ,これにより同種又は異種の微結晶連続薄膜の接合面間,又は微結晶連続薄膜と基体の平滑面間を,加熱,加圧,電圧の印加等を伴うことなく原子レベルで金属結合あるいは分子間結合により強固に接合させることができると共に,薄膜の内部応力を開放して接合歪みを緩和させることができた。なお,ここで得られる接合は,界面で剥離が生じない(無理に剥離しようとすると薄膜の界面以外の部分又は基体が破壊する)接合状態である。   Contact between the microcrystalline continuous thin films formed on the smooth surfaces of the two substrates or the microcrystalline continuous thin film formed on one substrate and the smooth surface of the other substrate having a smooth surface having a microcrystalline structure on at least the surface. As a result, atomic diffusion occurs at the bonding interface and at the grain boundaries, thereby heating, pressurizing, and applying voltage between the bonding surfaces of the same or different microcrystalline continuous thin film or between the microcrystalline continuous thin film and the smooth surface of the substrate. It was possible to bond firmly by metal bonds or intermolecular bonds at the atomic level without application, etc., and to release the internal stress of the thin film and relieve the bonding strain. Note that the bonding obtained here is a bonding state in which peeling does not occur at the interface (a portion other than the interface of the thin film or the substrate is destroyed when the film is forcibly peeled).

基体の重ね合わせを行う際の基体温度を室温以上,400℃以下の範囲で加熱して拡散係数を上昇させることにより,原子の拡散速度,拡散長を増大させることができ,これにより接合界面及び結晶粒界における原子の拡散性を向上させてより均一かつ強固な接合を行うことができ,特に原子の拡散長の増大により表面の比較的粗い基体であっても接合することが可能となった。   By increasing the diffusion coefficient by heating the substrate temperature in the range of room temperature to 400 ° C. when superimposing the substrates, the diffusion rate and diffusion length of atoms can be increased. A more uniform and strong bonding can be achieved by improving the diffusibility of atoms at the grain boundaries, and it is possible to bond even a substrate with a relatively rough surface, especially by increasing the diffusion length of atoms. .

しかも,基体に対する加熱が室温から400℃以下で範囲であれば,基体が比較的熱に弱い電子デバイス等であっても加熱によるダメージを与えることなく前記効果を得ることができた。   In addition, when the heating of the substrate is in the range of room temperature to 400 ° C. or less, the above-described effects can be obtained without causing damage due to heating even if the substrate is a relatively heat-sensitive electronic device or the like.

上記加熱を室温における体拡散係数が1×10-40m2/s以下の材料により前記微結晶連続薄膜を形成した場合に行うことで,比較的拡散係数の低い材質で微結晶連続薄膜を形成した場合であっても,原子の拡散速度の向上と拡散長の増大を図ることができ,特に,前記温度範囲内において加熱後の拡散係数が1×10-40m2/sを越えるように加熱を行うことで,接合界面の消失が得られる程の原子拡散を生じさせることが可能である。 By performing the above heating when the microcrystalline continuous thin film is formed with a material having a body diffusion coefficient of 1 × 10 −40 m 2 / s or less at room temperature, the microcrystalline continuous thin film is formed with a material having a relatively low diffusion coefficient. Even in this case, it is possible to improve the diffusion rate of the atoms and increase the diffusion length. In particular, the diffusion coefficient after heating exceeds 1 × 10 −40 m 2 / s within the above temperature range. By heating, it is possible to cause atomic diffusion to the extent that the disappearance of the bonding interface can be obtained.

もっとも,基体はこれを加熱することなく重ね合わせた場合であっても良好に接合することができ,これにより基体に対して熱によるダメージが加わることを完全に防止できた。特に,室温における体拡散係数が1×10-40m2/sを越える材料によって微結晶連続薄膜を形成する場合には,加熱することなく室温で接合した場合であっても接合界面が消失する程の原子拡散による接合を得ることができた。 However, even when the substrates were stacked without heating, the substrates could be bonded satisfactorily, thereby preventing the substrate from being damaged by heat. In particular, when a microcrystalline continuous thin film is formed with a material having a body diffusion coefficient exceeding 1 × 10 −40 m 2 / s at room temperature, the bonding interface disappears even when bonded at room temperature without heating. The junction by atomic diffusion was able to be obtained.

微結晶連続薄膜の形成,及び/又は基体の重ね合わせを到達真空圧力が1×10-4Pa〜1×10-8Paの真空容器内で行うことにより,また,微結晶連続薄膜の形成と基体の重ね合わせを同一真空中で行うことにより,形成された微結晶連続薄膜が不純物ガス(例えばO2やH2O)等と反応して変質層を形成する前の清浄な状態で接合を行うことができ,基体同士を高い付着強度で接合することができると共に,接合界面に電子等の通過に際して障壁となる酸化膜等の変質層が形成されることを防止できた。 The formation of the continuous microcrystalline thin film and / or the superposition of the substrates in a vacuum vessel having a ultimate vacuum pressure of 1 × 10 −4 Pa to 1 × 10 −8 Pa, By superimposing the substrates in the same vacuum, the formed microcrystalline continuous thin film reacts with an impurity gas (for example, O 2 or H 2 O), etc. to bond the substrates in a clean state before forming a deteriorated layer. In addition to being able to bond the substrates with high adhesion strength, it was possible to prevent the formation of a deteriorated layer such as an oxide film that would serve as a barrier at the time of the passage of electrons or the like at the bonding interface.

また,前記到達真空度の真空中で微結晶連続薄膜の形成を行うことで,基体に対する微結晶連続薄膜の付着強度が低下することを防止でき,微結晶連続薄膜の接合界面における剥離のみならず,基体と微結晶連続薄膜間での剥離の発生等についても好適に防止することができた。   In addition, by forming the microcrystalline continuous thin film in the vacuum of the ultimate vacuum, it is possible to prevent the adhesion strength of the microcrystalline continuous thin film to the substrate from decreasing, and not only the peeling at the bonding interface of the microcrystalline continuous thin film. Therefore, the occurrence of delamination between the substrate and the microcrystalline continuous thin film can be suitably prevented.

微結晶連続薄膜を,Al,Si,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ga,Ge,Zr,Nb,Mo,Ru,Rh,Pd,Ag,In,Sn,Hf,Ta,Pt,Auの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成することで,本発明の方法による原子拡散接合を好適に行うことができた。   A microcrystalline continuous thin film is formed of Al, Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Hf, An atom according to the method of the present invention is formed by using any one single metal selected from the element group of Ta, Pt, Au, or an alloy containing one or more elements selected from the element group. Diffusion bonding could be performed suitably.

上記微結晶連続薄膜を形成する前に,微結晶連続薄膜の形成と同一真空中において上記一方又は双方の基体の平滑面表面に形成されている変質層を逆スパッタリング等のドライプロセスにより除去することで,基体に対する微結晶連続薄膜の付着強度を向上させることができ,基体表面と微結晶連続薄膜間で剥離が生じることによる基体同士の付着強度の低下についても好適に防止することができた。   Before forming the microcrystalline continuous thin film, the altered layer formed on the smooth surface of one or both of the substrates in the same vacuum as the formation of the microcrystalline continuous thin film is removed by a dry process such as reverse sputtering. Thus, the adhesion strength of the microcrystalline continuous thin film to the substrate can be improved, and the decrease in the adhesion strength between the substrates due to the separation between the substrate surface and the microcrystalline continuous thin film can be suitably prevented.

また,前記微結晶連続薄膜が形成される前記基体の平滑面に,前記微結晶連続薄膜とは異なる材料の薄膜,例えば周期律表における4A〜6A属の元素であるTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属の薄膜,又は前記元素群より選択された1つ以上の元素を含む合金の薄膜によって下地層を形成することにより,基体に対する微結晶連続薄膜の付着強度を上昇させることができ,これにより基体と微結晶連続薄膜間で剥離が生じることを防止することができた。   Further, on the smooth surface of the substrate on which the microcrystalline continuous thin film is formed, a thin film made of a material different from the microcrystalline continuous thin film, for example, Ti, V, Cr, Zr, which are elements of Group 4A-6A in the periodic table The underlayer is formed from a thin film of any one single metal selected from the group of elements Nb, Mo, Hf, Ta, and W, or a thin film of an alloy containing one or more elements selected from the group of elements. As a result, the adhesion strength of the microcrystalline continuous thin film to the substrate can be increased, thereby preventing peeling between the substrate and the microcrystalline continuous thin film.

特に,このような下地層の形成材料として,微結晶連続薄膜の形成材料に対して高融点であり,且つ,その融点の差が大きいもの使用することで,下地層上に形成される微結晶連続薄膜の2次元性(薄膜成長時の原子の濡れ性)が良くなり,微結晶連続薄膜が島状に成長することを防止でき,0.2nmといった1原子層分の厚みに相当する極めて薄い微結晶連続薄膜の形成が容易となる。   In particular, as a material for forming such an underlayer, a microcrystal formed on the underlayer by using a material having a high melting point and a large difference in melting point relative to the material for forming a microcrystalline continuous thin film. The two-dimensionality of the continuous thin film (atomic wettability during thin film growth) is improved, and the microcrystalline continuous thin film can be prevented from growing in the form of islands. It is extremely thin, corresponding to the thickness of one atomic layer such as 0.2 nm. Formation of a microcrystalline continuous thin film is facilitated.

なお,本発明の原子拡散接合方法では,形成する微結晶連続薄膜の膜厚がそれぞれ0.2nm(2Å)〜1μmの範囲で好適に原子拡散接合が可能であり,特に,電子やスピン電流の平均自由工程よりも十分に薄い数Å程度の膜厚の微結晶連続薄膜の形成によっても接合を行うことができることから,シリコンウエハ等の接合に用いた場合であっても,接合面によって電子の移動等が妨げられない接合方法を提供することができた。   In the atomic diffusion bonding method of the present invention, atomic diffusion bonding can be suitably performed when the film thickness of the formed microcrystalline continuous thin film is in the range of 0.2 nm (2 mm) to 1 μm, respectively. Bonding can also be performed by forming a microcrystalline continuous thin film with a thickness of a few millimeters that is sufficiently thinner than the mean free process. Therefore, even when used for bonding silicon wafers, etc. It was possible to provide a joining method in which movement and the like are not hindered.

接合方法概略
本発明の原子拡散接合方法は,真空容器内においてスパッタリングやイオンプレーティング等の真空成膜により真空中で成膜した微結晶連続薄膜同士,又は微結晶連続薄膜と少なくとも表面に微結晶構造を有する基体を,成膜中,あるいは成膜後に重ね合わせると,接合界面及び結晶粒界において原子拡散が生じて両者間で強固な接合が行われることを見出し,これを基体間の接合に適応したものであり,下記の条件等において基体同士の接合を行うものである。
Outline of Bonding Method The atomic diffusion bonding method of the present invention is a method in which continuous microcrystalline thin films formed in a vacuum by vacuum film formation such as sputtering or ion plating in a vacuum vessel, or a microcrystalline continuous thin film and microcrystals at least on the surface. It is found that when a substrate having a structure is overlapped during film formation or after film formation, atomic diffusion occurs at the bonding interface and crystal grain boundary, and strong bonding is performed between the two. It is adapted and the substrates are joined together under the following conditions.

基体(被接合材)
材質
本発明の原子拡散接合方法による接合の対象である基体としては,スパッタリングやイオンプレーティング等,到達真空度が1×10-4〜1×10-8Paの高真空度である真空容器を用いた高真空度雰囲気における真空成膜により微結晶連続薄膜を形成可能な材質であれば如何なるものをも対象とすることができ,各種の純金属,合金の他,Si基板等の半導体,ガラス,セラミックス,樹脂,酸化物等であって前記方法による微結晶連続薄膜の形成が可能であれば本発明における基体(被接合材)とすることができる。
Substrate (material to be joined)
Material As a substrate to be bonded by the atomic diffusion bonding method of the present invention, a vacuum container having a high vacuum level of 1 × 10 −4 to 1 × 10 −8 Pa, such as sputtering or ion plating, is used. Any material can be used as long as it can form a continuous microcrystalline thin film by vacuum film formation in a high-vacuum atmosphere used. In addition to various pure metals and alloys, semiconductors such as Si substrates, glass As long as it is possible to form a microcrystalline continuous thin film by the above method, ceramics, resins, oxides, etc., the substrate (bonded material) in the present invention can be obtained.

なお,基体は,例えば金属同士の接合のように同一材質間の接合のみならず,金属とセラミックス等のように,異種材質間での接合を行うことも可能である。   The substrate can be bonded not only between the same materials, for example, between metals, but also between different materials, such as metal and ceramics.

接合面の状態等
基体の形状は特に限定されず,例えば平板状のものから各種の複雑な立体形状のもの迄,その用途,目的に応じて各種の形状のものを対象とすることができるが,他方の基体との接合が行われる部分(接合面)については所定の精度で平滑に形成された平滑面を備えていることが必要である。
The state of the joining surface, etc. The shape of the substrate is not particularly limited, and for example, from flat to various complex three-dimensional shapes, various shapes can be targeted depending on the application and purpose. The portion (joint surface) to be joined with the other substrate needs to have a smooth surface formed smoothly with a predetermined accuracy.

なお,他の基体との接合が行われるこの平滑面は,1つの基体に複数設けることにより,1つの基体に対して複数の基体を接合するものとしても良い。   In addition, it is good also as what joins a several base | substrate with respect to one base | substrate by providing two or more this smooth surfaces with which another base | substrate is joined to one base | substrate.

この接合面の表面粗さは,パッケージの封止等,単に接合が得られるのみで目的が達成される場合には,例えば最大高さ(Rmax)で50nmを越える表面粗さであっても接合を行うことができるが,好ましくはRmaxで50nm以下である。   The surface roughness of the bonding surface can be obtained even if the surface roughness is more than 50 nm at the maximum height (Rmax), for example, when the purpose is achieved simply by bonding such as sealing of a package. However, Rmax is preferably 50 nm or less.

基体の平滑面は,微結晶連続薄膜の形成前に表面のガス吸着層や自然酸化層等の変質層が除去されていることが好ましく,例えば薬液による洗浄等による既知のウェットプロセスによって前述の変質層を除去し,また,前記変質層の除去後,再度のガス吸着等を防止するために水素終端化等が行われた基体を好適に使用することができる。   For the smooth surface of the substrate, it is preferable that the modified layer such as the gas adsorption layer and the natural oxidation layer on the surface is removed before the formation of the microcrystalline continuous thin film. For example, the above-mentioned modified layer is obtained by a known wet process such as cleaning with a chemical solution. A substrate on which hydrogen termination or the like has been performed can be suitably used in order to remove the layer and to prevent gas adsorption again after removing the deteriorated layer.

また,変質層の除去は前述のウェットプロセスに限定されず,ドライプロセスによって行うこともでき,真空容器中における希ガスイオンのボンバード等によりガス吸着層や自然酸化層などの変質層を逆スパッタリング等によって除去することもできる。   In addition, the removal of the altered layer is not limited to the wet process described above, and can be performed by a dry process. The altered layer such as a gas adsorption layer or a natural oxide layer is reverse-sputtered by bombardment of rare gas ions in a vacuum vessel. Can also be removed.

特に,前述のようなドライプロセスによって変質層を除去する場合,変質層を除去した後,後述の微結晶連続薄膜を形成する迄の間に,基体表面にガス吸着や酸化が生じることを防止するために,このような変質層の除去を,後述する微結晶連続薄膜を形成すると同一の真空中において行い,変質層の除去に続けて微結晶連続薄膜の形成を行うことが好ましく,より好ましくは,変質層の除去を超高純度の不活性ガスを使用して行い,変質層の除去後に酸化層等が再形成されることを防止する。   In particular, when the altered layer is removed by the dry process as described above, gas adsorption and oxidation are prevented from occurring on the substrate surface after the altered layer is removed and before the microcrystalline continuous thin film described later is formed. Therefore, it is preferable to remove such a deteriorated layer in the same vacuum when a microcrystalline continuous thin film to be described later is formed, and to form a continuous microcrystalline thin film following the removal of the deteriorated layer, more preferably The removal of the altered layer is performed using an ultra-pure inert gas to prevent the oxide layer and the like from being re-formed after the alteration layer is removed.

なお,基体は,単結晶,多結晶,アモルファス,ガラス状態等,その構造は特に限定されず各種構造のものを接合対象とすることが可能であるが,2つの基体の一方に対してのみ後述する微結晶連続薄膜を形成し,他方の基体に対して微結晶連続薄膜の形成を行うことなく両者の接合を行う場合には,微結晶連続薄膜の形成を行わない他方の基体の接合面は,接合界面や結晶粒界における原子拡散を得ることができるよう,少なくともその表面が後述する微結晶連続薄膜と同様に微結晶構造(アモルファスを含む)を有する必要がある。   The structure of the substrate is not particularly limited, such as single crystal, polycrystal, amorphous, glass state, etc., and various structures can be targeted for bonding, but only one of the two substrates will be described later. In the case of forming a continuous microcrystalline thin film and bonding the two substrates without forming a continuous microcrystalline thin film, the bonding surface of the other substrate without forming the continuous microcrystalline thin film is In order to obtain atomic diffusion at the junction interface and grain boundaries, at least the surface must have a microcrystalline structure (including amorphous) as in the microcrystalline continuous thin film described later.

微結晶連続薄膜
材質
形成する微結晶連続薄膜の材質としては,基体と同種材質の薄膜を形成しても良く,また,目的に応じて基体とは異種材質の微結晶連続薄膜を形成しても良く,さらに,基体の一方に形成する微結晶連続薄膜の材質と,基体の他方に形成する微結晶連続薄膜の材質とをそれぞれ異なる材質としても良く,両者間の固溶が可能な組合せのみならず,CoとCuのように非固溶となる組合せであっても良く,また,金属と半金属等,その組合せは目的に応じて適宜任意に行うことができる。
Microcrystalline continuous thin film Material The material of the microcrystalline continuous thin film to be formed may be a thin film of the same type as the substrate, or a microcrystalline continuous thin film of a different material from the substrate may be formed according to the purpose. In addition, the material of the microcrystalline continuous thin film formed on one side of the substrate and the material of the microcrystalline continuous thin film formed on the other side of the substrate may be different from each other. Alternatively, it may be a non-solid combination such as Co and Cu, and the combination of metal and metalloid can be arbitrarily and appropriately performed according to the purpose.

微結晶連続薄膜の材料としては,室温における体拡散係数が1×10-80m2/s以上であることが必要で,このような微結晶連続薄膜の材料として,Al,Si,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ga,Ge,Zr,Nb,Mo,Ru,Rh,Pd,Ag,In,Sn,Hf,Ta,Pt,Auの元素群の中から選択したいずれかの単金属,又はこれらの元素群のうちの少なくとも1つ以上の元素を含む合金を使用することができる。 As a material for a continuous microcrystalline thin film, a body diffusion coefficient at room temperature is required to be 1 × 10 −80 m 2 / s or more. As a material for such a continuous microcrystalline thin film, Al, Si, Ti, V , Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Hf, Ta, Pt, Au Any single metal or alloy containing at least one element of these element groups can be used.

このうち,特に室温における体拡散係数が1×10-40m2/s以上であるIn,Al,Ag,Au,Cu,Zn,Zr,Ti等によって微結晶連続薄膜を形成する場合には,基体を加熱することなく室温において接合した場合であっても接合界面が消失すると共に,接合された微結晶連続薄膜間において再結晶が生じて2つの基体間の間隔の略全域に亘る粒径を備えた結晶粒が生成される等,金属結合による2つの微結晶連続薄膜の一体化を得ることができる。 Among these, in particular, when a microcrystalline continuous thin film is formed of In, Al, Ag, Au, Cu, Zn, Zr, Ti or the like having a body diffusion coefficient of 1 × 10 −40 m 2 / s or more at room temperature, Even when the substrates are bonded at room temperature without heating, the bonding interface disappears, and recrystallization occurs between the bonded microcrystalline continuous thin films, resulting in a particle size over almost the entire area between the two substrates. Integration of two continuous microcrystalline thin films by metal bonding can be obtained, for example, the provided crystal grains are generated.

もっとも,室温における体拡散係数が1×10-40m2/s未満の材質によって微結晶連続薄膜を形成した場合であっても,室温における体拡散係数が1×10-80m2/s以上の材質で形成された微結晶連続薄膜を介した接合を行うことで,接合界面における金属結合により基体間の十分な接合強度を得ることが可能である。 However, the body diffusion coefficient at room temperature is 1 × 10 -80 m 2 / s or more even when a microcrystalline continuous thin film is formed with a material having a body diffusion coefficient of less than 1 × 10 -40 m 2 / s at room temperature. By performing bonding through a microcrystalline continuous thin film formed of the above material, it is possible to obtain sufficient bonding strength between the substrates by metal bonding at the bonding interface.

膜厚等
形成する膜厚は特に限定されないが,それぞれの微結晶連続薄膜を,構成元素1層分の厚みで形成した場合であっても接合を行うことが可能であり,一例としてCuの微結晶連続薄膜を形成する場合,原子1層分の厚さに相当する膜厚0.2nm(2層で0.4nm)とした場合であっても接合可能であり,接合される基体間に介在する微結晶連続薄膜の厚さを,電子やスピン電流の平均自由工程以下の厚みで形成することが可能である。
Although the film thickness to be formed is not particularly limited, bonding can be performed even if each microcrystalline continuous thin film is formed with a thickness equivalent to one layer of the constituent elements. When a continuous crystal thin film is formed, bonding is possible even when the film thickness is 0.2 nm (0.4 nm for two layers) corresponding to the thickness of one atomic layer, and is interposed between the substrates to be bonded. It is possible to form the microcrystalline continuous thin film with a thickness equal to or less than the mean free process of electrons and spin current.

その結果,基体間に介在する微結晶連続薄膜の層が電子の移動等に対して障壁となることがなく,任意のシリコンウエハを接合する等して新たな機能性デバイスの創成等に本発明の原子拡散接合方法を使用することが可能である。   As a result, the microcrystalline continuous thin film layer interposed between the substrates does not become a barrier against the movement of electrons, etc., and the present invention can be applied to the creation of new functional devices by bonding arbitrary silicon wafers. It is possible to use this atomic diffusion bonding method.

但し,形成する微結晶連続薄膜は,微結晶構造を有する「連続」した薄膜であることが必要で,例えば成膜過程において膜に成長する前の島状構造体等は,本発明の微結晶連続薄膜からは除かれる。   However, the microcrystalline continuous thin film to be formed needs to be a “continuous” thin film having a microcrystalline structure. For example, an island-like structure before growing into a film in the film forming process is the microcrystalline structure of the present invention. It is excluded from the continuous film.

一方,膜厚が厚くなるに従って得られた微結晶連続薄膜の表面粗さが増大して接合が困難となると共に,厚みのある微結晶連続薄膜の形成には長時間を要し,生産性が低下することから,その上限は1μm程度であり,0.2nm〜1μm程度が本発明における原子拡散接合方法における各微結晶連続薄膜の好ましい膜厚の範囲である。   On the other hand, as the film thickness increases, the surface roughness of the obtained microcrystalline continuous thin film increases, making bonding difficult, and it takes a long time to form a thick microcrystalline continuous thin film. Therefore, the upper limit is about 1 μm, and about 0.2 nm to 1 μm is a preferable film thickness range of each microcrystalline continuous thin film in the atomic diffusion bonding method of the present invention.

粒径及び密度
形成する微結晶連続薄膜は,同微結晶金属の固体内に比べて原子の拡散速度が大きく,特に,拡散速度が極めて大きくなる粒界の占める割合が大きい微結晶構造である必要があり,結晶粒の薄膜面内方向の平均粒径は50nm以下であれば良く,好ましくは20nm以下である。
Grain size and density The microcrystalline continuous thin film to be formed must have a microcrystalline structure in which the diffusion rate of atoms is larger than that in the solid of the same microcrystalline metal, and in particular, the proportion of grain boundaries where the diffusion rate is extremely large. The average grain size in the in-plane direction of the crystal grains may be 50 nm or less, and preferably 20 nm or less.

また,微結晶連続薄膜は,微結晶連続薄膜が占める空間の体積100%に対し,空隙等の形成部分を除く,微結晶連続薄膜を構成する金属が占める体積の割合が80%以上,好ましくは80〜98%となるよう形成する。   In addition, the volume ratio of the metal constituting the microcrystalline continuous thin film, excluding the formation part of the voids, to the volume of 100% of the space occupied by the microcrystalline continuous thin film is 80% or more, preferably It forms so that it may become 80 to 98%.

微結晶連続薄膜の形成面
さらに,上記微結晶連続薄膜の形成は,接合対象とする2つの基体のそれぞれに形成しても良いが,一方の基体に対してのみ前記微結晶連続薄膜を形成し,他方の基体に対しては微結晶連続薄膜を形成することなく,接合を得ることが可能である。
Forming surface of continuous microcrystalline thin film Further, the continuous microcrystalline thin film may be formed on each of two substrates to be joined. However, the continuous microcrystalline thin film is formed only on one of the substrates. , It is possible to obtain a bond to the other substrate without forming a microcrystalline continuous thin film.

この場合,微結晶連続薄膜の形成を行わない上記他方の基体の接合面は,前述したように接合面の少なくとも表面付近が微結晶構造となっている必要がある。   In this case, the bonding surface of the other substrate on which the microcrystalline continuous thin film is not formed needs to have a microcrystalline structure at least near the surface of the bonding surface as described above.

なお,微結晶連続薄膜を形成する基体の平滑面には,微結晶連続薄膜の形成前に,微結晶連続薄膜とは異なる材質の薄膜より成る1層以上の下地層を形成することができ,特に,形成する微結晶連続薄膜が,基体に対する付着強度が比較的弱いAl,Cu,Ag,Pt等である場合には,付着強度を向上する上で下地層の形成は有効である。   In addition, on the smooth surface of the substrate on which the microcrystalline continuous thin film is formed, one or more underlayers made of a material different from the microcrystalline continuous thin film can be formed before the microcrystalline continuous thin film is formed. In particular, when the microcrystalline continuous thin film to be formed is Al, Cu, Ag, Pt or the like having a relatively low adhesion strength to the substrate, the formation of the underlayer is effective in improving the adhesion strength.

このような下地層は,微結晶連続薄膜の後述する成膜方法と同様の真空成膜技術によって形成することができ,その材質としては,周期律表の4A〜6A属の元素であるTi,Zr,Hf,V,Nb,Ta,Cr,Mo,Wによって形成することができ,その厚さは,一例として0.2〜20nm,後述の実施例では5nmである。   Such an underlayer can be formed by a vacuum film forming technique similar to the film forming method described later of the microcrystalline continuous thin film, and the material thereof is Ti, which is an element belonging to Group 4A-6A of the periodic table, It can be formed of Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The thickness is 0.2 to 20 nm as an example, and 5 nm in the examples described later.

この下地層の材質としては,その上に形成する微結晶連続薄膜の形成材料に対して融点の差が大きいものを使用することが好ましく,かつ,微結晶連続薄膜の形成材料に対して高融点のものを使用することが好ましい。このような融点差が大きく,微結晶連続薄膜に対して高融点となる材質の組み合わせの一例として,例えばTaの下地層上にCuの微結晶連続薄膜を形成する場合,形成された微結晶連続薄膜が基体より剥離することを好適に防止できるだけでなく,下地層上に形成される微結晶連続薄膜の2次元性(微結晶連続薄膜形成時の原子の濡れ性)が良くなり成膜時に微結晶連続薄膜であるCuが島状に成長することを防止でき,0.2nmといった1原子層分の厚みに相当する極めて薄い微結晶連続薄膜の形成が容易となる。   As the material of the underlayer, it is preferable to use a material having a large difference in melting point with respect to the material for forming the continuous microcrystalline thin film formed thereon, and a high melting point for the material for forming the continuous microcrystalline thin film. Are preferably used. As an example of a combination of materials having such a large melting point difference and a high melting point relative to the microcrystalline continuous thin film, for example, when forming a Cu microcrystalline continuous thin film on a Ta underlayer, the formed microcrystalline continuous film In addition to suitably preventing the thin film from peeling off from the substrate, the two-dimensionality of the microcrystalline continuous thin film formed on the underlayer (atomic wettability during the formation of the continuous microcrystalline thin film) is improved, resulting in finer film formation. Cu, which is a continuous crystal thin film, can be prevented from growing in an island shape, and an extremely thin microcrystalline continuous thin film corresponding to a thickness of one atomic layer such as 0.2 nm can be easily formed.

成膜方法
成膜技術
本発明の原子拡散接合方法において,被接合材である基体の接合面に形成する微結晶連続薄膜の形成方法としては,スパッタリングやイオンプレーティング等のPVDの他,CVD,各種蒸着等,到達真空度が1×10-4〜1×10-8Paの高真空度である真空容器において真空雰囲気における真空成膜を行う各種の成膜法を挙げることができ,拡散速度が比較的遅い材質及びその合金や化合物等については,好ましくは形成された薄膜の内部応力を高めることのできるプラズマの発生下で成膜を行う真空成膜方法,例えばスパッタリングによる成膜が好ましい。
ここで,「プラズマ」とは,「自由に運動する正負の荷電粒子(正イオンと電子)が混在して,全体として電気的中性となっている物質の状態。」を言い,「原子や分子から電子衝撃などによってつくられたイオンを,電場や磁場によって制御して方向性を整えた流れ。イオン源(銃)・加速部電磁レンズ・偏向部などから構成される装置でつくられる。」と定義できる「イオンビーム」とは区別される。
Film Formation Method Film Formation Technology In the atomic diffusion bonding method of the present invention, as a method for forming a microcrystalline continuous thin film formed on a bonding surface of a substrate that is a material to be bonded, in addition to PVD such as sputtering and ion plating, CVD, Various deposition methods such as vacuum deposition in a vacuum atmosphere in a vacuum vessel having a high degree of vacuum of 1 × 10 −4 to 1 × 10 −8 Pa, such as various depositions, can be cited, and the diffusion rate For materials that are relatively slow and their alloys, compounds, etc., a vacuum film formation method in which film formation is preferably performed under the generation of plasma capable of increasing the internal stress of the formed thin film, for example, film formation by sputtering, is preferable.
Here, “plasma” means “a state of a substance that is electrically neutral as a whole, with positive and negative charged particles (positive ions and electrons) moving freely”. A flow in which ions created from molecules by electron impact are controlled by an electric or magnetic field to adjust their direction, and is made up of a device composed of an ion source (gun), an acceleration unit, an electromagnetic lens, a deflection unit, etc. " It is distinguished from “ion beam” which can be defined as

真空度
薄膜形成の際の真空容器内の圧力は,到達真空度が1×10-4〜1×10-8Paの真空雰囲気であれば良く,より低い圧力(高真空度)である程好ましい。
Degree of vacuum The pressure in the vacuum vessel when forming a thin film may be a vacuum atmosphere having a degree of vacuum of 1 × 10 −4 to 1 × 10 −8 Pa, and a lower pressure (higher degree of vacuum) is preferable. .

形成する薄膜が,例えば金等の酸化し難い材質である場合には,上記圧力よりも高い圧力(低真空度)で成膜した場合であっても接合できる場合もあるが,上記数値範囲であれば,例えば上記圧力の上限(低真空度)においてアルミニウム等の酸化し易い材質の薄膜を形成して接合を行う場合であっても,成膜後に直ちに接合することにより好適に接合することが可能であると共に,接合界面における酸化物の発生等を好適に防止することができる。   If the thin film to be formed is made of a material that is difficult to oxidize, such as gold, bonding may be possible even when the film is formed at a pressure higher than the above pressure (low vacuum level). If there is, for example, when bonding is performed by forming a thin film of an easily oxidizable material such as aluminum at the upper limit (low vacuum level) of the above pressure, it is possible to bond appropriately by bonding immediately after film formation. In addition, it is possible to suitably prevent the generation of oxide at the bonding interface.

不活性ガス(Arガス)圧
成膜方法がスパッタリングである場合,成膜時における不活性ガス(一般的にはArガス)の圧力は,放電可能な領域,例えば0.01Pa以上であることが好ましく,また30Pa(300μbar)を越えると接合を行うことができない場合が生じるため,上限は30Pa(300μbar)程度とすることが好ましい。これは,Arガス圧が上昇すると,形成された薄膜の表面粗さが増加すると共に,膜密度が著しく低下し,膜中の酸素等の不純物濃度が著しく増加する場合が生じるためである。
Inert gas (Ar gas) pressure When the film formation method is sputtering, the pressure of the inert gas (generally Ar gas) during film formation should be a dischargeable region, for example, 0.01 Pa or more. In addition, if it exceeds 30 Pa (300 μbar), bonding may not be possible, so the upper limit is preferably about 30 Pa (300 μbar). This is because when the Ar gas pressure is increased, the surface roughness of the formed thin film is increased, the film density is significantly decreased, and the concentration of impurities such as oxygen in the film is significantly increased.

薄膜表面の清浄さ
重合される薄膜の表面は清浄であることが好ましく,薄膜の表面が真空容器内に残留している不純物ガス等との反応によって汚染が進行するに従い,薄膜相互の付着強度は低下してゆき,やがて接合自体ができなくなる。
Cleanliness of thin film surface The surface of the thin film to be polymerized is preferably clean. As the surface of the thin film is contaminated by reaction with impurity gas remaining in the vacuum vessel, the adhesion strength between the thin films It will decrease and eventually the bonding itself will not be possible.

また,接合ができた場合であっても,薄膜の接合面に薄膜が酸化して生じた不純物が発生する等,半導体デバイスの製造等に本発明の方法を利用する場合においてこのような不純物の発生が好ましくない場合もあり,このような点から,高真空度の真空容器の使用やプロセスガスの純化の他,成膜から貼り合わせ迄を同一真空中で行ったり,成膜後の比較的短時間のうちに重合を行ったりすること等により,微結晶連続薄膜の表面の清浄性を維持することが重要である。   In addition, even when bonding is possible, impurities generated by oxidation of the thin film are generated on the bonding surface of the thin film. For example, when the method of the present invention is used for manufacturing semiconductor devices, Occasionally, it may not be desirable. From this point of view, in addition to the use of a vacuum vessel with a high degree of vacuum and the purification of process gas, the process from film formation to bonding is performed in the same vacuum, or relatively It is important to maintain the cleanliness of the surface of the microcrystalline continuous thin film by performing polymerization in a short time.

もっとも,本発明の接合方法を,例えばパッケージの封止等に使用する場合のように,接合面に酸化物等が生じても封止ができていれば良い場合には,薄膜の形成後,所定の保持時間内に行うものであれば,接合自体は可能である。   However, when the bonding method of the present invention is used even when oxide or the like is generated on the bonding surface, such as when used for sealing a package, for example, after the thin film is formed, Bonding itself is possible if it is performed within a predetermined holding time.

このような接合を可能とする保持時間は,形成された薄膜の材質,真空容器内の真空度,プロセスガスの純化の度合い等によって異なり,例えば薄膜の材料が,真空容器中に残留しているH2O,O2等の不純物ガスと反応し難い材質,例えば比較的酸化し難い貴金属等である場合には,付着強度は低下するものの比較的長時間の保持時間を経た後に重合した場合であっても接合を行うことが可能である。一方,不純物ガスと反応し易い金属,例えば比較的酸化し易いTiやAl等の薄膜を形成した場合には,真空容器内の清浄度にもよるが成膜後,比較的短時間で接合ができなくなる。 The holding time enabling such bonding varies depending on the material of the formed thin film, the degree of vacuum in the vacuum vessel, the degree of purification of the process gas, etc. For example, the material of the thin film remains in the vacuum vessel. In the case of a material that does not easily react with impurity gases such as H 2 O and O 2 , for example, a precious metal that is relatively difficult to oxidize, although the adhesion strength is reduced, it is polymerized after a relatively long holding time. Even if it exists, it is possible to perform joining. On the other hand, when a thin film of a metal that easily reacts with an impurity gas, such as Ti or Al, which is relatively easily oxidized, is formed in a relatively short time after film formation, depending on the cleanliness in the vacuum vessel. become unable.

一例として,Ptの薄膜の場合には,薄膜形成後60分の保持時間を経過した後に重合した場合であっても接合が可能であるが,Tiでは,成膜後60分経過した後では接合できず,形成する薄膜の材質に応じて適当な保持時間内に接合を行う。   For example, in the case of a thin film of Pt, bonding is possible even when polymerized after a retention time of 60 minutes has elapsed after the formation of the thin film. However, bonding is performed within an appropriate holding time depending on the material of the thin film to be formed.

接合方法例
本発明による常温接合方法を実現するための装置の一例を図1に示す。図1において,薄膜形成を行う真空容器内の上部に,スパッタを行うためのマグネトロンカソードを配置すると共に,このマグネトロンカソードの下部に,相互に貼り合わされる基体を載置する治具を配置し,この治具に取り付けた基体の接合面に対して微結晶連続薄膜を形成する。
Bonding Method Example An example of an apparatus for realizing the room temperature bonding method according to the present invention is shown in FIG. In FIG. 1, a magnetron cathode for performing sputtering is disposed at the upper part in a vacuum vessel for forming a thin film, and a jig for placing substrates to be bonded to each other is disposed at the lower part of the magnetron cathode. A microcrystalline continuous thin film is formed on the bonding surface of the substrate attached to the jig.

図示の実施形態において,前述の治具に設けられたテーブルは,図1中に破線で示す薄膜形成位置と,実線で示す貼り合わせ位置間を回動可能に構成されており,基体の一方を載置したテーブルの一端と,基体の他方を載置したテーブルの一端とが突き合わされた状態に配置されていると共に,この突き合わせ部分を中心として前記2つのテーブルが回動して,両テーブルの他端を上方に持ち上げることにより,前記テーブル上の載置された2つの基体の接合面が重合されるよう構成されている。   In the illustrated embodiment, the table provided on the above-described jig is configured to be rotatable between a thin film formation position indicated by a broken line in FIG. 1 and a bonding position indicated by a solid line. One end of the placed table and one end of the table on which the other of the bases are placed are in abutment with each other, and the two tables are rotated around the abutted portion to By lifting the other end upward, the joining surface of the two substrates placed on the table is superposed.

なお,このように基体の貼り合わせを行う治具は,図示の構成のものに限定されず,貼り合わせを行う基体の形状等にあわせて各種形状,構造のものを使用することができ,また,真空容器内に配置した例えばロボットアーム等によって基体の一方若しくは双方を操作して接合を行うものとしても良い。   Note that the jig for bonding substrates is not limited to the one shown in the figure, and various shapes and structures can be used according to the shape of the substrate to be bonded. The bonding may be performed by operating one or both of the substrates with a robot arm or the like disposed in the vacuum vessel.

以上のように構成された治具が配置された真空容器において,前記治具を図1中破線で示す成膜位置とした状態で,前述した条件で基体の接合面に対して微結晶連続薄膜を形成する。   In the vacuum vessel in which the jig configured as described above is arranged, the microcrystalline continuous thin film is formed on the bonding surface of the substrate under the above-described conditions in a state where the jig is at the film forming position indicated by the broken line in FIG. Form.

そして,基体の接合面に対して所定厚みの微結晶連続薄膜が形成されると,これに引き続き,前記治具に設けられたテーブルを,実線で示す貼り合わせ位置に回動させて,基体を数十g程度の比較的弱い力で貼り合わせる。   When a microcrystalline continuous thin film having a predetermined thickness is formed on the bonding surface of the substrate, subsequently, the table provided on the jig is rotated to the bonding position indicated by the solid line, and the substrate is moved. Bond with a relatively weak force of about several tens of grams.

これにより,両微結晶薄膜の接合界面及び結晶粒界において原子拡散を生じさせ,かつ,接合歪みを緩和させた接合を行うことができる。   As a result, it is possible to perform bonding in which atomic diffusion is caused at the bonding interface and crystal grain boundary between the two microcrystalline thin films and the bonding strain is reduced.

なお,上記の説明では同一材質の微結晶連続薄膜が形成された基体相互を貼り合わせる場合について説明したが,異なる材質の微結晶連続薄膜が形成された基体相互を貼り合わせる場合には,開閉可能に構成された連通路によって連通された2つの真空容器内のそれぞれに,前述のマグネトロンカソードを配置して各真空容器内で異なる材質の微結晶連続薄膜を成膜可能と成すと共に,それぞれの基体の接合面に対してそれぞれ異なる材質の微結晶連続薄膜を形成した後に,前記連通路を開くと共に,一方の基体をロボットアーム等によって他方の基体が配置された真空容器内に搬送して接合する等しても良い。   In the above description, the case where the bases on which the continuous microcrystalline thin film of the same material is bonded is described. However, when the bases on which the continuous microcrystalline thin film of different materials are bonded together, they can be opened and closed. The above-described magnetron cathode is disposed in each of the two vacuum vessels communicated by the communication path configured as described above, so that a microcrystalline continuous thin film of a different material can be formed in each vacuum vessel. After forming microcrystalline continuous thin films of different materials on the bonding surfaces, the communication path is opened, and one substrate is transported and bonded into a vacuum vessel in which the other substrate is disposed by a robot arm or the like. It may be equal.

また,接合対象とする2つの基体の一方に対してのみ前述の微結晶連続薄膜を形成し,他方の基体に対しては微結晶連続薄膜を形成することなく直接,両基体を接合することも可能である。   It is also possible to form the aforementioned microcrystalline continuous thin film only on one of the two substrates to be joined and to join both substrates directly to the other substrate without forming a microcrystalline continuous thin film. Is possible.

接合のメカニズム
以上で説明した原子拡散による接合が如何なる原理によって達成されているのかは必ずしも明らかではないが,微結晶連続薄膜を使用した本発明の方法による接合では,以下に説明するように原子の拡散速度や拡散長が増大することにより,原子拡散による強固な接合が実現されているものと考えられる。
The mechanism of bonding It is not always clear by what principle the bonding by atomic diffusion described above is achieved, but in the bonding by the method of the present invention using a microcrystalline continuous thin film, as described below, It is considered that strong bonding by atomic diffusion has been realized by increasing the diffusion rate and diffusion length.

拡散速度,拡散長の増大
原子の拡散係数に関する一般式は,次式,
D=D0exp(−Q/RT)
D:拡散係数
0:振動数項(エントロピー項)
Q:活性化エネルギー
R:気体定数
T:絶対温度
で表すことができる。
Increased diffusion rate and diffusion length The general formula for the diffusion coefficient of atoms is:
D = D 0 exp (−Q / RT)
D: Diffusion coefficient D 0 : Frequency term (entropy term)
Q: activation energy R: gas constant T: can be expressed in absolute temperature.

接合界面や結晶粒界における原子拡散は,固体中の原子拡散(体拡散)に比較して高速であり,上記の式におけるQ値が1/2〜2/3に低下する。   Atomic diffusion at the bonding interface and grain boundaries is faster than atomic diffusion (body diffusion) in a solid, and the Q value in the above equation is reduced to 1/2 to 2/3.

そのため,接合界面や結晶粒界における拡散係数は,固体中の拡散係数に比較して10〜20桁も下がり,拡散を生じやすい状態にある。   Therefore, the diffusion coefficient at the bonding interface and the crystal grain boundary is 10 to 20 orders of magnitude lower than the diffusion coefficient in the solid, and diffusion is likely to occur.

しかも,本発明の接合方法では,接合に微結晶連続薄膜を使用することで,この薄膜中にはたくさんの結晶粒界が存在する。   Moreover, in the bonding method of the present invention, a microcrystalline continuous thin film is used for bonding, so that many crystal grain boundaries exist in the thin film.

ここで,結晶粒子を近似的に球形と考えてその半径をrとすると,その体積V,表面積Sは,
V ∝ r3
S ∝ r2
となり,結晶粒の体積と表面積の比S/Vは,1/rに比例する。
Here, assuming that the crystal particle is approximately spherical and its radius is r, its volume V and surface area S are:
V ∝ r 3
S ∝ r 2
Thus, the ratio S / V between the volume of the crystal grains and the surface area is proportional to 1 / r.

以上より,例えば単結晶の2インチウエハを,結晶粒の半径rが10nmの微結晶構造に変更したとすると,S/Vは,2×107倍(7桁)も増加する。 Thus, for example, if a single crystal 2 inch wafer is changed to a microcrystalline structure with a crystal grain radius r of 10 nm, the S / V increases by 2 × 10 7 times (seven digits).

そのため,接合に際して微結晶連続薄膜を使用する場合には,非常に大きな原子拡散係数を得ることができると共に,原子拡散の発生する範囲(結晶粒の体積に対する表面積比)が飛躍的に増大する。従って,接合界面や結集粒界における原子拡散を容易に生じさせることができるものと考えられる。   Therefore, when a microcrystalline continuous thin film is used for bonding, a very large atomic diffusion coefficient can be obtained, and the range in which atomic diffusion occurs (surface area ratio to crystal volume) increases dramatically. Therefore, it is considered that atomic diffusion at the bonding interface and the grain boundary can be easily generated.

なお,図2は,微結晶連続薄膜としてPtの薄膜を形成して接合したSi基板の断面TEM像である。この図2において,微結晶連続薄膜の接合界面であった位置に対し,この接合界面が結晶粒界に向かってシフトしてジグザグ形状の結晶粒界が創成されており,この図2を見ても,結晶粒界において原子の拡散が生じていることが明らかである。   FIG. 2 is a cross-sectional TEM image of a Si substrate formed by bonding a Pt thin film as a microcrystalline continuous thin film. In FIG. 2, a zigzag crystal grain boundary is created by shifting the joint interface toward the grain boundary from the position where it was the joint interface of the microcrystalline continuous thin film. However, it is clear that atomic diffusion occurs at the grain boundaries.

次に,本発明の接合方法の実施例を以下に説明する。   Next, examples of the joining method of the present invention will be described below.

接合例
接合方法
物理実験用の超高真空(UHV:Ultra High Vacume)5極カソード−マグネトロンスパッタ装置(到達真空度2×10-6Pa)により,直径約1インチ(2.7cm),あるいは,直径2インチ(約5.08cm)の2枚のSi基板上にそれぞれ微結晶連続薄膜を形成して接合試験を行った。なお,スパッタリングには,真空室へのガス導入部(ユースポイント)における不純物濃度が2〜3ppb(2〜3×10-9)以下である超高純度アルゴンガスを使用した。
Example of joining Joining method About 1 inch (2.7 cm) in diameter, using ultra high vacuum (UHV) 5-pole cathode-magnetron sputtering equipment (final vacuum 2 × 10 −6 Pa) for physical experiments, or A microcrystalline continuous thin film was formed on each of two Si substrates having a diameter of 2 inches (about 5.08 cm) and subjected to a bonding test. For sputtering, an ultra-high purity argon gas having an impurity concentration of 2 to 3 ppb (2 to 3 × 10 −9 ) or less at the gas introduction part (use point) into the vacuum chamber was used.

Si基板の表面粗さは,Raで0.16nm,Rmaxで1.6nmであり,Si基板の表面にはSiの自然酸化膜が形成されていたが,これを除去することなく使用した。   The surface roughness of the Si substrate was 0.16 nm for Ra and 1.6 nm for Rmax, and a natural oxide film of Si was formed on the surface of the Si substrate, but this was used without removing it.

前記基板に対し,微結晶連続薄膜としてAg,Al,Cu,Ptの薄膜を形成した例にあっては,微結晶連続薄膜の形成前に2枚のSi基板のそれぞれの片面にスパッタリングにより約5nmのTa薄膜を下地層として形成した。   In the example in which a thin film of Ag, Al, Cu, Pt is formed as a microcrystalline continuous thin film on the substrate, about 5 nm is formed by sputtering on one side of each of the two Si substrates before forming the microcrystalline continuous thin film. A Ta thin film was formed as an underlayer.

また,微結晶連続薄膜としてCr,Ti,Taの薄膜を形成した例にあっては,前述のような下地層を形成することなく直接Si基板上に微結晶連続薄膜を形成した。   In the example in which a Cr, Ti, Ta thin film was formed as the microcrystalline continuous thin film, the microcrystalline continuous thin film was formed directly on the Si substrate without forming the base layer as described above.

このようにして微結晶連続薄膜が形成された2枚のSi基板は,両基板上に形成された微結晶連続薄膜が重なり合うように両基板を加熱することなしに数十g程度の弱い力で重ね合わせて接合させた。   The two Si substrates on which the microcrystalline continuous thin films are formed in this way can be applied with a weak force of about several tens of grams without heating both substrates so that the microcrystalline continuous thin films formed on both substrates overlap. They were superposed and joined.

試験結果
Agの微結晶連続薄膜を形成した例
図3に,Ag薄膜同士の重ね合わせによって貼り合わせたSi基板の断面を示す。
Test Results Example of Ag Fine Crystal Continuous Thin Film Formed FIG. 3 shows a cross section of a Si substrate bonded by superimposing Ag thin films.

図3(A)より明らかなように,Ag薄膜間の接合界面が消失して,Ta薄膜間に結晶方位を反映した金属組織が形成されている。また,図3(B)の暗視野像より明らかなように接合後における結晶粒は,2つのTa薄膜間に達する単一の粒子を形成していることから,前記方法による接合によってAg薄膜のAg原子の拡散により,膜厚方向の全域に亘り両Ag薄膜間に原子の再配列を伴う金属結合が生じていることが確認できた。   As is clear from FIG. 3A, the bonding interface between the Ag thin films disappears, and a metal structure reflecting the crystal orientation is formed between the Ta thin films. Further, as apparent from the dark field image of FIG. 3B, the crystal grains after bonding form a single particle reaching between the two Ta thin films. It was confirmed that metal bonds accompanied by rearrangement of atoms occurred between the two Ag thin films over the entire region in the film thickness direction due to the diffusion of Ag atoms.

Alの微結晶連続薄膜を形成した例
図4に,Al薄膜同士の重ね合わせによって貼り合わせたSi基板の断面を示す。
Example of forming Al microcrystalline continuous thin film FIG. 4 shows a cross section of a Si substrate bonded by overlapping Al thin films.

図4(A)より明らかなように,Al薄膜間の接合界面はほぼ消失していることが確認された。   As is clear from FIG. 4A, it was confirmed that the bonding interface between the Al thin films almost disappeared.

また,図4(B)の暗視野像より,接合後におけるAl膜中には,2つのTa薄膜間に達する単一の結晶粒子が多数存在していることから,前記方法による接合によって,Al薄膜のAl原子が拡散を生じて両Al薄膜間に原子の再配列を伴う金属結合が生じていることが確認できた。   Further, from the dark field image of FIG. 4B, since there are many single crystal particles reaching between the two Ta thin films in the Al film after bonding, the bonding by the above method results in Al It was confirmed that Al atoms in the thin film were diffused and metal bonds accompanied by rearrangement of atoms were generated between the two Al thin films.

なお,同様の方法によりそれぞれの厚さが5nmのAl微結晶連続薄膜を形成して接合したが,この場合においても2枚のSi基板を強固に接合できることが確認された。さらに,同様の方法によりそれぞれの厚さが20nmのAl微結晶連続薄膜の形成によって,Rmax=7.6 nmの表面粗さを有する石英基板の表面粗さを克服して両者を接合することが確認された。   In addition, although the Al microcrystal continuous thin film having a thickness of 5 nm was formed and bonded by the same method, it was confirmed that the two Si substrates can be bonded firmly in this case as well. Further, by forming Al microcrystalline continuous thin films each having a thickness of 20 nm by a similar method, the surface roughness of the quartz substrate having a surface roughness of Rmax = 7.6 nm can be overcome and the two can be bonded. confirmed.

Cuの微結晶連続薄膜を形成した例
図5に,Cu薄膜同士の重ね合わせによって貼り合わせたSi基板の断面を示す。
Example of Forming Cu Microcrystalline Continuous Thin Film FIG. 5 shows a cross section of a Si substrate bonded by superposition of Cu thin films.

図5(A)より明らかなように,Cu薄膜間の接合界面は明確性を失い,接合界面の一部が消失していることが確認された。   As is clear from FIG. 5A, it was confirmed that the bonding interface between the Cu thin films lost clarity and a part of the bonding interface disappeared.

また,接合面が結晶粒子毎に大きくシフトし,更に,図5(B)に示す暗視野像から一方のTa薄膜から他方のTa薄膜近くに迄達する結晶粒の存在も確認されていることから,Cu原子の拡散が,Cu薄膜の厚みである20nm近くに達していることが確認された。   In addition, since the bonding surface is greatly shifted for each crystal grain, it is also confirmed from the dark field image shown in FIG. 5B that there is a crystal grain reaching from one Ta thin film to the other Ta thin film. , It was confirmed that the diffusion of Cu atoms reached nearly 20 nm, which is the thickness of the Cu thin film.

なお,図5(C)に示す高分解能での観察では,一方のTa薄膜から他方のTa薄膜に至り,Cu層の格子像が連続的に繋がっていることが確認でき,このことから,一見接合界面が消失せずに残っているように見える部分においても,界面における格子の連続性,すなわち金属間結合が生じていることは明らかである。   In the observation with high resolution shown in FIG. 5C, it can be confirmed that the lattice image of the Cu layer is continuously connected from one Ta thin film to the other Ta thin film. It is clear that lattice continuity at the interface, that is, metal-to-metal bonding, occurs even in the portion where the bonding interface appears to remain without disappearing.

更に,前述したTaの下地層の形成を省略し,同様のSi基板上に直接Cu薄膜を形成して接合を行うと共に,Cu薄膜の膜厚をCuの原子1つ分の厚みに相当する0.2nmで形成したものを相互に重ね合わせることにより接合を行ったところ,この膜厚によっても接合を行うことができることが確認された。   Further, the formation of the Ta underlayer described above is omitted, and a Cu thin film is directly formed on a similar Si substrate for bonding, and the film thickness of the Cu thin film corresponds to the thickness of one Cu atom. When bonding was performed by superimposing layers formed at .2 nm, it was confirmed that bonding was possible even with this film thickness.

従って,本発明の原子拡散接接合方法にあっては,基体のそれぞれに形成する微結晶連続薄膜の膜厚を,これを形成する材料の原子1層分の厚み(重ね合わせ後は原子2層分)として形成するのみで接合することが確認できた。   Therefore, in the atomic diffusion contact bonding method of the present invention, the thickness of the microcrystalline continuous thin film formed on each of the substrates is set to the thickness of one atom of the material forming the same (two atoms after superposition). It was confirmed that the bonding was made only by forming as (min).

Ptの微結晶連続薄膜を形成した例
図6に,Pt薄膜同士の重ね合わせによって接合されたSi基板の断面を示す。
Example of Forming Pt Microcrystalline Continuous Thin Film FIG. 6 shows a cross section of a Si substrate bonded by superposition of Pt thin films.

図6より明らかなようにPt薄膜によって接合を行う場合,Pt薄膜とPt薄膜間の接合界面は完全には消失していないものの,両者間において強固な接合が行われていることが確認できた。   As can be seen from FIG. 6, when bonding is performed with a Pt thin film, the bonding interface between the Pt thin film and the Pt thin film has not completely disappeared, but it has been confirmed that strong bonding is being performed between the two. .

なお,図2及び図6において,界面のジグザグの度合いが異なるのは,真空装置及び接合条件が異なるためである。   In FIGS. 2 and 6, the degree of the zigzag at the interface is different because the vacuum apparatus and bonding conditions are different.

Crの微結晶連続薄膜を形成した例
図7に,Cr薄膜同士の重ね合わせによって接合されたSi基板の断面を示す。
Example of Forming Cr Microcrystalline Continuous Thin Film FIG. 7 shows a cross section of a Si substrate bonded by superposition of Cr thin films.

図7に示すように,両薄膜の接合界面付近には,白っぽい帯状の線が現れており,この部分においてCr薄膜の接合界面がアモルファスに変化して接合が生じていることが確認された。   As shown in FIG. 7, a whitish band-like line appears in the vicinity of the bonding interface between the two thin films, and it was confirmed that the bonding interface was formed by changing the bonding interface of the Cr thin film to amorphous in this portion.

このことから,Crの微結晶連続薄膜による接合では,アモルファスに変化した部分において原子拡散による変質が生じており,他の金属により形成した微結晶連続薄膜を使用した接合に比較して,原子拡散長が短いものであることが確認された。   Therefore, in the joining with the continuous microcrystalline thin film of Cr, alteration due to atomic diffusion occurs in the amorphous part. Compared with the joining using the continuous microcrystalline thin film formed of other metals, the atomic diffusion It was confirmed that the length was short.

もっとも,Crの微結晶連続薄膜の形成によってSi基板の接合を行った本例においてもSi基板の強固な接合を行うことができることが確認された。   However, it was confirmed that the Si substrate can be strongly bonded also in this example in which the Si substrate is bonded by forming a Cr microcrystalline continuous thin film.

Tiの微結晶連続薄膜を形成した例
図8に,Ti薄膜同士の重ね合わせによって接合されたSi基板の断面を示す。
Example of Forming Ti Microcrystalline Continuous Thin Film FIG. 8 shows a cross section of a Si substrate bonded by overlapping Ti thin films.

図8に示すように,両薄膜の接合界面はほぼ消失していることが確認でき,原子拡散に伴う再結晶化が生じていることが確認できた。   As shown in FIG. 8, it was confirmed that the junction interface between the two thin films had almost disappeared, and it was confirmed that recrystallization occurred due to atomic diffusion.

また,同様の方法により厚さ0.2nmのTi微結晶連続薄膜をそれぞれ成膜することにより接合した場合であっても,Rmaxで40nmという表面粗さを有するSi基板の接合を行うことができた。   In addition, even when bonding is performed by forming a thin film of Ti microcrystals each having a thickness of 0.2 nm by the same method, it is possible to bond Si substrates having a surface roughness Rmax of 40 nm. It was.

Taの微結晶連続薄膜を形成した例
図9に,Ta薄膜同士の重ね合わせによって接合されたSi基板の断面を示す。
Example of forming a Ta microcrystalline continuous thin film FIG. 9 shows a cross section of a Si substrate bonded by superposition of Ta thin films.

図9において,両薄膜の接合界面に現れている白い線は,接合界面に形成されたアモルファスであり,Taの微結晶連続薄膜による接合では,アモルファスに変化した接合界面付近において原子拡散が生じており,原子拡散長が比較的短いものであることが確認された。   In FIG. 9, the white line appearing at the bonding interface between the two thin films is amorphous formed at the bonding interface, and in the bonding with the Ta microcrystalline continuous thin film, atomic diffusion occurs near the bonding interface changed to amorphous. It was confirmed that the atomic diffusion length was relatively short.

もっとも,この例においても2枚のSi基板を強固に接合できることが確認できた。   However, in this example also, it was confirmed that two Si substrates could be joined firmly.

その他
なお,Au,Co,Ni,Ruの薄膜を形成して同様の接合試験を行った結果,いずれの微結晶連続薄膜の形成によってもSi基板を強固に接合できることが確認された。
Others As a result of forming a thin film of Au, Co, Ni, and Ru and conducting a similar bonding test, it was confirmed that the Si substrate can be firmly bonded by forming any of the microcrystalline continuous thin films.

また,接合後の状態を確認したところ,Au薄膜同士の接合では接合界面が略完全に消失していたが,Ni,Co,Ruでは,接合界面は消失せずに残っていた。   Further, when the state after the bonding was confirmed, the bonding interface disappeared almost completely in the bonding between the Au thin films, but in Ni, Co and Ru, the bonding interface remained without disappearing.

原子拡散長の測定
接合時に生じる原子拡散がどの程度の長さで生じるかを確認すべく,形成する微結晶連続薄膜の膜厚を増大すると共に,接合時の再結晶によって創成された結晶粒のサイズを測定した。
Measurement of atomic diffusion length In order to confirm how long atomic diffusion occurs during bonding, the film thickness of the continuous microcrystalline thin film to be formed is increased, and the crystal grains created by recrystallization during bonding are The size was measured.

測定は,Alの微結晶連続薄膜を形成することにより行い,形成したAl薄膜の膜厚を50nmとした点を除き,前述した接合試験と同様の方法によって2枚のSi基板の接合を行った。   The measurement was performed by forming an Al microcrystalline continuous thin film, and two Si substrates were bonded by the same method as the bonding test described above except that the thickness of the formed Al thin film was 50 nm. .

このようにして接合した後のSi基板の断面を図10に示す。   FIG. 10 shows a cross section of the Si substrate after bonding in this way.

図10(A)〜 図10(C)に示すように,多くの結晶粒が接合後のAl薄膜の全厚みである100nmの範囲で1つの結晶粒を形成していることが確認でき,このことから,Alの微結晶連続薄膜を形成して接合を行った例では,室温において,原子拡散にともなう原子の再配列が少なくとも50nm以上に及ぶことが確認できた。   As shown in FIG. 10 (A) to FIG. 10 (C), it can be confirmed that many crystal grains form one crystal grain in the range of 100 nm which is the total thickness of the Al thin film after bonding. Therefore, it was confirmed that the rearrangement of atoms due to atomic diffusion reached at least 50 nm at room temperature in the example in which the Al microcrystalline continuous thin film was formed and bonded.

原子の拡散係数と接合界面状態の対応関係の確認
前述した接合試験の結果から,いずれの材質の微結晶連続薄膜を形成した場合であっても2枚の基体の接合を好適に行うことができたものの,微結晶連続薄膜を形成する材質の相違により,接合後の微結晶連続薄膜の状態には明らかな差が生じることが確認された。
Confirming the correspondence between the diffusion coefficient of atoms and the bonding interface state From the results of the bonding test described above, it is possible to suitably bond two substrates even when a microcrystalline continuous thin film of any material is formed. However, it was confirmed that there was a clear difference in the state of the microcrystalline continuous thin film after bonding due to the difference in the material forming the microcrystalline continuous thin film.

そこで,実験を行った元素中,面心立方格子(fcc)構造を取るものについて図11に示すように,縦軸を室温における体拡散係数,横軸を融点とした表内に,各元素をそれぞれプロットしたところ,接合界面の一部が消失していたCuの体拡散係数である1×10-40m2/sを境に,これよりも拡散係数の大きなものについては接合界面の消失が生じており,また,2つの基体間の厚さ方向の全域に亘る結晶粒が形成されていることが確認できた。 Therefore, as shown in FIG. 11, among the elements subjected to the experiment, those having a face-centered cubic lattice (fcc) structure are shown in a table in which the vertical axis represents the body diffusion coefficient at room temperature and the horizontal axis represents the melting point. When plotting each, the disappearance of the bonding interface is observed at the boundary where the diffusion coefficient of Cu is 1 × 10 −40 m 2 / s, where a part of the bonding interface has disappeared. It was confirmed that crystal grains were formed over the entire region in the thickness direction between the two substrates.

なお,計算に用いた,D0(振動数項,エントロピー項)及びQ(活性化エネルギー)は,いずれも「金属データブック(改訂3版)」〔(社)日本金属学会編、丸善(株)発行、(1993)P21〜P25〕から引用した数値を用いており,温度は27℃(300K)としている。 The D 0 (frequency term, entropy term) and Q (activation energy) used in the calculation are both “Metal Data Book (Revised 3rd Edition)” [edited by the Japan Institute of Metals, Maruzen Co., Ltd. ), (1993) P21-P25], and the temperature is 27 ° C. (300 K).

特にAlにあっては,各微結晶連続薄膜の厚さを50nmとした接合においても膜厚方向に100nmに亘る結晶粒が形成されていることから,室温において,原子拡散にともなう原子の再配列が少なくとも50nm以上に及ぶことが確認されている。   In particular, in the case of Al, crystal grains extending over 100 nm are formed in the film thickness direction even in the junction where the thickness of each microcrystalline continuous thin film is 50 nm. Therefore, the rearrangement of atoms accompanying atomic diffusion occurs at room temperature. Has been confirmed to cover at least 50 nm.

一方,Cuの体拡散係数である1×10-40m2/sよりも拡散係数が小さい元素によって形成した微結晶連続薄膜を使用した接合では,接合界面が残存しており,また,両基体間の全域に亘るような結晶粒の生成も確認されていない。 On the other hand, in the joining using the microcrystalline continuous thin film formed by the element whose diffusion coefficient is smaller than 1 × 10 −40 m 2 / s which is the body diffusion coefficient of Cu, the bonding interface remains, and both substrates The generation of crystal grains across the entire area has not been confirmed.

同様に,fcc構造以外のものについても,図12に示すように表中にプロットしていくと,接合界面の消失が認められたTiについては,体拡散係数が1×10-40m2/sを越えており,また,接合界面の残存が確認されると共に,接合界面付近の限定された範囲においてアモルファスの形成が確認されたCr,Taについては,体拡散係数が1×10-40m2/sよりも低いことが判る。 Similarly, when the structure other than the fcc structure is plotted in the table as shown in FIG. 12, the body diffusion coefficient is 1 × 10 −40 m 2 / For Cr and Ta in which the remaining of the bonding interface is confirmed and amorphous formation is confirmed in a limited range near the bonding interface, the body diffusion coefficient is 1 × 10 −40 m It can be seen that it is lower than 2 / s.

以上の結果から,原子の拡散係数が低くなると,原子の拡散長が短くなり,拡散が接合界面付近に限定されて接合界面が消失しないことが判る。   From the above results, it can be seen that when the diffusion coefficient of atoms decreases, the diffusion length of atoms decreases, diffusion is limited to the vicinity of the bonding interface, and the bonding interface does not disappear.

なお,図12において,「hcp/bcc」とあるのは,室温近傍ではhcp構造が安定であり,高温になるとbcc構造が安定となるグループを意味する。   In FIG. 12, “hcp / bcc” means a group in which the hcp structure is stable near room temperature and the bcc structure is stable at high temperatures.

このように,原子の拡散長が短くなると,仮に形成する微結晶連続薄膜の膜厚を厚くしても,そのうちの一部においてしか原子拡散が生じないことから,接合対象となる基体の表面粗さが原子の拡散長を大幅に越える場合には,基体間の接合ができなくなる。   As described above, when the diffusion length of atoms is shortened, even if the microcrystalline continuous thin film formed is thick, atomic diffusion occurs only in a part of the thin film. If the length of the diffusion exceeds the atomic diffusion length, bonding between the substrates becomes impossible.

一方,このことは逆に,原子の拡散長を長くすることができれば,基体の表面粗さを克服して,表面の比較的粗い基体同士であっても接合できることとなる。   On the other hand, if the diffusion length of atoms can be increased, the surface roughness of the substrates can be overcome, and even substrates with relatively rough surfaces can be joined.

ここで,前述した原子の拡散係数に関する一般式
D=D0exp(−Q/RT)
より,温度Tを上昇させること,拡散係数Dは指数関数的に増加することが判る。
Here, the general formula D = D 0 exp (−Q / RT) relating to the diffusion coefficient of atoms described above
Thus, it can be seen that the temperature T is increased and the diffusion coefficient D increases exponentially.

そこで,本発明の原子拡散接合方法,特に,体拡散係数が小さい元素によって微結晶連続薄膜を形成して接合を行う場合には,重ね合わせ時における基体温度を上昇させて拡散係数を上昇することが有利であることに着目した。   Therefore, in the atomic diffusion bonding method of the present invention, particularly when bonding is performed by forming a microcrystalline continuous thin film with an element having a small body diffusion coefficient, the diffusion coefficient is increased by increasing the substrate temperature during superposition. Noted that is advantageous.

図13に,温度上昇に伴う各元素の拡散係数の変化を示す。同図に示すように,拡散係数が比較的低いTaであっても,400℃以下の加熱によってその拡散係数を,Cuの拡散係数である1×10-40m2/s以上に迄上昇させることができ,これにより接合界面の消失が得られる程の原子拡散を行うことができることが判る。 FIG. 13 shows changes in the diffusion coefficient of each element as the temperature rises. As shown in the figure, even when Ta has a relatively low diffusion coefficient, the diffusion coefficient is increased to 1 × 10 −40 m 2 / s or more, which is the diffusion coefficient of Cu, by heating at 400 ° C. or lower. Thus, it can be seen that atomic diffusion can be performed to the extent that the disappearance of the bonding interface can be obtained.

このように,基体の加熱は拡散係数の上昇,従って,原子の拡散長の上昇による表面粗さの克服に有利であると共に,このような1×10-40m2/s以上への拡散係数の上昇を,例えば電子デバイス等に使用する基体であってもダメージを与えることがない400℃以下の温度範囲において行うことが可能であることが確認された。 Thus, the heating of the substrate is advantageous for increasing the diffusion coefficient, and thus for overcoming the surface roughness by increasing the diffusion length of the atoms, and for the diffusion coefficient to more than 1 × 10 −40 m 2 / s. It has been confirmed that the increase in the temperature can be performed in a temperature range of 400 ° C. or lower that does not damage even a substrate used for an electronic device or the like.

よって,重ね合わせ時における基体を,400℃以下の範囲で加熱すること,特に,微結晶連続薄膜を構成する元素の体拡散係数が1×10-40m2/s未満である場合に,体拡散係数が1×10-40m2/sを越えるように400℃以下の範囲で加熱することの有利性は明らかである。 Therefore, when the substrate during superposition is heated in the range of 400 ° C. or less, especially when the body diffusion coefficient of the elements constituting the microcrystalline continuous thin film is less than 1 × 10 −40 m 2 / s, The advantage of heating in the range of 400 ° C. or less so that the diffusion coefficient exceeds 1 × 10 −40 m 2 / s is obvious.

接合強度の検証
試験方法
リム状物を備えた特殊な基板(Si基板)を使用して付着強度を算出した。
Verification of bonding strength Test method Adhesion strength was calculated using a special substrate (Si substrate) provided with a rim-like material.

図14にリム構造物を備えた基体の模式図を示す。このリム構造物として,425nm(厚さ)×200μm(幅)のSiO2リムを一方の基体の表面に配置し,接合後,付着していない隙間の長さLを測定した。 FIG. 14 shows a schematic view of a base body provided with a rim structure. As this rim structure, a SiO 2 rim of 425 nm (thickness) × 200 μm (width) was placed on the surface of one of the substrates, and after joining, the length L of the non-adhered gap was measured.

接合に際して形成した微結晶連続薄膜は,両基体共に厚さ10nmのPt膜である。また,基板からPt膜が剥離しないように,厚さ5nmのTi膜を下地層としてPt膜とSi基板との間に挿入した。   The continuous microcrystalline thin film formed at the time of bonding is a Pt film having a thickness of 10 nm for both substrates. Further, a Ti film having a thickness of 5 nm was inserted as a base layer between the Pt film and the Si substrate so that the Pt film was not peeled off from the substrate.

付着していない隙間の長さを測定するために,赤外線ビームを使用し,この赤外線ビームによって得られた像により,非破壊的にLの長さを測定した。   In order to measure the length of the non-adhered gap, an infrared beam was used, and the length of L was measured nondestructively from the image obtained by this infrared beam.

試験結果
上記方法により測定した,付着していない隙間の長さLは,0.45mmであった。
Test Result The length L of the non-adhered gap measured by the above method was 0.45 mm.

この長さLと,基体の弾性歪みに基づき求められる接合部の表面エネルギーは,約5J/m2であり,この値は,室温における固体Ptで予測される表面エネルギーの大きさと同オーダーである。従って,2つの基体に形成されたPt薄膜が,相互に金属間結合を生じて接合されていることが明らかであると共に,極めて強固な接合を生じていることが確認できた。 The surface energy of the joint obtained from the length L and the elastic strain of the substrate is about 5 J / m 2, which is the same order as the predicted surface energy of solid Pt at room temperature. . Therefore, it was clear that the Pt thin films formed on the two substrates were bonded together by forming an intermetallic bond, and it was confirmed that a very strong bond was formed.

成膜後の経過時間と接合性の変化の確認
2つの基体の接合面にそれぞれ厚さ20nmのPt薄膜を形成後,実験に用いた清浄な真空中に3分間放置してから接合した(このときArガスの導入は停止)。真空容器の到達真空度は1×10-6Pa以下(1×10-6Paよりも高真空度)であり,Arガス中の不純物濃度は2ppb以下である。
Confirmation of changes in elapsed time and bondability after film formation After forming a Pt thin film with a thickness of 20 nm on the bonding surfaces of the two substrates, they were left in the clean vacuum used for the experiment for 3 minutes before bonding (this When the introduction of Ar gas is stopped). The ultimate vacuum of the vacuum vessel is 1 × 10 −6 Pa or less (higher vacuum than 1 × 10 −6 Pa), and the impurity concentration in Ar gas is 2 ppb or less.

上記環境下で,Pt膜の成膜中に接合した基体の断面顕微鏡写真(TEM)を図15(A)に,成膜後,上記空間内に3分間放置した後に接合した基体の断面顕微鏡写真(TEM)を図15(B)にそれぞれ示す。   FIG. 15A shows a cross-sectional micrograph (TEM) of the substrate bonded during the formation of the Pt film in the above environment. FIG. 15A shows a cross-sectional photo of the bonded substrate after being left in the space for 3 minutes after the film formation. (TEM) is shown in FIG.

図15(A),図15(B)より明らかなように,成膜中に接合した場合と,3分の経過後に接合した場合のいずれの接合界面にも明確な差は認められず,懸念された接合界面における酸化変質層の発生等も確認することはできなかった。   As is clear from FIGS. 15 (A) and 15 (B), there is no clear difference between the bonding interface between the case where the bonding is performed during the film formation and the case where the bonding is performed after the elapse of 3 minutes. Neither the occurrence of an oxidized layer or the like at the bonded interface could be confirmed.

このことから,清浄な真空中における成膜及び接合,成膜と接合を同一真空中で行うことが,良好な接合を行う上で効果的であることが確認できたと共に,清浄な真空中での成膜,接合であれば,成膜から接合迄に3分程度の時間が経過した場合であっても,接合界面の状態に変化が生じないことも確認できた。   From this, it was confirmed that film formation and bonding in a clean vacuum, and film formation and bonding in the same vacuum are effective for good bonding, and in a clean vacuum. It was also confirmed that there was no change in the state of the bonding interface even when a time of about 3 minutes passed from the film formation to the bonding.

なお,図16(A),(B)は,上記Pt膜の形成に変えて,厚さ20nmのTa膜を形成することにより2つの基体を接合した例であり,図16(A)は成膜中に接合したものの断面顕微鏡写真(TEM),図16(B)は成膜後3分の経過後に接合を行ったものの断面顕微鏡写真である。   FIGS. 16A and 16B show an example in which two substrates are joined by forming a Ta film having a thickness of 20 nm instead of forming the Pt film, and FIG. The cross-sectional micrograph (TEM) of what was joined in the film | membrane, FIG.16 (B) is a cross-sectional micrograph of what was joined after progress for 3 minutes after film-forming.

図16(A),(B)より明らかなように,拡散係数が小さなTa膜による接合の場合にも,Pt膜による接合の場合と同様,成膜後の経過時間による接合界面の相違は見られず,清浄な真空中における成膜及び接合,成膜と接合とを同一真空中で行うことが,良好な接合を行う上で効果的であることが確認できたと共に,清浄な真空中での成膜,接合であれば,成膜から接合まで3分程度の経過時間によっては,接合界面の状態に変化が生じないことも確認できた。   As is apparent from FIGS. 16A and 16B, in the case of bonding using a Ta film having a small diffusion coefficient, as in the case of bonding using a Pt film, the difference in the bonding interface due to the elapsed time after film formation is observed. Therefore, it was confirmed that film formation and bonding in a clean vacuum, and film formation and bonding in the same vacuum are effective for good bonding, and in a clean vacuum. It was also confirmed that there was no change in the state of the bonding interface depending on the elapsed time of about 3 minutes from film formation to bonding.

微結晶連続薄膜と基体間の付着強度向上
Al,Cu,Ag,Ptの微結晶連続薄膜は,基体に対する付着強度が低く,そのため微結晶連続薄膜間の強固な接合を得ても,基体との界面において剥離するという問題が生じる。
Improvement of adhesion strength between continuous microcrystalline thin film and substrate The continuous microcrystalline thin film of Al, Cu, Ag, Pt has low adhesion strength to the substrate. The problem of peeling at the interface occurs.

そこで,このような基体に対する低付着強度の改善に,微結晶連続薄膜とは異なる材質の薄膜から成る下地層を形成することの有効性,及び基体表面のガス吸着層や自然酸化層等の変質層の除去が有効であることの確認を行った。   Therefore, in order to improve the low adhesion strength to such a substrate, it is effective to form a base layer made of a thin film of a material different from the microcrystalline continuous thin film, and the quality of the gas adsorption layer or natural oxide layer on the substrate surface is altered. It was confirmed that the removal of the layer was effective.

下地層の形成
2枚のSi製の基体のそれぞれに,厚さ5nmのTaの下地層を形成し,このTa下地層上に厚さ20nmのAlの微結晶連続薄膜を形成した後接合し,両基体の剥離試験を行った。
Formation of Underlayer A Ta underlayer of 5 nm thickness is formed on each of two Si substrates, and after forming a 20 nm thick Al microcrystalline continuous thin film on the Ta underlayer, bonding is performed. A peel test of both substrates was performed.

試験の結果,微結晶連続薄膜同士の接合界面,下地層と微結晶連続薄膜との界面,及び,基体と下地層との界面のいずれにおいても剥離せず,剥離が生じる前に基体が破壊した。   As a result of the test, no peeling occurred at any of the bonding interface between the microcrystalline continuous thin films, the interface between the underlying layer and the microcrystalline continuous thin film, and the interface between the substrate and the underlying layer, and the substrate was destroyed before peeling occurred. .

また,厚さ20nmのAlの微結晶連続薄膜を用いて同様な実験を行った場合も,剥離が生じる前に基体が破壊した。   Also, when a similar experiment was conducted using a 20 nm-thick Al microcrystalline continuous thin film, the substrate was destroyed before delamination occurred.

以上の結果から,基体の破壊強度以上の付着強度が得られており,Taの下地層の形成が,基体と微結晶連続薄膜との付着強度を増大させる上で有効であることが確認された。   From the above results, adhesion strength higher than the fracture strength of the substrate was obtained, and it was confirmed that the formation of the Ta underlayer was effective in increasing the adhesion strength between the substrate and the microcrystalline continuous thin film. .

また,前述のTaの他,Ti,Crの下地層を形成することによっても同様の結果が得られた。   In addition to the above-mentioned Ta, the same result was obtained by forming an underlayer of Ti and Cr.

以上の点から,Ti,Ta,Crの下地層の形成が,基体に対する微結晶連続薄膜の付着強度を増大させる上で有効であることが確認された。   From the above points, it was confirmed that the formation of an underlayer of Ti, Ta, and Cr is effective in increasing the adhesion strength of the microcrystalline continuous thin film to the substrate.

また,周期律表において,Tiと同じ4A属に属するZr及びHf,Taと同じ5A属に属するV及びNb,Crと同じ6A属に属するMo及びWについても,同様にこれらの元素によって下地層を形成することで,基体に対する微結晶連続薄膜の付着強度を向上できるものと予測される。   In the periodic table, Zr and Hf, which belong to the same 4A genus as Ti, V and Nb, which belong to the same 5A genus as Ta, and Mo and W, which belong to the same 6A genus as Cr, are similarly formed by these elements. By forming the film, it is expected that the adhesion strength of the microcrystalline continuous thin film to the substrate can be improved.

ガス吸着層及び自然酸化物の除去
薬液による洗浄により自然酸化層の除去を行った後,水素終端化処理を行って酸化を抑制した2枚のSi基体に対し,それぞれ厚さ20nmのAl微結晶連続薄膜を形成して接合した試料(試料1)と,微結晶連続薄膜の形成と同一真空中で接合面に対して逆スパッタリングを行うことにより自然酸化層を除去した2枚のSi基板のそれぞれに対し,厚さ20nmのAl微結晶連続薄膜を形成して接合を行った試料(試料2)を準備し,両試料共に基体の剥離試験を行った。
Removal of gas adsorption layer and natural oxide After removal of the natural oxide layer by cleaning with chemicals, Al microcrystals with a thickness of 20 nm on each of two Si substrates that have been subjected to hydrogen termination treatment to suppress oxidation A sample (sample 1) joined by forming a continuous thin film, and two Si substrates each having a natural oxide layer removed by performing reverse sputtering on the joint surface in the same vacuum as the formation of the microcrystalline continuous thin film On the other hand, a sample (sample 2) in which a 20 nm thick Al microcrystal continuous thin film was formed and bonded was prepared, and both samples were subjected to a substrate peeling test.

剥離試験の結果,試料1,2の両試料共に基体と微結晶連続薄膜との界面における剥離は確認できず,剥離が生じる前に基体が破壊した。   As a result of the peeling test, peeling in the interface between the substrate and the microcrystalline continuous thin film was not confirmed in both the samples 1 and 2, and the substrate was broken before peeling occurred.

よって,薬液による洗浄によるウェット法,逆スパッタ等のドライ法の別に拘わらず,微結晶連続薄膜の形成前に基体表面のガス吸着層や自然酸化層等の変質層を除去することが,基体に対する微結晶連続薄膜の付着強度を向上する上で有効であることが確認された。   Therefore, regardless of the wet method by cleaning with chemicals or the dry method such as reverse sputtering, it is possible to remove the altered layer such as the gas adsorption layer and the natural oxide layer on the substrate surface before forming the microcrystalline continuous thin film. It was confirmed that it is effective in improving the adhesion strength of the microcrystalline continuous thin film.

以上で説明した本発明の接合方法は,無加熱又は比較的低い温度での加熱,無加圧で原子レベルでの接合を行うことができること,接合後の界面応力が小さいこと等から,各種新機能・高機能デバイスの創製,情報家電の小型化,高集積化等の用途において利用することができ,これらの用途における例を示せば下記の通りである。   The bonding method of the present invention described above has various new features because it can be bonded at the atomic level without heating or at a relatively low temperature, without pressure, and with low interface stress after bonding. It can be used for applications such as creation of functional / high-function devices, downsizing of information appliances, and high integration. Examples of these applications are as follows.

新機能・高性能デバイスの創製
ウエハレベルで積層化,集積化した新機能デバイスの創製への利用
集積回路と短波長光デバイスの集積化(例えば,Siデバイス/GaN,フォトニクス結晶,LED),新機能光−電子変換デバイス創製の際の接合。
スピン−電子ハイブリッドデバイスの製造。本発明の方法によって接合することで,電子やスピン電流の平均自由工程以下でウエハ間を接合することが可能である。
Creation of new and high-performance devices Application to creation of new functional devices stacked and integrated at the wafer level Integration of integrated circuits and short-wavelength optical devices (for example, Si devices / GaN, photonic crystals, LEDs), new Bonding when creating a functional photo-electronic conversion device.
Manufacture of spin-electronic hybrid devices. By bonding by the method of the present invention, it is possible to bond between wafers in an average free process of electrons or spin current.

異種材料ウエハ間の接合
超ハイブリッド基板・部材の形成等を目的として,半導体ウエハをナノ結晶膜を挟んで積層化した電位障壁ハイブリッド・ウエハの製造や,ガラスをナノ結晶膜を挟んで積層した特殊光学ウエハ(光フィルタリング)の製造に際し,本発明の方法を使用することができる。
Bonding between dissimilar material wafers For the purpose of forming ultra-hybrid substrates and components, manufacturing of potential barrier hybrid wafers with semiconductor wafers laminated with nanocrystal films, and special glass with laminated nanocrystal films In the production of optical wafers (optical filtering), the method of the present invention can be used.

発光ダイオードの高輝度化
本発明の方法により,発光ダイオードに鏡面のレイヤーを接合し,輝度を上げる。
Increasing the brightness of a light emitting diode By the method of the present invention, a mirror layer is bonded to the light emitting diode to increase the brightness.

水晶振動子の積層化
本発明の方法により,水晶に例えば金の薄膜を形成して水晶同士を接着することで,比較的接着が困難な水晶同士の接合を行う。
Lamination of quartz resonators By the method of the present invention, for example, a gold thin film is formed on a quartz crystal and the quartz crystals are bonded to each other, thereby bonding the quartz crystals that are relatively difficult to bond.

情報家電の小型化・高集積化
SiP技術のための三次元スタック化,パッケージ基板高機能化(三次元実装);本接合方法によりSiデバイスとSiデバイスの積層や基板を立体的に貼り合わせることにより高集積化を図る。
Miniaturization and high integration of information appliances Three-dimensional stacking for SiP technology, high-functionality of package substrate (three-dimensional mounting); 3D bonding of Si device and Si device stack and substrate by this bonding method To achieve higher integration.

MEMS製造技術
三次元配線を兼ねた微細素子の真空封止,Siデバイスとの積層に本接合方法を利用する。この用途での利用の場合,接合面に界面があっても良く,内部の真空や接合状態を保持できれば良い。
MEMS manufacturing technology This bonding method is used for vacuum sealing of fine elements that also serve as three-dimensional wiring and for stacking with Si devices. For use in this application, there may be an interface on the joint surface, as long as the internal vacuum and joined state can be maintained.

高性能化,超低消費電力のための効率的な熱伝導(冷却)の実現
熱放散係数の大きな材料,例えば銅,ダイヤモンド,DLC等で作製したヒートシンク,ヒートスプレッダを本発明の方法により半導体デバイス等に直接ボンディングして,放熱性能,熱拡散性能等を向上させる。
Realization of efficient heat conduction (cooling) for higher performance and ultra-low power consumption Heat sinks and heat spreaders made of materials with a large heat dissipation coefficient such as copper, diamond, DLC, etc., semiconductor devices, etc. by the method of the present invention Bonding directly to, improve heat dissipation performance, heat diffusion performance, etc.

その他
なお,以上で説明した用途では,いずれも本発明の接合方法を電気,電子部品等の分野において使用する例を説明したが,本発明の方法は,上記で例示した利用分野に限定されず,接合を必要とする各種分野,各種用途において利用可能である。
Others In each of the applications described above, examples of using the joining method of the present invention in the field of electric and electronic parts have been described. However, the method of the present invention is not limited to the field of use exemplified above. It can be used in various fields and applications that require joining.

本発明の原子拡散接合方法を実施するための装置の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the apparatus for enforcing the atomic diffusion bonding method of this invention. Ptの微結晶連続薄膜の形成により接合したSi基板の断面顕微鏡写真。Cross-sectional photomicrograph of Si substrates joined by forming a Pt microcrystalline continuous thin film. Ag薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真であり,(A)は明視野像,(B)は暗視野像。It is a cross-sectional microscope picture of the Si substrate joined by the Ag thin film (20 nm × 20 nm), (A) is a bright field image, and (B) is a dark field image. Al薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真であり,(A)は明視野像,(B)は暗視野像。It is a cross-sectional microscope picture of the Si substrate joined by the Al thin film (20 nm × 20 nm), (A) is a bright field image, and (B) is a dark field image. Cu薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真であり,(A)は明視野像,(B)は暗視野像,(C)は高分解像。It is a cross-sectional microscope picture of the Si substrate joined by Cu thin film (20 nm x 20 nm), (A) is a bright field image, (B) is a dark field image, (C) is a high resolution image. Pt薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真。A cross-sectional photomicrograph of a Si substrate joined by a Pt thin film (20 nm × 20 nm). Cr薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真。Sectional micrograph of Si substrate joined by Cr thin film (20 nm × 20 nm). Ti薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真。A cross-sectional photomicrograph of a Si substrate joined by a Ti thin film (20 nm × 20 nm). Ta薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真。Sectional micrograph of Si substrate joined by Ta thin film (20 nm × 20 nm). Al薄膜(50nm×50nm)によって接合されたSi基板の断面顕微鏡写真であり,(A)は明視野像,(B)は別方向からの明視野像,(C)は(B)の暗視野像。It is a cross-sectional photomicrograph of a Si substrate joined by an Al thin film (50 nm × 50 nm), (A) is a bright field image, (B) is a bright field image from another direction, and (C) is a dark field image of (B). image. 体拡散係数−融点相関図(fcc系のみ)。Body diffusion coefficient-melting point correlation diagram (fcc system only). 体拡散係数−融点相関図(全種類)。Body diffusion coefficient-melting point correlation diagram (all types). 温度に対する体拡散係数の変化を示すグラフ。The graph which shows the change of the body diffusion coefficient with respect to temperature. 接合強度の検証方法の説明図。Explanatory drawing of the verification method of joining strength. Pt薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真であり(A)はPt薄膜の成膜中に接合したもの,(B)は成膜後3分経過後に接合したもの。It is a cross-sectional micrograph of a Si substrate bonded by a Pt thin film (20 nm × 20 nm). (A) is bonded during the deposition of the Pt thin film, and (B) is bonded after 3 minutes from the deposition. Ta薄膜(20nm×20nm)によって接合されたSi基板の断面顕微鏡写真であり(A)はTa薄膜の成膜中に接合したもの,(B)は成膜後3分経過後に接合したもの。It is a cross-sectional photomicrograph of a Si substrate bonded by a Ta thin film (20 nm × 20 nm). (A) is bonded during the deposition of the Ta thin film, and (B) is bonded after 3 minutes from the film formation.

Claims (14)

真空容器内において,平滑面を有する2つの基体それぞれの前記平滑面に,室温における体拡散係数が1×10-80m2/s以上の材料から成り,結晶粒の薄膜面内方向の平均粒径が50nm以下で,かつ,密度が80%以上である高密度の微結晶連続薄膜(超塑性合金膜を除く。)を形成(不活性ガスイオンビーム又は不活性ガス中性原子ビームを前記基体に照射して形成したものを除く。)すると共に,前記2つの基体に形成された前記微結晶連続薄膜同士が接触するように前記2つの基体を重ね合わせることにより,前記微結晶連続薄膜の接合界面及び結晶粒界に原子拡散に伴う再結晶を生じさせ又はアモルファスに変化させて前記2つの基体を接合することを特徴とする原子拡散接合方法。 In the vacuum vessel, the smooth surface of each of the two substrates having a smooth surface is made of a material having a body diffusion coefficient of 1 × 10 −80 m 2 / s or more at room temperature, and the average grain size in the in-plane direction of the crystal grains Forms a high-density microcrystalline continuous thin film (excluding superplastic alloy film) having a diameter of 50 nm or less and a density of 80% or more (excluding an inert gas ion beam or an inert gas neutral atom beam) And by joining the two substrates so that the microcrystalline continuous thin films formed on the two substrates are in contact with each other. An atomic diffusion bonding method comprising bonding the two substrates by causing recrystallization accompanying atomic diffusion at an interface and a crystal grain boundary or changing to an amorphous state. 真空容器内において,一方の基体の平滑面に室温における体拡散係数が1×10-80m2/s以上の材料から成り,結晶粒の薄膜面内方向の平均粒径が50nm以下で,かつ,密度が80%以上である高密度の微結晶連続薄膜(超塑性合金膜を除く。)を形成(不活性ガスイオンビーム又は不活性ガス中性原子ビームを前記基体に照射して形成したものを除く。)すると共に,少なくとも表面が微結晶構造を有する平滑面を備えた他方の基体の平滑面に前記一方の基体に形成された前記微結晶連続薄膜が接触するように前記一方,他方の2つの基体を重ね合わせることにより,前記微結晶連続薄膜と前記他方の基体の前記平滑面との接合界面及び結晶粒界に原子拡散に伴う再結晶を生じさせ又はアモルファスに変化させることにより前記2つの基体を接合することを特徴とする原子拡散接合方法。 In a vacuum vessel, the smooth surface of one substrate is made of a material having a body diffusion coefficient of 1 × 10 −80 m 2 / s or more at room temperature , the average grain size in the in-plane direction of crystal grains is 50 nm or less, and , Forming a high-density microcrystalline continuous thin film (excluding superplastic alloy film) having a density of 80% or more ( formed by irradiating the substrate with an inert gas ion beam or an inert gas neutral atom beam) And at least the surface of the other substrate having a smooth surface having a microcrystalline structure is in contact with the smooth surface of the other substrate so that the microcrystalline continuous thin film formed on the one substrate contacts the smooth surface of the other substrate. By superimposing two substrates, recrystallization due to atomic diffusion is caused at the bonding interface and crystal grain boundary between the microcrystalline continuous thin film and the smooth surface of the other substrate, or the amorphous substrate is changed to amorphous. Two substrates Atomic diffusion bonding method, characterized in that the coupling. 上記基体を重ね合わせる際の前記基体温度を室温以上400℃以下の範囲で加熱して拡散係数を上昇させることを特徴とする請求項1又は2記載の原子拡散接合方法。   3. The atomic diffusion bonding method according to claim 1, wherein the diffusion coefficient is increased by heating the substrate temperature when the substrates are overlapped in a range of room temperature to 400 ° C. 前記基体の加熱を,前記微結晶連続薄膜の形成材料の室温における体拡散係数が1×10-40m2/s以下の場合に行うことを特徴とする請求項3記載の原子拡散接合方法。 4. The atomic diffusion bonding method according to claim 3, wherein the heating of the substrate is performed when a body diffusion coefficient at room temperature of the material for forming the microcrystalline continuous thin film is 1 × 10 −40 m 2 / s or less. 前記基体の重ね合わせを,前記基体を加熱することなく行うことを特徴とする請求項1又は2記載の原子拡散接合方法。   3. The atomic diffusion bonding method according to claim 1, wherein the superposition of the bases is performed without heating the bases. 到達真空圧力が1×10-4Pa〜1×10-8Paの真空容器内で前記微結晶連続薄膜の形成及び/又は前記基体の重ね合わせを行うことを特徴とする請求項1〜5いずれか1項記載の原子拡散接合方法。 6. The microcrystalline continuous thin film is formed and / or the substrate is superposed in a vacuum vessel having an ultimate vacuum pressure of 1 × 10 −4 Pa to 1 × 10 −8 Pa. The atomic diffusion bonding method according to claim 1. 前記微結晶連続薄膜の形成と,前記基体の重ね合わせを同一真空中で行うことを特徴とする請求項1〜6いずれか1項記載の原子拡散接合方法。   The atomic diffusion bonding method according to claim 1, wherein the formation of the microcrystalline continuous thin film and the superposition of the substrate are performed in the same vacuum. 前記微結晶連続薄膜を,Al,Si,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ga,Ge,Zr,Nb,Mo,Ru,Rh,Pd,Ag,In,Sn,Hf,Ta,Pt,Auの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成したことを特徴とする請求項1〜7いずれか1項記載の原子拡散接合方法。   The microcrystalline continuous thin film is made of Al, Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Hf. 2. It is formed of any one single metal selected from the group of elements Ta, Pt, Au, or an alloy containing one or more elements selected from the group of elements. The atomic diffusion bonding method according to any one of? 7. 前記微結晶連続薄膜を形成する前に,前記微結晶連続薄膜の形成と同一真空中において,前記微結晶連続薄膜の形成を行う基体の平滑面に生じている変質層を除去することを特徴とする請求項1〜8いずれか1項記載の原子拡散接合方法。   Before forming the microcrystalline continuous thin film, the altered layer generated on the smooth surface of the substrate on which the microcrystalline continuous thin film is formed is removed in the same vacuum as the formation of the microcrystalline continuous thin film. The atomic diffusion bonding method according to any one of claims 1 to 8. 前記微結晶連続薄膜が形成される前記基体の平滑面に,前記微結晶連続薄膜とは異なる材料の薄膜から成る下地層を1層以上形成し,当該下地層上に前記微結晶連続薄膜を形成することを特徴とする請求項1〜9いずれか1項記載の原子拡散接合方法。   On the smooth surface of the substrate on which the microcrystalline continuous thin film is formed, one or more base layers made of a thin film of a material different from the microcrystalline continuous thin film are formed, and the microcrystalline continuous thin film is formed on the base layer The atomic diffusion bonding method according to claim 1, wherein the atomic diffusion bonding method is performed. 前記下地層を,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wの元素群より選択されたいずれか1つの単金属により形成し,又は前記元素群より選択された1つ以上の元素を含む合金により形成したことを特徴とする請求項10記載の原子拡散接合方法。   The underlayer is formed of any one single metal selected from the element group of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, or one or more selected from the element group The atomic diffusion bonding method according to claim 10, wherein the atomic diffusion bonding method is formed of an alloy containing any of the above elements. 前記下地層を形成する前記単金属又は合金として,当該下地層上に形成される微結晶連続薄膜を形成する単金属又は合金よりも高融点で,且つ,前記微結晶連続薄膜を形成する単金属又は合金に対して融点の差が大きいものを使用することを特徴とする請求項11記載の原子拡散接合方法。   The single metal or alloy that forms the underlayer is a single metal that has a higher melting point than the single metal or alloy that forms the microcrystalline continuous thin film formed on the underlayer and that forms the microcrystalline continuous thin film. Alternatively, an atomic diffusion bonding method according to claim 11, wherein a difference in melting point with respect to the alloy is large. 前記微結晶連続薄膜の膜厚を0.2nm〜1μmとしたことを特徴とする請求項1〜12いずれか1項記載の原子拡散接合方法。   The atomic diffusion bonding method according to claim 1, wherein a thickness of the microcrystalline continuous thin film is 0.2 nm to 1 μm. 請求項1〜13いずれか1項記載の方法により接合された構造体。   A structure joined by the method according to claim 1.
JP2008214240A 2008-08-22 2008-08-22 Atomic diffusion bonding method and structure bonded by the above method Active JP5401661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214240A JP5401661B2 (en) 2008-08-22 2008-08-22 Atomic diffusion bonding method and structure bonded by the above method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214240A JP5401661B2 (en) 2008-08-22 2008-08-22 Atomic diffusion bonding method and structure bonded by the above method

Publications (2)

Publication Number Publication Date
JP2010046696A JP2010046696A (en) 2010-03-04
JP5401661B2 true JP5401661B2 (en) 2014-01-29

Family

ID=42064241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214240A Active JP5401661B2 (en) 2008-08-22 2008-08-22 Atomic diffusion bonding method and structure bonded by the above method

Country Status (1)

Country Link
JP (1) JP5401661B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246245A1 (en) 2020-06-01 2021-12-09 国立大学法人東北大学 Method for atomic diffusion bonding and bonded structure
KR20220056172A (en) 2019-09-05 2022-05-04 도호쿠 다이가쿠 Chemical bonding and bonding structures
US11348892B2 (en) 2019-08-19 2022-05-31 Samsung Electronics Co., Ltd. Semiconductor devices including bonding layer and adsorption layer
WO2022172902A1 (en) 2021-02-10 2022-08-18 キヤノンアネルバ株式会社 Chemical bonding method, package-type electronic component, and hybrid bonding method for electronic device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187867A (en) * 2010-03-11 2011-09-22 Tohoku Univ Bonding method and crystal element
EP2654075B1 (en) 2010-03-31 2016-09-28 EV Group E. Thallner GmbH Method for permanently connecting two metal surfaces
JP5569964B2 (en) * 2010-05-07 2014-08-13 株式会社ムサシノエンジニアリング Atomic diffusion bonding method
JP2012078476A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Composite etalon filter
JP2012078474A (en) * 2010-09-30 2012-04-19 Kyocera Kinseki Corp Etalon filter
JP5541056B2 (en) * 2010-10-01 2014-07-09 セイコーエプソン株式会社 Polarization conversion element, polarization conversion unit, projection device, and method of manufacturing polarization conversion element
JP2012145844A (en) * 2011-01-13 2012-08-02 Seiko Epson Corp Polarization conversion element, polarization conversion unit, projection device and manufacturing method of polarization conversion element
US9601350B2 (en) 2011-01-31 2017-03-21 Bondtech Co., Ltd. Bonding-substrate fabrication method, bonding substrate, substrate bonding method, bonding-substrate fabrication apparatus, and substrate assembly
US10166749B2 (en) 2011-01-31 2019-01-01 Lan Technical Service Co., Ltd. Bonding-substrate fabrication method, bonding substrate, substrate bonding method, bonding-substrate fabrication apparatus, and substrate assembly
JP6089162B2 (en) * 2011-04-19 2017-03-08 株式会社ムサシノエンジニアリング Atomic diffusion bonding method and manufacturing method of packaged electronic component sealed by the method
JP2012226121A (en) * 2011-04-20 2012-11-15 Seiko Epson Corp Polarization conversion element, polarization conversion unit, and projection device
JP2013027844A (en) * 2011-07-29 2013-02-07 Kyocera Crystal Device Corp Microreactor
SG194845A1 (en) * 2011-08-30 2013-12-30 Ev Group E Thallner Gmbh Method for permanent bonding of wafers
JP2013097150A (en) * 2011-10-31 2013-05-20 Kyocera Crystal Device Corp Etalon filter
JP5139604B1 (en) * 2011-11-25 2013-02-06 信越エンジニアリング株式会社 Substrate transfer device and substrate assembly line
JP5891848B2 (en) 2012-02-27 2016-03-23 ウシオ電機株式会社 Method and apparatus for bonding workpieces made of glass substrate or quartz substrate
JP2013243100A (en) * 2012-05-23 2013-12-05 Ushio Inc Short arc discharge lamp
AT525618B1 (en) * 2012-09-28 2023-07-15 Ev Group E Thallner Gmbh Process for coating and bonding substrates
JP6414391B2 (en) 2013-04-30 2018-10-31 日亜化学工業株式会社 Method for manufacturing light emitting device
JP6299478B2 (en) 2013-06-26 2018-03-28 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6318441B2 (en) * 2013-09-09 2018-05-09 株式会社ムサシノエンジニアリング Joining method
JP6221668B2 (en) 2013-11-18 2017-11-01 日亜化学工業株式会社 Manufacturing method of light distribution member and manufacturing method of light emitting device
JP6340215B2 (en) * 2014-03-07 2018-06-06 イサハヤ電子株式会社 Semiconductor bonding method
JP6492645B2 (en) 2014-12-25 2019-04-03 日亜化学工業株式会社 Semiconductor device and manufacturing method of semiconductor device
US10415795B2 (en) 2015-05-15 2019-09-17 Nichia Corporation Method of manufacturing light distribution member with shielded individual transmissive pieces and light-shielding frame, method of manufacturing light emitting device having light distribution member, light distribution member, and light emitting device
JP6173413B2 (en) * 2015-12-02 2017-08-02 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Permanent wafer bonding method with connecting layer using solid phase diffusion or phase transformation
JP6795307B2 (en) * 2016-02-12 2020-12-02 国立大学法人大阪大学 Joining material, manufacturing method of joining material, manufacturing method of joining structure
JP6315014B2 (en) 2016-03-23 2018-04-25 日亜化学工業株式会社 Manufacturing method of semiconductor device
US10451508B2 (en) 2016-06-03 2019-10-22 Schlumberger Technology Corporation Pressure transducer and method for fabricating the same
US10283452B2 (en) 2017-09-15 2019-05-07 Yangtze Memory Technology Co., Ltd. Three-dimensional memory devices having a plurality of NAND strings
CN107658317B (en) * 2017-09-15 2019-01-01 长江存储科技有限责任公司 A kind of semiconductor device and preparation method thereof
US11865829B2 (en) 2018-01-15 2024-01-09 Sony Corporation Functional element and method of manufacturing functional element, and electronic apparatus
JP7002398B2 (en) 2018-04-13 2022-01-20 株式会社ディスコ How to join optical components
US12023892B2 (en) 2019-01-07 2024-07-02 Sony Group Corporation Structure body, structure body manufacturing method, and electronic apparatus
JP7312018B2 (en) 2019-05-27 2023-07-20 学校法人早稲田大学 Joining method and structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381077A (en) * 1989-08-25 1991-04-05 Hoya Corp Method and device for joining parts
JP3848989B2 (en) * 2003-05-15 2006-11-22 唯知 須賀 Substrate bonding method and substrate bonding apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11348892B2 (en) 2019-08-19 2022-05-31 Samsung Electronics Co., Ltd. Semiconductor devices including bonding layer and adsorption layer
US11824035B2 (en) 2019-08-19 2023-11-21 Samsung Electronics Co., Ltd. Method of manufacturing a semiconductor device including bonding layer and adsorption layer
KR20220056172A (en) 2019-09-05 2022-05-04 도호쿠 다이가쿠 Chemical bonding and bonding structures
US11450643B2 (en) 2019-09-05 2022-09-20 Tohoku University Chemical bonding method and joined structure
WO2021246245A1 (en) 2020-06-01 2021-12-09 国立大学法人東北大学 Method for atomic diffusion bonding and bonded structure
WO2022172902A1 (en) 2021-02-10 2022-08-18 キヤノンアネルバ株式会社 Chemical bonding method, package-type electronic component, and hybrid bonding method for electronic device
US11916038B2 (en) 2021-02-10 2024-02-27 Canon Anelva Corporation Chemical bonding method, package-type electronic component, and hybrid bonding method for electronic device

Also Published As

Publication number Publication date
JP2010046696A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5401661B2 (en) Atomic diffusion bonding method and structure bonded by the above method
JP5070557B2 (en) Room temperature bonding method
JP5569964B2 (en) Atomic diffusion bonding method
JP6089162B2 (en) Atomic diffusion bonding method and manufacturing method of packaged electronic component sealed by the method
JP5571988B2 (en) Joining method
Shimatsu et al. Room temperature bonding using thin metal films (Bonding energy and technical potential)
JP6504555B2 (en) Method of atomic diffusion bonding and structure bonded by the above method
WO1995016797A1 (en) Molybdenum-tungsten material for wiring, molybdenum-tungsten target for wiring, process for producing the same, and molybdenum-tungsten wiring thin film
JP2017523603A (en) Method and apparatus for surface treating a substrate
KR20170097056A (en) Composite substrate, method for forming nanocarbon film, and nanocarbon film
JP5985849B2 (en) JOINT BODY, MANUFACTURING METHOD THEREOF, AND MEMBER
US9751754B2 (en) Package formation method and MEMS package
US10332853B2 (en) Bonding structure and method for producing bonding structure
JP5948533B2 (en) Atomic diffusion bonding method
WO2021246245A1 (en) Method for atomic diffusion bonding and bonded structure
KR20200130229A (en) A silver-indium transition liquid phase method for bonding a semiconductor device and a heat-diffusion mount, and a semiconductor structure having a silver-indium transition liquid phase bonding joint
JP2015222970A (en) Method of manufacturing acoustic wave device
JP6336600B2 (en) Method of applying a bonding layer
JP6318441B2 (en) Joining method
JP6032667B2 (en) Joining method
Utsumi et al. Cu-Cu direct bonding achieved by surface method at room temperature
KR20220056172A (en) Chemical bonding and bonding structures
Takagi et al. Surface Activated Wafer Bonding; Principle and Current Status
Suga et al. Low temperature bonding for 3D interconnects
Hu et al. Plasma-Activated Cu-Cu and Al-Al Direct Bonding for Electronics Packaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120905

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Ref document number: 5401661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250