JP5447593B2 - Aluminum alloy fin material for heat exchanger - Google Patents
Aluminum alloy fin material for heat exchanger Download PDFInfo
- Publication number
- JP5447593B2 JP5447593B2 JP2012129005A JP2012129005A JP5447593B2 JP 5447593 B2 JP5447593 B2 JP 5447593B2 JP 2012129005 A JP2012129005 A JP 2012129005A JP 2012129005 A JP2012129005 A JP 2012129005A JP 5447593 B2 JP5447593 B2 JP 5447593B2
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- fin material
- heat exchanger
- conductivity
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
- Metal Rolling (AREA)
Description
本発明は、熱交換器用アルミニウム合金フィン材に関する。 The present invention relates to an aluminum alloy fin material for a heat exchanger.
アルミニウム製熱交換器は、アルミニウム合金フィン材をアルミニウム製の作動流体通路構成材料などにろう付けして構成される。熱交換器の性能特性を向上させるため、このアルミニウム合金フィン材の基本特性として、作動流体通路構成材料を防食するために犠牲陽極効果が要求されるとともに、ろう付け時の高温加熱により変形したり、ろうが浸透したりしないように優れた耐サグ性、耐エロージョン性が要求される。 The aluminum heat exchanger is configured by brazing an aluminum alloy fin material to an aluminum working fluid passage constituting material or the like. In order to improve the performance characteristics of the heat exchanger, the basic characteristics of this aluminum alloy fin material are that the sacrificial anode effect is required to prevent the working fluid passage constituent material from being corroded, and it is deformed by high-temperature heating during brazing. Therefore, excellent sag resistance and erosion resistance are required so that the wax does not penetrate.
フィン材には、上記の基本特性を満足するために、Mn、Feが添加されているが、最近では、製造プロセスに工夫を凝らして、さらにろう付け前の抗張力が低く、且つろう付け後の抗張力が高い熱交換器用アルミニウム合金フィンが開発されている。 In order to satisfy the above basic characteristics, Mn and Fe are added to the fin material, but recently, the manufacturing process has been devised to further reduce the tensile strength before brazing and after brazing. Aluminum alloy fins for heat exchangers with high tensile strength have been developed.
特許文献1には、Si:0.8〜1.4wt%、Fe:0.15〜0.7wt%、Mn:1.5〜3.0wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部が通常の不純物とAlからなる溶湯を注湯して、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続して鋳造しロールに巻き取った後、板厚0.05〜0.4mmに冷間圧延し、350〜500℃で中間焼鈍を施し、冷延率10〜50%の冷間圧延を行って最終板厚40〜200μmとする、ろう付け前の抗張力が240MPa以下、且つろう付け後の抗張力が150MPa以上の熱交換器用アルミニウム合金フィンの製造方法が開示されている。 In Patent Document 1, Si: 0.8 to 1.4 wt%, Fe: 0.15 to 0.7 wt%, Mn: 1.5 to 3.0 wt%, Zn: 0.5 to 2.5 wt% In addition, Mg as an impurity is limited to 0.05 wt% or less, a molten metal composed of ordinary impurities and Al is poured into the remaining, and a thin slab having a thickness of 5 to 10 mm is continuously formed by a twin belt type casting machine. After casting and winding on a roll, it is cold-rolled to a thickness of 0.05 to 0.4 mm, subjected to intermediate annealing at 350 to 500 ° C., and cold-rolled with a cold rolling rate of 10 to 50%. A method for producing aluminum alloy fins for heat exchangers having a plate thickness of 40 to 200 μm and a tensile strength before brazing of 240 MPa or less and a tensile strength after brazing of 150 MPa or more is disclosed.
一方、アルミニウム合金フィン材をアルミニウム製の作動流体通路構成材料などにろう付けする際、ろう付け後の冷却速度を規定することで所定の強度を得る熱交換器製造方法についても開発されてきた。 On the other hand, a heat exchanger manufacturing method for obtaining a predetermined strength by specifying a cooling rate after brazing when an aluminum alloy fin material is brazed to a working fluid passage constituent material made of aluminum has also been developed.
特許文献2には、ろう付け加熱後の冷却速度に着目して、ろう付け加熱後の引張強度の大きいフィンを得る熱交換器の製造方法が開示されている。具体的には、Al熱交換器をろう付けにより作成するに際し、ろう付け温度から350℃までの冷却を、冷却速度100℃/min〜1000℃/minで行うことにより、引張強度の大きいフィンを得る熱交換器の製造方法である。 Patent Document 2 discloses a method for manufacturing a heat exchanger that obtains fins having high tensile strength after brazing heating, focusing on the cooling rate after brazing heating. Specifically, when producing an Al heat exchanger by brazing, cooling from a brazing temperature to 350 ° C. is performed at a cooling rate of 100 ° C./min to 1000 ° C./min, so that a fin having a high tensile strength is obtained. It is the manufacturing method of the heat exchanger to obtain.
特許文献3には、チューブとフィンを積層し、チューブ両端にヘッダーを取付け、塩化物系フラックスを使用し、大気中、乾燥空気中あるいはフッ化物系非腐食性フラックスを使用し、不活性ガス中でろう付け接合するアルミニウム製熱交換器の製造において、ブレージングシートを使用し、外面がAl−Si系合金ろう材からなり、内面がAl−Zn系合金からなるチューブを作製し、ロウ付け接合後の500℃から200℃までの冷却を50℃/min以上の速度で冷却することを特徴とするアルミニウム熱交換器の製造方法が開示されている。 In Patent Document 3, tubes and fins are laminated, headers are attached to both ends of the tube, chloride flux is used, air, dry air or fluoride non-corrosive flux is used, and inert gas is used. In the manufacture of aluminum heat exchangers to be brazed and joined, brazing sheets are used, tubes with an outer surface made of an Al-Si alloy brazing material and an inner surface made of an Al-Zn alloy, and after brazing A method for producing an aluminum heat exchanger is disclosed in which the cooling from 500 ° C. to 200 ° C. is performed at a rate of 50 ° C./min or more.
しかし、上記特許文献1には、ろう付け加熱後の導電率(熱伝導度)についての記載はあるが、特にろう付け加熱後の冷却速度についての記述は見当たらない。 However, in the above-mentioned Patent Document 1, there is a description about the conductivity (heat conductivity) after brazing heating, but there is no description about the cooling rate after brazing heating.
また、上記特許文献2,3には、ろう付け加熱後の冷却速度を規定して、高強度のフィン材を得る技術については開示されているが、ロウ付け加熱後の導電率(熱伝導度)についての記載は見当たらない。 In addition, the above Patent Documents 2 and 3 disclose a technique for obtaining a high-strength fin material by specifying a cooling rate after brazing heating. However, the conductivity (thermal conductivity) after brazing heating is disclosed. ) Is not found.
さらに、最近では、フィン材の更なる薄肉化のため、基本的なろう付け特性に加え、ろう付け後の耐力が高く、且つろう付け後の熱伝導性に優れたアルミニウム合金フィン材の開発が望まれていた。 Furthermore, recently, in order to further reduce the thickness of the fin material, in addition to basic brazing characteristics, development of an aluminum alloy fin material that has high proof strength after brazing and excellent thermal conductivity after brazing. It was desired.
本発明の目的は、フィン成形が容易な適度のろう付け前強度を有し、しかもろう付け後には高い強度を有し、且つろう付け後の熱伝導度(導電率)の高い、耐サグ性、耐エロージョン性、自己耐食性、犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材を提供することである。 The object of the present invention is to provide a sag resistance that has a moderate strength before brazing that is easy to form a fin, has a high strength after brazing, and has a high thermal conductivity (conductivity) after brazing. Another object of the present invention is to provide an aluminum alloy fin material for a heat exchanger that is excellent in erosion resistance, self-corrosion resistance, and sacrificial anode effect.
上記の目的を達成するために、本発明によれば、Si:0.7〜1.4wt%、Fe:0.5〜1.4wt%、Mn:0.7〜1.4wt%、Zn:0.5〜2.5wt%を含み、さらに不純物としてのMgを0.05wt%以下に限定し、残部不可避的不純物とAlからなる組成を有し、ろう付後の抗張力が130MPa以上、耐力が45MPa以上であり、ろう付け後の再結晶粒径が500μm以上、且つろう付け後の導電率47%IACS以上であることを特徴とする、高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性に優れた熱交換器用アルミニウム合金フィン材が提供される。≪*≫ In order to achieve the above object, according to the present invention, Si: 0.7 to 1.4 wt%, Fe: 0.5 to 1.4 wt%, Mn: 0.7 to 1.4 wt%, Zn: Including 0.5 to 2.5 wt%, Mg as an impurity is limited to 0.05 wt% or less, the balance is inevitable impurities and Al, the tensile strength after brazing is 130 MPa or more, the proof stress is High strength and heat transfer characteristics, erosion resistance, sag resistance, characterized by being 45 MPa or more, recrystallized grain size after brazing of 500 μm or more, and conductivity of 47% IACS after brazing Provided is an aluminum alloy fin material for a heat exchanger that is excellent in heat resistance, sacrificial anode effect and self-corrosion resistance. ≪ * ≫
上記の本発明のフィン材を製造する方法は、上記フィン材の組成を有する溶湯を注湯して、双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造してロールに巻き取った後、第1段の冷間圧延を行って板厚1.0〜6.0mmとし、250〜550℃で第1次中間焼鈍を施し、更に第2段の冷間圧延を行って板厚0.05〜0.4mmとし、360〜550℃での第2次中間焼鈍を施し、冷間圧延率20〜75%の最終冷間圧延を行って最終板厚40〜200μmとすることを特徴とする。 In the method for producing the fin material of the present invention, a molten metal having the composition of the fin material is poured, and a thin slab having a thickness of 5 to 10 mm is continuously cast into a roll by a twin belt type casting machine. After winding, the first stage of cold rolling is performed to a plate thickness of 1.0 to 6.0 mm, the first intermediate annealing is performed at 250 to 550 ° C., and the second stage of cold rolling is performed. The thickness is set to 0.05 to 0.4 mm, the second intermediate annealing at 360 to 550 ° C. is performed, and the final cold rolling at a cold rolling rate of 20 to 75% is performed to obtain a final thickness of 40 to 200 μm. It is characterized by.
さらに、本発明者は、ろう付け後の耐力が高く、且つろう付け後の熱伝導性に優れたフィン材を得るためには、フィン材そのものの製造プロセスと共に、フィン材を熱交換器にろう付けした後の冷却速度を適切な範囲に制御することが重要であるとの結論に至った。 Furthermore, in order to obtain a fin material having a high yield strength after brazing and excellent thermal conductivity after brazing, the inventor brazed the fin material into a heat exchanger together with the manufacturing process of the fin material itself. It came to the conclusion that it is important to control the cooling rate after attaching to an appropriate range.
すなわち、上記の本発明のアルミニウム熱交換器を製造する方法は、本発明のフィン材をろう付け加熱することによりアルミニウム製熱交換器を製造する方法において、前記ろう付け加熱後の少なくともろう付温度から400℃までの温度範囲を冷却速度10〜50℃/minで冷却することを特徴とする。 That is, the method for producing the aluminum heat exchanger of the present invention described above is the method for producing an aluminum heat exchanger by brazing and heating the fin material of the present invention, at least the brazing temperature after the brazing heating. To 400 ° C. is cooled at a cooling rate of 10 to 50 ° C./min.
本発明の熱交換器用アルミニウム合金フィン材は、組成と、ろう付け後の耐力、再結晶粒径、導電率とを規定したことにより、高強度で且つ優れた伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性を確保できる。 The aluminum alloy fin material for heat exchangers of the present invention has a high strength and excellent heat transfer characteristics, erosion resistance, resistance to resistance by specifying the composition, proof strength after brazing, recrystallized grain size, and conductivity. Sag, sacrificial anode effect and self-corrosion resistance can be secured.
本発明のフィン材の製造方法は、本発明のフィン材の組成の溶湯を用いて、双ベルト式鋳造機で薄スラブとし、規定した条件で冷間圧延/焼鈍/冷間圧延/焼鈍/冷間圧延を行なうことにより、上記の諸特性を備えたフィン材を製造することができる。 The manufacturing method of the fin material of the present invention uses a molten metal having the composition of the fin material of the present invention to form a thin slab with a twin-belt casting machine and cold rolling / annealing / cold rolling / annealing / cold under specified conditions. By performing hot rolling, a fin material having the above-mentioned various characteristics can be manufactured.
本発明の熱交換器の製造方法は、本発明のフィン材をろう付けした後の冷却速度を規定したことにより、Al-Mn析出物、Al-(Fe・Mn)-Si系析出物を析出させ、ろう付け後に高い導電率を達成できる。 The heat exchanger manufacturing method of the present invention precipitates Al—Mn precipitates and Al— (Fe · Mn) —Si based precipitates by defining the cooling rate after brazing the fin material of the present invention. And high conductivity can be achieved after brazing.
本発明の熱交換器用アルミニウム合金フィン材の組成を限定した理由を説明する。 The reason which limited the composition of the aluminum alloy fin material for heat exchangers of the present invention will be described.
〔Si:0.7〜1.4wt%〕
Siは、Fe、Mnと共存してろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系の化合物を生成し、強度を向上させ、同時にMnの固溶量を減少させて熱伝導度(導電率)を向上させる。Siの含有量が0.7wt%未満ではその効果が十分でなく、1.4wt%を超えると、ろう付け時にフィン材の溶融を生じるおそれがある。従って、Si含有量は0.7〜1.4wt%に限定する。好ましくは、Si含有量は0.8〜1.2wt%である。
[Si: 0.7 to 1.4 wt%]
Si coexists with Fe and Mn to form submicron-level Al- (Fe · Mn) -Si compounds during brazing, improving strength, and simultaneously reducing the amount of Mn solid solution to conduct heat. Improve degree (conductivity). If the Si content is less than 0.7 wt%, the effect is not sufficient, and if it exceeds 1.4 wt%, the fin material may melt during brazing. Therefore, the Si content is limited to 0.7 to 1.4 wt%. Preferably, the Si content is 0.8 to 1.2 wt%.
〔Fe:0.5〜1.4wt%〕
Feは、Mn、Siと共存してろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系の化合物を生成し、強度を向上させるとともに、Mnの固溶量を減少させて熱伝導度(導電率)を向上させる。Feの含有量が0.5wt%未満では強度が低下して好ましくない。1.4wt%を超えると合金の鋳造時に粗大なAl−(Fe・Mn)−Si系晶出物が生成して板材の製造が困難となる。従って、Fe含有量は0.5〜1.4wt%に限定する。好ましくは、Fe含有量は0.5〜1.2wt%である。
[Fe: 0.5 to 1.4 wt%]
Fe coexists with Mn and Si to produce submicron-level Al- (Fe · Mn) -Si compounds during brazing, improving strength and reducing Mn solid solution to conduct heat. Improve degree (conductivity). If the Fe content is less than 0.5 wt%, the strength decreases, which is not preferable. If it exceeds 1.4 wt%, coarse Al- (Fe.Mn) -Si-based crystallized products are produced during casting of the alloy, making it difficult to produce a plate material. Therefore, the Fe content is limited to 0.5 to 1.4 wt%. Preferably, the Fe content is 0.5 to 1.2 wt%.
〔Mn:0.7〜1.4wt%〕
Mnは、Fe、Siと共存させることによりろう付け時にサブミクロンレベルのAl−(Fe・Mn)−Si系化合物として高密度に析出して、ろう付け後の合金材の強度を向上させる。また、サブミクロンレベルのAl−(Fe・Mn)−Si系析出物は強い再結晶阻止作用を有するため再結晶粒が500μm以上と粗大になり、耐サグ性と耐エロージョン性が向上する。Mnが0.7wt%未満ではその効果が十分でなく、1.4wt%を超えると合金の鋳造時に粗大なAl−(Fe・Mn)−Si系晶出物が生成して板材の製造が困難となるとともに、Mnの固溶量が増加して熱伝導度(導電率)が低下する。従って、Mn含有量は0.7〜1.4wt%に限定する。好ましくは、Mn含有量は0.8〜1.3wt%である。
[Mn: 0.7 to 1.4 wt%]
By coexisting with Fe and Si, Mn precipitates at a high density as a sub-micron level Al— (Fe · Mn) —Si compound at the time of brazing, and improves the strength of the alloy material after brazing. Further, since the submicron level Al- (Fe.Mn) -Si-based precipitate has a strong recrystallization inhibiting action, the recrystallized grains become coarser to 500 μm or more, and the sag resistance and erosion resistance are improved. If Mn is less than 0.7 wt%, the effect is not sufficient, and if it exceeds 1.4 wt%, coarse Al- (Fe · Mn) -Si-based crystallized products are produced during casting of the alloy, making it difficult to produce a plate material. At the same time, the solid solution amount of Mn increases and the thermal conductivity (conductivity) decreases. Therefore, the Mn content is limited to 0.7 to 1.4 wt%. Preferably, the Mn content is 0.8 to 1.3 wt%.
〔Zn:0.5〜2.5wt%〕
Znは、フィン材の電位を卑にし、犠牲陽極効果を与える。含有量が0.5wt%未満ではその効果が十分でなく、2.5wt%を超えると材料の自己耐食性が劣化し、また、Znの固溶によって熱伝導度(導電率)が低下する。従って、Zn含有量は0.5〜2.5wt%に限定する。好ましくは、Zn含有量は1.0〜2.0wt%である。
[Zn: 0.5 to 2.5 wt%]
Zn lowers the potential of the fin material and provides a sacrificial anode effect. If the content is less than 0.5 wt%, the effect is not sufficient. If the content exceeds 2.5 wt%, the self-corrosion resistance of the material is deteriorated, and thermal conductivity (conductivity) is lowered due to solid solution of Zn. Therefore, the Zn content is limited to 0.5 to 2.5 wt%. Preferably, the Zn content is 1.0 to 2.0 wt%.
〔Mg:0.05wt%以下〕
Mgは、ろう付け性に影響し、含有量が0.05wt%を超えるとろう付け性を害するおそれがある不純物である。とくにフッ化物系フラックスろう付けの場合、フラックスの成分であるフッ素(F)と合金中のMgとが反応し易くなり、MgF2 などの化合物が生成することに起因してろう付け時に有効に作用するフラックスの絶対量が不足し、ろう付け不良が生じ易くなる。従って、Mg含有量は0.05wt%以下に限定する。
[Mg: 0.05 wt% or less]
Mg is an impurity that affects the brazing property and may impair the brazing property when the content exceeds 0.05 wt%. Particularly in the case of fluoride-based flux brazing, fluorine (F), which is a component of the flux, easily reacts with Mg in the alloy, and works effectively during brazing due to the formation of compounds such as MgF 2. The absolute amount of flux to be used is insufficient, and brazing defects are likely to occur. Therefore, the Mg content is limited to 0.05 wt% or less.
Mg以外の不純物成分については、Cuは材料の電位を貴にするため0.2wt%以下に制限するのが好ましく、Cr、Zr、Ti、Vは、微量でも材料の熱伝導率を著しく低下させるので、これらの元素の合計含有量は0.20wt%以下に限定するのが好ましい。 For impurity components other than Mg, Cu is preferably limited to 0.2 wt% or less in order to make the potential of the material noble, and Cr, Zr, Ti, and V significantly reduce the thermal conductivity of the material even in a small amount. Therefore, the total content of these elements is preferably limited to 0.20 wt% or less.
次に、本発明の熱交換器用アルミニウム合金フィン材の製造方法における諸条件の限定理由を説明する。 Next, the reason for limitation of the conditions in the manufacturing method of the aluminum alloy fin material for heat exchangers of the present invention will be described.
〔双ベルト式鋳造機により厚さ5〜10mmの薄スラブを連続的に鋳造〕
双ベルト鋳造法は、上下に対峙し水冷されている回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る連続鋳造方法である。
本発明の製造方法においては、鋳造するスラブの厚さは5〜10mmに限定する。この厚さであると板厚中央部の凝固速度も速く、均一組織でしかも本発明範囲の組成であると粗大な化合物の少ない、およびろう付け後において結晶粒径の大きい優れた諸性質を有するフィン材とすることができる。
[Continuous casting of thin slabs with a thickness of 5 to 10mm by a twin belt type casting machine]
In the double belt casting method, molten metal is poured between rotating belts facing each other up and down, and the molten metal is solidified by cooling from the belt surface to form a slab. It is a continuous casting method that is drawn out and wound into a coil.
In the manufacturing method of the present invention, the thickness of the cast slab is limited to 5 to 10 mm. With this thickness, the solidification rate in the central part of the plate thickness is fast, and with a uniform structure and with a composition within the range of the present invention, there are few coarse compounds and excellent properties with a large crystal grain size after brazing. It can be a fin material.
双ベルト式鋳造機による薄スラブ厚さが5mm未満であると、単位時間当たりに鋳造機を通過するアルミニウム量が小さくなりすぎて、鋳造が困難になる。逆に厚さが10mmを超えると、ロールによる巻取りができなくなるため、スラブ厚さの範囲は5〜10mmに限定する。 When the thickness of the thin slab by the twin belt type casting machine is less than 5 mm, the amount of aluminum passing through the casting machine per unit time becomes too small and casting becomes difficult. On the contrary, if the thickness exceeds 10 mm, winding with a roll becomes impossible, so the slab thickness range is limited to 5 to 10 mm.
なお、溶湯の凝固時の鋳造速度は5〜15m/min であることが好ましく、ベルト内で凝固が完了することが望ましい。鋳造速度が5m/min 未満の場合、鋳造に時間が掛かりすぎて生産性が低下するため、好ましくない。鋳造速度が15m/min を超える場合、アルミニウム溶湯の供給が追いつかず、所定の形状の薄スラブを得ることが困難となる。 In addition, it is preferable that the casting speed at the time of solidification of a molten metal is 5-15 m / min, and it is desirable that solidification is completed within a belt. A casting speed of less than 5 m / min is not preferable because it takes too much time for casting and decreases productivity. When the casting speed exceeds 15 m / min, the supply of the molten aluminum cannot catch up, and it becomes difficult to obtain a thin slab having a predetermined shape.
上記のような鋳造条件の下で、鋳造時のスラブ1/4厚みの位置におけるスラブ冷却速度(凝固速度)は、20〜150℃/sec程度である。このように比較的速い冷却速度で溶湯が凝固することによって、本発明の化学組成の範囲内において、鋳造時に晶出するAl−(Fe・Mn)−Siなどの金属間化合物のサイズを1μm以下に制御することが可能となり、Fe、Si、Mnなどの元素のマトリックスへの固溶量を高めることができる。 Under the above casting conditions, the slab cooling rate (solidification rate) at a slab 1/4 thickness position during casting is about 20 to 150 ° C./sec. As the molten metal solidifies at a relatively high cooling rate, the size of an intermetallic compound such as Al— (Fe · Mn) —Si that crystallizes during casting within the range of the chemical composition of the present invention is 1 μm or less. Therefore, it is possible to increase the solid solution amount of elements such as Fe, Si and Mn in the matrix.
〔第1段の冷間圧延を行って板厚1.0〜6.0mmとし〕
引き続く、第1次中間焼鈍における十分な軟化状態を得るためと、マトリックス中のSi、Fe、Mn等の固溶元素を十分に析出させるために、第1段の冷間圧延の板厚は1.0〜6.0mmに限定する。6.0mmより厚い板厚では、その効果が十分ではなく、1.0mm未満では第1段の冷間圧延時に耳割れが発生するなど圧延性が低下する。また、その後の第2段の冷間圧延と最終冷間圧延とのバランスを取るためにも制御が必要となる。
[The first stage cold rolling is performed to a plate thickness of 1.0 to 6.0 mm]
In order to obtain a sufficiently softened state in the subsequent first intermediate annealing and to sufficiently precipitate solid solution elements such as Si, Fe, and Mn in the matrix, the thickness of the first stage cold rolling is 1 Limited to 0.0 to 6.0 mm. If the plate thickness is thicker than 6.0 mm, the effect is not sufficient, and if it is less than 1.0 mm, the rollability deteriorates such as the occurrence of ear cracks during the first stage of cold rolling. Control is also required to balance the subsequent second-stage cold rolling and final cold rolling.
〔250〜550℃で第1次中間焼鈍を施し〕
第1次中間焼鈍の保持温度は250〜550℃に限定する。第1次中間焼鈍の保持温度が250℃未満の場合、十分な軟化状態を得ることができない。第1次中間焼鈍の保持温度が550℃を超えると、マトリックス中のSi、Fe、Mn等の固溶元素が十分に析出せず、ろう付加熱後の熱伝導度(導電率)が低下する。
[The first intermediate annealing is performed at 250 to 550 ° C.]
The holding temperature of the first intermediate annealing is limited to 250 to 550 ° C. When the holding temperature of the first intermediate annealing is less than 250 ° C., a sufficient softened state cannot be obtained. When the holding temperature of the first intermediate annealing exceeds 550 ° C., solid solution elements such as Si, Fe, and Mn in the matrix are not sufficiently precipitated, and the thermal conductivity (conductivity) after the brazing heat is lowered. .
第1次中間焼鈍の保持時間は特に限定する必要はないが、1〜5hrの範囲とすることが好ましい。第1次中間焼鈍の保持時間が1hr未満では、コイル全体の温度が不均一なままで、板中における均一な組織の得られない可能性があるので好ましくない。第1次中間焼鈍の保持時間が5hrを超えると、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。 The holding time of the first intermediate annealing is not particularly limited, but is preferably in the range of 1 to 5 hours. If the holding time of the first intermediate annealing is less than 1 hr, the temperature of the entire coil remains non-uniform and a uniform structure in the plate may not be obtained, which is not preferable. If the holding time of the first intermediate annealing exceeds 5 hours, it takes too much time for the treatment and the productivity is lowered, which is not preferable.
第1次中間焼鈍処理時の昇温速度および冷却速度は特に限定する必要はないが、30℃/hr以上とすることが好ましい。第1次中間焼鈍処理時の昇温速度および冷却速度が30℃/hr未満の場合、処理に時間が掛かりすぎて生産性が低下するので、好ましくない。 The temperature increase rate and the cooling rate during the first intermediate annealing treatment are not particularly limited, but are preferably 30 ° C./hr or more. When the temperature raising rate and the cooling rate during the first intermediate annealing treatment are less than 30 ° C./hr, the treatment takes too much time and the productivity is lowered, which is not preferable.
連続焼鈍炉による第1中間焼鈍の温度は400〜550℃が好ましい。400℃未満の場合、十分な軟化状態を得ることができない。しかし、保持温度が550℃を超えると、マトリックス中のSi、Fe、Mn等の固溶元素が十分に析出せず、ろう付加熱後の熱伝導度(導電率)が低下する。 The temperature of the first intermediate annealing in the continuous annealing furnace is preferably 400 to 550 ° C. When the temperature is lower than 400 ° C., a sufficient softened state cannot be obtained. However, when the holding temperature exceeds 550 ° C., solid solution elements such as Si, Fe, and Mn in the matrix are not sufficiently precipitated, and the thermal conductivity (conductivity) after the brazing heat is lowered.
連続焼鈍の保持時間は5min以内とすることが好ましい。連続焼鈍の保持時間が5minを超えると、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。 The holding time for continuous annealing is preferably within 5 minutes. If the holding time for continuous annealing exceeds 5 minutes, it takes too much time for the treatment and productivity is lowered, which is not preferable.
連続焼鈍処理時の昇温速度および冷却速度は、昇温速度については100℃/min以上とすることが好ましい。連続焼鈍処理時の昇温速度が100℃/min未満の場合、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。 The heating rate and the cooling rate during the continuous annealing treatment are preferably 100 ° C./min or more for the heating rate. When the rate of temperature increase during the continuous annealing process is less than 100 ° C./min, the process takes too much time and productivity is lowered, which is not preferable.
〔更に第2段の冷間圧延を行って板厚0.05〜0.4mmとし〕
第2段の冷間圧延は、引き続く第2次中間焼鈍における十分な軟化状態を得るためと、マトリックス中のSi、Fe、Mn等の固溶元素を十分に析出させるために必要である。
板厚が0.4mmを超えるとその効果が十分ではなく、0.05mm未満では、引き続く最終冷間圧延にかける圧下率を制御することができなくなる。このため、第2段の冷間圧延後の板厚は0.05〜0.4mmに限定する。
[Furthermore, the second stage cold rolling is performed to a thickness of 0.05 to 0.4 mm.]
The second stage cold rolling is necessary for obtaining a sufficiently softened state in the subsequent secondary intermediate annealing and for sufficiently precipitating solid solution elements such as Si, Fe and Mn in the matrix.
If the plate thickness exceeds 0.4 mm, the effect is not sufficient. If the plate thickness is less than 0.05 mm, the reduction ratio applied to the subsequent final cold rolling cannot be controlled. For this reason, the plate thickness after the second cold rolling is limited to 0.05 to 0.4 mm.
〔360〜550℃での第2次中間焼鈍を施し〕
第2次中間焼鈍の保持温度は360〜550℃に限定する。第2次中間焼鈍の保持温度が360℃未満の場合、十分な軟化状態を得ることができない。しかし、第2次中間焼鈍の保持温度が550℃を超えると、マトリックス中のSi、Fe、Mn等の固溶元素が十分析出せず、ろう付加熱後の熱伝導度(導電率)の低下およびろう付け時の再結晶阻止作用が弱まって、再結晶粒径が500μm未満となり、ろう付け時の耐サグ性と耐エロージョン性が低下する。
[Secondary intermediate annealing at 360 to 550 ° C.]
The holding temperature of the second intermediate annealing is limited to 360 to 550 ° C. When the holding temperature of the second intermediate annealing is less than 360 ° C., a sufficient softened state cannot be obtained. However, if the holding temperature of the second intermediate annealing exceeds 550 ° C., solid solution elements such as Si, Fe, and Mn in the matrix are not sufficiently precipitated, and the thermal conductivity (conductivity) is lowered after the brazing addition heat. In addition, the recrystallization inhibitory action during brazing is weakened, the recrystallized grain size becomes less than 500 μm, and the sag resistance and erosion resistance during brazing are lowered.
第2次中間焼鈍の保持時間は特に限定する必要はないが、1〜5hrの範囲とすることが好ましい。第2次中間焼鈍の保持時間が1hr未満では、コイル全体の温度が不均一なままで、板中における均一な組織の得られない可能性があるので好ましくない。第2次中間焼鈍の保持時間が5hrを超えると、処理に時間が掛かりすぎて生産性が低下するため、好ましくない。 The holding time of the second intermediate annealing is not particularly limited, but is preferably in the range of 1 to 5 hours. If the holding time of the second intermediate annealing is less than 1 hr, the temperature of the entire coil remains non-uniform and a uniform structure in the plate may not be obtained, which is not preferable. If the holding time of the second intermediate annealing exceeds 5 hours, it takes too much time for the treatment and the productivity is lowered, which is not preferable.
第2次中間焼鈍処理時の昇温速度および冷却速度は特に限定する必要はないが、30℃/hr以上とすることが好ましい。第2次中間焼鈍処理時の昇温速度および冷却速度が30℃/hr未満の場合、処理に時間が掛かりすぎて生産性が低下するので、好ましくない。 The temperature increase rate and the cooling rate during the second intermediate annealing treatment are not particularly limited, but are preferably 30 ° C./hr or more. When the temperature raising rate and the cooling rate during the second intermediate annealing treatment are less than 30 ° C./hr, the treatment takes too much time and the productivity is lowered, which is not preferable.
〔冷間圧延率20〜75%の最終冷間圧延を行って最終板厚40〜200μmとする〕
<冷間圧延率:20〜75%>
最終冷間圧延における冷間圧延率が20%未満の場合、冷間圧延で蓄積される歪エネルギーが少なく、ろう付け時の昇温過程で再結晶が完了しないため、耐サグ性と耐エロージョン性が低下する。冷間圧延率が75%を超えると,製品強度が高くなりすぎて,フィン材成形において所定のフィン形状を得る事が困難になる。従って、最終冷間圧延における冷間圧延率は20〜75%に限定する。
<最終板厚:40〜200μm>
フィン材の板厚が40μm未満では熱交換器としての強度が不足することに加えて、空気熱伝導が低くなる。フィン材の板厚が200μmを超えると、熱交換器の重量が大きくなる。
[Final cold rolling with a cold rolling rate of 20 to 75% is performed to obtain a final sheet thickness of 40 to 200 μm]
<Cold rolling ratio: 20 to 75%>
When the cold rolling rate in the final cold rolling is less than 20%, the strain energy accumulated by the cold rolling is small, and recrystallization is not completed during the temperature rising process during brazing, so sag resistance and erosion resistance Decreases. If the cold rolling rate exceeds 75%, the product strength becomes too high, and it becomes difficult to obtain a predetermined fin shape in the fin material forming. Therefore, the cold rolling rate in the final cold rolling is limited to 20 to 75%.
<Final plate thickness: 40 to 200 μm>
If the plate thickness of the fin material is less than 40 μm, the strength as a heat exchanger is insufficient, and the air heat conduction is lowered. When the plate thickness of the fin material exceeds 200 μm, the weight of the heat exchanger increases.
本発明のアルミニウム合金フィン材の製造方法により製造された板材は、一般に所定幅にスリッティングした後コルゲート加工して、作動流体通路用材料、例えば、ろう材を被覆した3003合金などからなるクラッド板からなる偏平管と交互に積層し、ろう付け接合することにより熱交換器ユニットとする。 The plate manufactured by the method for manufacturing an aluminum alloy fin material of the present invention is generally a clad plate made of 3003 alloy coated with a material for working fluid passage, such as brazing material, after slitting to a predetermined width and then corrugating. The heat exchanger unit is made by alternately laminating and flattening the flat tubes made of
本発明の熱交換器の製造方法における製造条件の限定理由を説明する。
〔ろう付け加熱後の少なくともろう付温度から400℃までの温度範囲を冷却速度10〜50℃/minで冷却〕
アルミニウム熱交換器のろう付は、600℃程度で行われるのが一般的である。
ろう付け加熱後の少なくともろう付温度から400℃までの温度範囲を冷却速度10〜50℃/minで冷却しなくてはならない。ろう付け加熱後のろう付温度から300℃までの温度範囲を冷却速度10〜50℃/minで冷却することが望ましい。ろう付け加熱後のろう付温度から200℃までの温度範囲を冷却速度10〜50℃/minで冷却することがさらに望ましい。
The reason for limitation of the manufacturing conditions in the manufacturing method of the heat exchanger of this invention is demonstrated.
[Cooling at least in the temperature range from brazing temperature to 400 ° C after brazing heating at a cooling rate of 10-50 ° C / min]
The brazing of the aluminum heat exchanger is generally performed at about 600 ° C.
The temperature range from at least brazing temperature to 400 ° C. after brazing heating must be cooled at a cooling rate of 10 to 50 ° C./min. It is desirable to cool the temperature range from the brazing temperature after brazing heating to 300 ° C. at a cooling rate of 10 to 50 ° C./min. It is further desirable to cool the temperature range from the brazing temperature after brazing heating to 200 ° C. at a cooling rate of 10 to 50 ° C./min.
このように本発明品のフィン材は、ろう付け加熱後の冷却速度を遅くするほど、Al-Mn析出物、Al-(Fe・Mn)-Si系析出物の析出量が多くなるため、ろう付け後の導電率47%IACS以上を達成することができる。ろう付け後の冷却速度が10℃/min未満である場合、熱交換器の生産性が著しく低下する。ろう付け後の冷却速度が50℃/minを超える場合、ろう付け後の導電率47%IACS以上を達成することが困難となる。また、50℃/min以上のろう付け後冷却速度に対して、10〜50℃/minの範囲内であれば、ろう付け後の抗張力と耐力が高いフィン材とすることができる。 In this way, the fin material of the present invention has a larger amount of Al-Mn precipitates and Al- (Fe · Mn) -Si-based precipitates as the cooling rate after brazing heating is slower. It is possible to achieve an electrical conductivity of 47% IACS or higher after attachment. When the cooling rate after brazing is less than 10 ° C./min, the productivity of the heat exchanger is significantly reduced. When the cooling rate after brazing exceeds 50 ° C./min, it becomes difficult to achieve a conductivity of 47% IACS or more after brazing. Moreover, if it is in the range of 10-50 degreeC / min with respect to the cooling rate after brazing of 50 degreeC / min or more, it can be set as the fin material with the high tensile strength and proof stress after brazing.
以下、本発明の実施例を比較例と対比して説明する。
〔実施例1〕 本発明例および比較例として、表1に示した合金番号1から9の組成の合金溶湯を溶製し、セラミックス製フィルターを通過させて双ベルト鋳造機に注湯し、鋳造速度8m/min で厚さ7mmのスラブを得た。スラブ厚み1/4における溶湯の凝固時冷却速度は50℃/sec であった。該薄スラブを4mmまで冷間圧延し,昇温速度50℃/hrで昇温して、400℃で2hr保持した後、冷却速度50℃/hrで100℃まで冷却する第1次中間焼鈍処理を施した。次いで120μmまで冷間圧延した後、昇温速度50℃/hrで昇温して、400℃で2hr保持した後、冷却速度50℃/hrで100℃まで冷却する第2中間焼鈍処理を施した。次いで冷間圧延を施し、厚さ60μmのフィン材とした。
Examples of the present invention will be described below in comparison with comparative examples.
[Example 1] As an example of the present invention and a comparative example, a molten alloy having the composition of alloy numbers 1 to 9 shown in Table 1 was melted, passed through a ceramic filter, poured into a twin belt casting machine, and cast. A slab having a thickness of 7 mm was obtained at a speed of 8 m / min. The cooling rate during solidification of the molten metal at a slab thickness of 1/4 was 50 ° C./sec. The thin slab is cold-rolled to 4 mm, heated at a heating rate of 50 ° C./hr, held at 400 ° C. for 2 hr, and then cooled to 100 ° C. at a cooling rate of 50 ° C./hr. Was given. Next, after cold rolling to 120 μm, the temperature was raised at a heating rate of 50 ° C./hr, held at 400 ° C. for 2 hr, and then subjected to a second intermediate annealing treatment that was cooled to 100 ° C. at a cooling rate of 50 ° C./hr. . Subsequently, cold rolling was performed to obtain a fin material having a thickness of 60 μm.
比較例として、表1に示した合金番号10の組成の合金溶湯を溶製し、常法のDC鋳造(厚さ560mm、凝固時冷却速度約1℃/sec )、面削、均熱処理、熱間圧延、冷間圧延(厚さ90μm)、中間焼鈍(400℃×2hr)、冷間圧延により厚さ60μmのフィン材を製造した。
得られた本発明例および比較例のフィン材について下記(1)〜(3)の測定を行なった。
As a comparative example, a molten alloy having the composition of Alloy No. 10 shown in Table 1 was melted and subjected to conventional DC casting (thickness: 560 mm, cooling rate at solidification: about 1 ° C./sec), chamfering, soaking, heat treatment A fin material having a thickness of 60 μm was manufactured by cold rolling, cold rolling (thickness 90 μm), intermediate annealing (400 ° C. × 2 hr), and cold rolling.
The following measurements (1) to (3) were performed on the fin materials of the present invention examples and comparative examples.
(1)ろう付け前の引張特性 上記得られたフィン材の抗張力(MPa)および破断伸び(%) (2)ろう付け後の引張特性、結晶粒径、導電性 〔ろう付加熱条件〕 昇温速度20℃/minで昇温して、600〜605℃で3min間保持した後に、200℃まで、冷却速度20℃/minで冷却し,その後加熱炉から出し、室温まで冷却した。
〔試験項目〕 [1] 抗張力、耐力(MPa ) [2] 結晶粒径 表面を電解研磨してバーカー法で結晶粒組織を現出後、切断法で圧延方向に平行な結晶粒径(μm)を測定 [3] JIS−H0505記載の導電性試験法で導電率[%IACS]
(1) Tensile properties before brazing Tensile strength (MPa) and elongation at break (%) of the fin material obtained above (2) Tensile properties, crystal grain size, conductivity after brazing [Brazing additional heat conditions] The temperature was raised at a rate of 20 ° C./min, held at 600 to 605 ° C. for 3 min, then cooled to 200 ° C. at a cooling rate of 20 ° C./min, then removed from the heating furnace and cooled to room temperature.
[Test items] [1] Tensile strength, yield strength (MPa) [2] Crystal grain size After electrolytic polishing of the surface to reveal a grain structure by the Barker method, grain size parallel to the rolling direction by a cutting method (μm) [3] Conductivity [% IACS] according to the conductivity test method described in JIS-H0505
(3)ろう付性(エロージョン試験) コルゲート状に加工したフィン材を非腐食性弗化物系フラックスを塗布した厚さ0.25mmのブレージングシート(ろう材4045合金クラッド率8%)のろう材面上に載置(負荷荷重215g)し、昇温速度50℃/min で605℃まで加熱して5min間保持した。冷却後、ろう付け断面を観察し、フィン材結晶粒界のエロージョンが軽微なものを良(○印)とし、エロージョンが激しくフィン材の溶融が顕著なものを不良(×印)とした。なおコルゲート形状は下記のとおりとした。
コルゲート形状:高さ2.3mm×幅21mm×ピッチ3.4mm、10山 測定結果を表1に示す。
(3) Brazing property (erosion test) Brazing material surface of brazing sheet (brazing material 4045 alloy cladding rate 8%) with a thickness of 0.25mm, which is a corrugated fin material coated with non-corrosive fluoride flux It was placed on top (load load 215 g), heated to 605 ° C. at a temperature rising rate of 50 ° C./min and held for 5 min. After cooling, the brazed cross section was observed, and a slight erosion of the fin material crystal grain boundary was judged as good (◯ mark), and a erosion was severe and the fin material melted markedly as poor (x mark). The corrugated shape was as follows.
Corrugated shape: height 2.3 mm × width 21 mm × pitch 3.4 mm, 10 peaks The measurement results are shown in Table 1.
表1の結果から、本発明方法で製造されたフィン材は、H材の抗張力、ろう付(耐エロージョン)性、ろう付け後の抗張力、耐力、導電率のいずれも良好であることが判る。 From the results in Table 1, it can be seen that the fin material produced by the method of the present invention has good tensile strength, brazing (erosion resistance) property, tensile strength after brazing, proof strength, and electrical conductivity.
比較例のフィン材番号4は、Si含有量が少なく、ろう付け後抗張力、耐力、導電率が低い。 The fin material number 4 of the comparative example has a low Si content and low brazing strength, proof stress, and electrical conductivity.
比較例のフィン材番号5は、Si含有量が多く、ろう付性評価でエロージョンが劣っていた。 The fin material number 5 of the comparative example had a large Si content, and the erosion was inferior in the brazing evaluation.
比較例のフィン材番号6は、Fe含有量が少なく、ろう付け後抗張力、導電率が低い。 The fin material number 6 of the comparative example has a low Fe content, and has low tensile strength and electrical conductivity after brazing.
比較例のフィン材番号7は、Fe含有量が多く、鋳造時に巨大晶出物が生成し、冷間圧延中に割れを生じフィン材が得られなかった。 The fin material No. 7 of the comparative example had a large Fe content, a large crystallized product was generated during casting, cracking occurred during cold rolling, and a fin material was not obtained.
比較例のフィン材番号8は、Mn含有量が少なく、ろう付け後抗張力、耐力が低い。 The fin material number 8 of the comparative example has a low Mn content and low tensile strength and proof stress after brazing.
比較例のフィン材番号9は、Mn含有量が多く、H材抗張力が高く,ろう付け後の導電率が低い。 The fin material number 9 of the comparative example has a high Mn content, a high tensile strength of the H material, and a low conductivity after brazing.
比較例のフィン材番号10は、常法のDC鋳造(厚さ560mm、凝固時冷却速度約1℃/sec )、面削、均熱処理、熱間圧延、冷間圧延(厚さ90μm)、中間焼鈍(400℃×2hr)、冷間圧延により得られたフィン材であり、ろう付け後の耐力が低く、ろう付け後の結晶粒径が小さく、ろう付(耐エロージョン)性が劣り、またろう付後の導電率も低い。 Fin material number 10 of the comparative example is DC casting (thickness: 560 mm, cooling rate at solidification: about 1 ° C./sec), chamfering, soaking, hot rolling, cold rolling (thickness: 90 μm), intermediate Fin material obtained by annealing (400 ° C. × 2 hr) and cold rolling, low proof stress after brazing, small crystal grain size after brazing, poor brazing (erosion resistance), brazing The conductivity after attaching is also low.
〔実施例2〕 本発明例および比較例として、実施例1で得られた合金番号2のフィン材をろう付加熱処理する際に種々の冷却速度で冷却した。
すなわち、昇温速度20℃/minで昇温して、600〜605℃で3min間保持した後に、表2に示す下温度(400℃、200℃)まで表2に示す冷却速度(60、40、30、20、10℃/min)で冷却し、その後加熱炉から出し、室温まで冷却した。
これらろう付加熱処理されたフィン材について、ろう付け後の抗張力・耐力、導電率を測定した。引張試験および導電率の測定は実施例1と同様の方法で行なった。測定結果を表2に示す。
[Example 2] As an example of the present invention and a comparative example, the fin material of Alloy No. 2 obtained in Example 1 was cooled at various cooling rates when subjected to brazing addition heat treatment.
That is, the temperature was raised at a rate of temperature increase of 20 ° C./min, held at 600 to 605 ° C. for 3 minutes, and then cooled to the lower temperature shown in Table 2 (400 ° C., 200 ° C.) (60, 40 , 30, 20, 10 ° C./min), then removed from the heating furnace and cooled to room temperature.
For these fin materials subjected to brazing heat treatment, the tensile strength / proof strength and electrical conductivity after brazing were measured. The tensile test and the conductivity measurement were performed in the same manner as in Example 1. The measurement results are shown in Table 2.
表2に示されているように、本発明方法で製造されたフィン材を本発明方法のろう付加熱後の冷却条件にてろう付加熱した番号2、13、14は、600℃から200℃までの温度範囲を20、30、40℃/minの冷却速度で冷却したため、ろう付加熱後の抗張力、耐力、耐エロージョン性、導電率のいずれも良好の結果が得られたことが判る。 As shown in Table 2, numbers 2, 13, and 14 in which the fin material produced by the method of the present invention was brazed and heated under the cooling conditions after the brazing heat of the method of the present invention were 600 ° C to 200 ° C. It was found that good results were obtained in all of the tensile strength, proof stress, erosion resistance, and conductivity after brazing addition heat because the temperature range up to 20 ° C / min was cooled at a cooling rate of 20, 30 and 40 ° C / min.
本発明方法で製造されたフィン材を本発明方法のろう付加熱後の冷却条件にてろう付加熱した番号11、12は、600℃から400℃までの温度範囲を10、20℃/minの冷却速度で冷却したため、ろう付加熱後の抗張力、耐力、耐エロージョン性、導電率のいずれも良好な結果が得られたことが判る。 Nos. 11 and 12 in which the fin material manufactured by the method of the present invention was subjected to brazing addition heat under the cooling conditions after the brazing addition heat of the method of the present invention are the temperature range from 600 ° C to 400 ° C of 10 and 20 ° C / min. It can be seen that because of cooling at the cooling rate, good results were obtained in all of the tensile strength, proof strength, erosion resistance, and electrical conductivity after brazing heat.
比較例のフィン材番号15は、ろう付加熱後の冷却条件が本発明方法よりも速かったため、ろう付加熱後の導電率が低い。 The fin material number 15 of the comparative example has a lower conductivity after brazing addition heat because the cooling condition after brazing addition heat was faster than the method of the present invention.
比較例のフィン材番号16は、DC鋳造スラブ圧延品であるため、且つろう付加熱後の冷却条件が本発明方法よりも速かったため、ろう付加熱後の、耐力、導電率が低い。 Since the fin material number 16 of the comparative example is a DC cast slab rolled product and the cooling conditions after brazing addition heat were faster than the method of the present invention, the proof stress and conductivity after brazing addition heat are low.
比較例のフィン材番号10は、DC鋳造スラブ圧延品であるため、ろう付加熱後の冷却条件が本発明方法の範囲内であるにも拘らず、ろう付加熱後の、耐力、導電率が低い。 Since the fin material number 10 of the comparative example is a DC cast slab rolled product, the proof stress and conductivity after the brazing addition heat are low even though the cooling conditions after the brazing addition heating are within the scope of the method of the present invention. Low.
本発明によれば、フィン成形が容易な適度のろう付け前強度を有し、しかもろう付け後には高い強度を有し、且つろう付け後の熱伝導度(導電率)の高い、耐サグ性、耐エロージョン性、自己耐食性、犠牲陽極効果に優れた熱交換器用アルミニウム合金フィン材、その製造方法および前記フィン材を用いた熱交換器の製造方法が提供される。 According to the present invention, it has a moderate strength before brazing that can be easily formed by a fin, has a high strength after brazing, and has a high thermal conductivity (conductivity) after brazing, and has a high sag resistance. There are provided an aluminum alloy fin material for a heat exchanger excellent in erosion resistance, self-corrosion resistance and sacrificial anode effect, a method for producing the same, and a method for producing a heat exchanger using the fin material.
Claims (2)
ろう付後の抗張力が130MPa以上、耐力が45MPa以上であり、ろう付け後の再結晶粒径が500μm以上、且つろう付け後の導電率47%IACS以上であることを特徴とする、高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性に優れたろう付け後の熱交換器用アルミニウム合金フィン材。 Si: 0.7 to 1.4 wt%, Fe: 0.5 to 1.4 wt%, Mn: 0.7 to 1.4 wt%, Zn: 0.5 to 2.5 wt%, and further as impurities Mg is limited to 0.05 wt% or less, and has a composition consisting of the balance inevitable impurities and Al,
High strength, characterized in that the tensile strength after brazing is 130 MPa or more, the proof stress is 45 MPa or more, the recrystallized grain size after brazing is 500 μm or more, and the electrical conductivity after brazing is 47% IACS or more. An aluminum alloy fin material for a heat exchanger after brazing that is excellent in heat transfer characteristics, erosion resistance, sag resistance, sacrificial anode effect and self-corrosion resistance.
ろう付後の耐力が49MPa以上であり、ろう付け後の再結晶粒径が500μm以上、且つろう付け後の導電率47%IACS以上であることを特徴とする、高強度で且つ伝熱特性、耐エロージョン性、耐サグ性、犠牲陽極効果および自己耐食性に優れたろう付け後の熱交換器用アルミニウム合金フィン材。 Si: 0.7 to 1.4 wt%, Fe: 0.5 to 1.4 wt%, Mn: 0.7 to 1.4 wt%, Zn: 0.5 to 2.5 wt%, and further as impurities Mg is limited to 0.05 wt% or less, and has a composition consisting of the balance inevitable impurities and Al,
High strength and heat transfer characteristics, characterized in that the yield strength after brazing is 49 MPa or more, the recrystallized grain size after brazing is 500 μm or more, and the electrical conductivity after brazing is 47% IACS or more, Aluminum alloy fin material for heat exchanger after brazing with excellent erosion resistance, sag resistance, sacrificial anode effect and self-corrosion resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012129005A JP5447593B2 (en) | 2012-06-06 | 2012-06-06 | Aluminum alloy fin material for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012129005A JP5447593B2 (en) | 2012-06-06 | 2012-06-06 | Aluminum alloy fin material for heat exchanger |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006210797A Division JP5055881B2 (en) | 2006-08-02 | 2006-08-02 | Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012211393A JP2012211393A (en) | 2012-11-01 |
JP5447593B2 true JP5447593B2 (en) | 2014-03-19 |
Family
ID=47265571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012129005A Expired - Fee Related JP5447593B2 (en) | 2012-06-06 | 2012-06-06 | Aluminum alloy fin material for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5447593B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4123059B2 (en) * | 2003-06-10 | 2008-07-23 | 日本軽金属株式会社 | Manufacturing method of high strength aluminum alloy fin material for heat exchanger |
JP4725019B2 (en) * | 2004-02-03 | 2011-07-13 | 日本軽金属株式会社 | Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material |
-
2012
- 2012-06-06 JP JP2012129005A patent/JP5447593B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012211393A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5055881B2 (en) | Manufacturing method of aluminum alloy fin material for heat exchanger and manufacturing method of heat exchanger for brazing fin material | |
JP5371173B2 (en) | Manufacturing method of high strength aluminum alloy fin material | |
JP4725019B2 (en) | Aluminum alloy fin material for heat exchanger, manufacturing method thereof, and heat exchanger provided with aluminum alloy fin material | |
JP5854954B2 (en) | High-strength aluminum alloy fin material and manufacturing method thereof | |
US9719156B2 (en) | Aluminum fin alloy and method of making the same | |
JP5195837B2 (en) | Aluminum alloy fin material for heat exchanger | |
JP6978983B2 (en) | Aluminum alloy fin material for heat exchanger with excellent buckling resistance and its manufacturing method | |
JP4123059B2 (en) | Manufacturing method of high strength aluminum alloy fin material for heat exchanger | |
JP5762387B2 (en) | Manufacturing method of high strength aluminum alloy fin material | |
JP2009293059A (en) | High strength aluminum alloy fin material having excellent erosion resistance, method for producing the same, and automobile heat exchanger | |
JP5447593B2 (en) | Aluminum alloy fin material for heat exchanger | |
JP5431046B2 (en) | Manufacturing method of brazing structure made of aluminum alloy for heat exchanger excellent in high temperature durability | |
JP5506732B2 (en) | High strength aluminum alloy fin material for heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5447593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |