JP5454389B2 - Flow measuring device - Google Patents
Flow measuring device Download PDFInfo
- Publication number
- JP5454389B2 JP5454389B2 JP2010151757A JP2010151757A JP5454389B2 JP 5454389 B2 JP5454389 B2 JP 5454389B2 JP 2010151757 A JP2010151757 A JP 2010151757A JP 2010151757 A JP2010151757 A JP 2010151757A JP 5454389 B2 JP5454389 B2 JP 5454389B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- measured
- propagation time
- fluid
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Volume Flow (AREA)
Description
本発明は超音波を利用してガス、水などの流体の流れを計測する流量計測装置に関するものである。 The present invention relates to a flow rate measuring apparatus that measures the flow of a fluid such as gas or water using ultrasonic waves.
従来のこの種の流体の流量計測装置は、図5に示すようなものが一般的であった(例えば、特許文献1−請求項1参照)。この装置は被計測流体の流れる流路11に設置した第1超音波振動子12および第2超音波振動子13と、被計測流体の実温度を測定する温度測定手段18と、第1超音波振動子12、第2超音波振動子13を駆動し超音波信号の送受信の伝播時間を計時する伝播時間測定手段14と、伝播時間測定手段14での測定タイミングを制御する制御手段17と、伝播時間測定手段14で測定された伝播時間から流量を演算する流量演算手段15と、温度測定手段18で測定された温度に従い算出された流量を所望の温度での流量に温度補正する流量補正手段16から構成されている。 A conventional fluid flow rate measuring apparatus of this type is generally as shown in FIG. 5 (see, for example, Patent Document 1-Claim 1). This apparatus includes a first ultrasonic transducer 12 and a second ultrasonic transducer 13 installed in a flow path 11 through which a fluid to be measured flows, temperature measuring means 18 for measuring the actual temperature of the fluid to be measured, and first ultrasonic waves. Propagation time measuring means 14 for driving the vibrator 12 and the second ultrasonic vibrator 13 to measure the propagation time of transmission / reception of ultrasonic signals, a control means 17 for controlling the measurement timing in the propagation time measuring means 14, and propagation A flow rate calculation unit 15 that calculates a flow rate from the propagation time measured by the time measurement unit 14 and a flow rate correction unit 16 that corrects the flow rate calculated according to the temperature measured by the temperature measurement unit 18 to a flow rate at a desired temperature. It is composed of
この装置において制御手段17は測定タイミングになれば伝播時間測定手段14を動作させる。伝播時間測定手段14は、制御手段17の指示に基き第1超音波振動子12と第2超音波振動子13を駆動して両超音波振動子間で送受信される超音波信号の伝播時間を測定する。流量演算手段15は、伝播時間測定手段14で測定された伝播時間から流路11を流れる被計測流体の流速及び流量を算出する。温度測定手段18は被計測流体の実温度を測定する。流量補正手段16は、流量演算手段15で算出された流量を温度測定手段18で測定した実温度から所望の温度での流量に補正するものであった。 In this apparatus, the control means 17 operates the propagation time measuring means 14 at the measurement timing. The propagation time measuring unit 14 drives the first ultrasonic transducer 12 and the second ultrasonic transducer 13 based on an instruction from the control unit 17 and determines the propagation time of the ultrasonic signal transmitted / received between both ultrasonic transducers. taking measurement. The flow rate calculation means 15 calculates the flow velocity and flow rate of the fluid to be measured flowing through the flow path 11 from the propagation time measured by the propagation time measurement means 14. The temperature measuring means 18 measures the actual temperature of the fluid to be measured. The flow rate correction unit 16 corrects the flow rate calculated by the flow rate calculation unit 15 from the actual temperature measured by the temperature measurement unit 18 to a flow rate at a desired temperature.
また、従来のこの種の流体の流量計測装置は、図6に示すようなものも一般的であった(例えば、特許文献1−請求項4参照)。この装置は被計測流体の流れる流路11に設置した第1超音波振動子12および第2超音波振動子13と、第1超音波振動子12、第2超音波振動子13を駆動し超音波信号の送受信の伝播時間を計時する伝播時間測定手段14と、伝播時間測定手段14での測定タイミングを制御する制御手段17と、伝播時間測定手段14で測定された伝播時間から流量を演算する流量演算手段15と、伝播時間測定手段14で測定された伝播時間から算出した流体の温度に従い流量演算手段15で算出された流量を補正する流量補正手段16から構成されている。 Further, a conventional flow measuring device of this type of fluid as shown in FIG. 6 is generally used (for example, refer to Patent Document 1 to Claim 4). This apparatus drives the first ultrasonic transducer 12 and the second ultrasonic transducer 13, and the first ultrasonic transducer 12 and the second ultrasonic transducer 13 installed in the flow path 11 through which the fluid to be measured flows, and is supersonic. The propagation time measuring means 14 for measuring the propagation time of transmission / reception of the sound wave signal, the control means 17 for controlling the measurement timing in the propagation time measuring means 14, and the flow rate is calculated from the propagation time measured by the propagation time measuring means 14. The flow rate calculation means 15 and the flow rate correction means 16 that corrects the flow rate calculated by the flow rate calculation means 15 according to the fluid temperature calculated from the propagation time measured by the propagation time measurement means 14.
この装置において制御手段17は測定タイミングになれば伝播時間測定手段14を動作させる。伝播時間測定手段14は、制御手段17の指示に基き第1超音波振動子12と第2超音波振動子13を駆動して両超音波振動子間で送受信される超音波信号の伝播時間を測定する。流量演算手段15は、伝播時間測定手段14で測定された伝播時間から被計測流体の流速及び流量を算出する。流量補正手段16は、流量演算手段15で算出された流量を伝播時間測定手段14で測定した伝播時間から算出される被計測流体の温度に基づき所望の温度での流量に補正していた。 In this apparatus, the control means 17 operates the propagation time measuring means 14 at the measurement timing. The propagation time measuring unit 14 drives the first ultrasonic transducer 12 and the second ultrasonic transducer 13 based on an instruction from the control unit 17 and determines the propagation time of the ultrasonic signal transmitted / received between both ultrasonic transducers. taking measurement. The flow rate calculation means 15 calculates the flow velocity and flow rate of the fluid to be measured from the propagation time measured by the propagation time measurement means 14. The flow rate correcting unit 16 corrects the flow rate calculated by the flow rate calculating unit 15 to a flow rate at a desired temperature based on the temperature of the fluid to be measured calculated from the propagation time measured by the propagation time measuring unit 14.
ここで、一般的に気体の音速Cと温度Tは一次式で近似することができる。すなわち
C=A×T+C0 A:温度係数 C0:その気体の0℃での音速
と表すことができる。
Here, generally, the sound velocity C and the temperature T of gas can be approximated by a linear expression. That is, C = A × T + C0 A: Temperature coefficient C0: Sound velocity of the gas at 0 ° C.
また、超音波信号の伝播時間tは第1超音波振動子12と第2超音波振動子13の間の距離Lを流体の音速で割った値になるので、
t=L/C=L/(A×T+C0)
と表すことができる。
Further, since the propagation time t of the ultrasonic signal is a value obtained by dividing the distance L between the first ultrasonic transducer 12 and the second ultrasonic transducer 13 by the sound velocity of the fluid,
t = L / C = L / (A × T + C0)
It can be expressed as.
従って、
T=(L/t−C0)/A
となり、流路を流れる被計測流体が予め判明している場合は音速の温度係数Aと0℃での音速C0が定数になるので、流体の温度Tは伝播時間tから算出することができる。
Therefore,
T = (L / t-C0) / A
Thus, when the fluid to be measured flowing through the flow path is known in advance, the temperature coefficient A of sound velocity and the sound velocity C0 at 0 ° C. are constants, so that the fluid temperature T can be calculated from the propagation time t.
このようにして超音波の伝播時間から流体の温度を算出することで所望の温度での流量に補正していた。 Thus, the flow temperature at the desired temperature is corrected by calculating the temperature of the fluid from the propagation time of the ultrasonic waves.
しかしながら、温度測定手段18を用いた上記従来の流量計測装置では、一般的に温度測定手段18にサーミスタを用いるがサーミスタに電源供給する必要があるため消費電力が大きくなる課題があった。 However, in the conventional flow rate measuring apparatus using the temperature measuring unit 18, a thermistor is generally used for the temperature measuring unit 18, but there is a problem that power consumption becomes large because it is necessary to supply power to the thermistor.
また、温度測定手段18を用いず伝播時間から被計測流体の温度を算出する上記従来の流量計測装置では、低消費電力は実現できるが被計測流体を特定しておく必要があるという課題があった。 Further, the above-described conventional flow rate measuring device that calculates the temperature of the fluid to be measured from the propagation time without using the temperature measuring means 18 has a problem that it is necessary to specify the fluid to be measured although low power consumption can be realized. It was.
すなわち、従来の流量計測装置では、低消費電力化と復数種類の被計測流体への対応が両立できないという課題があった。 In other words, the conventional flow rate measuring device has a problem in that it is impossible to achieve both low power consumption and compatibility with repetitive types of fluids to be measured.
本発明は、前記従来の課題を解決するもので、複数種類の被計測流体に対し、計測した流量を所望の温度での流量に低消費電力で補正できる流量計測装置を提供することを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems, and to provide a flow rate measuring device capable of correcting the measured flow rate to a flow rate at a desired temperature with low power consumption for a plurality of types of fluids to be measured. To do.
前記従来の課題を解決するために、本発明の流量計測装置は、流体管路に設けられ超音波信号を送受信する第1振動子及び第2振動子と、前記流体管路に流れる被計測流体の温度を測定する温度測定手段と、前記振動子を駆動し超音波信号の送受信の伝播時間を計時する伝播時間測定手段と、前記温度測定手段と前記伝播時間測定手段の測定タイミングを制御する制御手段と、前記伝播時間測定手段で測定された超音波信号の伝播時間から流量を演算する流量演算手段と、前記伝播時間測定手段で計時された伝播時間から被計測流体温度を算出し、この算出した温度に基づいて、前記流量演算手段で算出された流量を所望の温度での流量に温度補正する流量補正手段と、を備えた流量計測装置において、前記流量補正手段は、被計測流体の温度−伝播時間特性が特定できるまでは、前記温度測定手段で計測した温度に基づいて被計測流体の温度を算出し、被計測流体の温度−伝播時間特性の特定以降は、前記伝播時間測定手段で計時された伝播時間に基づいて被計測流体の温度を算出すること、を特徴とするものである。 In order to solve the above-described conventional problems, a flow rate measuring device according to the present invention includes a first vibrator and a second vibrator that are provided in a fluid conduit and transmit / receive an ultrasonic signal, and a fluid to be measured that flows in the fluid conduit. Temperature measuring means for measuring the temperature of the apparatus, propagation time measuring means for driving the vibrator to measure the propagation time of transmission / reception of ultrasonic signals, and control for controlling the measurement timing of the temperature measuring means and the propagation time measuring means Means, a flow rate calculating means for calculating a flow rate from the propagation time of the ultrasonic signal measured by the propagation time measuring means, and a fluid temperature to be measured is calculated from the propagation time measured by the propagation time measuring means, and this calculation is performed. based on the temperature, the flow rate measuring apparatus having a flow rate correction means, a for temperature correction to the flow rate of the flow rate calculated by the calculating means at the desired temperature, the flow rate correction means, the fluid to be measured temperature -Until the propagation time characteristic can be specified, the temperature of the fluid to be measured is calculated based on the temperature measured by the temperature measuring means. After the temperature-propagation time characteristic of the fluid to be measured is specified, the propagation time measuring means is used. The temperature of the fluid to be measured is calculated based on the measured propagation time .
そして、複数回の伝播時間と被計測流体の実温度の測定結果から被計測流体の温度−伝播時間特性(又は、温度−音速特性でもよい)を特定し、伝播時間から被計測流体の温度を算出し、所望の温度での流量に温度補正するものである。 Then, the temperature-propagation time characteristic of the fluid to be measured (or temperature-sound velocity characteristics) may be specified from the measurement results of the propagation time and the actual temperature of the fluid to be measured, and the temperature of the fluid to be measured may be determined from the propagation time. The temperature is calculated and corrected to the flow rate at a desired temperature.
これによって、最初、被計測流体の温度−伝播時間特性が特定できるまでは、温度測定手段で計測した温度に基いて所望の温度での流量に温度補正することになるが、被計測流
体の温度−伝播時間特性を特定した以後は、伝播時間から被計測流体の温度を算出できるので、低消費電力化が実現できる。
As a result, until the temperature-propagation time characteristic of the fluid to be measured is initially specified, the temperature is corrected to the flow rate at the desired temperature based on the temperature measured by the temperature measuring means. -After specifying the propagation time characteristic, the temperature of the fluid to be measured can be calculated from the propagation time, so that low power consumption can be realized.
更に、予め設定された温度−伝播時間特性がなくとも、被計測流体に応じて温度−伝播時間特性を学習するので複数種類の被計測流体への対応ができ、複数種類の被計測流体に対し、低消費電力な温度補正が実現できる。 Furthermore, even if there is no preset temperature-propagation time characteristic, the temperature-propagation time characteristic is learned according to the fluid to be measured, so it is possible to cope with multiple types of fluids to be measured. Low power consumption temperature correction can be realized.
本発明の流量計測装置によれば、温度測定手段で測定された温度と伝播時間測定手段で測定された伝播時間で被計測流体の温度−伝播時間特性を特定し、伝播時間のみで被計測流体の温度を算出することができるので、低消費電力化が実現できる。 According to the flow rate measuring apparatus of the present invention, the temperature-propagation time characteristic of the fluid to be measured is specified based on the temperature measured by the temperature measuring means and the propagation time measured by the propagation time measuring means, and the fluid to be measured is determined only by the propagation time. Therefore, low power consumption can be realized.
第1の発明は、流体管路に設けられ超音波信号を送受信する第1振動子及び第2振動子と、前記流体管路に流れる被計測流体の温度を測定する温度測定手段と、前記振動子を駆動し超音波信号の送受信の伝播時間を計時する伝播時間測定手段と、前記温度測定手段と前記伝播時間測定手段の測定タイミングを制御する制御手段と、前記伝播時間測定手段で測定された超音波信号の伝播時間から流量を演算する流量演算手段と、前記伝播時間測定手段で計時された伝播時間から被計測流体温度を算出し、この算出した温度に基づいて、前記流量演算手段で算出された流量を所望の温度での流量に温度補正する流量補正手段と、を備えた流量計測装置において、前記流量補正手段は、被計測流体の温度−伝播時間特性が特定できるまでは、前記温度測定手段で計測した温度に基づいて被計測流体の温度を算出し、被計測流体の温度−伝播時間特性の特定以降は、前記伝播時間測定手段で計時された伝播時間に基づいて被計測流体の温度を算出すること、を特徴とするものである。 A first invention is provided with a first vibrator and a second vibrator that are provided in a fluid conduit and transmit / receive an ultrasonic signal, a temperature measuring means that measures a temperature of a fluid to be measured flowing in the fluid conduit, and the vibration Measured by the propagation time measuring means for driving the child and measuring the propagation time of transmission and reception of the ultrasonic signal, the control means for controlling the measurement timing of the temperature measuring means and the propagation time measuring means, and the propagation time measuring means The flow rate calculating means for calculating the flow rate from the propagation time of the ultrasonic signal and the fluid temperature to be measured are calculated from the propagation time measured by the propagation time measuring means, and the flow rate calculating means is calculated based on the calculated temperature. in the flow rate measuring apparatus having a flow rate correction means, a for temperature corrected flow rate to the flow rate at the desired temperature, the flow rate correction means, the temperature of the fluid to be measured - until propagation time characteristic can be specified, the temperature Based on the measured in the measuring means temperature to calculate the temperature of the fluid to be measured, the fluid to be measured temperature - after a certain propagation time characteristic of the fluid to be measured based on the timed propagation time by the propagation time measuring means Calculating a temperature.
そして、最初、被計測流体の温度−伝播時間特性(又は、温度−音速特性でもよい)が特定できるまでは、温度測定手段で計測した温度に基づいて所望の温度での流量に温度補正することになるが、被計測流体の温度−伝播時間特性が特定した以後は、伝播時間だけから被計測流体の温度を算出することができるので、低消費電力化が実現できる。更に予め設定された温度−伝播時間特性がなくとも、被計測流体に応じて温度−伝播時間特性を学習するので複数種類の被計測流体への対応ができる。従って複数種類の被計測流体に対し、低消費電力な温度補正が実現できる。 And first, until the temperature-propagation time characteristic (or temperature-sound speed characteristic) of the fluid to be measured can be specified, the temperature is corrected to the flow rate at a desired temperature based on the temperature measured by the temperature measuring means. However, after the temperature-propagation time characteristic of the fluid to be measured is specified, the temperature of the fluid to be measured can be calculated only from the propagation time, so that low power consumption can be realized. Furthermore, even if there is no preset temperature-propagation time characteristic, the temperature-propagation time characteristic is learned according to the fluid to be measured, so that it is possible to cope with a plurality of types of fluids to be measured. Accordingly, temperature correction with low power consumption can be realized for a plurality of types of fluids to be measured.
第2の発明は、第1の発明において、前記温度測定手段は、定期的に被計測流体の温度を測定すると共に、温度−伝播時間特性は、前記温度測定手段の測定毎に特定され更新されるものである。そして、定期的に被計測流体の温度−伝播時間特性を再度特定して更新することができるので、第1の発明より高精度な流量の温度補正が実現できる。 In a second aspect based on the first aspect, the temperature measuring means periodically measures the temperature of the fluid to be measured, and the temperature-propagation time characteristic is specified and updated for each measurement by the temperature measuring means. Is. Since the temperature-propagation time characteristic of the fluid to be measured can be specified and updated again periodically, the temperature correction of the flow rate with higher accuracy than the first invention can be realized.
第3の発明は、第1の発明において、前記温度測定手段は、定期的に被計測流体の温度を測定すると共に、測定された被計測流体の温度が前回、温度−伝播時間特性を更新した時に測定した温度から所定値以上変化した場合、温度−伝播時間特性は、今回測定された温度に基づいて特定され更新されるものである。そして、温度変化があったと判定した場
合は被計測流体の温度−伝播時間特性を再度特定して更新することができるので、第1の発明より高精度な流量の温度補正が実現できる。
In a third aspect based on the first aspect, the temperature measuring means periodically measures the temperature of the fluid to be measured, and the measured temperature of the fluid to be measured last updated the temperature-propagation time characteristic. When the temperature is sometimes changed from the measured temperature by a predetermined value or more, the temperature-propagation time characteristic is specified and updated based on the temperature measured this time. When it is determined that there has been a temperature change, the temperature-propagation time characteristic of the fluid to be measured can be identified and updated again, so that a more accurate flow rate temperature correction can be realized than in the first invention.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の第1の実施の形態における流量計測装置の構成図を示すものである。図2は、本発明の第1の実施の形態における流量計測装置の動作フロー図である。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a flow rate measuring apparatus according to a first embodiment of the present invention. FIG. 2 is an operation flowchart of the flow rate measuring apparatus according to the first embodiment of the present invention.
図1において、流路1の途中に超音波を送受信する第1超音波振動子2(第1振動子)と第2超音波振動子3(第2振動子)が配置されている。温度測定手段8は、制御手段7からの指示に従い、流路1を流れる被計測流体の温度を測定する(以降、温度測定手段8で測定された温度を実温度と称す)。伝播時間測定手段4は、制御手段7からの指示に従い、第1超音波振動子2と第2超音波振動子3を駆動して両超音波振動子間を送受信する超音波信号の伝播時間を計測する。 In FIG. 1, a first ultrasonic transducer 2 (first transducer) and a second ultrasonic transducer 3 (second transducer) that transmit and receive ultrasonic waves are disposed in the middle of a flow path 1. The temperature measuring unit 8 measures the temperature of the fluid to be measured flowing through the flow path 1 in accordance with an instruction from the control unit 7 (hereinafter, the temperature measured by the temperature measuring unit 8 is referred to as an actual temperature). The propagation time measuring unit 4 drives the first ultrasonic transducer 2 and the second ultrasonic transducer 3 in accordance with an instruction from the control unit 7 and determines the propagation time of the ultrasonic signal transmitted and received between the ultrasonic transducers. measure.
流量演算手段5は、伝播時間測定手段4で測定された超音波信号の伝播時間から流路1に流れる流量を演算する。流量補正手段6は、流量演算手段5で算出された流量を、温度測定手段8で測定された流体の実温度や、伝播時間測定手段4で計測された伝播時間から算出した被計測流体の温度から、所望の温度での流量に温度補正する。制御手段7は、伝播時間測定手段4へ流量計測の指示を出力すると共に、温度測定手段8に流体の実温度測定の指示を出力する。 The flow rate calculation means 5 calculates the flow rate flowing through the flow path 1 from the propagation time of the ultrasonic signal measured by the propagation time measurement means 4. The flow rate correction means 6 calculates the flow rate calculated by the flow rate calculation means 5 from the actual temperature of the fluid measured by the temperature measurement means 8 and the temperature of the fluid to be measured calculated from the propagation time measured by the propagation time measurement means 4. The temperature is corrected to a flow rate at a desired temperature. The control means 7 outputs an instruction for measuring the flow rate to the propagation time measuring means 4 and also outputs an instruction for measuring the actual temperature of the fluid to the temperature measuring means 8.
以上のように構成された流量計測装置について以下その動作、作用を図2を用いて説明する。 The operation and action of the flow rate measuring apparatus configured as described above will be described below with reference to FIG.
まず、S001で流量計測が開始される。S002で流量を計測するタイミングになれば制御手段7は伝播時間測定手段4に流量計測の指示を出力する。伝播時間測定手段4はS003で制御手段7からの指示によりオンし、S004で第1超音波振動子2と第2超音波振動子3を駆動し、S005で両超音波振動子間を送受信する超音波信号の伝播時間を測定し出力する。S006で流量演算手段5は伝播時間測定手段4から出力された伝播時間に基いて流路1を流れる流量を演算し出力する。流量補正手段6はS007で伝播時間測定手段4から出力された伝播時間から被計測流体の音速を算出する。 First, flow measurement starts in S001. When it is time to measure the flow rate in S002, the control means 7 outputs a flow measurement instruction to the propagation time measurement means 4. The propagation time measuring unit 4 is turned on by an instruction from the control unit 7 in S003, drives the first ultrasonic transducer 2 and the second ultrasonic transducer 3 in S004, and transmits and receives between both ultrasonic transducers in S005. Measure and output ultrasonic signal propagation time. In S006, the flow rate calculation means 5 calculates and outputs the flow rate flowing through the flow path 1 based on the propagation time output from the propagation time measurement means 4. The flow rate correcting means 6 calculates the sound velocity of the fluid to be measured from the propagation time output from the propagation time measuring means 4 in S007.
ここで、被計測流体の音速をv、伝播時間をt、第1超音波振動子2と第2超音波振動子3の間の距離をLとすると、
v=L/t
の式により被計測流体の音速を算出することができる。
Here, if the velocity of sound of the fluid to be measured is v, the propagation time is t, and the distance between the first ultrasonic transducer 2 and the second ultrasonic transducer 3 is L,
v = L / t
The sound speed of the fluid to be measured can be calculated by the following equation.
そして、流量補正手段6はS008で被計測流体の温度−伝播時間特性を既に算出して特定済か否かを判定する。特定済と判定した場合、流量補正手段6はS012で特定済の温度−伝播時間特性から被計測流体の温度を伝播時間から算出する。S008で特定済で無いと判断した場合は、制御手段7はS009で被計測流体の実温度を測定するよう温度測定手段8に指示し、温度測定手段8は被計測流体の実温度を測定し、測定結果を流量補正手段6に出力する。 In step S008, the flow rate correction unit 6 determines whether the temperature-propagation time characteristic of the fluid to be measured has already been calculated and specified. If it is determined that the flow rate has been specified, the flow rate correction unit 6 calculates the temperature of the fluid to be measured from the propagation time from the temperature-propagation time characteristic already specified in S012. If it is determined in S008 that it has not been specified, the control means 7 instructs the temperature measuring means 8 to measure the actual temperature of the fluid to be measured in S009, and the temperature measuring means 8 measures the actual temperature of the fluid to be measured. The measurement result is output to the flow rate correction means 6.
そして、S010で被計測流体の実温度を測定したのが1回目か2回目かを判定する。2回目の場合はS011で2点の(温度,音速)や(温度,伝播時間)から被計測流体の温度−音速測定や温度−伝播時間特性を算出し特定する。そしてS012で特定済の温度
−伝播時間特性から被計測流体の温度を伝播時間より算出する。S010で1回目と判定した場合は、S013で測定した実温度を被計測流体の温度とする。そして、S014で流量補正手段6はS012で算出した温度又はS009及びS013で実測した温度に基き、所望温度での流量に温度補正を行う。そしてS002に戻り次回の計測タイミングになれば伝播時間を測定することを繰り返す。
In step S010, it is determined whether the actual temperature of the fluid to be measured is measured for the first time or the second time. In the second case, in S011, the temperature-sound velocity measurement and temperature-propagation time characteristics of the fluid to be measured are calculated and specified from two points (temperature, sound velocity) and (temperature, propagation time). In step S012, the temperature of the fluid to be measured is calculated from the propagation time from the temperature-propagation time characteristic already specified. When it is determined in S010 that it is the first time, the actual temperature measured in S013 is set as the temperature of the fluid to be measured. In step S014, the flow rate correction unit 6 performs temperature correction on the flow rate at the desired temperature based on the temperature calculated in step S012 or the temperature actually measured in steps S009 and S013. Then, returning to S002, the measurement of the propagation time is repeated at the next measurement timing.
以上のように、最初、被計測流体の温度−伝播時間特性(または、温度−音速特性)が特定できるまでは、温度測定手段8で計測した温度に基づいて所望の温度での流量に温度補正することになるが、被計測流体の温度−伝播時間特性(または、温度−音速特性)を特定した以後は、伝播時間測定手段4で計測された伝播時間だけから被計測流体の温度を算出することができるので、低消費電力化が実現できる。更に、被計測流体に応じて温度−伝播時間特性を特定し、更新することで複数種類の被計測流体への対応ができる。従って、複数種類の被計測流体に対し、低消費電力な温度補正が実現できる。 As described above, first, until the temperature-propagation time characteristic (or temperature-sound speed characteristic) of the fluid to be measured can be specified, the temperature is corrected to the flow rate at a desired temperature based on the temperature measured by the temperature measuring unit 8. However, after specifying the temperature-propagation time characteristic (or temperature-sound speed characteristic) of the fluid to be measured, the temperature of the fluid to be measured is calculated only from the propagation time measured by the propagation time measuring means 4. Therefore, low power consumption can be realized. Furthermore, it is possible to cope with a plurality of types of fluids to be measured by specifying and updating the temperature-propagation time characteristics according to the fluids to be measured. Therefore, temperature correction with low power consumption can be realized for a plurality of types of fluids to be measured.
(実施の形態2)
図3は、本発明の第2の実施の形態における流量計測装置の動作フロー図を示すものである。本実施の形態における流量計測装置の構成図は図1と同じである。
(Embodiment 2)
FIG. 3 shows an operation flow diagram of the flow rate measuring apparatus according to the second embodiment of the present invention. The block diagram of the flow rate measuring device in the present embodiment is the same as that in FIG.
図1において、実施の形態1とは制御手段7が温度測定手段8に流体の実温度を測定することを指示するタイミングが異なる。本実施の形態では、被計測流体の温度−音速特性や温度−伝播時間特性が特定できていない場合に、実流量を測定する指示を出力していた。しかしながら本実施の形態において実施の形態1の場合に加えて、前回被計測流体の実温度を測定してから所定の時間が経過したと判定した場合も実温度を測定する指示を出力する。即ち、温度測定手段8は定期的に被測定流体の実温度を測定する。 1, the timing at which the control means 7 instructs the temperature measurement means 8 to measure the actual temperature of the fluid is different from that of the first embodiment. In the present embodiment, an instruction to measure the actual flow rate is output when the temperature-sonic velocity characteristic and the temperature-propagation time characteristic of the fluid to be measured cannot be specified. However, in this embodiment, in addition to the case of the first embodiment, an instruction to measure the actual temperature is also output when it is determined that a predetermined time has elapsed since the actual temperature of the fluid to be measured was measured last time. That is, the temperature measuring means 8 periodically measures the actual temperature of the fluid to be measured.
以上のように構成された超音波流量計について以下その動作、作用を図3を用いて説明する。 The operation and action of the ultrasonic flowmeter configured as described above will be described below with reference to FIG.
まず、S001で流量計測が開始される。S002で流量を計測するタイミングになれば制御手段7は伝播時間測定手段4に流量計測の指示を出力する。伝播時間測定手段4はS003で制御手段7からの指示によりオンし、S004で第1超音波振動子2と第2超音波振動子3を駆動し、S005で両超音波振動子間を送受信する超音波信号の伝播時間を測定し出力する。S006で流量演算手段5は伝播時間測定手段4から出力された伝播時間に基いて流路1を流れる流量を演算し出力する。流量補正手段6はS007で伝播時間測定手段4から出力された伝播時間から被計測流体の音速を算出する。 First, flow measurement starts in S001. When it is time to measure the flow rate in S002, the control means 7 outputs a flow measurement instruction to the propagation time measurement means 4. The propagation time measuring unit 4 is turned on by an instruction from the control unit 7 in S003, drives the first ultrasonic transducer 2 and the second ultrasonic transducer 3 in S004, and transmits and receives between both ultrasonic transducers in S005. Measure and output ultrasonic signal propagation time. In S006, the flow rate calculation means 5 calculates and outputs the flow rate flowing through the flow path 1 based on the propagation time output from the propagation time measurement means 4. The flow rate correcting means 6 calculates the sound velocity of the fluid to be measured from the propagation time output from the propagation time measuring means 4 in S007.
ここで、被計測流体の音速をv、伝播時間をt、第1超音波振動子2と第2超音波振動子3の間の距離をLとすると、
v=L/t
により被計測流体の音速を算出することができる。
Here, if the velocity of sound of the fluid to be measured is v, the propagation time is t, and the distance between the first ultrasonic transducer 2 and the second ultrasonic transducer 3 is L,
v = L / t
Thus, the sound speed of the fluid to be measured can be calculated.
そして、流量補正手段6はS008で被計測流体の温度−伝播時間特性を既に算出して特定済か否かを判定する。特定済と判定した場合、更にS015で前回被計測流体の実温度測定からある時間が経過したか否かを判定する。S015である時間がまだ経過していないと判定した場合、流量補正手段6はS012で既に特定済の温度−伝播時間特性から被計測流体の温度を伝播時間から算出する。S008でまだ特定していないと判定した場合、又はS015である時間以上経過していると判定した場合は、制御手段7はS009で被計測流体の実温度を測定するよう温度測定手段8に指示し、温度測定手段8は被計測流体の実温度を測定し、測定結果を流量補正手段6に出力する。 In step S008, the flow rate correction unit 6 determines whether the temperature-propagation time characteristic of the fluid to be measured has already been calculated and specified. If it is determined that it has been specified, it is further determined in S015 whether or not a certain time has elapsed since the previous actual temperature measurement of the fluid to be measured. If it is determined that the time of S015 has not yet elapsed, the flow rate correction means 6 calculates the temperature of the fluid to be measured from the propagation time from the temperature-propagation time characteristics already specified in S012. If it is determined in S008 that it has not been specified yet, or if it is determined that the time of S015 has elapsed, the control means 7 instructs the temperature measuring means 8 to measure the actual temperature of the fluid to be measured in S009. The temperature measuring unit 8 measures the actual temperature of the fluid to be measured and outputs the measurement result to the flow rate correcting unit 6.
そして、S016で被計測流体の実温度を測定したのが2回以上あるか否かを判定する。2回目以上の場合はS017で2点以上の(温度,音速)や(温度,伝播時間)から被計測流体の温度−音速測定や温度−伝播時間特性を算出し特定する。既に特定済の温度−音速測定や温度−伝播時間特性があった場合は、新しく算出した温度−音速測定や温度−伝播時間特性に更新することで温度−音速測定や温度−伝播時間特性を補正していくことができる。 In S016, it is determined whether or not the actual temperature of the fluid to be measured has been measured twice or more. In the case of the second time or more, in S017, the temperature-sound velocity measurement and temperature-propagation time characteristics of the fluid to be measured are calculated and specified from two or more points (temperature, sound velocity) and (temperature, propagation time). If there is already specified temperature-sound speed measurement or temperature-propagation time characteristic, update to newly calculated temperature-sound speed measurement or temperature-propagation time characteristic to correct temperature-sound measurement or temperature-propagation time characteristic Can continue.
そして、S012で特定済の温度−伝播時間特性から被計測流体の温度を伝播時間から算出する。S016で2回未満と判定した場合は、S013で温度測定手段8で測定した実温度を被計測流体の温度とする。そしてS014で流量補正手段6はS012で算出した温度又はS009及びS013で実測した温度に基き、所望温度での流量に温度補正を行う。そしてS002に戻り次回の計測タイミングになれば伝播時間を測定することを繰り返す。 Then, the temperature of the fluid to be measured is calculated from the propagation time from the temperature-propagation time characteristic already specified in S012. When it is determined in S016 that it is less than twice, the actual temperature measured by the temperature measuring means 8 in S013 is set as the temperature of the fluid to be measured. In S014, the flow rate correction means 6 performs temperature correction on the flow rate at the desired temperature based on the temperature calculated in S012 or the temperature actually measured in S009 and S013. Then, returning to S002, the measurement of the propagation time is repeated at the next measurement timing.
以上のように、最初、被計測流体の温度−伝播時間特性(または、温度−音速特性)が特定できるまでは、温度測定手段8で計測した温度に基いて所望の温度での流量に温度補正することになるが、被計測流体の温度−伝播時間特性(または、温度−音速特性)が特定した以後は、伝播時間だけから被計測流体の温度を算出することができるので、低消費電力化が実現できる。 As described above, until the temperature-propagation time characteristic (or temperature-sound speed characteristic) of the fluid to be measured can be specified at first, the temperature is corrected to the flow rate at a desired temperature based on the temperature measured by the temperature measuring unit 8. However, after the temperature-propagation time characteristic (or temperature-sound speed characteristic) of the fluid to be measured is specified, the temperature of the fluid to be measured can be calculated only from the propagation time, thus reducing power consumption. Can be realized.
更に、被計測流体に応じて温度−伝播時間特性(または、温度−音速特性)を学習するので複数種類の被計測流体への対応ができる。従って複数種類の被計測流体に対し、低消費電力な温度補正が実現できる。 Furthermore, since temperature-propagation time characteristics (or temperature-sound speed characteristics) are learned according to the fluid to be measured, it is possible to cope with a plurality of types of fluids to be measured. Accordingly, temperature correction with low power consumption can be realized for a plurality of types of fluids to be measured.
また、前回の実温度測定から所定時間が経過した場合、温度測定手段8は被計測流体の実温度を再計測し、定期的に被計測流体の温度−伝播時間特性(または、温度−音速特性)を再度特定して、更新することができる。 Further, when a predetermined time has elapsed since the previous actual temperature measurement, the temperature measuring means 8 remeasures the actual temperature of the fluid to be measured, and periodically measures the temperature-propagation time characteristic (or temperature-sound speed characteristic) of the fluid to be measured. ) Can be identified and updated again.
(実施の形態3)
図4は、本発明の第3の実施の形態における流量計測装置の動作フロー図を示すものである。本実施の形態における流量計測装置の構成図は図1と同じとなる。
(Embodiment 3)
FIG. 4 shows an operation flow diagram of the flow rate measuring device according to the third embodiment of the present invention. The configuration diagram of the flow rate measuring device in the present embodiment is the same as that in FIG.
図1において、実施の形態1とは制御手段7が温度測定手段8に流体の実温度を測定することを指示するタイミングが異なる。実施の形態1では、被計測流体の温度−音速特性や温度−伝播時間特性が特定できていない場合に、実流量を測定する指示を出力していた。しかしながら、本実施の形態においては実施の形態1の場合に加えて、被計測流体の温度が前回実温度を測定してからある値以上変化したと判定した場合も実温度を測定する指示を出力する。 1, the timing at which the control means 7 instructs the temperature measurement means 8 to measure the actual temperature of the fluid is different from that of the first embodiment. In the first embodiment, an instruction to measure the actual flow rate is output when the temperature-sonic velocity characteristic and the temperature-propagation time characteristic of the fluid to be measured cannot be specified. However, in the present embodiment, in addition to the case of the first embodiment, an instruction to measure the actual temperature is also output when it is determined that the temperature of the fluid to be measured has changed by a certain value or more since the actual temperature was measured last time. To do.
以上のように構成された超音波流量計について以下その動作、作用を図4を用いて説明する。 The operation and action of the ultrasonic flowmeter configured as described above will be described below with reference to FIG.
まず、S001で流量計測が開始される。S002で流量を計測するタイミングになれば制御手段7は伝播時間測定手段4に流量計測の指示を出力する。伝播時間測定手段4はS003で制御手段7からの指示によりオンし、S004で第1超音波振動子2と第2超音波振動子3を駆動し、S005で両超音波振動子間を送受信する超音波信号の伝播時間を測定し出力する。S006で流量演算手段5は伝播時間測定手段4から出力された伝播時間に基いて流路1を流れる流量を演算し出力する。流量補正手段6は、S007で伝播時間測定手段4から出力された伝播時間から被計測流体の音速を算出する。 First, flow measurement starts in S001. When it is time to measure the flow rate in S002, the control means 7 outputs a flow measurement instruction to the propagation time measurement means 4. The propagation time measuring unit 4 is turned on by an instruction from the control unit 7 in S003, drives the first ultrasonic transducer 2 and the second ultrasonic transducer 3 in S004, and transmits and receives between both ultrasonic transducers in S005. Measure and output ultrasonic signal propagation time. In S006, the flow rate calculation means 5 calculates and outputs the flow rate flowing through the flow path 1 based on the propagation time output from the propagation time measurement means 4. The flow rate correction means 6 calculates the sound velocity of the fluid to be measured from the propagation time output from the propagation time measurement means 4 in S007.
ここで、被計測流体の音速をv、伝播時間をt、第1超音波振動子2と第2超音波振動子3の間の距離をLとすると、
v=L/t
により被計測流体の音速を算出することができる。
Here, if the velocity of sound of the fluid to be measured is v, the propagation time is t, and the distance between the first ultrasonic transducer 2 and the second ultrasonic transducer 3 is L,
v = L / t
Thus, the sound speed of the fluid to be measured can be calculated.
そして、流量補正手段6はS008で被計測流体の温度−伝播時間特性を既に算出して特定済か否かを判定する。特定済と判定した場合、S012で特定済の温度−伝播時間特性から被計測流体の温度を伝播時間から算出する。そしてS018で前回測定した被計測流体の実温度から温度変化がある値以上あるか否かを判定する。温度変化がある値未満と判定した場合は、S014に進む。S008でまだ特定していないと判定した場合、又はS018で温度変化がある値以上あったと判定した場合は、制御手段7はS009で被計測流体の実温度を測定するよう温度測定手段8に指示し、温度測定手段8は被計測流体の実温度を測定し、測定結果を流量補正手段6に出力する。 In step S008, the flow rate correction unit 6 determines whether the temperature-propagation time characteristic of the fluid to be measured has already been calculated and specified. If it is determined that it has been specified, the temperature of the fluid to be measured is calculated from the propagation time from the temperature-propagation time characteristic already specified in S012. Then, in S018, it is determined whether or not the temperature change is more than a certain value from the actual temperature of the fluid to be measured previously measured. If it is determined that the temperature change is less than a certain value, the process proceeds to S014. If it is determined in S008 that it has not been specified yet, or if it is determined in S018 that the temperature change has exceeded a certain value, the control means 7 instructs the temperature measurement means 8 to measure the actual temperature of the fluid to be measured in S009. The temperature measuring unit 8 measures the actual temperature of the fluid to be measured and outputs the measurement result to the flow rate correcting unit 6.
そして、S016で被計測流体の実温度を測定したのが2回以上あるか否かを判定する。2回目以上の場合はS017で2点以上の(温度,音速)や(温度,伝播時間)から被計測流体の温度−音速測定や温度−伝播時間特性を算出し特定する。既に特定済の温度−音速測定や温度−伝播時間特性があった場合は、新しく算出した温度−音速測定や温度−伝播時間特性に更新することで温度−音速測定や温度−伝播時間特性を補正していくことができる。そしてS019で特定済の温度−伝播時間特性から被計測流体の温度を伝播時間から算出する。S016で2回未満と判定した場合は、S013で温度測定手段8で測定した実温度を被計測流体の温度とする。 In S016, it is determined whether or not the actual temperature of the fluid to be measured has been measured twice or more. In the case of the second time or more, in S017, the temperature-sound velocity measurement and temperature-propagation time characteristics of the fluid to be measured are calculated and specified from two or more points (temperature, sound velocity) and (temperature, propagation time). If there is already specified temperature-sound speed measurement or temperature-propagation time characteristic, update to newly calculated temperature-sound speed measurement or temperature-propagation time characteristic to correct temperature-sound measurement or temperature-propagation time characteristic Can continue. In step S019, the temperature of the fluid to be measured is calculated from the propagation time from the temperature-propagation time characteristic already specified. When it is determined in S016 that it is less than twice, the actual temperature measured by the temperature measuring means 8 in S013 is set as the temperature of the fluid to be measured.
そして、S014で流量補正手段6はS012又はS019で算出した温度、又はS009及びS013で実測した温度に基き、所望温度での流量に温度補正を行う。そしてS002に戻り次回の計測タイミングになれば伝播時間を測定することを繰り返す。 In step S014, the flow rate correction unit 6 performs temperature correction on the flow rate at the desired temperature based on the temperature calculated in step S012 or S019 or the temperature actually measured in steps S009 and S013. Then, returning to S002, the measurement of the propagation time is repeated at the next measurement timing.
以上のように、最初、被計測流体の温度−伝播時間特性(または、温度−音速特性)が特定できるまでは、温度測定手段8で計測した温度に基いて所望の温度での流量に温度補正することになるが、被計測流体の温度−伝播時間特性(または、温度−音速特性)が特定した以後は、伝播時間だけから被計測流体の温度を算出することができるので、低消費電力化が実現できる。更に被計測流体に応じて温度−伝播時間特性(または、温度−音速特性)を学習するので複数種類の被計測流体への対応ができる。従って複数種類の被計測流体に対し、低消費電力な温度補正が実現できる。 As described above, until the temperature-propagation time characteristic (or temperature-sound speed characteristic) of the fluid to be measured can be specified at first, the temperature is corrected to the flow rate at a desired temperature based on the temperature measured by the temperature measuring unit 8. However, after the temperature-propagation time characteristic (or temperature-sound speed characteristic) of the fluid to be measured is specified, the temperature of the fluid to be measured can be calculated only from the propagation time, thus reducing power consumption. Can be realized. Furthermore, since temperature-propagation time characteristics (or temperature-sound speed characteristics) are learned according to the fluid to be measured, it is possible to cope with a plurality of types of fluids to be measured. Accordingly, temperature correction with low power consumption can be realized for a plurality of types of fluids to be measured.
更に、被計測流体の温度が前回の計測した実温度からある値以上変化したと判定した場合に被計測流体の実温度を再計測し、被計測流体の温度−伝播時間特性(または、温度−音速特性)を再学習して補正することができるので、請求項1より高精度な流量の温度補正が実現できる。 Further, when it is determined that the temperature of the fluid to be measured has changed by a certain value or more from the actual temperature measured last time, the actual temperature of the fluid to be measured is measured again, and the temperature-propagation time characteristic (or temperature- (Sonic velocity characteristics) can be re-learned and corrected, so that the temperature correction of the flow rate with higher accuracy than that of claim 1 can be realized.
以上のように、本発明にかかる流量計測装置は、最初、被計測流体の温度−音速特性、又は温度−伝播時間特性が特定できるまでは、温度測定手段で計測した温度に基いて所望の温度での流量に温度補正することになるが、被計測流体の温度−音速特性、又は温度−伝播時間特性が特定した以後は、伝播時間だけから被計測流体の温度を算出することができるので、低消費電力化が実現できるので、非常に低消費電力で汎用性の高い流量計測装置を実現することが可能となり、流量測定基準器及びガスメーターや水道メーター等の用途にも適用できる。 As described above, the flow rate measuring device according to the present invention is initially set to a desired temperature based on the temperature measured by the temperature measuring means until the temperature-sonic speed characteristic or the temperature-propagation time characteristic of the fluid to be measured can be specified. However, after the temperature-sound velocity characteristic or temperature-propagation time characteristic of the fluid to be measured is specified, the temperature of the fluid to be measured can be calculated from only the propagation time. Since low power consumption can be realized, it is possible to realize a flow measuring device with very low power consumption and high versatility, and it can also be applied to applications such as a flow measuring standard device, a gas meter, and a water meter.
1 流路
2 第1超音波振動子(第1振動子)
3 第2超音波振動子(第2振動子)
4 伝播時間測定手段
5 流量演算手段
6 流量補正手段
7 制御手段
8 温度測定手段
1 channel 2 first ultrasonic transducer (first transducer)
3 Second ultrasonic transducer (second transducer)
4 Propagation time measuring means 5 Flow rate calculating means 6 Flow rate correcting means 7 Control means 8 Temperature measuring means
Claims (3)
前記流体管路に流れる被計測流体の温度を測定する温度測定手段と、
前記振動子を駆動し超音波信号の送受信の伝播時間を計時する伝播時間測定手段と、
前記温度測定手段と前記伝播時間測定手段の測定タイミングを制御する制御手段と、
前記伝播時間測定手段で測定された超音波信号の伝播時間から流量を演算する流量演算手段と、
前記伝播時間測定手段で計時された伝播時間から被計測流体温度を算出し、この算出した温度に基づいて、前記流量演算手段で算出された流量を所望の温度での流量に温度補正する流量補正手段と、
を備えた流量計測装置において、
前記流量補正手段は、被計測流体の温度−伝播時間特性が特定できるまでは、前記温度測定手段で計測した温度に基づいて被計測流体の温度を算出し、被計測流体の温度−伝播時間特性の特定以降は、前記伝播時間測定手段で計時された伝播時間に基づいて被計測流体の温度を算出すること、
を特徴とする流量計測装置。 A first vibrator and a second vibrator that are provided in the fluid conduit and transmit and receive ultrasonic signals;
Temperature measuring means for measuring the temperature of the fluid to be measured flowing in the fluid conduit;
A propagation time measuring means for driving the vibrator and measuring the propagation time of transmission / reception of an ultrasonic signal;
Control means for controlling the measurement timing of the temperature measuring means and the propagation time measuring means;
A flow rate calculating means for calculating a flow rate from the propagation time of the ultrasonic signal measured by the propagation time measuring means;
A flow rate correction for calculating a fluid temperature to be measured from the propagation time measured by the propagation time measuring unit, and correcting the flow rate calculated by the flow rate calculating unit to a flow rate at a desired temperature based on the calculated temperature. Means,
In the flow measuring device with
The flow rate correction unit calculates the temperature of the fluid to be measured based on the temperature measured by the temperature measuring unit until the temperature-propagation time property of the fluid to be measured can be specified, and the temperature-propagation time property of the fluid to be measured. After the identification , calculating the temperature of the fluid to be measured based on the propagation time measured by the propagation time measuring means ,
A flow measuring device characterized by
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010151757A JP5454389B2 (en) | 2010-07-02 | 2010-07-02 | Flow measuring device |
US13/702,522 US20130081477A1 (en) | 2010-06-11 | 2011-06-10 | Flow meter device |
CN2011800288808A CN102939518A (en) | 2010-06-11 | 2011-06-10 | Flow rate measuring device |
PCT/JP2011/003299 WO2011155215A1 (en) | 2010-06-11 | 2011-06-10 | Flow rate measuring device |
EP11792174.2A EP2581716A1 (en) | 2010-06-11 | 2011-06-10 | Flow rate measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010151757A JP5454389B2 (en) | 2010-07-02 | 2010-07-02 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012013602A JP2012013602A (en) | 2012-01-19 |
JP5454389B2 true JP5454389B2 (en) | 2014-03-26 |
Family
ID=45600206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010151757A Expired - Fee Related JP5454389B2 (en) | 2010-06-11 | 2010-07-02 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5454389B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5906388B2 (en) | 2012-05-17 | 2016-04-20 | パナソニックIpマネジメント株式会社 | Flow measuring device |
CN108387278B (en) * | 2018-02-09 | 2019-11-08 | 杭州山科智能科技股份有限公司 | A kind of window time automatic adjusting method of ultrasound echo signal |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4307679B2 (en) * | 2000-03-01 | 2009-08-05 | パナソニック株式会社 | Gas security device |
JP2001249039A (en) * | 2000-03-07 | 2001-09-14 | Osaka Gas Co Ltd | Ultrasonic gas flow-velocity measuring method |
JP2001255186A (en) * | 2000-03-09 | 2001-09-21 | Matsushita Electric Ind Co Ltd | Flow rate measuring system |
-
2010
- 2010-07-02 JP JP2010151757A patent/JP5454389B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012013602A (en) | 2012-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011155215A1 (en) | Flow rate measuring device | |
RU2378620C2 (en) | Method to determine medium volume or weight rate | |
JP5468080B2 (en) | Process control system capable of performing approximate calculations for process control | |
JP2012509473A (en) | Method and apparatus for calibrating a measurement transducer of an ultrasonic flow measurement unit | |
JP2011158470A (en) | Ultrasonic flowmeter | |
RU2013150582A (en) | AUTOMATED FUNCTIONAL DIAGNOSTICS | |
WO2013172028A1 (en) | Flow rate measurement device | |
WO2011055532A1 (en) | Ultrasonic flowmeter | |
JP2012504815A5 (en) | ||
JP5454389B2 (en) | Flow measuring device | |
WO2013111527A1 (en) | Flow measurement device | |
JP5454372B2 (en) | Flow measuring device | |
JP2023058728A (en) | Method of proving multiple coriolis flowmeters integrated into common platform | |
JP5895148B2 (en) | Flow measuring device | |
JP2007051913A (en) | Correction method for ultrasonic flowmeter | |
JP2007322194A (en) | Fluid flow measuring instrument | |
JP5034510B2 (en) | Flow velocity or flow rate measuring device and its program | |
JP5239876B2 (en) | Flow measuring device | |
JP2014013206A (en) | Ultrasonic measuring device | |
JP7246021B2 (en) | ultrasonic flow meter | |
JP5092413B2 (en) | Flow velocity or flow rate measuring device | |
JP6064160B2 (en) | Flow measuring device | |
FI20175665A1 (en) | Equipment and method for measuring an airflow | |
JP5309188B2 (en) | Ultrasonic flow meter | |
WO2014002473A1 (en) | Flow rate measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130612 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20130712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131223 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5454389 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |