JP5459438B1 - Network structure with excellent thermal dimensional stability - Google Patents
Network structure with excellent thermal dimensional stability Download PDFInfo
- Publication number
- JP5459438B1 JP5459438B1 JP2013237795A JP2013237795A JP5459438B1 JP 5459438 B1 JP5459438 B1 JP 5459438B1 JP 2013237795 A JP2013237795 A JP 2013237795A JP 2013237795 A JP2013237795 A JP 2013237795A JP 5459438 B1 JP5459438 B1 JP 5459438B1
- Authority
- JP
- Japan
- Prior art keywords
- network structure
- compression
- residual strain
- hardness
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/005—Synthetic yarns or filaments
- D04H3/007—Addition polymers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Nonwoven Fabrics (AREA)
- Mattresses And Other Support Structures For Chairs And Beds (AREA)
Abstract
【課題】熱寸法安定性と生産性に優れ、40℃圧縮残留歪試験後の硬度保持率が高い網状構造体を提供することを課題とする。
【解決手段】ポリオレフィン系熱可塑性エラストマーからなる繊維径が0.1mm〜3.0mmの連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造体であって、見掛け密度が0.005g/cm3〜0.20g/cm3であり、40℃圧縮残留歪が5%〜15%である網状構造体。
【選択図】なしAn object of the present invention is to provide a network structure having excellent thermal dimensional stability and productivity and having a high hardness retention after a 40 ° C. compression residual strain test.
A three-dimensional random structure in which a continuous linear body made of a polyolefin-based thermoplastic elastomer having a fiber diameter of 0.1 mm to 3.0 mm is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state. A network structure having a loop bonded structure, an apparent density of 0.005 g / cm 3 to 0.20 g / cm 3 , and a 40 ° C. compression residual strain of 5% to 15%.
[Selection figure] None
Description
本発明は、乾熱収縮率と耐熱性に優れた、洗濯乾燥を行っても寸法変化の起こりにくいオフィスチェアー、家具、ソファー、ベッドパッド、マットレス、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に好適な網状構造体に関する。 The present invention is an office chair, furniture, sofa, bed pad, mattress, train, automobile, two-wheeled vehicle, stroller, child seat, and other vehicles that are excellent in dry heat shrinkage and heat resistance and hardly change in dimensions even after washing and drying. The present invention relates to a net-like structure suitable for a seat, a floor mat, a shock-absorbing mat such as a collision or pinching member, and the like.
現在、家具、ベッド等の寝具、電車・自動車等の車両用座席に用いられるクッション材として、発泡−架橋型ウレタンが広く使われている。
発泡−架橋型ウレタンはクッション材としての耐久性は良好だが、透湿透水性や通気性に劣り、蓄熱性があるため蒸れやすいという問題点がある。さらに、熱可塑性では無いためリサイクルが困難であり、そのため焼却される場合に焼却炉の損傷が大きくなったり、焼却時に発生する有毒ガス除去に経費が掛かったりするなどの問題点が指摘されている。そこで埋立処分されることが多くなるが、埋立地の地盤の安定化が困難なため埋立場所が限定され、経費も高くなる問題点もある。また、加工性は優れるが製造中に使用される薬品の公害問題やフォーム後の残留薬品やそれに伴う臭気など種々の問題が指摘されている。
Currently, foam-crosslinked urethane is widely used as a cushioning material used for furniture, bedding such as beds, and seats for vehicles such as trains and automobiles.
Foam-crosslinked urethane has good durability as a cushioning material, but is inferior in moisture permeability and breathability and has a problem of being easily steamed due to heat storage. Furthermore, because it is not thermoplastic, it is difficult to recycle, and as a result, problems such as increased damage to the incinerator when incinerated and cost for removing toxic gas generated during incineration have been pointed out. . Therefore, landfill disposal is increased, but there is a problem that the landfill site is limited and the cost is increased because it is difficult to stabilize the ground of the landfill. Further, various problems have been pointed out, such as pollution problems of chemicals used during production, residual chemicals after foaming, and odors associated therewith, although the processability is excellent.
上述する問題に加えて、ポリウレタン素材を用いたベッドパッドやベッドマットを用いると、クッション性能は優れているが通気性に乏しく、長時間に渡って同じ姿勢で寝続けると褥瘡などを罹患する恐れがある。また、汚れた場合に洗濯することが困難であり、衛生上の問題を生じ易く、特に介護関連では大きな課題となっていた。 In addition to the above-mentioned problems, using a bed pad or bed mat made of polyurethane material has excellent cushioning performance but poor breathability, and if you keep sleeping in the same posture for a long time, you may suffer from pressure ulcers etc. There is. In addition, it is difficult to wash when it becomes dirty, and it tends to cause hygiene problems.
特許文献1および特許文献2には、網状構造体が開示されている。これは、上述した発泡−架橋型ウレタンに由来する諸問題を解決でき、クッション性能と通気性に優れるものである。しかし、熱寸法安定性が悪く課題となっていた。 Patent Document 1 and Patent Document 2 disclose a network structure. This can solve various problems derived from the above-mentioned foam-crosslinked urethane, and is excellent in cushion performance and air permeability. However, the thermal dimensional stability is poor and has been a problem.
低反発性を有し、座り心地と寝心地の良いポリオレフィン系の網状構造体を製造する方法が特許文献3に開示されている。しかしながら、ポリオレフィン系という比較的低融点のポリマー特性が起因し、40℃圧縮残留歪が20%前後と耐熱性に乏しいものであり、夏場等の外気温度が高くなる場合へたり易い等の問題があった。そうした背景から、40℃圧縮残留歪の改善要望が市場で大きくなりつつあった。 Patent Document 3 discloses a method for producing a polyolefin-based network structure having low resilience and good sitting comfort and sleeping comfort. However, due to the relatively low melting point polymer characteristic of polyolefin-based, the 40 ° C. compression residual strain is about 20%, which is poor in heat resistance, and there is a problem that it is easy to get out when the outside air temperature becomes high such as in summer. there were. Against this background, demand for improvement of 40 ° C. compression residual strain has been increasing in the market.
特許文献4には、熱寸法安定性に優れた網状構造体を製造する方法が開示されている。これは、水中または後加工の水処理で架橋を行うことから良好な溶融流動特性と耐熱性を向上させることが出来るが、架橋度合いがゲル分率65%以上と高いため、網状構造体が必要以上に硬くなる点、ウレタンと同様にリサイクルの面で問題がある点、重合時に比較的特殊なモノマーを共重合するために原料コストが上がったり、架橋処理に1週間かかるなどの生産性の面でも問題がある点等各種の問題があるものである。 Patent Document 4 discloses a method for producing a network structure having excellent thermal dimensional stability. This can improve the good melt flow properties and heat resistance because it is crosslinked in water or in post-treatment water treatment. However, since the degree of crosslinking is as high as 65% or more, a network structure is required. In terms of productivity, such as the fact that it becomes harder than that, there are problems in terms of recycling like urethane, the cost of raw materials increases due to the copolymerization of relatively special monomers during polymerization, and the crosslinking process takes a week. There are various problems such as problems.
本発明は、上記の従来技術の課題を背景になされたもので、熱寸法安定性と生産性に優れ、40℃圧縮残留歪試験前後の硬度変化が小さい網状構造体を提供することを課題とするものである。 The present invention has been made against the background of the problems of the prior art described above, and it is an object to provide a network structure that is excellent in thermal dimensional stability and productivity and has a small hardness change before and after the 40 ° C. compression residual strain test. To do.
本発明者らは、上記課題を解決するため鋭意研究した結果、ついに本発明を完成するに到った。すなわち、本発明は以下の通りである。
1.ポリオレフィン系熱可塑性エラストマーからなる繊維径が0.1mm〜3.0mmの連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造体であって、見掛け密度が0.005g/cm3〜0.20g/cm3であり、40℃圧縮残留歪が5%〜15%である網状構造体。
2.網状構造体の厚みが10mm〜200mmであり、40℃圧縮残留歪試験後の25%圧縮時硬度保持率が60%以上である上記1に記載の網状構造体。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is as follows.
1. A three-dimensional random loop joined structure in which a continuous linear body made of a polyolefin-based thermoplastic elastomer having a fiber diameter of 0.1 mm to 3.0 mm is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state. A network structure having an apparent density of 0.005 g / cm 3 to 0.20 g / cm 3 and a 40 ° C. compressive residual strain of 5% to 15%.
2. 2. The network structure according to 1 above, wherein the thickness of the network structure is 10 mm to 200 mm, and the hardness retention at 25% compression after the 40 ° C. compression residual strain test is 60% or more.
本発明による網状構造体は、40℃圧縮残留歪が小さく熱寸法安定性に優れ、40℃圧縮残留歪試験後の硬度保持率が大きい、すなわち40℃圧縮残留歪試験前後での硬度変化が小さい網状構造体である。この優れた熱寸法安定性と硬度保持率によって、オフィスチェアー、家具、ソファー、ベッドパッド、マットレス、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に用いられるクッション材に好適な網状構造体を提供することが可能となった。なかでも、夏場や体温によって温度がかかりへたりを生じ易いオフィスチェアー、家具、ソファー、ベッドパッド、マットレス等のクッション材に好適な網状構造体を提供することが可能となった。 The network structure according to the present invention has a small 40 ° C. compressive residual strain, excellent thermal dimensional stability, and a large hardness retention after the 40 ° C. compressive residual strain test, that is, a small change in hardness before and after the 40 ° C. compressive residual strain test. It is a network structure. With this excellent thermal dimensional stability and hardness retention rate, office chairs, furniture, sofas, bed pads, mattresses, train seats for cars such as trains, automobiles, motorcycles, strollers, and child seats, floor mats, and members for preventing collision and pinching Thus, it is possible to provide a net-like structure suitable for a cushion material used for a shock absorbing mat or the like. In particular, it has become possible to provide a net-like structure suitable for cushioning materials such as office chairs, furniture, sofas, bed pads, mattresses, etc., which are prone to heat up due to summer or body temperature.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の網状構造体は、ポリオレフィン系熱可塑性エラストマーからなる連続線状体を使用することで、素材の有するゴム弾性と、三次元構造体全体が一体化し、後述する疑似結晶化処理による効果を付与することで高耐久性と耐熱性を実現する。さらに、適切な連続線状体の繊維径と網状構造体形成時の残留応力を緩和することで厚み方向の耐久性と熱寸法安定性を向上せしめ、優れた耐熱性と耐久性が実現できる。また、再溶融により再生が可能となるため、リサイクルも容易となる。 The network structure of the present invention uses a continuous linear body made of a polyolefin-based thermoplastic elastomer, so that the rubber elasticity of the material and the entire three-dimensional structure are integrated, and the effect of the pseudo-crystallization treatment described later is achieved. High durability and heat resistance are realized by applying. Furthermore, by relaxing the fiber diameter of an appropriate continuous linear body and the residual stress at the time of forming a network structure, durability in the thickness direction and thermal dimensional stability can be improved, and excellent heat resistance and durability can be realized. Moreover, since it becomes possible to regenerate by remelting, recycling becomes easy.
本発明におけるポリオレフィン系熱可塑性エラストマーは、比重が0.94g/cm3以下の低密度ポリエチレン樹脂であることが好ましく、特にエチレンと炭素数3以上のαオレフィンからなるエチレン・α−オレフィン共重合体樹脂からなることが好ましい。本発明のエチレン・α−オレフィン共重合体は、特開平6−293813号公報に記載されている共重合体であることが好ましく、エチレンと炭素数3以上のα−オレフィンを共重合してなるものである。ここで、炭素数3以上のα−オレフィンとしては、例えばプロピレン、ブテン−1、ペンテン−1、ヘキセン−1、4−メチル−1−ペンテン、ヘプテン−1、オクテン−1、ノネン−1、デセン−1、ウンデセン−1、ドデセン−1、トリデセン−1、テトラデセン−1、ペンタデセン−1、ヘキサデセン−1、ヘプタデセン−1、オクタデセン−1、ノナデセン−1、エイコセン−1などが挙げられ、好ましくはブテン−1、ペンテン−1、ヘキセン−1、4−メチル−1−ペンテン、ヘプテン−1、オクテン−1、ノネン−1、デセン−1、ウンデセン−1、ドデセン−1、トリデセン−1、テトラデセン−1、ペンタデセン−1、ヘキサデセン−1、ヘプタデセン−1、オクタデセン−1、ノナデセン−1、エイコセン−1である。また、これら2種類以上を用いることもでき、これらα−オレフィンは通常1〜40重量%共重合される。この共重合体は、特定のメタロセン化合物と有機金属化合物を基本構成とする触媒系を用いてエチレンとα−オレフィンを共重合することによって得ることができる。 The polyolefin-based thermoplastic elastomer in the present invention is preferably a low-density polyethylene resin having a specific gravity of 0.94 g / cm 3 or less, particularly an ethylene / α-olefin copolymer comprising ethylene and an α-olefin having 3 or more carbon atoms. It is preferable to consist of resin. The ethylene / α-olefin copolymer of the present invention is preferably a copolymer described in JP-A-6-293131, and is formed by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms. Is. Here, examples of the α-olefin having 3 or more carbon atoms include propylene, butene-1, pentene-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, and decene. -1, undecene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonadecene-1, eicosene-1, etc., preferably butene -1, pentene-1, hexene-1, 4-methyl-1-pentene, heptene-1, octene-1, nonene-1, decene-1, undecene-1, dodecene-1, tridecene-1, tetradecene-1 , Pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonadecene-1, and eicosene-1. Two or more of these can also be used, and these α-olefins are usually copolymerized in an amount of 1 to 40% by weight. This copolymer can be obtained by copolymerizing ethylene and an α-olefin using a catalyst system having a specific metallocene compound and an organometallic compound as basic components.
ポリオレフィン系熱可塑性エラストマーの比重が0.94g/cm3を越えると、網状構造体が硬くなりやすく好ましくない。比重はより好ましくは0.935g/cm3以下であり、さら好ましくは0.93g/cm3以下である。比重の下限としては強度保持の観点から0.8g/cm3以上が好ましく、0.85g/cm3以上がより好ましい。 If the specific gravity of the polyolefin-based thermoplastic elastomer exceeds 0.94 g / cm 3 , the network structure is likely to become hard, which is not preferable. The specific gravity is more preferably 0.935 g / cm 3 or less, and still more preferably 0.93 g / cm 3 or less. 0.8 g / cm 3 or more is preferred from the viewpoint of strength retention as the lower limit of the specific gravity, 0.85 g / cm 3 or more is more preferable.
なお、本発明のポリオレフィン系熱可塑性エラストマーの融点は耐熱耐久性が保持できる80℃以上が好ましく、85℃以上のものが耐熱耐久性が向上するのでより好ましい。なお、必要に応じ、上記方法によって重合された二種類以上のポリマーや、ポリブタジエン、ポリイソプレン、スチレン系熱可塑性エラストマーとしてスチレンイソプレン共重合体やスチレンブタジエン共重合体やそれらの水添共重合体などのポリマー改質剤をブレンドすることができる。さらに、フタル酸エステル系、トリメリット酸エステル系、脂肪酸系、エポキシ系、アジピン酸エステル系、ポリエステル系の可塑剤、公知のヒンダードフェノール系、硫黄系、燐系、アミン系の酸化防止剤、ヒンダードアミン系、トリアゾール系、ベンゾフェノン系、ベンゾエート系、ニッケル系、サリチル系などの光安定剤、帯電防止剤、過酸化物などの分子調整剤、エポキシ系化合物、イソシアネート系化合物、カルボジイミド系化合物などの反応基を有する化合物、金属不活性剤、有機及び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助剤、有機及び無機系の顔料を添加することができる。また、耐熱耐久性や耐へたり性を向上させるために、熱可塑性樹脂の分子量を上げることも効果的である。 In addition, the melting point of the polyolefin-based thermoplastic elastomer of the present invention is preferably 80 ° C. or higher at which heat resistance can be maintained, and more preferably 85 ° C. or higher because the heat durability is improved. If necessary, two or more kinds of polymers polymerized by the above method, polybutadiene, polyisoprene, styrene-based thermoplastic elastomers such as styrene isoprene copolymers, styrene butadiene copolymers, and hydrogenated copolymers thereof. Of polymer modifiers can be blended. Furthermore, phthalate ester-based, trimellitic acid ester-based, fatty acid-based, epoxy-based, adipic acid ester-based, polyester-based plasticizers, known hindered phenol-based, sulfur-based, phosphorus-based, amine-based antioxidants, Reactions such as hindered amine, triazole, benzophenone, benzoate, nickel, salicyl and other light stabilizers, antistatic agents, peroxides and other molecular modifiers, epoxy compounds, isocyanate compounds, carbodiimide compounds, etc. Group-containing compounds, metal deactivators, organic and inorganic nucleating agents, neutralizing agents, antacids, antibacterial agents, fluorescent brighteners, fillers, flame retardants, flame retardant aids, organic and inorganic Of pigments can be added. It is also effective to increase the molecular weight of the thermoplastic resin in order to improve heat resistance and sag resistance.
本発明の熱寸法安定性に優れた網状構造体を構成するポリオレフィン系熱可塑性エラストマーからなる成分は、示差走査型熱量計にて測定した融解曲線において、20℃以上融点以下に吸熱ピークを有することが好ましい。融点以下の吸熱ピークは2つ以上有する場合もあり、融点との近さやベースライン形状によってはショルダーになって現れる場合もある。融点以下に吸熱ピークを有するものは、吸熱ピークを有しないものに比べて耐熱耐へたり性が著しく向上する。アニーリング処理は、融点より少なくとも5℃以上低い温度でサンプルを熱処理することができれば良いが、圧縮歪みを付与することでさらに耐熱耐へたり性が向上する。このような処理をしたクッション層を示差走査型熱量計で測定した融解曲線に室温以上融点以下の温度で吸熱ピークをより明確に発現する。なおアニーリングしない場合は融解曲線に室温以上融点以下に吸熱ピークを明確に発現しない。はっきりとしたメカニズムは分かっていないが、このことから類推すると、アニーリングによってハードセグメントが再配列された準安定中間相を形成し、耐熱耐へたり性が向上しているのではないかと考えられる(以下、この処理を疑似結晶化処理と言う)。 The component comprising the polyolefin-based thermoplastic elastomer constituting the network structure having excellent thermal dimensional stability according to the present invention has an endothermic peak at a melting point of 20 ° C. or higher and a melting point or lower in a melting curve measured with a differential scanning calorimeter. Is preferred. There may be two or more endothermic peaks below the melting point, and it may appear as a shoulder depending on the proximity to the melting point and the baseline shape. Those having an endothermic peak below the melting point have significantly improved heat sag resistance compared to those having no endothermic peak. The annealing treatment is not limited as long as the sample can be heat-treated at a temperature lower by at least 5 ° C. than the melting point, but the heat distortion resistance is further improved by applying compressive strain. An endothermic peak is more clearly expressed in a melting curve measured with a differential scanning calorimeter at a temperature not lower than the room temperature and not higher than the melting point of the cushion layer subjected to such treatment. In the case where annealing is not performed, an endothermic peak is not clearly expressed in the melting curve from room temperature to the melting point. The exact mechanism is not known, but by analogy with this, it is considered that the heat-stable resistance is improved by forming a metastable intermediate phase in which the hard segments are rearranged by annealing ( Hereinafter, this treatment is referred to as pseudo-crystallization treatment).
本発明の網状構造体は、繊維径が0.1mm〜3.0mmのポリオレフィン系熱可塑性エラストマーからなる連続線状体を曲がりくねらせランダムループを形成し、夫々のループを互いに溶融状態で接触せしめた三次元ランダムループ接合構造体である。繊維径はソフトな触感を得るためには重要な要素であり、繊維径が小さいとクッション性に必要な硬度が保てなくなり、逆に繊維径が大きすぎると硬くなり過ぎてしまうため、適正な範囲に設定する必要がある。繊維径が0.1mm未満であると細くなりすぎてしまい緻密性やソフトな触感は十分であるが必要な硬度を確保することが困難である。、一方、繊維径が3.0mmを超えると必要硬度は確保が容易となるが、ごわごわ感が顕著となる。好ましい繊維径は0.2mm〜2.5mmである。 In the network structure of the present invention, a continuous linear body made of a polyolefin-based thermoplastic elastomer having a fiber diameter of 0.1 mm to 3.0 mm is twisted to form a random loop, and the respective loops are brought into contact with each other in a molten state. 3D random loop joint structure. The fiber diameter is an important factor for obtaining a soft tactile sensation. If the fiber diameter is small, the hardness required for cushioning cannot be maintained. Conversely, if the fiber diameter is too large, the fiber becomes too hard. Must be set to a range. If the fiber diameter is less than 0.1 mm, the fiber will be too thin and the denseness and soft touch will be sufficient, but it will be difficult to ensure the required hardness. On the other hand, if the fiber diameter exceeds 3.0 mm, it is easy to ensure the required hardness, but the feeling of firmness becomes remarkable. A preferable fiber diameter is 0.2 mm to 2.5 mm.
本発明の網状構造体の見掛け密度は、クッション性を決める重要な要素であり、用途に応じて設計され、0.005g/cm3〜0.20g/cm3であり、好ましくは0.01g/cm3〜0.18g/cm3、より好ましくは0.02g/cm3〜0.15g/cm3である。見掛け密度が0.005g/cm3より小さいとクッション性に必要な硬度が保てなくなり、0.20g/cm3を越えると硬くなり過ぎてしまう。 The apparent density of the network structure of the present invention is an important factor that determines cushioning properties, is designed according to the application, and is 0.005 g / cm 3 to 0.20 g / cm 3 , preferably 0.01 g / cm 3 ~0.18g / cm 3, more preferably 0.02g / cm 3 ~0.15g / cm 3 . Apparent density is not maintained when the hardness required for 0.005 g / cm 3 less than the cushioning properties become too hard exceeds 0.20 g / cm 3.
本発明において40℃圧縮残留歪とは、網状構造体を10cm×10cmの大きさに切断し、厚みを計測(処理前厚み:a)し、この厚みに対して50%圧縮状態にして40℃環境下に22時間放置した後、圧縮状態を開放し室温で30分間冷却して再度厚みを計測(処理後厚み:b)して、式{(a)−(b)}/(a)×100より算出される。この値が小さいほど、夏場や比較的暖かい環境下で使用されても厚みの減少(へたり)がおこりにくいと言える。つまり、暖かい環境で使用した際の厚み変化(へたり)の指標であると言える。 In the present invention, 40 ° C. compressive residual strain means that the network structure is cut into a size of 10 cm × 10 cm, the thickness is measured (thickness before treatment: a), and the compressed state is 40% with respect to this thickness. After being left in the environment for 22 hours, the compressed state is released, and cooling is performed at room temperature for 30 minutes, and the thickness is measured again (post-treatment thickness: b). 100. It can be said that the smaller this value is, the less likely the thickness will decrease even when used in summer or in a relatively warm environment. That is, it can be said that it is an index of thickness change (sagging) when used in a warm environment.
一方、40℃圧縮残留歪試験後の25%圧縮時硬度保持率は、上記の測定の前後において25%圧縮時硬度を測定して試験後の硬度の保持率を算出する。すなわち、この40℃圧縮残留歪試験後の25%圧縮時硬度保持率は、暖かい環境下で使用して、厚み変化が生じた際の座り心地の変化を簡易的に表した指標であると言える。 On the other hand, the 25% compression hardness retention after the 40 ° C. compression residual strain test is calculated by measuring the 25% compression hardness before and after the above measurement and calculating the hardness retention after the test. That is, it can be said that the 25% compression hardness retention after the 40 ° C. compression residual strain test is an index that is used in a warm environment and simply represents a change in sitting comfort when a thickness change occurs. .
本発明の網状構造体の40℃圧縮残留歪は5%〜15%であり、好ましくは5%〜14%であり、、より好ましくは6%〜13%であり、さらに好ましくは7%〜12%であり、、最も好ましくは8%〜10%である。40℃圧縮残留歪が15%を超えると、目的とする寸法安定性に優れた網状構造体としての特性が満たされない。40℃圧縮残留歪が5%未満の網状構造体を得るためには、本発明の方法では不十分であり、架橋密度を上げるなどの厳しい加工条件にする必要が出てくるため、リサイクル性や溶融流動性の観点において本発明の趣旨から外れるため好ましくない。 The network structure of the present invention has a 40 ° C. compression residual strain of 5% to 15%, preferably 5% to 14%, more preferably 6% to 13%, and even more preferably 7% to 12%. %, And most preferably 8% to 10%. When the 40 ° C. compressive residual strain exceeds 15%, the desired properties as a network structure excellent in dimensional stability are not satisfied. In order to obtain a network structure having a compression residual strain of less than 5% at 40 ° C., the method of the present invention is insufficient, and it is necessary to use severe processing conditions such as increasing the crosslinking density. From the viewpoint of melt fluidity, it is not preferable because it deviates from the gist of the present invention.
本発明の網状構造体の40℃圧縮残留歪試験後の25%圧縮時硬度保持率は60%以上が好ましく、63%以上がより好ましく、65%以上がさらに好ましく、70%以上が最も好ましい。40℃圧縮残留歪試験後の25%圧縮時硬度保持率が60%未満だと比較的暑い環境での使用において硬度が変化してしまい好ましくない。40℃圧縮残留歪試験後の25%圧縮時硬度保持率の上限は特に限定されるものではないが、100%以下が好ましい。 The network structure of the present invention has a 25% compression hardness retention after a 40 ° C. compression residual strain test of preferably 60% or more, more preferably 63% or more, still more preferably 65% or more, and most preferably 70% or more. If the hardness retention at 25% compression after the 40 ° C. compression residual strain test is less than 60%, the hardness changes in use in a relatively hot environment, which is not preferable. The upper limit of the 25% compression hardness retention after the 40 ° C. compression residual strain test is not particularly limited, but is preferably 100% or less.
本発明の網状構造体の厚みは、クッション性に大きく関わり、10mm〜200mmであり、20mm〜120mmが好ましい。厚みが10mm未満では薄すぎて底付き感を感じ、200mmを超えるとクッション材として厚過ぎてしまい快適性を損なう。 The thickness of the network structure of the present invention is greatly related to cushioning properties, and is 10 mm to 200 mm, preferably 20 mm to 120 mm. If the thickness is less than 10 mm, the feeling of bottoming is too thin, and if it exceeds 200 mm, the cushion material is too thick and the comfort is impaired.
本発明の網状構造体は、多層構造のものも包含する。例えば、表面と下層を異なった繊維径の線状体で構成することができる。例えば、表層は繊維径の小さい線状体でソフトにしつつ、下層は繊維径の大きい線状体で硬度を持たせることで、ソフトな触感と底付き感の低減を両立することができる構造体とすることも好ましい実施形態である。多層にする方法は、網状構造体同士を積み重ねて側地等で固定する方法、加熱により溶融固着する方法、接着剤で接着する方法や縫製やバンド等で拘束する方法等が挙げられる。 The network structure of the present invention includes a multilayer structure. For example, the surface and the lower layer can be composed of linear bodies having different fiber diameters. For example, the surface layer is soft with a linear body with a small fiber diameter, while the lower layer is made of a linear body with a large fiber diameter to give hardness, so that both a soft tactile sensation and a feeling of bottoming can be reduced. Is also a preferred embodiment. Examples of the multi-layered method include a method of stacking network structures and fixing them on the side ground, a method of melting and fixing by heating, a method of bonding with an adhesive, a method of restraining with sewing or a band, and the like.
本発明の網状構造体を構成する線状体は、複合線状体とすることで、熱接着繊維機能を付与して、接触する線状体間の接合強度を高めることが可能である。例えば、融点の異なる同一素材を用い、シース成分に低融点成分、コア成分に高融点成分を配して吐出させ、冷却させることで単一成分のものより線状体同士の接合力を強くできるため、好ましい実施形態といえる。 By making the linear body constituting the network structure of the present invention a composite linear body, it is possible to impart a thermal bonding fiber function and increase the bonding strength between the linear bodies in contact. For example, by using the same material with different melting points, arranging a low melting point component in the sheath component and a high melting point component in the core component, and discharging and cooling, the bonding force between the linear bodies can be stronger than that of the single component Therefore, it can be said to be a preferred embodiment.
本発明の網状構造体を構成する線状体の断面形状は特には限定されないが、中空断面、異型断面やそれらを組み合わせた中空異型断面とすることで好ましい抗圧縮性やタッチを付与することができる。抗圧縮性は繊維径や用いる素材のモジュラスにより調整して繊維径を小さくしたり、柔らかい素材では中空率や異型度を高くしたりして初期圧縮応力の勾配を調整できるし、繊維径を大きくしたりできる。ややモジュラスの高い素材では中空率や異型度を低くしたり、繊維径を小さくしたりして適度の抗圧縮性を付与する。中空断面や異型断面の他の効果として、中空率や異型度を高くすると同一の抗圧縮性を付与した場合、軽量化が可能となり好ましい実施形態である。 The cross-sectional shape of the linear body constituting the network structure of the present invention is not particularly limited. However, a preferable anti-compression property and touch can be imparted by forming a hollow cross-section, an atypical cross-section, or a hollow atypical cross-section combining them. it can. The compressibility can be adjusted by adjusting the fiber diameter and the modulus of the material used, and the fiber diameter can be reduced by using a soft material. I can do it. A material having a slightly high modulus imparts a suitable anti-compressibility by lowering the hollowness and the degree of profile or reducing the fiber diameter. As another effect of the hollow cross section and the irregular cross section, when the hollow ratio and the irregularity degree are increased, when the same anti-compression property is imparted, the weight can be reduced, which is a preferable embodiment.
本発明の製法の一例を述べる。特開平7−68061号公報等に記載された公知の方法で三次元網状構造体は得られる。例えば、複数のオリフィスを持つ多列ノズルより熱可塑性エラストマーをノズルオリフィスに分配し、該熱可塑性エラストマーの融点より20℃以上高く、120℃未満高い溶融温度で、該ノズルより下方に向け吐出させ、溶融状態で互いに接触させて融着させ3次元構造を形成しつつ、引取り装置に設置された引き取りネットで挟み込み冷却槽で冷却せしめた後、ニップローラーで挟み込むことで冷却槽から引き出し、水切り後、乾燥させて、両面または片面が平滑化した三次元網状構造体を得る。片面のみを平滑化させる場合は、傾斜を持つ引き取ネット上に吐出させて、溶融状態で互いに接触させて融着させ3次元構造を形成しつつ引き取ネット面のみ形態を緩和させつつ冷却すると良い。 An example of the production method of the present invention will be described. A three-dimensional network structure can be obtained by a known method described in JP-A-7-68061. For example, the thermoplastic elastomer is distributed to the nozzle orifice from a multi-row nozzle having a plurality of orifices, and is discharged downward from the nozzle at a melting temperature that is 20 ° C. or more higher than the melting point of the thermoplastic elastomer and less than 120 ° C., In a molten state, they are brought into contact with each other and fused to form a three-dimensional structure. After being sandwiched by a take-up net installed in the take-up device and cooled by a cooling tank, the product is drawn from the cooling tank by being sandwiched by a nip roller and drained. And drying to obtain a three-dimensional network structure smoothed on both sides or one side. In the case of smoothing only one surface, it is preferable to discharge it on an inclined take-up net and cool it while relaxing the form of only the take-up net surface while forming a three-dimensional structure by bringing them into contact with each other in a molten state.
本発明の熱寸法安定性に優れた網状構造体を得るための方法としては、引き取りネットとその後に設置するニップローラーで速度差を生じさせ、成形加工時の応力を緩和させることである。この速度差は、ニップローラーの速度を遅くすることやコンベアネット後方にて応力を緩和させる機構によって実現でき、速度比率として示す。速度比率は下記式で算出する。
速度比率(%)=(1−ニップローラー速度/引き取りネット速度)×100
As a method for obtaining a network structure excellent in thermal dimensional stability of the present invention, a speed difference is generated between a take-up net and a nip roller installed thereafter to relieve stress during molding. This speed difference can be realized by reducing the speed of the nip roller or by a mechanism that relieves stress behind the conveyor net, and is shown as a speed ratio. The speed ratio is calculated by the following formula.
Speed ratio (%) = (1−nip roller speed / take-off net speed) × 100
速度比率は1.0%以上であることが好ましく、1.5%以上であることがより好ましく、2.0%以上であることがさらに好ましい。引き取りネットとニップローラーの速度比率は、残留歪みを解消するレベルを著しく超えてしまうと、網状構造体を真直ぐに引き取ることが困難になるため好ましくなく、20%以下が好ましく、15%以下がより好ましい。 The speed ratio is preferably 1.0% or more, more preferably 1.5% or more, and further preferably 2.0% or more. If the speed ratio between the take-off net and the nip roller is significantly higher than the level at which the residual distortion is eliminated, it is difficult to take the network structure straight, which is not preferable, and is preferably 20% or less, more preferably 15% or less. preferable.
速度比率を上げることで、熱寸法安定性が向上するメカニズムについては、全容が分かっている訳ではないが、下記のように考えられる。網状構造体をコンベアロールで牽引して残留歪みを解消せずに網状構造体を作成すると、ループの歪みが解消されずに、比較的不安定な状態で固定化されてしまい、長時間圧縮状態で保持された場合、ループのバネ効果が低減し、厚みが戻りにくくなってしまうのでは無いかと考えられる。一方、網状構造体を作成時に残留歪みを取り除くように作成すると、ループ形状が比較的安定な状態で固定化され、ループによるバネ効果を発揮することができるようになるためであると考えられる。このループの安定化によって、副次的に40℃圧縮残留歪試験後の25%硬度保持率も向上するものと考えられる。 The mechanism by which the thermal dimensional stability is improved by increasing the speed ratio is not fully understood, but is considered as follows. If a net-like structure is created without removing residual distortion by pulling the net-like structure with a conveyor roll, the loop distortion will not be eliminated and it will be fixed in a relatively unstable state and compressed for a long time. It is considered that the spring effect of the loop is reduced and the thickness is difficult to return. On the other hand, if the network structure is created so as to remove the residual strain, it is considered that the loop shape is fixed in a relatively stable state and the spring effect by the loop can be exhibited. By stabilizing this loop, it is considered that the 25% hardness retention after the 40 ° C. compression residual strain test is also improved.
本発明の熱寸法安定性に優れた網状構造体を得るための方法の他の方法としては、水切り後の乾燥温度を高くすることである。乾燥温度は60℃以上が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましい。乾燥温度はポリオレフィン系熱可塑性エラストマーの融点以下であることが好ましく、融点より10℃以上低いことがより好ましい。乾燥時間は1分以上が好ましく、10分以上がより好ましく、20分以上がさらに好ましく、30分以上が最も好ましい。 Another method for obtaining a network structure excellent in thermal dimensional stability of the present invention is to increase the drying temperature after draining. The drying temperature is preferably 60 ° C or higher, more preferably 70 ° C or higher, and further preferably 80 ° C or higher. The drying temperature is preferably equal to or lower than the melting point of the polyolefin-based thermoplastic elastomer, and more preferably 10 ° C. lower than the melting point. The drying time is preferably 1 minute or longer, more preferably 10 minutes or longer, further preferably 20 minutes or longer, and most preferably 30 minutes or longer.
本発明の熱寸法安定性に優れた網状構造体を得るための方法の他の方法としては、熱可塑性や製品のリサイクル性を損なわない範囲において、有機過酸化物、有機過酸化物と架橋助剤の併用、電子線、UV等で架橋して、ポリマー本来の耐熱性を向上させる方法も挙げられる。これは、過酸化物架橋剤を用いる場合は、溶融時に過酸化物架橋剤を添加し、溶融条件下もしくは後の乾燥工程において架橋させることができる。電子線架橋は、網状構造体を成型した後に、窒素雰囲気下や酸素共存下において電子線を照射し架橋することができる。UV架橋の場合は、各架橋剤を溶融時に添加し、網状体を形成した後にUVを照射することで架橋することができる。 Other methods for obtaining a network structure having excellent thermal dimensional stability according to the present invention include organic peroxides, organic peroxides and crosslinking aids as long as thermoplasticity and product recyclability are not impaired. A method of improving the inherent heat resistance of the polymer by using a combination of an agent, crosslinking with an electron beam, UV, or the like is also included. In the case of using a peroxide cross-linking agent, it can be cross-linked under melting conditions or in a subsequent drying step by adding a peroxide cross-linking agent at the time of melting. Electron beam crosslinking can be crosslinked by irradiating an electron beam in a nitrogen atmosphere or in the presence of oxygen after molding a network structure. In the case of UV cross-linking, each cross-linking agent is added at the time of melting, and after forming a network, it can be cross-linked by irradiating with UV.
架橋させる場合は、紡糸時溶融流動性の確保とリサイクル性の観点からゲル分率は50%以下が好ましい。ゲル分率は、キシレンを溶媒として網状構造体をソックスレー抽出し、残存した固形分重量を元の重量で割ることで算出される。 In the case of crosslinking, the gel fraction is preferably 50% or less from the viewpoint of ensuring melt fluidity during spinning and recyclability. The gel fraction is calculated by Soxhlet extraction of the network structure using xylene as a solvent and dividing the remaining solid weight by the original weight.
上記のゲル分率を達成するためには、過酸化物量は網状構造体の500ppm以上30000ppm以下が好ましい。電子線照射量は、120kGy以下が好ましい。上記の範囲は用いる過酸化物種、ポリマー組成、網状構造体や結晶化度等に応じて変化するため、適宜検討が必要である。 In order to achieve the above gel fraction, the amount of peroxide is preferably 500 ppm or more and 30000 ppm or less of the network structure. The electron beam irradiation amount is preferably 120 kGy or less. Since the above range varies depending on the peroxide species used, polymer composition, network structure, crystallinity, etc., appropriate examination is necessary.
本発明の熱寸法安定性に優れた網状構造体を得るために上記方法を適宜組み合わせることも好ましい方法である。 In order to obtain a network structure excellent in thermal dimensional stability of the present invention, it is also a preferable method to combine the above methods as appropriate.
網状構造体を構成する線状体をシースコア構造に複合化して、融点差を利用し接合強力向上を狙う場合は、シース成分とコア成分に使用する熱可塑性樹脂の融点差が20℃以上の熱可塑性樹脂を用いて、オリフィス直前でシースコア配分して吐出することで得ることができる。シース成分とコア成分に使用する熱可塑性樹脂の融点差が30℃以上であることがより好ましい。網状構造体を構成する線状体をシースコア構造に複合化する場合の紡糸温度は低融点成分の融点より、少なくとも10℃以上高い温度で行うのが好ましい。 When the linear body constituting the network structure is combined with a seascore structure and the aim is to improve the bonding strength by utilizing the melting point difference, the melting point difference of the thermoplastic resin used for the sheath component and the core component is 20 ° C. or more. It can be obtained by using a thermoplastic resin and distributing the seascore just before the orifice. More preferably, the difference in melting point between the thermoplastic resin used for the sheath component and the core component is 30 ° C. or more. The spinning temperature in the case where the linear body constituting the network structure is combined with the seascore structure is preferably at least 10 ° C. higher than the melting point of the low melting point component.
網状構造体を構成する線状体を異形断面化する場合、例えば、中空断面化する場合は、オリフィス形状を中空形成できるオリフィスを用いることで可能である。中空断面はバラス効果が大きい場合は中空率を高くし易いが、バラス効果が小さいものは、オリフィスの中空率をできるだけ高くしないと糸の中空率は高くならないので、用いる素材により最適なオリフィス形状を選択する必要がある。 In the case of making the cross-section of the linear body constituting the network structure, for example, in the case of a hollow cross-section, it is possible to use an orifice capable of forming a hollow orifice shape. If the hollow cross section has a large ballast effect, it is easy to increase the hollowness ratio.However, if the hollowness ratio is small, the hollowness ratio of the yarn cannot be increased unless the hollowness ratio of the orifice is increased as much as possible. Must be selected.
得られた網状構造体は、網状体状態でそのまま使用に供する場合は、水切り乾燥して、所望のサイズに切断して用いる。 When the obtained network structure is used as it is in a network state, it is drained and dried, cut into a desired size, and used.
得られた網状構造体を縁取りや各種文様等を熱成形で形成する場合は、熱成形温度は、網状構造体を構成するポリオレフィン系熱可塑性エラストマーの融点より10〜50℃低い温度が好ましい。熱可塑性エラストマーの融点より10℃未満低い温度では、構造体の変形が大きくなり過ぎる場合があり好ましくない。熱可塑性エラストマーの融点より50℃を超える低い温度では外側の熱成形形状が充分形成できない場合があり好ましくない。なお、熱成形は余熱して熱プレス金型にて成形するのが好ましい。余熱は片面のみ余熱して片面は非加熱でプレス成形してもよい。この場合はプレス圧力を約10%程度高くするとプレス接合が上下加熱金型で成形したものと同等の接合状態が得られる。得られた熱成形品は所望のサイズに打ちぬき等の方法で切断して各種クッションに供する。 When the obtained network structure is formed by edging or various patterns by thermoforming, the thermoforming temperature is preferably 10 to 50 ° C. lower than the melting point of the polyolefin-based thermoplastic elastomer constituting the network structure. If the temperature is lower than the melting point of the thermoplastic elastomer by less than 10 ° C., the deformation of the structure may become too large, which is not preferable. If the temperature is lower than the melting point of the thermoplastic elastomer by more than 50 ° C., the outer thermoformed shape may not be sufficiently formed. In addition, it is preferable that the thermoforming is preheated and formed with a hot press mold. The remaining heat may be heated only on one side and the other side may be press-molded without heating. In this case, when the pressing pressure is increased by about 10%, a joining state equivalent to that formed by pressing the upper and lower heating molds can be obtained. The obtained thermoformed product is cut into a desired size by a method such as punching and used for various cushions.
熱プレス成形により融点以下の温度で加熱することにより、前記の擬似結晶化処理効果を付与することができるので成形前に積極的にアニーリングを施す必要はない。疑似結晶化処理温度は、少なくとも融点より10℃以上低く、20℃以上の温度で行う。この処理で、融点以下に吸熱ピ−クを持ち、疑似結晶化処理しないもの(吸熱ピ−クを有しないもの)より耐へたり性が著しく向上する。 By heating at a temperature not higher than the melting point by hot press molding, the above-mentioned pseudo crystallization treatment effect can be imparted, so that it is not necessary to actively anneal before molding. The pseudo crystallization temperature is at least 10 ° C. lower than the melting point and 20 ° C. or higher. This treatment has an endothermic peak below the melting point, and the sag resistance is remarkably improved as compared with the case where the pseudo crystallization treatment is not performed (the case where no endothermic peak is provided).
本発明の網状構造体は、性能を低下させない範囲で樹脂製造過程から成形体に加工し、製品化する任意の段階で防臭抗菌、消臭、防黴、着色、芳香、難燃、吸放湿等の機能付与を薬剤添加等の処理加工により付与することができる。 The network structure of the present invention is processed from a resin production process to a molded body within a range not deteriorating the performance, and at any stage of commercialization, deodorizing antibacterial, deodorizing, antifungal, coloring, aroma, flame retardant, moisture absorption and desorption Etc. can be imparted by processing such as drug addition.
以下に、実施例を例示し、本発明を具体的に説明するが、本発明はこれらによって限定
されるものではない。なお、実施例中における特性値の測定及び評価は下記のように行った。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the measurement and evaluation of the characteristic value in an Example were performed as follows.
(1)繊維径
試料を20cm×20cmの大きさに切断し、網状体の表層と内層からそれぞれ10箇所から線状体を約5mm採集する。表層繊維は、網状体の厚み方向の最表層、つまりその繊維より外側に繊維が存在しない箇所から採取し、内層繊維は、網状体の厚み方向の厚み中心値30%以内から採取する。それぞれ10か所から採集した線状体の繊維径は、光学顕微鏡を適当な倍率で繊維径測定箇所にピントを合わせて測定する。(n=20の平均値)
(2)試料厚みおよび見掛け密度
試料を30cm×30cmの大きさに切断し、無荷重で24時間放置した後、高分子計器製FD−80N型測厚器にて4か所の高さを測定して平均値を試料厚みとする。試料重さは、上記試料を電子天秤に載せて計測する。また試料厚みから体積を求め、試料の重さを体積で除した値で示す。(それぞれn=4の平均値)
(3)融点
TAインスツルメント社製 示差走査熱量計Q200を使用し、昇温速度20℃/分で測定した吸発熱曲線から吸熱ピーク(融解ピーク)温度を求める。
(4)40℃圧縮残留歪
試料を10cm×10cmの大きさに切断し、(2)に記載の方法で処理前の厚み(a)を測定する。厚みを測定したサンプルを50%圧縮状態に保持できる冶具に挟み、40℃に設定した乾燥機に入れ、22時間放置する。その後サンプルを取り出し、冷却して圧縮歪みを除き30分後の厚み(b)を求め、処理前の厚み(a)とから、式{(a)−(b)}/(a)×100より算出する:単位%(n=3の平均値)。
(5)25%圧縮時硬度
試料を30cm×30cmの大きさに切断し、20℃±2℃の環境下に無荷重で24時間放置した後、20℃±2℃の環境下にあるオリエンテック社製テンシロンにてφ200mm、厚み3mmの加圧板を用いて、試料の中心部を10mm/minの速度で圧縮を開始し、荷重が5Nになる時の厚みを計測し、硬度計厚みとする。この時の加圧板の位置をゼロ点として、速度100mm/minで硬度計厚みの75%まで圧縮した後、速度100mm/minにて加圧板をゼロ点まで戻す。引き続き速度100mm/minで硬度計厚みの25%まで圧縮し、その際の荷重を25%圧縮時硬度とした:単位N/φ200(n=3の平均値)。
(6)40℃圧縮残留歪試験後の25%硬度保持率
試料を10cm×10cmの大きさに切断し、(2)に記載の方法で処理前の厚み(a)を測定する。厚みを測定したサンプルを(5)に記載の方法で25%圧縮時硬度を測定し、処理前25%圧縮時硬度(b)とする。硬度測定が完了した試料を(a)の厚みの50%圧縮状態で保持できる治具に挟み込み、40℃に設定した乾燥機に入れ、22時間放置する。22時間経過後、試料を取り出し圧縮状態を開放して試料を無荷重状態にして、室温に30分間放置する。30分間放置冷却後、(5)に記載の方法で25%圧縮時硬度を測定し、処理後25%圧縮時硬度(c)とする。40℃圧縮残留歪試験後の25%硬度保持率は、処理後25%圧縮時硬度を処理前25%圧縮時硬度で除す下記式にて算出される。
(40℃圧縮残留歪試験後での25%硬度保持率)
=(c)/(b):単位%(n=2の平均値)
(1) Fiber diameter A sample is cut into a size of 20 cm × 20 cm, and a linear body is collected from about 10 mm from each of the surface layer and the inner layer of the net-like body. The surface layer fibers are collected from the outermost surface layer in the thickness direction of the mesh body, that is, from a position where no fibers are present outside the fibers, and the inner layer fibers are collected from within 30% of the thickness center value in the thickness direction of the mesh body. The fiber diameters of the linear bodies collected from 10 places are measured by focusing an optical microscope at a fiber diameter measurement place at an appropriate magnification. (Average value of n = 20)
(2) Sample thickness and apparent density The sample was cut into a size of 30 cm x 30 cm, left unloaded for 24 hours, and then measured at four heights with a FD-80N type thickness gauge manufactured by Kobunshi Keiki. The average value is taken as the sample thickness. The sample weight is measured by placing the sample on an electronic balance. Further, the volume is obtained from the sample thickness, and is represented by a value obtained by dividing the weight of the sample by the volume. (Each average value of n = 4)
(3) Melting point An endothermic peak (melting peak) temperature is determined from an endothermic curve measured at a temperature increase rate of 20 ° C./min using a differential scanning calorimeter Q200 manufactured by TA Instruments.
(4) 40 degreeC compression residual strain A sample is cut | disconnected to a magnitude | size of 10 cm x 10 cm, and the thickness (a) before a process is measured by the method as described in (2). The sample whose thickness is measured is sandwiched between jigs that can be held in a 50% compressed state, placed in a dryer set at 40 ° C., and left for 22 hours. Thereafter, the sample is taken out, cooled and the compression strain is removed to determine the thickness (b) after 30 minutes. From the thickness (a) before treatment, the formula {(a)-(b)} / (a) × 100 Calculate: Unit% (average value of n = 3).
(5) Hardness at 25% compression After cutting a sample into a size of 30 cm x 30 cm and leaving it in an environment of 20 ° C ± 2 ° C under no load for 24 hours, Orientec in an environment of 20 ° C ± 2 ° C Using a pressure plate having a diameter of 200 mm and a thickness of 3 mm with a Tensilon manufactured by the company, compression of the center of the sample is started at a speed of 10 mm / min, and the thickness when the load reaches 5 N is measured to obtain the hardness meter thickness. The position of the pressure plate at this time is taken as the zero point, and after compression to 75% of the hardness meter thickness at a speed of 100 mm / min, the pressure plate is returned to the zero point at a speed of 100 mm / min. Subsequently, compression was performed at a speed of 100 mm / min to 25% of the thickness of the hardness meter, and the load at that time was defined as 25% compression hardness: unit N / φ200 (average value of n = 3).
(6) 25% hardness retention after 40 ° C. compression residual strain test A sample is cut into a size of 10 cm × 10 cm, and the thickness (a) before treatment is measured by the method described in (2). The sample whose thickness was measured was measured for the hardness at 25% compression by the method described in (5) to obtain the hardness (b) at 25% compression before treatment. The sample for which hardness measurement has been completed is sandwiched between jigs that can be held in a compressed state of 50% of the thickness of (a), placed in a dryer set at 40 ° C., and left for 22 hours. After 22 hours, the sample is removed, the compressed state is released, the sample is left unloaded, and left at room temperature for 30 minutes. After cooling for 30 minutes, the hardness at 25% compression is measured by the method described in (5), and the treated hardness is taken as 25% compression hardness (c). The 25% hardness retention after the 40 ° C. compression residual strain test is calculated by the following formula, which is obtained by dividing the 25% compression hardness after treatment by the 25% compression hardness before treatment.
(25% hardness retention after 40 ° C compression residual strain test)
= (C) / (b): Unit% (average value of n = 2)
[実施例1]
ポリオレフィン系エラストマーは、メタロセン化合物を触媒としてヘキサン、ヘキセン、エチレンを公知の方法で重合し、エチレン・α−オレフィン共重合体とし、次いで酸化防止剤2%を添加混合練込み後ペレット化して熱可塑性弾性樹脂A−1とA−2を得た。得られた熱可塑性弾性樹脂A−1は、ヘキセン共重合比率が2.9%、比重0.919、融点110℃、熱可塑性弾性樹脂A−2は、ヘキセン共重合比率が4.5%、比重0.906、融点103℃であった。熱可塑性弾性樹脂A−1に、架橋剤として日本油脂株式会社製パーブチルP−40MB(K)を1.5重量部混合混練後ペレット化して熱可塑性弾性樹脂A−3を得た。
[Example 1]
Polyolefin-based elastomers are polymerized by polymerizing hexane, hexene, and ethylene using a metallocene compound as a catalyst to form an ethylene / α-olefin copolymer, then adding 2% antioxidant, kneading, pelletizing, and thermoplasticity. Elastic resins A-1 and A-2 were obtained. The obtained thermoplastic elastic resin A-1 has a hexene copolymerization ratio of 2.9%, a specific gravity of 0.919, a melting point of 110 ° C., and the thermoplastic elastic resin A-2 has a hexene copolymerization ratio of 4.5%, The specific gravity was 0.906 and the melting point was 103 ° C. A thermoplastic elastic resin A-3 was obtained by mixing and kneading 1.5 parts by weight of perbutyl P-40MB (K) manufactured by NOF Corporation as a crosslinking agent to the thermoplastic elastic resin A-1.
幅方向1050mm、厚み方向の幅50mmのノズル有効面にオリフィスの形状は外径2mm、内径1.6mmでトリプルブリッジの中空形成性断面としたオリフィスを孔間ピッチ5mmの千鳥配列としたノズルに、得られた熱可塑性エラストマー(A−1)を溶融温度210℃にて、単孔当たり2.0g/minの吐出量でノズル下方に吐出させ、ノズル面26cm下に冷却水を配し、幅150cmのステンレス製エンドレスネットを平行に開口幅40mm間隔で一対の引取りコンベアーを水面上に一部出るように配して、該溶融状態の吐出線状を曲がりくねらせループを形成して接触部分を融着させつつ3次元網状構造を形成し、該溶融状態の網状体の両面を引取りコンベアーで挟み込みつつ毎分1.15mの速度で冷却水中へ引込み固化させ両面をフラット化した後、ニップローラーで毎分1.10mの速度、すなわち速度比率4.3%で引き取り、所定の大きさに切断して70℃熱風にて20分間乾燥熱処理して、網状構造体を得た。
得られた網状構造体の物性を表1に示す。得られた網状構造体は、断面形状が中空断面で中空率が28%、繊維径が1.2mmの連続線状体で形成されており、見掛け密度が0.056g/cm3、表面は平坦化されており、厚みが39mm、40℃圧縮残留歪が11.8%、25%圧縮時硬度が250N/φ200、40℃圧縮残留歪試験後の25%硬度保持率が64.0%の網状構造体であった。
In the nozzle effective surface of the width direction 1050mm, width direction width 50mm nozzle to the nozzle which made the orifice shape the outer diameter 2mm, the inner diameter 1.6mm, the orifice which made the triple bridge hollow formation cross section with the hole pitch 5mm staggered arrangement, The obtained thermoplastic elastomer (A-1) was discharged below the nozzle at a melting temperature of 210 ° C. at a discharge rate of 2.0 g / min per single hole, cooling water was placed under the nozzle surface 26 cm, and the width 150 cm. The stainless steel endless nets are arranged in parallel with an opening width of 40 mm apart so that a part of the pair of take-up conveyors comes out on the surface of the water, and the molten discharge line is twisted to form a loop to form a contact portion. A three-dimensional network structure is formed while fusing, and both sides of the molten network are sandwiched by a take-up conveyor and drawn into cooling water at a rate of 1.15 m / min. After both sides are flattened, they are taken out with a nip roller at a speed of 1.10 m / min, that is, with a speed ratio of 4.3%, cut into a predetermined size, dried and heat-treated with hot air at 70 ° C. for 20 minutes, and reticulated. A structure was obtained.
Table 1 shows the physical properties of the obtained network structure. The obtained network structure is formed of a continuous linear body having a hollow cross section, a hollow ratio of 28%, and a fiber diameter of 1.2 mm, an apparent density of 0.056 g / cm 3 , and a flat surface. A net-like structure having a thickness of 39 mm, a 40 ° C. compression residual strain of 11.8%, a 25% compression hardness of 250 N / φ200, and a 25% hardness retention after a 40 ° C. compression residual strain test of 64.0%. It was a structure.
[実施例2]
熱可塑性エラストマーとしてA−1を用い、紡糸温度220℃、単孔吐出量を1.8g/min、ノズル面−冷却水距離を30cmにし、引き取り速度を毎分1.26m、ニップローラーで毎分1.20mの速度、すなわち速度比率4.8%で引き取り、乾燥温度を80℃にした以外、実施例1と同様にして得た。
得られた網状構造体の物性を表1に示す。得られた網状構造体は、断面形状が中空断面で中空率が22%、繊維径が0.8mmの線状体で形成されており、見掛け密度が0.047g/cm3、表面は平坦化されており、厚みが38mm、40℃圧縮残留歪が10.2%、25%圧縮時硬度が198N/φ200、40℃圧縮残留歪試験後の25%圧縮時硬度保持率が68.1%の網状構造体であった。
[Example 2]
A-1 is used as the thermoplastic elastomer, the spinning temperature is 220 ° C., the single hole discharge rate is 1.8 g / min, the nozzle surface-cooling water distance is 30 cm, the take-up speed is 1.26 m / min, and the nip roller is min / min. It was obtained in the same manner as in Example 1 except that it was taken up at a speed of 1.20 m, that is, a speed ratio of 4.8%, and the drying temperature was 80 ° C.
Table 1 shows the physical properties of the obtained network structure. The obtained network structure is formed of a linear body having a hollow cross section, a hollowness of 22%, a fiber diameter of 0.8 mm, an apparent density of 0.047 g / cm 3 , and a flattened surface. The thickness is 38 mm, the 40 ° C. compression residual strain is 10.2%, the 25% compression hardness is 198 N / φ200, the 25% compression hardness retention after the 40 ° C. compression residual strain test is 68.1%. It was a network structure.
[実施例3]
熱可塑性エラストマーとしてA−2を用い、紡糸温度210℃、単孔吐出量を1.5g/min、ノズル面−冷却水距離を28cmにし、引き取り速度を毎分1.22m、ニップローラーで毎分1.20mの速度、すなわち速度比率1.6%で引き取り、乾燥時間を30分とした以外、実施例1と同様にして網状構造体を得た。
得られた網状構造体の物性を表1に示す。得られた網状構造体は、断面形状が中空断面で中空率が25%、繊維径が1.2mmの線状体で形成されており、見掛け密度が0.038g/cm3、表面は平坦化されており、厚みが40mm、40℃圧縮残留歪が13.8%、25%圧縮時硬度が166N/φ200、40℃圧縮残留歪試験後の25%硬度保持率が62.5%の網状構造体であった。
[Example 3]
A-2 is used as a thermoplastic elastomer, spinning temperature is 210 ° C., single hole discharge is 1.5 g / min, nozzle surface-cooling water distance is 28 cm, take-up speed is 1.22 m / min, nip roller is min / min A network structure was obtained in the same manner as in Example 1 except that the sample was taken at a speed of 1.20 m, that is, a speed ratio of 1.6%, and the drying time was 30 minutes.
Table 1 shows the physical properties of the obtained network structure. The obtained network structure is formed of a linear body having a hollow cross section, a hollow ratio of 25%, a fiber diameter of 1.2 mm, an apparent density of 0.038 g / cm 3 , and a flattened surface. A network structure having a thickness of 40 mm, a 40 ° C. compression residual strain of 13.8%, a 25% compression hardness of 166 N / φ200, a 25% hardness retention after a 40 ° C. compression residual strain test of 62.5% It was a body.
[実施例4]
熱可塑性エラストマーとしてA−3を用い、紡糸温度230℃、単孔吐出量を1.5g/min、ノズル面−冷却水距離を28cmにし、引き取り速度を毎分1.30m、ニップローラーで毎分1.26mの速度、すなわち速度比率3.1%で引き取り、乾燥温度を80℃とした以外、実施例1と同様にして網状構造体を得た。
得られた網状構造体の物性を表1に示す。得られた網状構造体は、断面形状が中空断面で中空率が24%、繊維径が0.9mmの線状体で形成されており、見掛け密度が0.036g/cm3、表面は平坦化されたおり、厚みが40mm、40℃圧縮残留歪が7.1%、25%圧縮時硬度が180N/φ200、40℃圧縮残留歪試験後の25%圧縮時硬度保持率が75.1%の網状構造体をであった。
[Example 4]
A-3 is used as a thermoplastic elastomer, spinning temperature is 230 ° C., single hole discharge is 1.5 g / min, nozzle surface-cooling water distance is 28 cm, take-up speed is 1.30 m / min, nip roller is min / min A network structure was obtained in the same manner as in Example 1 except that it was taken up at a speed of 1.26 m, that is, a speed ratio of 3.1%, and the drying temperature was 80 ° C.
Table 1 shows the physical properties of the obtained network structure. The obtained network structure is formed of a linear body having a hollow cross section, a hollow ratio of 24%, and a fiber diameter of 0.9 mm, an apparent density of 0.036 g / cm 3 , and a flat surface. The thickness is 40 mm, the compression residual strain at 40 ° C. is 7.1%, the hardness at 25% compression is 180 N / φ200, and the hardness retention at 25% compression after the 40 ° C. compression residual strain test is 75.1%. It was a network structure.
[比較例1]
引き取り速度を毎分1.15m、ニップローラーで毎分1.15mの速度、すなわち速度比率0.0%で引き取った以外、実施例1と同様にして網状構造体を得た。
得られた網状構造体の物性を表1に示す。得られた網状構造体は、断面形状が中空断面で中空率が27%、繊維径が1.2mmの線状体で形成されており、見掛け密度が0.056g/cm3、表面は平坦化されており、厚みが39mm、40℃圧縮残留歪が16.3%、25%圧縮時硬度が242N/φ200、40℃圧縮残留歪試験後の25%圧縮時硬度保持率が54.4%の網状構造体であった。
[Comparative Example 1]
A network structure was obtained in the same manner as in Example 1 except that the take-up speed was 1.15 m / min and the nip roller was 1.15 m / min, that is, the speed ratio was 0.0%.
Table 1 shows the physical properties of the obtained network structure. The obtained network structure is formed of a linear body having a hollow cross section, a hollow ratio of 27%, a fiber diameter of 1.2 mm, an apparent density of 0.056 g / cm 3 , and a flat surface. The thickness is 39 mm, the 40 ° C. compression residual strain is 16.3%, the 25% compression hardness is 242 N / φ200, the 25% compression hardness retention after the 40 ° C. compression residual strain test is 54.4%. It was a network structure.
[比較例2]
乾燥工程を無くした以外、実施例3と同様にして網状構造体を得た。
得られた網状構造体の物性を表1に示す。得られた網状構造体は、断面形状が中空断面で中空率が25%、繊維径が1.2mmの線状体で形成されており、見掛け密度が0.038g/cm3、表面は平坦化されたおり、厚みが40mm、40℃圧縮残留歪が22.2%、25%圧縮時硬度が155N/φ200、40℃圧縮時残留歪試験後の25%圧縮時硬度保持率が48.4%の網状構造体であった。
[Comparative Example 2]
A network structure was obtained in the same manner as in Example 3 except that the drying step was eliminated.
Table 1 shows the physical properties of the obtained network structure. The obtained network structure is formed of a linear body having a hollow cross section, a hollow ratio of 25%, a fiber diameter of 1.2 mm, an apparent density of 0.038 g / cm 3 , and a flattened surface. The thickness is 40 mm, the 40 ° C. compression residual strain is 22.2%, the 25% compression hardness is 155 N / φ200, the 25% compression hardness retention after the 40 ° C. compression residual strain test is 48.4%. It was a network structure.
本発明は、従来から有する快適な座り心地や通気性を損なわずに、従来からの課題であった熱寸法安定性に優れた、オフィスチェアー、家具、ソファー、ベッドパッド、マットレス、電車・自動車・二輪車・ベビーカー・チャイルドシート等の車両用座席、フロアーマットや衝突や挟まれ防止部材等の衝撃吸収用のマット等に好適な網状構造体を提供でき、産業界への寄与大である。 The present invention is an office chair, furniture, sofa, bed pad, mattress, electric train, automobile, and the like, which is excellent in thermal dimensional stability, which has been a problem in the past, without impairing the comfortable sitting comfort and breathability that have been conventionally provided A net-like structure suitable for vehicle seats such as motorcycles, strollers and child seats, floor mats and mats for shock absorption such as collision and pinching prevention members, etc. can be provided, greatly contributing to the industry.
Claims (2)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013237795A JP5459438B1 (en) | 2013-11-18 | 2013-11-18 | Network structure with excellent thermal dimensional stability |
PCT/JP2014/080326 WO2015072562A1 (en) | 2013-11-18 | 2014-11-17 | Net-like structure with superior thermal dimensional stability |
TW103139740A TWI598481B (en) | 2013-11-18 | 2014-11-17 | Reticular structure having excellent dimensional thermal stability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013237795A JP5459438B1 (en) | 2013-11-18 | 2013-11-18 | Network structure with excellent thermal dimensional stability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5459438B1 true JP5459438B1 (en) | 2014-04-02 |
JP2015098653A JP2015098653A (en) | 2015-05-28 |
Family
ID=50619283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013237795A Active JP5459438B1 (en) | 2013-11-18 | 2013-11-18 | Network structure with excellent thermal dimensional stability |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5459438B1 (en) |
TW (1) | TWI598481B (en) |
WO (1) | WO2015072562A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015209613A (en) * | 2014-04-28 | 2015-11-24 | 東洋紡株式会社 | Network structure with excellent lightweightness |
WO2016002940A1 (en) | 2014-07-04 | 2016-01-07 | パネフリ工業株式会社 | Three-dimensional net-like fiber assembly |
JP2016097056A (en) * | 2014-11-21 | 2016-05-30 | 東洋紡株式会社 | Molded article of network structure and manufacturing method thereof |
WO2016093334A1 (en) * | 2014-12-12 | 2016-06-16 | 東洋紡株式会社 | Net-shaped object with excellent high-temperature durability |
JP2016141915A (en) * | 2015-02-04 | 2016-08-08 | 東洋紡株式会社 | Net-like structure with excellent low rebound resilience |
US11780523B2 (en) | 2021-12-03 | 2023-10-10 | Harley-Davidson Motor Company, Inc. | Multi-material support pad |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6894698B2 (en) * | 2016-12-13 | 2021-06-30 | 株式会社エアウィーヴ | Reticulated structure and its manufacturing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001003257A (en) * | 1999-06-21 | 2001-01-09 | Ain Kosan Kk | Spring-structured resin-molded product and its production |
JP2004244740A (en) * | 2003-02-12 | 2004-09-02 | Toyobo Co Ltd | Mat |
JP2008545066A (en) * | 2005-03-17 | 2008-12-11 | ダウ グローバル テクノロジーズ インコーポレイティド | Three-dimensional random loop structures made from ethylene / α-olefin copolymers and uses thereof |
JP2013090657A (en) * | 2011-10-24 | 2013-05-16 | Toyobo Co Ltd | Bedding |
-
2013
- 2013-11-18 JP JP2013237795A patent/JP5459438B1/en active Active
-
2014
- 2014-11-17 TW TW103139740A patent/TWI598481B/en active
- 2014-11-17 WO PCT/JP2014/080326 patent/WO2015072562A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001003257A (en) * | 1999-06-21 | 2001-01-09 | Ain Kosan Kk | Spring-structured resin-molded product and its production |
JP2004244740A (en) * | 2003-02-12 | 2004-09-02 | Toyobo Co Ltd | Mat |
JP2008545066A (en) * | 2005-03-17 | 2008-12-11 | ダウ グローバル テクノロジーズ インコーポレイティド | Three-dimensional random loop structures made from ethylene / α-olefin copolymers and uses thereof |
JP2013090657A (en) * | 2011-10-24 | 2013-05-16 | Toyobo Co Ltd | Bedding |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015209613A (en) * | 2014-04-28 | 2015-11-24 | 東洋紡株式会社 | Network structure with excellent lightweightness |
WO2016002940A1 (en) | 2014-07-04 | 2016-01-07 | パネフリ工業株式会社 | Three-dimensional net-like fiber assembly |
US10590576B2 (en) | 2014-07-04 | 2020-03-17 | Panefri Industrial Co., Ltd. | Steric net-like fiber aggregation |
JP2016097056A (en) * | 2014-11-21 | 2016-05-30 | 東洋紡株式会社 | Molded article of network structure and manufacturing method thereof |
WO2016093334A1 (en) * | 2014-12-12 | 2016-06-16 | 東洋紡株式会社 | Net-shaped object with excellent high-temperature durability |
JP2016141915A (en) * | 2015-02-04 | 2016-08-08 | 東洋紡株式会社 | Net-like structure with excellent low rebound resilience |
US11780523B2 (en) | 2021-12-03 | 2023-10-10 | Harley-Davidson Motor Company, Inc. | Multi-material support pad |
Also Published As
Publication number | Publication date |
---|---|
TW201542896A (en) | 2015-11-16 |
JP2015098653A (en) | 2015-05-28 |
WO2015072562A1 (en) | 2015-05-21 |
TWI598481B (en) | 2017-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5459438B1 (en) | Network structure with excellent thermal dimensional stability | |
JP5454733B1 (en) | Network structure with excellent compression durability | |
US11970802B2 (en) | Fibrous network structure having excellent compression durability | |
US9970140B2 (en) | Network structure having excellent compression durability | |
US9938649B2 (en) | Fibrous network structure having excellent compression durability | |
JP5454734B1 (en) | Network structure with excellent compression durability | |
JP5909581B1 (en) | 3D crosspiece structure | |
TWI700324B (en) | Mesh structure with excellent low resilience | |
JP5459436B1 (en) | Network structure with excellent thermal dimensional stability | |
JP2020204143A (en) | Network structure excellent in heat-resistant durability | |
JP5459439B1 (en) | Network structure with excellent thermal dimensional stability | |
JPWO2020090648A1 (en) | Three-dimensional network structure | |
JP6318643B2 (en) | Network structure with excellent compression durability | |
JP6318825B2 (en) | Lightweight network structure | |
JP6311918B2 (en) | Network structure with excellent compression durability | |
JP6311919B2 (en) | Network structure with excellent compression durability | |
JP5532179B1 (en) | Network structure with excellent compression durability | |
JP2016000876A (en) | Network structured body excellent in molding processability | |
JP5532178B1 (en) | Network structure with excellent compression durability | |
JP6786773B2 (en) | Manufacturing method of reticulated structure molded product | |
WO2015064557A1 (en) | Network structure having excellent durability against compression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131230 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5459438 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |