Nothing Special   »   [go: up one dir, main page]

JP5493687B2 - How to set shearing conditions - Google Patents

How to set shearing conditions Download PDF

Info

Publication number
JP5493687B2
JP5493687B2 JP2009240947A JP2009240947A JP5493687B2 JP 5493687 B2 JP5493687 B2 JP 5493687B2 JP 2009240947 A JP2009240947 A JP 2009240947A JP 2009240947 A JP2009240947 A JP 2009240947A JP 5493687 B2 JP5493687 B2 JP 5493687B2
Authority
JP
Japan
Prior art keywords
punch
die
stress
inclination angle
shearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009240947A
Other languages
Japanese (ja)
Other versions
JP2011088152A (en
Inventor
崇 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009240947A priority Critical patent/JP5493687B2/en
Publication of JP2011088152A publication Critical patent/JP2011088152A/en
Application granted granted Critical
Publication of JP5493687B2 publication Critical patent/JP5493687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Punching Or Piercing (AREA)

Description

本発明は自動車、家電製品、建築構造物、船舶、橋梁、建設機械、各種プラント、ペンストック等で用いられる鉄、アルミニウム、チタン、マグネシウムおよびこれら合金等の金属板の打ち抜き装置に関するものであり、特にせん断加工によって生じるせん断加工端面の伸びフランジ性向上に関するものである。   The present invention relates to a punching device for metal plates such as iron, aluminum, titanium, magnesium and alloys thereof used in automobiles, home appliances, building structures, ships, bridges, construction machines, various plants, penstocks, etc. In particular, the present invention relates to an improvement in stretch flangeability of a shearing end face generated by shearing.

自動車、家電製品、建築構造物等の金属板には、図1のようにパンチ2とダイ3によるせん断加工が施されることが多い。図2に示すようにせん断加工面は、被加工材1がパンチ2により全体的に押し込まれて形成されるダレ4、パンチ2とダイ3のクリアランス内(以下特に記載がなく“クリアランス”と表記した場合は、パンチ2とダイ3のクリアランスを指すこととする)に被加工材1が引き込まれ局所的に引き伸ばされて形成されるせん断面5、パンチ2とダイ3のクリアランス内に引き込まれた被加工材1が破断して形成される破断面6、および被加工材1裏面に生じるバリ7によって構成される。   Metal plates such as automobiles, home appliances, and building structures are often subjected to shearing with a punch 2 and a die 3 as shown in FIG. As shown in FIG. 2, the sheared surface is formed in the clearance 4 formed by the workpiece 1 being entirely pushed by the punch 2, the clearance between the punch 2 and the die 3 (hereinafter referred to as “clearance” unless otherwise specified). In this case, the clearance between the punch 2 and the die 3 is referred to as the clearance between the punch 2 and the die 3. It consists of a fracture surface 6 formed by breaking the workpiece 1 and a burr 7 formed on the back surface of the workpiece 1.

通常は打ち抜き荷重と騒音の低減のために図3のごとく切断線方向(打ち抜き方向ともいう)に対して傾斜した刃(傾斜刃ともいう)を使用するが、このような刃の場合、該傾斜角度を適切に設定しなければ平坦刃によるせん断加工端面よりも伸びフランジ性が劣る。これは、傾斜刃9によりせん断加工時に亀裂が発生しにくくなり、端面が平坦刃でせん断加工した場合よりも加工硬化しているためであること、および、傾斜刃9による被加工材1の幅方向の撓みと不十分な板逆押さえによる打ち抜き時の被加工材1長手方向の過大な湾曲により、平坦な刃によるものと比べて打ち抜き端面の加工硬化や端面性状の荒れが大きくなることが原因と思われる。   Usually, in order to reduce the punching load and noise, a blade (also referred to as an inclined blade) inclined with respect to the cutting line direction (also referred to as the punching direction) is used as shown in FIG. If the angle is not set appropriately, the stretch flangeability is inferior to the end face of shearing with a flat blade. This is because cracks are less likely to occur at the time of shearing by the inclined blade 9, and the end surface is work hardened than when sheared by a flat blade, and the width of the workpiece 1 by the inclined blade 9 Due to excessive bending in the longitudinal direction due to excessive bending in the longitudinal direction due to bending of the direction and insufficient plate reverse pressing, the work hardening of the punched end face and roughness of the end face properties are greater than those due to flat blades I think that the.

このような観点から、伸びフランジ成形予定部位のみを平坦刃とするせん断加工方法が下記特許文献1に、板湾曲を防ぐために伸びフランジ成形予定部位のみを傾斜した板逆押さえを用いて押さえる方法が下記特許文献2に記載されている。   From such a point of view, a shearing method in which only the stretch flange forming scheduled part is a flat blade is disclosed in Patent Document 1 below, and a method of pressing only the stretch flange forming planned part using an inclined plate reverse presser to prevent plate bending. It is described in Patent Document 2 below.

また、これら以外にも、伸びフランジ性向上を狙ったものではないが、せん断加工形状の精度を向上させるために、傾斜角度及び切断速度を可変自在とする発明が下記特許文献3に、傾斜角刃複数を独立に駆動して切断部分の直線度や切断面の品質を高めることができるせん断装置が下記特許文献4に記載されている。   In addition to these, although not intended to improve stretch flangeability, in order to improve the accuracy of the shearing shape, an invention in which the tilt angle and cutting speed can be varied is disclosed in Patent Document 3 below. The following Patent Document 4 describes a shearing device that can drive a plurality of blades independently to improve the straightness of the cut portion and the quality of the cut surface.

特開2009−051001号公報JP 2009-0511001 A 特開2009−051000号公報JP 2009-051000 A 特開平07−108411号公報JP 07-108411 A 特開平8−252718号公報JP-A-8-252718

以上の特許文献1〜4に開示される技術には、いくつかの課題が存在する。   The techniques disclosed in Patent Documents 1 to 4 described above have several problems.

特許文献1記載の方法は伸びフランジ部が複数の場合、刃が複雑な形状となってしまい、金型コストがかかる。特許文献2記載の方法は、板逆押さえを用いることによりスクラップ処理の手間がかかる。特許文献3、4記載の方法は、装置が複雑となってしまい、コストがかかると同時に汎用性に欠ける。また、伸びフランジ性向上効果についての記載も無い。   In the method described in Patent Document 1, when there are a plurality of extending flange portions, the blade has a complicated shape, and the mold cost is high. The method described in Patent Document 2 requires time and effort for scrap processing by using a plate reverse presser. In the methods described in Patent Documents 3 and 4, the apparatus becomes complicated and the cost is high, and at the same time, the versatility is lacking. Moreover, there is no description about the stretch flangeability improvement effect.

本発明は、コスト増や装置・金型の複雑化を避け、傾斜角度とクリアランスの変更のみで伸びフランジ性を向上させることを目的とする。   An object of the present invention is to avoid the increase in cost and the complexity of the apparatus and the mold, and to improve the stretch flangeability only by changing the inclination angle and the clearance.

上記課題を解決するために、本発明の要旨とするところは、特許請求の範囲に記載した
通りの下記内容である。
(1)切断線方向に対して傾斜角度を有する上刃からなるパンチと、下刃を有するダイによるせん断加工を行った被加工材を、伸びフランジ成形実験を行って最初に割れた該せん断加工部位を伸びフランジ割れ危険部位とし、次に該せん断加工の数値シミュレーションを、該傾斜角度を変えて複数回行い、該数値シミュレーション上でパンチ刃先が被加工材板厚の10〜30%の何れかの比率だけ食い込んだ時点において、前記伸びフランジ割れ危険部位を中心とし、1)前記パンチ、前記ダイ間の切断稜線の接線方向の距離が被加工材の板厚、2)板厚方向の距離が前記パンチと前記ダイの板厚方向距離、3)切断稜線の垂直方向の距離が前記パンチ前記ダイのクリアランス、の3つを満足する面に囲まれた領域の平均の応力3軸度を算出し、該平均応力3軸度が最大となる前記傾斜角度をせん断加工端面の伸びフランジ性に対する最適な傾斜角度とすることを特徴とする、せん断加工条件の設定方法。
ただし、応力3軸度はσ123を主応力とした場合に、
In order to solve the above problems, the gist of the present invention is the following contents as described in the claims.
(1) The shearing process in which a workpiece formed by shearing with a punch having an upper blade having an inclination angle with respect to the cutting line direction and a die having a lower blade is first cracked by performing an extension flange forming experiment. The part is set as a stretch flange crack risk part, and then the numerical simulation of the shearing process is performed a plurality of times while changing the inclination angle, and the punching edge is any one of 10 to 30% of the workpiece thickness on the numerical simulation. at the time when the bite just proportion, with a focus on the stretch flange crack risk portion, 1) the punch, plate thickness of the distance tangential workpiece cutting edge line between the die, 2) in the thickness direction distance calculated but the thickness direction between the said punch die, 3) the vertical distance of the punch the die clearance of the cutting edge line, the stress average of three regions surrounded by a surface which satisfies the three Jikudo , Characterized in that the inclination angle of the mean stress 3 Jikudo is maximum and optimum angle of inclination with respect to the stretch-flangeability of the shearing edge, setting shear processing conditions.
However, the stress triaxiality is σ 1 , σ 2 , σ 3 when the main stress is

Figure 0005493687
である。
(2)切断線方向に対して傾斜角度を有する上刃からなるパンチと、下刃を有するダイによるせん断加工を行った被加工材を、伸びフランジ成形実験を行って最初に割れた該せん断加工部位を伸びフランジ割れ危険部位とし、次に該せん断加工の数値シミュレーションを、該傾斜角度及びパンチとダイとのクリアランスを変えて複数回行い、該数値ミュレーション上でパンチ刃先が被加工材板厚の10〜30%の何れかの比率だけ食い込んだ時点において、前記伸びフランジ割れ危険部位を中心とし、1)前記パンチ、前記ダイ間の切断稜線の接線方向の距離が被加工材の板厚、2)板厚方向の距離が前記パンチと前記ダイの板厚方向距離、3)切断稜線の垂直方向の距離が前記パンチ前記ダイのクリアランス、の3つを満足する面に囲まれた領域の平均の応力3軸度を算出し、該平均応力3軸度が最大となる前記傾斜角度及びパンチとダイとのクリアランスをせん断加工端面の伸びフランジ性に対する最適な傾斜角度及びパンチとダイとの前記クリアランスの組み合わせとすることを特徴とする、せん断加工条件の設定方法ただし、応力3軸度はσ123を主応力とした場合に、
Figure 0005493687
It is.
(2) The shearing work that was first cracked in a stretch flange forming experiment on a workpiece that was sheared by a punch composed of an upper blade having an inclination angle with respect to the cutting line direction and a die having a lower blade. The part is regarded as a stretch flange crack risk part, and then the numerical simulation of the shearing process is performed a plurality of times while changing the inclination angle and the clearance between the punch and the die. at the time when the bite just any ratio of 10-30%, with a focus on the stretch flange crack risk portion, 1) the punch, the distance tangential thickness of the workpiece the cutting edge line between the die 2) The distance in the plate thickness direction is surrounded by a plane that satisfies the following three requirements: the punch and the die in the plate thickness direction distance, and 3) the cutting distance in the vertical direction of the cutting ridge line. Calculating a stress 3 Jikudo average area, and optimal tilt angle and the punch and the die relative to the tilt angle and stretch flangeability clearance shear processed end face of the punch and die the mean stress 3 Jikudo is maximum A method for setting shearing conditions, wherein the clearances are combined . However, the stress triaxiality is σ 1 , σ 2 , σ 3 when the main stress is

Figure 0005493687
である。
Figure 0005493687
It is.

本発明によれば、コスト増や装置・金型の複雑化を避け、傾斜角度とクリアランスの変更のみで伸びフランジ性を向上させることができるせん断加工条件の設定方法を提供でき、その結果、伸びフランジ加工性に優れるせん断加工端面を得ることができるパンチ刃の傾斜角度の設計方法を提供することができるなど、産業上有用な著しい効果を奏する。   According to the present invention, it is possible to provide a method for setting shearing conditions that can improve stretch flangeability by only changing the inclination angle and clearance, avoiding an increase in cost and complexity of the apparatus / mold, and as a result An industrially useful remarkable effect can be obtained, for example, by providing a design method of an inclination angle of a punching blade capable of obtaining a shearing end face excellent in flange workability.

以下に本発明の詳細を述べる。   Details of the present invention will be described below.

本発明者等は、傾斜刃9によるせん断加工において、傾斜角度と被加工材1の伸びフランジ性の関係を実際に評価試験をして調べたところ、特定の傾斜角度で伸びフランジ性がピークとなる傾向を知見した。なお、伸びフランジ予定部とは、例えば図4に示すように、打ち抜き切断加工後のフランジアップ成形に際し、切断面に引張変形が加えられる内周側の伸びフランジ部21をいう。   When the present inventors actually conducted an evaluation test on the relationship between the inclination angle and the stretch flangeability of the workpiece 1 in shearing with the inclined blade 9, the stretch flangeability reached a peak at a specific inclination angle. I found a tendency to become. The stretch flange planned portion refers to the stretch flange portion 21 on the inner peripheral side where tensile deformation is applied to the cut surface at the time of flange-up molding after punching and cutting, for example, as shown in FIG.

実験したせん断加工条件を模擬して数値シミュレーションを行ったところ、傾斜角度には2つの効果、1)被加工材1を回転させる効果による切断予定部への引張り力(図3参照)、2)切断距離が長くなることによる刃先近傍圧縮圧の増加、が確認された。刃先からの亀裂が発生し易い工具条件においてはせん断加工端面の加工硬化が減少し伸びフランジ性は向上する。1)の効果は刃先からの亀裂発生を促進させ、2)の効果は亀裂発生を抑制させることが広く知られており、これらの効果が相乗した最も亀裂発生がし易い傾斜角度において、伸びフランジ性がピークとなったと考えられる。   Numerical simulations were performed by simulating the experimental shearing conditions. The tilt angle has two effects: 1) The tensile force on the part to be cut due to the effect of rotating the workpiece 1 (see FIG. 3), 2) It was confirmed that the cutting pressure near the cutting edge increased as the cutting distance increased. Under tool conditions where cracks from the cutting edge are likely to occur, the work hardening of the shearing end face is reduced and the stretch flangeability is improved. It is widely known that the effect of 1) promotes crack generation from the cutting edge, and the effect of 2) suppresses crack generation. It is thought that the sex reached a peak.

1)と2)の効果双方を1つの指標で計る手段として、応力3軸度による評価が挙げられる。応力3軸度は1)における引張り力が高ければ増加し、2)の圧縮応力が高ければ減少する。よって、応力3軸度が最も高くなる条件で伸びフランジ性はピークとなる。数値シミュレーションでこの条件を選定する場合、被加工材1のどの領域までの応力3軸度を評価するのかが問題となる。本発明者等は試行錯誤の結果、図5の部位6のような伸びフランジ割れ危険部位を中心とする評価領域11の平均値により評価すれば実験結果の再現性がよいことを知見した。さらに、実際のせん断加工のように被加工材1の破断をシミュレーションで再現する必要がなく、伸びブランジ予定部にパンチ2が被加工材1の板厚の10〜30%の間の何れかの値だけ食い込んだ時点で前記応力3軸度の評価を行えば、切断まで再現する場合と同等の評価結果が得られることが分かった。切断をシミュレーションで再現することは計算負荷が高いため、本手法によれば簡略に評価することができる。   As a means for measuring both the effects of 1) and 2) with one index, there is an evaluation based on a stress triaxiality. The stress triaxiality increases if the tensile force in 1) is high, and decreases if the compressive stress in 2) is high. Therefore, the stretch flangeability has a peak under the condition where the stress triaxiality is the highest. When this condition is selected by numerical simulation, it becomes a problem to evaluate to which region of the workpiece 1 the stress triaxiality is evaluated. As a result of trial and error, the present inventors have found that the reproducibility of the experimental results is good if the evaluation is performed based on the average value of the evaluation region 11 centering on the stretch flange cracking risk region such as the region 6 in FIG. Further, it is not necessary to reproduce the fracture of the workpiece 1 by simulation as in the case of actual shearing, and the punch 2 is in any stretch between 10 to 30% of the plate thickness of the workpiece 1 in the stretched bringe planned portion. It was found that when the stress triaxiality was evaluated at the time when only the value was cut, an evaluation result equivalent to that obtained when cutting up to cutting was obtained. Reproduction of cutting by simulation has a high calculation load, and can be easily evaluated according to this method.

前記危険部位の位置は、実験によって決定し、一番最初に割れた部位とすることが好ましく、評価領域の大きさは、図5に示すように、1)パンチ2、ダイ3間の切断稜線10の接線方向の距離が被加工材1の板厚、2)板厚方向の距離がパンチ2とダイ3の板厚方向距離、3)切断稜線10の垂直方向の距離がパンチ2とダイ3のクリアランスの3つを満足する面に囲まれた領域の大きさとすることが好ましく、このような位置と大きさが最も実験の結果を再現することができる。   The position of the dangerous part is determined by experiment and is preferably the part that was first cracked. The size of the evaluation area is as follows: 1) Cutting edge line between punch 2 and die 3 as shown in FIG. The distance in the tangential direction 10 is the thickness of the workpiece 1, the distance in the thickness direction is the distance in the thickness direction of the punch 2 and the die 3, and 3) the distance in the vertical direction of the cutting edge 10 is the punch 2 and the die 3. It is preferable to set the size of a region surrounded by a surface that satisfies the above three clearances, and such a position and size can reproduce the experimental result most.

以上により、特定のクリアランスのもと、傾斜角度のみを変えた複数回の数値シミュレーションを行い、最も上記の応力3軸度評価値が高い傾斜角度を伸びフランジ性に最適な傾斜角度として設計することができる(前記(1)に係る発明)。また、同時にクリアランスも変えた複数回のシミュレーションを行って同様の評価を行うことで、伸びフランジ性に対して最適なクリアランスと傾斜角度の組み合わせを選定することも可能である(前記(2)に係る発明)。なお、シミュレーションを行う回数(工具条件の数)は2度以上であれば良いが、回数が増えるほど最適傾斜角度が精度よく求まる。   As described above, under the specific clearance, multiple numerical simulations are performed with only the tilt angle changed, and the tilt angle with the highest stress triaxiality evaluation value is designed as the optimum tilt angle for stretch flangeability. (Invention according to (1) above). It is also possible to select the optimum combination of clearance and inclination angle for stretch flangeability by performing the same evaluation by performing a plurality of simulations with different clearances (see (2) above). Invention). The number of times of simulation (the number of tool conditions) may be 2 degrees or more, but the optimum inclination angle can be obtained more accurately as the number of times increases.

本発明の効果を実証することを目的として、3.2mm厚の最大引張り強度が590(MPa)である鋼板を対象に、半径15[mm]の半円を抜き落とすことを想定した図6に示すシミュレーションを行い、伸びフランジ性に対して最適な傾斜角度12の選定を行った。図6のシミュレーションは商用の有限要素法コードであるABAQUS/STANDARDを用いて行い、板厚方向に20分割となるように被加工材1を要素分割した。クリアランスは0.32[mm」に設定し、傾斜角度12の水準は0度、0.5度、1度、1.5度、2度とした。応力3軸度を評価する際のパンチ2押し込み量は板厚の20%である。また、評価部は切断線のR部中心である。   For the purpose of demonstrating the effect of the present invention, FIG. 6 assumes that a semi-circle having a radius of 15 [mm] is to be extracted from a steel sheet having a maximum tensile strength of 590 (MPa) with a thickness of 3.2 mm. The simulation shown was performed, and the optimum inclination angle 12 was selected for stretch flangeability. The simulation of FIG. 6 was performed using ABAQUS / STANDARD, which is a commercial finite element method code, and the workpiece 1 was divided into 20 parts in the thickness direction. The clearance was set to 0.32 [mm], and the level of the inclination angle 12 was 0 degree, 0.5 degree, 1 degree, 1.5 degree, and 2 degree. The amount by which the punch 2 is pushed when evaluating the triaxiality of the stress is 20% of the plate thickness. The evaluation part is the center of the R part of the cutting line.

図7に、応力3軸度の評価値を示す。傾斜角度12が0.5度が最も評価値が大きくなっており、傾斜角度0.5度が伸びフランジ性に最適な傾斜角度として選定された。図8は実際に伸びフランジ試験を行った結果である。伸びフランジ試験としては図9に示す、面内曲げ試験を行い、切断端面を亀裂が板厚方向に貫通した際の半円端部間距離8を評価値とした。傾斜角度が0.5度の際に最も伸びフランジ性は良くなっており、シミュレーションによる評価結果と一致していることが分かる。以上より、本発明の有効性が確認された。   FIG. 7 shows the evaluation value of the stress triaxiality. The evaluation value is the largest when the inclination angle 12 is 0.5 degree, and the inclination angle of 0.5 degree is selected as the optimum inclination angle for stretch flangeability. FIG. 8 shows the result of an actual stretch flange test. As the stretch flange test, an in-plane bending test shown in FIG. 9 was performed, and the distance 8 between the semicircular end portions when the crack penetrated the cut end surface in the plate thickness direction was used as the evaluation value. It can be seen that when the inclination angle is 0.5 degrees, the stretch flangeability is the best, which is consistent with the evaluation results by simulation. From the above, the effectiveness of the present invention was confirmed.

本発明の効果を実証することを目的として、実施例1と同じシミュレーションを行い、伸びフランジ性に対して最適な傾斜角度とクリアランスの組み合わせの選定を行った。傾斜角度12の水準は0度、0.5度、1度、1.5度、2度であり、クリアランスは0.16[mm]、0.32[mm]、0.48[mm]とした。応力3軸度を評価する際のパンチ2押し込み量は板厚の20%である。また、評価部は切断稜線のR部中心である。 For the purpose of demonstrating the effect of the present invention, the same simulation as in Example 1 was performed, and the optimum combination of inclination angle and clearance was selected for stretch flangeability. The levels of the inclination angle 12 are 0 degree, 0.5 degree, 1 degree, 1.5 degree and 2 degree, and the clearances are 0.16 [mm], 0.32 [mm] and 0.48 [mm]. did. The amount by which the punch 2 is pushed when evaluating the triaxiality of the stress is 20% of the plate thickness. The evaluation part is the center of the R part of the cutting ridgeline.

図10に、応力3軸度の評価値を示す。傾斜角度12が0.5度、クリアランス0.16[mm]の組み合わせが最も評価値が大きくなっており、伸びフランジ性に最適な傾斜角度12とクリアランスの組み合わせとして選定された。図11は実際に伸びフランジ試験を行った結果である。伸びフランジ試験としては実施例1と同様、図10に示す面内曲げ試験を行った。傾斜角度12が0.5度、クリアランスが0.16[mm]の際に最も伸びフランジ性は良くなっており、シミュレーションによる評価結果と一致していることが分かる。以上より、本発明の有効性が確認された。   FIG. 10 shows the evaluation value of the stress triaxiality. The combination of the inclination angle 12 of 0.5 degrees and the clearance of 0.16 [mm] has the highest evaluation value, and was selected as the optimum combination of the inclination angle 12 and the clearance for stretch flangeability. FIG. 11 shows the results of an actual stretch flange test. As the stretch flange test, the in-plane bending test shown in FIG. It can be seen that when the inclination angle 12 is 0.5 degrees and the clearance is 0.16 [mm], the stretch flangeability is the best, which is consistent with the evaluation results by simulation. From the above, the effectiveness of the present invention was confirmed.

一般的なせん断加工を模式的に示した正面図である。It is the front view which showed the general shearing process typically. せん断加工された被加工材の打ち抜き面を模式的に示す断面図である。It is sectional drawing which shows typically the punching surface of the workpiece processed by the shearing process. 傾斜部を有するパンチによるせん断加工を模式的に示す図であり、(a)は立面図、(b)は側面図である。It is a figure which shows typically the shearing process by the punch which has an inclination part, (a) is an elevation view, (b) is a side view. 伸びフランジ加工を模式的に示す図であり、(a)は加工前、(b)は加工後を示す。It is a figure which shows stretch flange processing typically, (a) shows before a process, (b) shows after a process. 応力3軸度評価領域を模式的に示す図であり、(a)は概観図、(b)は断面図である。It is a figure which shows typically a stress triaxiality evaluation area | region, (a) is a general-view figure, (b) is sectional drawing. 実施例1、2で行ったシミュレーションを示す図であり、(a)シミュレーション概要 (b) シミュレーション結果例(応力3軸度コンター)(c) 工具図である。It is a figure which shows the simulation performed in Example 1, 2, (a) Simulation outline (b) Simulation result example (stress triaxial degree contour) (c) It is a tool figure. 実施例1で行ったシミュレーション結果を示す図である。It is a figure which shows the simulation result performed in Example 1. FIG. 実施例1で行った実験結果を示す図である。It is a figure which shows the experimental result performed in Example 1. FIG. 伸びフランジ性評価のための面内曲げ試験を模式的に示す図である。It is a figure which shows typically the in-plane bending test for stretch flangeability evaluation. 実施例2で行ったシミュレーション結果を示す図である。It is a figure which shows the simulation result performed in Example 2. FIG. 実施例2で行った実験結果を示す図である。It is a figure which shows the experimental result performed in Example 2. FIG.

1 被加工材(金属板)
2 パンチ
3 ダイ
4 だれ
5 せん断面
6 破断面
7 ばり
8 板押さえ
9 パンチの傾斜刃部
10 切断稜線
11 応力3軸度評価部
12 刃の傾斜角度
1 Work material (metal plate)
2 Punch 3 Die 4 Droop 5 Shear surface 6 Fracture surface 7 Beam 8 Plate retainer 9 Punched blade edge 10 Cutting edge 11 Stress triaxiality evaluation section 12 Blade inclination angle

Claims (2)

切断線方向に対して傾斜角度を有する上刃からなるパンチと、下刃を有するダイによるせん断加工を行った被加工材を、伸びフランジ成形実験を行って最初に割れた該せん断加工部位を伸びフランジ割れ危険部位とし、次に該せん断加工の数値シミュレーションを、該傾斜角度を変えて複数回行い、該数値シミュレーション上でパンチ刃先が被加工材板厚の10〜30%の何れかの比率だけ食い込んだ時点において、前記伸びフランジ割れ危険部位を中心とし、1)前記パンチ、前記ダイ間の切断稜線の接線方向の距離が被加工材の板厚、2)板厚方向の距離が前記パンチと前記ダイの板厚方向距離、3)切断稜線の垂直方向の距離が前記パンチ前記ダイのクリアランス、の3つを満足する面に囲まれた領域の平均の応力3軸度を算出し、該平均応力3軸度が最大となる前記傾斜角度をせん断加工端面の伸びフランジ性に対する最適な傾斜角度とすることを特徴とする、せん断加工条件の設定方法。
ただし、応力3軸度はσ1,σ2,σ3を主応力とした場合に、
Figure 0005493687
である。
A work piece that has been sheared by a punch having an upper blade having an inclination angle with respect to the cutting line direction and a die having a lower blade is subjected to an elongation flange forming experiment, and the sheared portion first cracked is stretched. Next , numerical simulation of the shearing process is performed a plurality of times while changing the inclination angle, and the punch edge is on the numerical simulation at a ratio of 10 to 30% of the workpiece plate thickness. in the time of biting, the around the stretch flange crack risk portion, 1) the punch, the distance tangential thickness of the workpiece the cutting edge line between the die, 2) the distance in the thickness direction is the punch a plate thickness direction between the die, 3) the vertical distance of the cutting edge line calculates the average stress 3 Jikudo of the punch the die clearance areas surrounded by satisfying faces three, the Characterized in that an optimum tilt angle the tilt angle equalizing stress 3 Jikudo is maximized with respect to the stretch flangeability of the shearing edge, setting shear processing conditions.
However, the stress triaxiality is σ 1 , σ 2 , σ 3 when the main stress is
Figure 0005493687
It is.
切断線方向に対して傾斜角度を有する上刃からなるパンチと、下刃を有するダイによるせん断加工を行った被加工材を、伸びフランジ成形実験を行って最初に割れた該せん断加工部位を伸びフランジ割れ危険部位とし、次に該せん断加工の数値シミュレーションを、該傾斜角度及びパンチとダイとのクリアランスを変えて複数回行い、該数値ミュレーション上でパンチ刃先が被加工材板厚の10〜30%の何れかの比率だけ食い込んだ時点において、前記伸びフランジ割れ危険部位を中心とし、1)前記パンチ、前記ダイ間の切断稜線の接線方向の距離が被加工材の板厚、2)板厚方向の距離が前記パンチと前記ダイの板厚方向距離、3)切断稜線の垂直方向の距離が前記パンチ前記ダイのクリアランス、の3つを満足する面に囲まれた領域の平均の応力3軸度を算出し、該平均応力3軸度が最大となる前記傾斜角度及びパンチとダイとのクリアランスをせん断加工端面の伸びフランジ性に対する最適な傾斜角度及びパンチとダイとの前記クリアランスの組み合わせとすることを特徴とする、せん断加工条件の設定方法
ただし、応力3軸度はσ1,σ2,σ3を主応力とした場合に、
Figure 0005493687
である。
A work piece that has been sheared by a punch having an upper blade having an inclination angle with respect to the cutting line direction and a die having a lower blade is subjected to an elongation flange forming experiment, and the sheared portion first cracked is stretched. Next, a numerical simulation of the shearing process is performed a plurality of times while changing the inclination angle and the clearance between the punch and the die, and the punch blade tip is 10 to 10 times the thickness of the workpiece plate on the numerical simulation. at the time when the bite just one of a ratio of 30%, with a focus on the stretch flange crack risk portion, 1) the punch, the distance of the tangential cut edge line between the die plate thickness of the workpiece, 2) thickness direction between the distance in the thickness direction and the punch die, 3) the vertical distance of the cutting edge line is surrounded by the punch the die clearance surface that satisfies the three regions Calculating the average stress 3 Jikudo, said of the inclination angle and the optimal tilt angle and the punch and die clearance between the punch and the die relative to the stretch flangeability of the shearing edge the mean stress 3 Jikudo is maximum A shearing condition setting method characterized by a combination of clearances .
However, the stress triaxiality is σ 1 , σ 2 , σ 3 when the main stress is
Figure 0005493687
It is.
JP2009240947A 2009-10-20 2009-10-20 How to set shearing conditions Active JP5493687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009240947A JP5493687B2 (en) 2009-10-20 2009-10-20 How to set shearing conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009240947A JP5493687B2 (en) 2009-10-20 2009-10-20 How to set shearing conditions

Publications (2)

Publication Number Publication Date
JP2011088152A JP2011088152A (en) 2011-05-06
JP5493687B2 true JP5493687B2 (en) 2014-05-14

Family

ID=44106902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009240947A Active JP5493687B2 (en) 2009-10-20 2009-10-20 How to set shearing conditions

Country Status (1)

Country Link
JP (1) JP5493687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6269305B2 (en) * 2014-05-08 2018-01-31 新日鐵住金株式会社 Stretch flange processing method and processing apparatus
JP6927288B2 (en) 2017-03-27 2021-08-25 日本製鉄株式会社 Shearing method, shearing equipment, and shearing equipment
JP7206902B2 (en) * 2017-12-27 2023-01-18 日本製鉄株式会社 Formability evaluation method, program and recording medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951802B2 (en) * 2002-05-20 2007-08-01 日産自動車株式会社 3D simulation method of shearing process and method of creating finite element model
JP3708067B2 (en) * 2002-08-09 2005-10-19 川崎重工業株式会社 Method for predicting crack growth and deformation of elastoplastic material
JP4867679B2 (en) * 2007-01-30 2012-02-01 株式会社Ihi Nonlinear fracture mechanics parameter calculation method and evaluation method
JP5012256B2 (en) * 2007-06-28 2012-08-29 トヨタ自動車株式会社 Punching press processing method and punching press die
JP2009022986A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp Blanking apparatus provided with fracture measurement function
JP4850856B2 (en) * 2008-01-21 2012-01-11 新日本製鐵株式会社 Evaluation method of stretch flange crack
JP4935713B2 (en) * 2008-02-27 2012-05-23 Jfeスチール株式会社 Method for determining whether molding is possible at the shear edge of a pressed product

Also Published As

Publication number Publication date
JP2011088152A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5387022B2 (en) Punching method using chamfering die and hole punching device for metal plate stretch flange processing
KR101999459B1 (en) Blank, molded article, mold and method for producing blank
KR101837873B1 (en) Steel plate punching tool and punching method
JP4814851B2 (en) Estimation method of stretch flange crack in thin plate press forming simulation
JP5821898B2 (en) Shearing method
WO2019064922A1 (en) Method for evaluating deformation limit, crack prediction method, and method for designing press die
Choi et al. Application of mechanical trimming to hot stamped 22MnB5 parts for energy saving
JP2010158688A (en) Shearing/forming method
Luo et al. A novel method to significantly decrease the die roll during fine-blanking process with verification by simulation and experiments
JP2006224121A (en) Steel sheet punching tool, and punching method using the same
JP5493687B2 (en) How to set shearing conditions
JP2006289491A (en) Method for working high strength steel thin sheet having excellent crack resistance, and cutting blade for cutting
JP6350224B2 (en) Metal thin plate shearing mold, design method thereof, and shearing apparatus including the processing mold
JPWO2020145063A1 (en) Shearing method of metal plate and manufacturing method of pressed parts
JP6977913B1 (en) Manufacturing method of pressed parts and manufacturing method of blank material
JP6888472B2 (en) Shearing method
JP4943393B2 (en) Coining method after punching and coining punch
JP4510572B2 (en) Manufacturing method for automotive parts having punched end faces with excellent fatigue characteristics
JP2007307616A (en) Method and tool for shearing metal sheet, and metal sheet product obtained by shearing
JPH0857557A (en) Punching die of metal sheet and method therefor
JP7288212B2 (en) Blank manufacturing method, press-formed product manufacturing method, shape determining method, shape determining program, blank manufacturing apparatus, and blank
WO2018043730A1 (en) Shearing method
JP7338573B2 (en) Shearing blade, shearing mold, shearing method for metal plate, and method for manufacturing pressed parts
Jia et al. Numerical Investigation of Optimal Rooftop Punch Shape for Force Reduction and Dimensional Accuracy Control
JP7183036B2 (en) Punching method for punched material and punching die for punched material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5493687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140408

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350