JP5322804B2 - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents
Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDFInfo
- Publication number
- JP5322804B2 JP5322804B2 JP2009150992A JP2009150992A JP5322804B2 JP 5322804 B2 JP5322804 B2 JP 5322804B2 JP 2009150992 A JP2009150992 A JP 2009150992A JP 2009150992 A JP2009150992 A JP 2009150992A JP 5322804 B2 JP5322804 B2 JP 5322804B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- negative electrode
- granulated
- mesophase
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、リチウムイオン二次電池用負極材料、リチウムイオン二次電池負極およびリチウムイオン二次電池に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
近年、電子機器の小型化あるいは高性能化に伴い、電池のエネルギー密度を高める要望がますます高まっている。特にリチウムイオン二次電池は、他の二次電池に比べて高電圧化が可能なので、高いエネルギー密度が達成できるため注目されている。 In recent years, with the miniaturization or high performance of electronic devices, there is an increasing demand for increasing the energy density of batteries. In particular, lithium ion secondary batteries are attracting attention because they can achieve higher voltages than other secondary batteries, and can achieve high energy density.
リチウムイオン二次電池は、負極、正極および電解液(非水電解質)を主たる構成要素とする。リチウムイオンは電解液を介して、放電過程および充電過程で負極と正極との間を移動し二次電池となる。負極は、一般に、銅箔からなる集電材とバインダーによって結着された負極材料(活物質)から構成されている。通常、負極材料には炭素材料が使用される。このような炭素材料として、充放電特性に優れ、高い放電容量と電位平坦性とを示す黒鉛が汎用されている(特許文献1参照)。 A lithium ion secondary battery includes a negative electrode, a positive electrode, and an electrolytic solution (nonaqueous electrolyte) as main components. Lithium ions move between the negative electrode and the positive electrode through the electrolytic solution during the discharging process and the charging process to form a secondary battery. The negative electrode is generally composed of a current collector made of copper foil and a negative electrode material (active material) bound by a binder. Usually, a carbon material is used for the negative electrode material. As such a carbon material, graphite having excellent charge / discharge characteristics and high discharge capacity and potential flatness is widely used (see Patent Document 1).
最近の携帯用電子機器に搭載されるリチウムイオン二次電池には、優れた急速充電性、急速放電性が要求されるとともに、充放電を繰返しても初期の放電容量が劣化しないこと(サイクル特性)が求められている。 Lithium ion secondary batteries installed in recent portable electronic devices are required to have excellent rapid chargeability and rapid discharge characteristics, and the initial discharge capacity does not deteriorate even after repeated charge and discharge (cycle characteristics) ) Is required.
従来の黒鉛系負極材料の代表例には下記のものがある。
扁平状の粒子を複数、配向面が非平行となるように集合または結合させてなり、粒子に細孔を有する黒鉛粒子(特許文献2)。
直径方向に垂直な方向に黒鉛のベーサル面が層状に配列したブルックス・テーラー型の単結晶からなるメソカーボン小球体の黒鉛化物(特許文献3)。
天然黒鉛粒子を球状化または楕円体状化してなる造粒物の黒鉛粒子間の空隙に炭素質物が充填してなる複合黒鉛粒子、または、該造粒物の表面を炭素質物が被覆してなる複合黒鉛粒子(特許文献4)。
バルクメソフェ−ズピッチを粉砕、酸化、炭化、黒鉛化してなる塊状の黒鉛粒子(特許文献5)。
Typical examples of conventional graphite negative electrode materials include the following.
Graphite particles obtained by collecting or combining a plurality of flat particles so that their orientation planes are non-parallel, and having fine pores in the particles (Patent Document 2).
Graphite of mesocarbon spherules made of Brooks-Taylor single crystals in which basal planes of graphite are arranged in layers in a direction perpendicular to the diameter direction (Patent Document 3).
Composite graphite particles in which the carbonaceous material is filled in the voids between the graphite particles of the granulated product obtained by spheroidizing or ellipsoidizing natural graphite particles, or the surface of the granulated material is coated with the carbonaceous material Composite graphite particles (Patent Document 4).
Bulk graphite particles obtained by pulverizing, oxidizing, carbonizing, and graphitizing bulk mesophase pitch (Patent Document 5).
しかしながら、近年のリチウムイオン二次電池の高容量化への要求に応えるべく、活物質層の密度を高くし、体積当たりの放電容量を高く設定した場合、すなわち、負極材料そ集電材に塗布した後、高圧力でプレスして活物質層を高密度化した場合には、これら従来の負極材料では種々の課題が生じる。 However, in order to meet the demand for higher capacity of lithium ion secondary batteries in recent years, when the density of the active material layer is increased and the discharge capacity per volume is set higher, that is, the negative electrode material is applied to the current collector. Thereafter, when the active material layer is densified by pressing at a high pressure, various problems arise with these conventional negative electrode materials.
特許文献2に記載の集合化黒鉛粒子を用いた負極材料は、活物質層の密度が1.7g/cm3を超えると、集合体が潰れ、構成単位である扁平状の黒鉛粒子が天然黒鉛のように一方向に配向する。そのため、リチウムイオンのイオン拡散性が低下し、急速充電性、急速放電性、サイクル特性が低下する。また、活物質層の表面が閉塞しやすく、電解液の浸透性が低下して、電池の生産性が低下するほか、活物質層内部において電解液の枯渇が生じ、サイクル特性を低下させる。
In the negative electrode material using the aggregated graphite particles described in
特許文献3に記載のメソカーボン小球体の黒鉛化物を用いた負極材料は、黒鉛化物が球状であるため、高密度化しても黒鉛のベーサル面の配向をある程度抑えることができる。しかし、黒鉛化物が緻密で硬質であるため、高密度化するために高圧力を必要とし、集電材の銅箔の変形、伸び、破断といった問題が生じる。また、電解液との接触面積が小さい。そのため、急速充電性が特に低い。充電性の低下は、充電時に負極表面にリチウムの電析を生じる原因になり、サイクル特性の低下を引起す。 In the negative electrode material using the mesocarbon microsphere graphitized material described in Patent Document 3, since the graphitized material is spherical, the orientation of the basal plane of graphite can be suppressed to some extent even when the density is increased. However, since the graphitized material is dense and hard, high pressure is required to increase the density, and problems such as deformation, elongation, and breakage of the copper foil of the current collector occur. Further, the contact area with the electrolytic solution is small. Therefore, quick chargeability is particularly low. The decrease in chargeability causes the electrodeposition of lithium on the negative electrode surface during charging and causes a decrease in cycle characteristics.
特許文献4に記載の塊状の黒鉛粒子を用いた負極材料は、高い放電容量を有する天然黒鉛の欠点である高反応性(初期充放電効率の低下)が炭素質物の被覆により改善されているものの、高密度にすると天然黒鉛粒子の造粒物が潰れて扁平になり、急速充電性、急速放電性、サイクル特性が低下するほか、炭素質物の被覆が剥げて天然黒鉛粒子が露出することにより、初期充放電効率が低下する。 In the negative electrode material using the massive graphite particles described in Patent Document 4, the high reactivity (decrease in initial charge / discharge efficiency), which is a defect of natural graphite having a high discharge capacity, is improved by the coating of the carbonaceous material. When the density is increased, the granulated product of natural graphite particles is crushed and flattened, and the rapid chargeability, rapid discharge property, cycle characteristics are deteriorated, and the carbonaceous material is peeled off to expose the natural graphite particles. Initial charge / discharge efficiency decreases.
特許文献5に記載の塊状の黒鉛粒子を用いた負極材料は、高密度化しても黒鉛のベーサル面の配向をある程度抑えることができる。しかし、黒鉛化物が緻密で硬質であるため、高密度化するために高圧力を必要とし、集電材の銅箔の変形、伸び、破断といった問題が生じる。また、酸化によって、黒鉛粒子表面の結晶性が低くなっており、そのため放電容量が低いという課題がある。 The negative electrode material using the massive graphite particles described in Patent Document 5 can suppress the orientation of the basal plane of graphite to some extent even when the density is increased. However, since the graphitized material is dense and hard, high pressure is required to increase the density, and problems such as deformation, elongation, and breakage of the copper foil of the current collector occur. Further, due to the oxidation, the crystallinity of the graphite particle surface is lowered, so that there is a problem that the discharge capacity is low.
このように、高密度においても優れた急速充電性、急速放電性およびサイクル特性を維持し、かつ、軟質で、低いプレス圧力でも容易に高密度化できる負極材料が望まれている。そのために、複数種の黒鉛材料を混合することが提案されている。代表例を下記する。 Thus, a negative electrode material that maintains excellent rapid chargeability, rapid discharge performance and cycle characteristics even at high density, is soft, and can be easily densified even at a low press pressure is desired. For this purpose, it has been proposed to mix a plurality of types of graphite materials. Representative examples are as follows.
球形化した天然黒鉛粉末を鱗片状炭素性物質で被覆した黒鉛系炭素質物と、該鱗片状炭素性物質の平均粒径の2/3以下のメソカーボンマイクロビーズを混合した負極材料を用いたリチウム二次電池(特許文献6)。
メソフェーズ小球体黒鉛化品と、該黒鉛化品より平均粒子径が小さい非鱗片状黒鉛質粒子(メソフェーズ小球体破砕品の黒鉛化品)を混合した負極材料を用いたリチウムイオン二次電池用負極(特許文献7)。
メソフェーズ小球体の黒鉛化粒子の親水化物と、低結晶性の炭素材料を被覆した複合黒鉛質炭素材料を混合したリチウム二次電池用負極材料(特許文献8)。
非黒鉛性炭素で被覆された、平均粒径が10〜30μmの球状または楕円体状の黒鉛と、平均粒径が1〜10μmの一次粒子(扁片状)である黒鉛を混合した負極材料を用いたリチウム二次電池用負極(特許文献9)。
Lithium using a negative electrode material obtained by mixing a graphite-based carbonaceous material obtained by coating spheroidized natural graphite powder with a scaly carbonaceous material and mesocarbon microbeads having an average particle size of 2/3 or less of the scaly carbonaceous material. Secondary battery (Patent Document 6).
A negative electrode for a lithium ion secondary battery using a negative electrode material in which a mesophase small sphere graphitized product and non-flaky graphite particles having a smaller average particle diameter than the graphitized product (graphitized product of mesophase small spheres) are mixed. (Patent Document 7).
A negative electrode material for a lithium secondary battery in which a hydrophilized product of graphitized particles of mesophase microspheres and a composite graphitic carbon material coated with a low crystalline carbon material are mixed (Patent Document 8).
A negative electrode material obtained by mixing spherical or ellipsoidal graphite having an average particle diameter of 10 to 30 μm and graphite having an average particle diameter of 1 to 10 μm and coated with non-graphitic carbon. The negative electrode for lithium secondary batteries used (Patent Document 9).
ピッチ黒鉛化物と黒鉛化メソカーボンマイクロビーズの混合物を負極材料に用いた非水系二次電池(特許文献10)。
非黒鉛質炭素材料で被覆した黒鉛材料と天然黒鉛材料を混合した負極材料を用いた非水電解液二次電池(特許文献11)。
平均粒径が8μm以上のメソフェーズ球状黒鉛と、その隙間を埋めるように平均粒径が3μm以下のメソフェーズ微小球状黒鉛を7.5重量%以下含有させてなる負極材料を用いたリチウム二次電池(特許文献12)。
黒鉛、第一の非黒鉛炭素材料と、これらより小粒子径のアセチレンブラックの混合体を負極材料に用いた非水電解液二次電池(特許文献13)。
メソカーボンマイクロビーズの黒鉛化物と、該黒鉛化物より平均粒子径が小さい人造黒鉛粉末を混合した負極材料を用いた非水電解液二次電池(特許文献14)。
A non-aqueous secondary battery using a mixture of pitch graphitized material and graphitized mesocarbon microbeads as a negative electrode material (Patent Document 10).
A non-aqueous electrolyte secondary battery using a negative electrode material obtained by mixing a graphite material coated with a non-graphitic carbon material and a natural graphite material (Patent Document 11).
Lithium secondary battery using negative electrode material comprising mesophase spherical graphite having an average particle size of 8 μm or more and mesophase microspherical graphite having an average particle size of 3 μm or less so as to fill the gap (7.5% by weight or less) Patent Document 12).
A non-aqueous electrolyte secondary battery using a mixture of graphite, a first non-graphite carbon material, and acetylene black having a smaller particle diameter as a negative electrode material (Patent Document 13).
A nonaqueous electrolyte secondary battery using a negative electrode material obtained by mixing graphitized mesocarbon microbeads and artificial graphite powder having an average particle size smaller than that of the graphitized material (Patent Document 14).
しかしながら、これらの混合系負極材料を用いても、依然として、活物質層を高密度化した場合のリチウムイオン二次電池の急速充電性、急速放電性、サイクル特性等の電池性能の劣化が解消されない。すなわち、特許文献6、7、10、12、14の場合は、メソフェーズ小球体黒鉛化物が硬質であることから、活物質層を高密度化するために高いプレス圧が必要になり、集電材の銅箔の変形、伸び、破断といった問題が生じる。特許文献8、9、11の場合は、活物質層の高密度化に伴い、リチウムイオンのイオン拡散性が低下し、リチウムイオン二次電池の急速充電性、急速放電性、サイクル特性の低下を引起す。また、活物質層の表面が閉塞しやすく、電解液の浸透性が低下して、電池の生産性が低下するほか、活物質層内部において電解液の枯渇を生じ、サイクル特性が低下する。特許文献13の場合は、硬質の非黒鉛炭素材料を用いると、活物質層を高密度化するために高いプレス圧が必要になり、集電材の銅箔の変形、伸び、破断といった問題が生じる。
However, even if these mixed negative electrode materials are used, deterioration of battery performance such as rapid chargeability, rapid discharge performance, and cycle characteristics of the lithium ion secondary battery when the active material layer is increased in density is still not solved. . That is, in the case of
本発明の目的は、リチウムイオン二次電池の負極材料として用いた場合に、低いプレス圧力で高い密度に到達し、体積当たりの放電容量が高く、かつ、高い密度でありながら、黒鉛の潰れや配向が抑えられ、電解液の浸透性や保持性を損なうことがなく、優れた急速充電性、急速放電性およびサイクル特性を有する負極材料を提供することにある。また、該負極材料を用いたリチウムイオン二次電池負極、および、該負極を有するリチウムイオン二次電池を提供することにある。 The object of the present invention is that when used as a negative electrode material of a lithium ion secondary battery, it reaches a high density at a low pressing pressure, has a high discharge capacity per volume and a high density, while the graphite is crushed. An object of the present invention is to provide a negative electrode material that has excellent rapid chargeability, rapid discharge property, and cycle characteristics without being impaired in the orientation and without impairing the permeability and retention of the electrolyte. Moreover, it is providing the lithium ion secondary battery negative electrode using this negative electrode material, and the lithium ion secondary battery which has this negative electrode.
本発明は、次の(1)〜(6)である。 The present invention includes the following (1) to (6).
(1)平均粒子径が10〜40μm、平均アスペクト比が1.2未満であり、石炭系または石油系の重質油、タール類およびピッチ類から選ばれる少なくとも1種を加熱処理して得られた光学的異方性の球状重合物を黒鉛化してなるメソフェーズ小球体黒鉛化物(A)、
平均粒子径が5〜35μmで、かつ、前記メソフェーズ小球体黒鉛化物(A)の平均粒子径よりも小さく、平均アスペクト比が2.0未満である球状化または楕円体状化天然黒鉛(B)、ならびに、
平均粒子径が2〜25μmで、かつ、前記メソフェーズ小球体黒鉛化物(A)の平均粒子径よりも小さく、平均アスペクト比が2.0未満である黒鉛(C)
の混合物であり、前記混合物中の前記メソフェーズ小球体黒鉛化物(A)、前記球状化または楕円体状化天然黒鉛(B)および前記黒鉛(C)の質量割合が下記式(1)および式(2)を満足することを特徴とするリチウムイオン二次電池用負極材料。
a:b=(10〜70):(90〜30) (1)
(a+b):c=(80〜95):(20〜5) (2)
ここで、aは前記メソフェーズ小球体黒鉛化物(A)の割合、bは前記球状化または楕円体状化天然黒鉛(B)の割合、cは前記黒鉛(C)の割合を示す。
(1) Average particle diameter of 10 to 40 [mu] m, average aspect ratio Ri der less than 1.2, coal or heavy oil petroleum, to heat treatment at least one selected from the tars and pitches such obtained Mesophase microsphere graphitized product (A) obtained by graphitizing the obtained spherical polymer having optical anisotropy ,
Spherical or ellipsoidal natural graphite having an average particle size of 5 to 35 μm, smaller than the average particle size of the mesophase small sphere graphitized product (A) and having an average aspect ratio of less than 2.0 (B) As well as
Graphite (C) having an average particle diameter of 2 to 25 μm, smaller than the average particle diameter of the mesophase microsphere graphitized product (A), and having an average aspect ratio of less than 2.0
The mesophase microsphere graphitized product (A), the spheroidized or ellipsoidized natural graphite (B) and the graphite (C) in the mixture have a mass ratio of the following formulas (1) and ( 2) The negative electrode material for lithium ion secondary batteries characterized by satisfying | filling.
a: b = (10 to 70): (90 to 30) (1)
(A + b): c = ( 80 to 95): ( 20 to 5) (2)
Here, a represents the proportion of the mesophase small sphere graphitized product (A), b represents the proportion of the spheroidized or ellipsoidized natural graphite (B), and c represents the proportion of the graphite (C).
(2)前記メソフェーズ小球体黒鉛化物(A)が球状であり、前記黒鉛(C)が球状、楕円体状または塊状であることを特徴とする前記(1)に記載のリチウムイオン二次電池用負極材料。 (2) The mesophase microsphere graphitized product (A) is spherical, and the graphite (C) is spherical, ellipsoidal or massive, for the lithium ion secondary battery according to (1) above Negative electrode material.
(3)前記球状化または楕円体状化天然黒鉛(B)の表面の少なくとも一部に、炭素質材料または黒鉛質材料が付着していることを特徴とする前記(1)または(2)に記載のリチウムイオン二次電池用負極材料。 (3) In the above (1) or (2), a carbonaceous material or a graphite material is attached to at least a part of the surface of the spheroidized or ellipsoidized natural graphite (B). The negative electrode material for lithium ion secondary batteries as described.
(4)前記黒鉛(C)が非造粒型黒鉛および/または造粒型黒鉛であることを特徴とする前記(1)〜(3)のいずれかに記載のリチウムイオン二次電池用負極材料。 (4) The negative electrode material for a lithium ion secondary battery according to any one of (1) to (3), wherein the graphite (C) is non-granulated graphite and / or granulated graphite. .
(5)前記(1)〜(4)のいずれかに記載の負極材料を活物質として用い、該活物質層の密度が1.7g/cm3以上であることを特徴とするリチウムイオン二次電池負極。 (5) A lithium ion secondary, wherein the negative electrode material according to any one of (1) to (4) is used as an active material, and the density of the active material layer is 1.7 g / cm 3 or more. Battery negative electrode.
(6)前記(5)に記載のリチウムイオン二次電池負極を用いたリチウムイオン二次電池。 (6) A lithium ion secondary battery using the lithium ion secondary battery negative electrode according to (5).
本発明のメソフェーズ小球体黒鉛化物(A)、球状化または楕円体状化天然黒鉛(B)および黒鉛(C)を含むリチウムイオン二次電池負極は、活物質層の密度を高くした場合にも、集電体の変形や破断が生じることがなく、また、各黒鉛(A)(B)(C)の潰れや配向が抑えられ、電解液の浸透性に優れる。そして、各黒鉛(A)(B)(C)の周りに、電解液が存在しやすいので、リチウムイオンの拡散性が良くなる。そのため、本発明の負極を用いたリチウムイオン二次電池は、体積当たりの放電容量が高く、急速充電性、急速放電性、サイクル特性等の電池性能が良好である。よって、本発明のリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有用である。 The lithium ion secondary battery negative electrode containing the mesophase microsphere graphitized product (A), spheroidized or ellipsoidized natural graphite (B) and graphite (C) of the present invention can be used even when the density of the active material layer is increased. The current collector is not deformed or broken, and each graphite (A), (B), or (C) is prevented from being crushed and oriented, and the electrolyte has excellent permeability. And since electrolyte solution exists easily around each graphite (A) (B) (C), the diffusibility of lithium ion becomes good. Therefore, the lithium ion secondary battery using the negative electrode of the present invention has a high discharge capacity per volume and good battery performance such as rapid chargeability, rapid discharge performance, and cycle characteristics. Therefore, the lithium ion secondary battery of the present invention satisfies the recent demand for higher energy density of batteries, and is useful for downsizing and higher performance of equipment to be mounted.
以下、本発明について具体的に説明する。
リチウムイオン二次電池(以下、単に二次電池とも記す)は、通常、電解液(非水電解質)、負極および正極を主たる電池構成要素とし、これら要素が、例えば、二次電池缶内に封入されている。負極および正極はそれぞれリチウムイオンの担持体として作用する。充電時には、リチウムイオンが負極に吸蔵され、放電時には負極からリチウムイオンが離脱する電池機構によっている。
本発明の二次電池は、負極材料として本発明の負極材料を用いること以外、特に限定されず、非水電解質、正極、セパレータなどの他の電池構成要素については一般的な二次電池の要素に準じる。
Hereinafter, the present invention will be specifically described.
A lithium ion secondary battery (hereinafter also simply referred to as a secondary battery) usually has an electrolyte solution (non-aqueous electrolyte), a negative electrode, and a positive electrode as main battery components, and these elements are enclosed in, for example, a secondary battery can. Has been. The negative electrode and the positive electrode each act as a lithium ion carrier. The battery mechanism is such that lithium ions are occluded in the negative electrode during charging and lithium ions are released from the negative electrode during discharging.
The secondary battery of the present invention is not particularly limited except that the negative electrode material of the present invention is used as the negative electrode material, and other battery components such as a non-aqueous electrolyte, a positive electrode, and a separator are general secondary battery elements. According to
[メソフェーズ小球体黒鉛化物(A)]
本発明のメソフェーズ小球体黒鉛化物(A)(以下、単に小球体黒鉛化物(A)とも記す)は、非造粒型、非破砕型の黒鉛粒子である。本発明の小球体黒鉛化物(A)の平均粒子径は、体積換算の平均粒子径で10〜40μm、特に15〜35μmであることが好ましい。10μm以上であれば、活物質層の密度を高めることができ、体積当たりの放電容量が向上する。40μm以下であれば、急速充電性やサイクル特性が向上する。ここで、体積換算の平均粒子径とは、レーザー回折式粒度分布計によって測定した粒度分布の累積度数が、体積百分率で50%となる粒子径を意味する。
[Mesophase small sphere graphitized product (A)]
The mesophase small sphere graphitized product (A) of the present invention (hereinafter also simply referred to as small sphere graphitized product (A)) is non-granulated and non-crushed graphite particles. The average particle diameter of the small sphere graphitized product (A) of the present invention is preferably 10 to 40 μm, particularly preferably 15 to 35 μm in terms of volume average particle diameter. If it is 10 micrometers or more, the density of an active material layer can be raised and the discharge capacity per volume will improve. If it is 40 micrometers or less, quick charge property and cycling characteristics will improve. Here, the average particle diameter in terms of volume means a particle diameter at which the cumulative frequency of the particle size distribution measured by a laser diffraction particle size distribution meter is 50% by volume percentage.
本発明の小球体黒鉛化物(A)の形状は、球状、特に真球状に近いことが好ましく、平均アスペクト比が1.3未満であることが好ましく、1.2未満であることがより好ましく、1.1未満であることがさらに好ましい。真球状に近いほど、該黒鉛化物(A)の結晶構造が粒子内や負極上で一方向に配列しないほか、電解液中のリチウムイオンの拡散性が高く、急速充電性、急速放電性やサイクル特性が良好である。
アスペクト比とは、小球体黒鉛化物(A)の1粒子の長軸長の短軸長に対する比を意味する。ここで、長軸長は測定対象の粒子の最も長い径を意味し、短軸長は測定対象の粒子の長軸に直交する短い径を意味する。また、平均アスペクト比は、走査型電子顕微鏡によって100個の小球体黒鉛化物(A)を観察して測定した各粒子のアスペクト比の単純平均値である。ここで、走査型電子顕微鏡で観察する際の倍率は、測定対象粒子の形状を確認できる倍率とする。
The shape of the small sphere graphitized product (A) of the present invention is preferably spherical, particularly close to a true sphere, the average aspect ratio is preferably less than 1.3, more preferably less than 1.2, More preferably, it is less than 1.1. The closer to the true sphere, the more the crystal structure of the graphitized product (A) is not aligned in one direction in the particles or on the negative electrode, and the higher the diffusibility of lithium ions in the electrolytic solution, the quick chargeability, the rapid discharge property and the cycle. Good characteristics.
The aspect ratio means the ratio of the major axis length of one particle of the small sphere graphitized product (A) to the minor axis length. Here, the long axis length means the longest diameter of the particle to be measured, and the short axis length means a short diameter perpendicular to the long axis of the particle to be measured. The average aspect ratio is a simple average value of the aspect ratio of each particle measured by observing 100 small sphere graphitized products (A) with a scanning electron microscope. Here, the magnification at the time of observing with a scanning electron microscope is a magnification at which the shape of the particles to be measured can be confirmed.
本発明の小球体黒鉛化物(A)は、高い結晶性を有する。結晶性が高いがゆえに軟質であり、活物質層の密度を高くすることにも寄与する。結晶性の指標として、X線広角回折における格子面(002)の平均格子面間隔d002(以下、単に平均格子面間隔d002とも記す)が0.3363nm未満、特に0.3360mm以下であることが好ましい。ここで、平均格子面間隔d002とは、X線としてCuKα線を用い、高純度シリコンを標準物質に使用して、小球体黒鉛化物(A)の(002)面の回折ピークを測定し、そのピーク位置から算出する。算出方法は、学振法(日本学術振興会第17委員会が定めた測定法)に従うものであり、具体的には、「炭素繊維」(大谷杉郎著、733−742頁(1986年3月)、近代編集社)に記載された方法によって測定した値である。 The small sphere graphitized product (A) of the present invention has high crystallinity. Since it has high crystallinity, it is soft and contributes to increasing the density of the active material layer. It as an index of crystalline lattice plane in X-ray wide angle diffraction (002) average lattice spacing d 002 (hereinafter, simply referred to as an average lattice spacing d 002) of less than 0.3363 nm, in particular 0.3360mm less Is preferred. Here, the average lattice spacing d 002 is a diffraction peak on the (002) plane of the microsphere graphitized product (A) using CuKα rays as X-rays and using high-purity silicon as a standard material, Calculate from the peak position. The calculation method follows the Japan Science and Technology Act (measurement method defined by the 17th Committee of the Japan Society for the Promotion of Science). Specifically, “Carbon Fiber” (written by Suguro Otani, pages 733-742 (March 1986)). (Month) and Modern Editing Company).
本発明の小球体黒鉛化物(A)は、高い結晶性を有するため、二次電池の負極活物質に用いた場合に、高い放電容量を示す。放電容量は負極や評価電池の作製条件によって変化するものの、およそ330mAh/g以上、好ましくは340mAh/g以上、より好ましくは350mAh/g以上である。 Since the microsphere graphitized material (A) of the present invention has high crystallinity, it exhibits a high discharge capacity when used as a negative electrode active material for a secondary battery. Although the discharge capacity varies depending on the production conditions of the negative electrode and the evaluation battery, it is about 330 mAh / g or more, preferably 340 mAh / g or more, more preferably 350 mAh / g or more.
本発明の小球体黒鉛化物(A)の比表面積は、大きすぎると二次電池の初期充放電効率の低下を招くため、窒素ガス吸着BET比表面積(以下、単に比表面積とも記す)で20m2/g以下が好ましく、5m2/g以下がより好ましい。 If the specific surface area of the small spherical graphitized material (A) of the present invention is too large, the initial charge / discharge efficiency of the secondary battery is reduced. Therefore, the nitrogen gas adsorption BET specific surface area (hereinafter also simply referred to as the specific surface area) is 20 m 2. / G or less is preferable, and 5 m 2 / g or less is more preferable.
本発明の小球体黒鉛化物(A)は、本発明の目的を損なわない範囲で、異種の黒鉛材料、非晶質ハードカーボンなどの炭素材料、無機材料、金属材料等との混合物、複合物であってもよい。具体的には、小球体黒鉛化物(A)の表面に、タールピッチ類や樹脂類を被覆し焼成したもの、炭素繊維やカーボンブラック等の導電材を付着または埋設したもの、シリカ、アルミナ、チタニア等の金属酸化物の微粒子を付着または埋設したもの、ケイ素、錫、コバルト、ニッケル、銅、酸化ケイ素、酸化錫、チタン酸リチウムなどの金属または金属化合物を付着または埋設したもの、これらを組み合わせたものなど挙げることができる。また、小球体黒鉛化物(A)はその表面を平滑化または粗面化したものであってもよい。 The small sphere graphitized product (A) of the present invention is a mixture or composite of different types of graphite materials, carbon materials such as amorphous hard carbon, inorganic materials, metal materials, etc. within the range not impairing the object of the present invention. There may be. Specifically, the surface of the microsphere graphitized material (A) is coated with tar pitches or resins and baked, the conductive material such as carbon fiber or carbon black is attached or embedded, silica, alumina, titania Attached or embedded with metal oxide fine particles such as silicon, tin, cobalt, nickel, copper, silicon oxide, tin oxide, lithium titanate or other metals or metal compounds, or a combination of these Things can be mentioned. The small sphere graphitized product (A) may have a surface smoothed or roughened.
[メソフェーズ小球体黒鉛化物(A)の製造方法]
本発明の小球体黒鉛化物(A)は、石炭系、石油系の重質油、タール類、ピッチ類を350〜500℃で加熱処理することにより生成する光学的異方性の球状重合物が原料である。球状重合物をピッチマトリックスから遠心分離や有機溶剤(ベンゼン、トルエン、キノリン、タール中油、タール重油、洗浄油等)を用いて分離精製した後、分離された球状重合物を非酸化性雰囲気下300℃以上で一次焼成し、最終的に非酸化性雰囲気下2500℃超で高温熱処理することによって小球体黒鉛化物(A)を得ることができる。最終的な高温熱処理は好ましくは2800℃以上、より好ましくは3000℃以上で行うが、小球体黒鉛化物(A)の粒子の昇華、分解等を避けるため、通常、上限温度は約3300℃とする。最終的な高温熱処理は、アチェソン炉等の公知の高温炉を用いて行うことができる。最終的な高温熱処理の時間はいちがいに言えないが、1〜50時間程度である。
[Method for producing mesophase microsphere graphitized product (A)]
The microsphere graphitized product (A) of the present invention is an optically anisotropic spherical polymer produced by heat-treating coal-based, petroleum-based heavy oil, tars, and pitches at 350 to 500 ° C. It is a raw material. The spherical polymer is separated and purified from the pitch matrix by centrifugation or using an organic solvent (benzene, toluene, quinoline, tar medium oil, tar heavy oil, washing oil, etc.), and the separated spherical polymer is then removed in a non-oxidizing atmosphere. The small sphere graphitized product (A) can be obtained by performing primary firing at a temperature of not lower than ° C. and finally high-temperature heat treatment at a temperature exceeding 2500 ° C. in a non-oxidizing atmosphere. The final high-temperature heat treatment is preferably performed at 2800 ° C. or more, more preferably 3000 ° C. or more. However, in order to avoid sublimation and decomposition of the particles of the small sphere graphitized product (A), the upper limit temperature is usually about 3300 ° C. . The final high-temperature heat treatment can be performed using a known high-temperature furnace such as an Acheson furnace. Although the final high-temperature heat treatment time cannot be said, it is about 1 to 50 hours.
本発明の小球体黒鉛化物(A)の原料である石炭系、石油系の重質油、タール類、ピッチ類には、本発明の目的を損なわない範囲で、金属、金属化合物、無機化合物、炭素材料、樹脂等の異種成分を配合することもできる。また、ピッチマトリックスから分離されたメソフェーズ小球体(球状重合物)を一次焼成する前、または、最終的に高温熱処理する前あるいは最終的に高温熱処理した後において、金属、金属化合物、無機化合物、炭素材料、樹脂等の異種成分を付着、埋設、被覆することもできる。 The coal-based, petroleum-based heavy oil, tars, and pitches, which are raw materials for the microsphere graphitized product (A) of the present invention, can be used within the range not impairing the object of the present invention, metals, metal compounds, inorganic compounds, Different components such as carbon materials and resins can be blended. In addition, before primary firing of mesophase spherules (spherical polymer) separated from the pitch matrix, or before final high-temperature heat treatment or after final high-temperature heat treatment, metals, metal compounds, inorganic compounds, carbon It is also possible to attach, embed, and cover different components such as materials and resins.
[球状化または楕円体状化天然黒鉛(B)]
本発明の球状化または楕円体状化天然黒鉛(B)は、扁平状、鱗片状の天然黒鉛を湾曲させたり、折畳んで略式球状化したもの、または、複数の鱗片状の天然黒鉛を同心円状、キャベツ状に造粒し球状化したものが好ましい。
本発明の球状化または楕円体状化天然黒鉛(B)の平均粒子径は、前記小球体黒鉛化物(A)の平均粒子径より小さくなければならず、その体積換算の平均粒子径は5〜35μm、特に10〜30μmであることが好ましい。5μm以上であれば、活物質層の密度を高めることができ、体積当たりの放電容量が向上する。そして、35μm以下であると、急速充電性やサイクル特性が向上する。球状化または楕円体状化天然黒鉛(B)の平均粒子径が、小球体黒鉛化物(A)の平均粒子径より大きい場合、活物質層を高密度化したときに、球状化または楕円体状化天然黒鉛(B)が潰れやすくなり、球状化または楕円体状化天然黒鉛(B)の結晶構造が粒子内や負極上で一方向に配向してしまう。このため、リチウムイオンの拡散性が低下し、急速充電性、急速放電性、サイクル特性の低下を引起す。
[Spheroidized or Ellipsoidized Natural Graphite (B)]
The spheroidized or ellipsoidal natural graphite (B) of the present invention is obtained by bending or folding a flat or scaly natural graphite, or by concentrating a plurality of scaly natural graphites. And those which have been granulated into a cabbage shape and spheroidized are preferred.
The average particle size of the spheroidized or ellipsoidized natural graphite (B) of the present invention must be smaller than the average particle size of the small sphere graphitized product (A), and the average particle size in terms of volume is 5 to 5. It is preferable that it is 35 micrometers, especially 10-30 micrometers. If it is 5 micrometers or more, the density of an active material layer can be raised and the discharge capacity per volume will improve. And if it is 35 micrometers or less, quick charge property and cycling characteristics will improve. When the average particle size of the spheroidized or ellipsoidized natural graphite (B) is larger than the average particle size of the small sphere graphitized material (A), when the active material layer is densified, the spheroidized or ellipsoidal shape The natural graphite (B) is easily crushed, and the crystal structure of the spheroidized or ellipsoidal natural graphite (B) is oriented in one direction in the particle or on the negative electrode. For this reason, the diffusibility of lithium ions is lowered, causing rapid chargeability, rapid discharge properties, and cycle characteristics to be degraded.
本発明の球状化または楕円体状化天然黒鉛(B)の平均アスペクト比は、2.0未満であることが好ましく、1.5未満であることがより好ましく、1.3未満であることがさらに好ましい。真球状に近い形状であるほど、球状化または楕円体状化天然黒鉛(B)の結晶構造が粒子内や負極上で一方向に配向せず、電解液中のリチウムイオンの拡散性が高く、急速充電性、急速放電性、サイクル特性を良好にすることができる。 The average aspect ratio of the spheroidized or ellipsoidized natural graphite (B) of the present invention is preferably less than 2.0, more preferably less than 1.5, and less than 1.3. Further preferred. The closer the shape to a true sphere, the more the crystal structure of the spheroidized or ellipsoidized natural graphite (B) is not oriented in one direction in the particles or on the negative electrode, and the diffusibility of lithium ions in the electrolyte is higher. Rapid chargeability, rapid discharge, and cycle characteristics can be improved.
本発明の球状化または楕円体状化天然黒鉛(B)は高い結晶性を有する。結晶性が高いがゆえに軟質であり、活物質層の密度を高くすることにも寄与する。結晶性の指標としての平均格子面間隔d002が0.3360nm未満、特に0.3358mm以下であることが好ましい。
また、本発明の球状化または楕円体状化天然黒鉛(B)は、結晶性が高いがゆえに、二次電池の負極活物質に用いた場合に、高い放電容量を示す。放電容量は負極や評価電池の作製条件によって変化するものの、およそ350mAh/g以上、好ましくは360mAh/g以上である。
本発明の球状化または楕円体状化天然黒鉛(B)の比表面積は、大きすぎると二次電池の初期充放電効率の低下を招くため、比表面積で20m2/g以下が好ましく、10m2/g以下がより好ましい。
The spheroidized or ellipsoidized natural graphite (B) of the present invention has high crystallinity. Since it has high crystallinity, it is soft and contributes to increasing the density of the active material layer. It is preferable that the average lattice spacing d 002 as an index of crystallinity is less than 0.3360 nm, particularly 0.3358 mm or less.
In addition, since the spheroidized or ellipsoidal natural graphite (B) of the present invention has high crystallinity, it exhibits a high discharge capacity when used as a negative electrode active material for a secondary battery. Although the discharge capacity varies depending on the production conditions of the negative electrode and the evaluation battery, it is about 350 mAh / g or more, preferably 360 mAh / g or more.
When the specific surface area of the spheroidized or ellipsoidized natural graphite (B) of the present invention is too large, the initial charge / discharge efficiency of the secondary battery is reduced. Therefore, the specific surface area is preferably 20 m 2 / g or less, and preferably 10 m 2. / G or less is more preferable.
本発明の球状化または楕円体状化天然黒鉛(B)は、その一部または全部が、少なくともその表面の一部に炭素質材料が付着したもの(B1)または黒鉛質材料が付着したもの(B2)であることがより好ましい。炭素質材料または黒鉛質材料の付着により、天然黒鉛(B)の潰れを防止することができる。
球状化または楕円体状化天然黒鉛(B1)に付着した炭素質材料としては、石炭系または石油系の重質油、タール類、ピッチ類や、フェノール樹脂等の樹脂類を最終的に500℃以上1500℃未満で加熱処理してなる炭化物が挙げられる。炭素質材料の付着量は球状化または楕円体状化天然黒鉛(B)100質量部に対し0.1〜10質量部、特に0.5〜5質量部であることが好ましい。
球状化または楕円体状化天然黒鉛(B2)に付着した黒鉛質材料としては、石炭系または石油系の重質油、タール類、ピッチ類や、フェノール樹脂等の樹脂類を1500℃以上3300℃未満で加熱処理してなる黒鉛化物が挙げられる。黒鉛質材料の付着量は球状化または楕円体状化天然黒鉛(B)100質量部に対し1〜30質量部、特に5〜20質量部であることが好ましい。
Part or all of the spheroidized or ellipsoidized natural graphite (B) of the present invention has a carbonaceous material attached to at least a part of its surface (B1) or a graphite material attached ( More preferably, it is B2). The adhesion of the carbonaceous material or the graphite material can prevent the natural graphite (B) from being crushed.
As the carbonaceous material adhering to the spheroidized or ellipsoidal natural graphite (B1), coal-based or petroleum-based heavy oil, tars, pitches, and resins such as phenol resins are finally added at 500 ° C. The carbide formed by heat-processing above 1500 degreeC above is mentioned. The adhesion amount of the carbonaceous material is preferably 0.1 to 10 parts by mass, particularly 0.5 to 5 parts by mass with respect to 100 parts by mass of the spheroidized or ellipsoidal natural graphite (B).
Examples of the graphite material adhering to the spheroidized or ellipsoidal natural graphite (B2) include coal-based or petroleum-based heavy oil, tars, pitches, and resins such as phenol resins at 1500 ° C to 3300 ° C. A graphitized product obtained by heat treatment with less than the above may be mentioned. The adhesion amount of the graphite material is preferably 1 to 30 parts by mass, particularly 5 to 20 parts by mass with respect to 100 parts by mass of the spheroidized or ellipsoidal natural graphite (B).
炭素質材料または黒鉛質材料が付着した天然黒鉛(B1)または天然黒鉛(B2)の平均粒子径、平均アスペクト比、平均格子面間隔d002、比表面積の好適範囲は、前記した炭素質材料または黒鉛質材料の付着がない天然黒鉛(B)の場合と同じである。 The preferred range of the average particle diameter, average aspect ratio, average lattice spacing d 002 , and specific surface area of the natural graphite (B1) or natural graphite (B2) to which the carbonaceous material or graphitic material is attached is the carbonaceous material or This is the same as in the case of natural graphite (B) without adhesion of the graphite material.
炭素質材料または黒鉛質材料が付着した天然黒鉛(B1)または天然黒鉛(B2)は、その炭素質材料または黒鉛質材料の内部または表面に、炭素繊維やカーボンブラック等の導電材を有するものであってもよく、シリカ、アルミナ、チタニア等の金属酸化物の微粒子を付着または埋設したものであってもよく、ケイ素、錫、コバルト、ニッケル、銅、酸化ケイ素、酸化錫、チタン酸リチウムなどの金属または金属化合物を付着または埋設したものであってもよい。 Natural graphite (B1) or natural graphite (B2) to which a carbonaceous material or a graphite material is attached has a conductive material such as carbon fiber or carbon black inside or on the surface of the carbonaceous material or graphite material. It may be a metal oxide fine particle such as silica, alumina, titania attached or embedded, such as silicon, tin, cobalt, nickel, copper, silicon oxide, tin oxide, lithium titanate, etc. A metal or a metal compound may be attached or embedded.
[球状化または楕円体状化天然黒鉛(B)の製造方法]
本発明の球状化または楕円体状化天然黒鉛(B)(以下、単に天然黒鉛(B)とも記す)は、扁平状、鱗片状の天然黒鉛に機械的外力を加えることにより製造することができる。具体的には、高い剪断力を付与したり、転動操作を加えることにより湾曲させて球状化したり、同心円状に造粒して球状化することができる。球状化処理の前後において、結着剤を配合して造粒を促進することもできる。球状化処理が可能な装置としては、「カウンタジェットミル」(ホソカワミクロン(株)製)、「カレントジェット」(日清エンジニアリング(株)製)等の粉砕機、「SARARA」(川崎重工(株)製)、「GRANUREX」(フロイント産業(株)製)、「ニューグラマシン」((株)セイシン企業製)、「アグロマスター」(ホソカワミクロン(株)製)などの造粒機、加圧ニーダー、二本ロール等の混練機、「メカノマイクロシステム」((株)奈良機械製作所製)、押出機、ボールミル、遊星ミル、「メカノフュージョンシステム」(ホソカワミクロン(株)製)、「ノビルタ」(ホソカワミクロン(株)製)、「ハイブリダイゼーション」((株)奈良機械製作所製)、回転ボールミル等の圧縮剪断式加工装置などを挙げることができる。
[Method for Producing Spheroidized or Ellipsoidized Natural Graphite (B)]
The spheroidized or ellipsoidized natural graphite (B) of the present invention (hereinafter also simply referred to as natural graphite (B)) can be produced by applying mechanical external force to flat and scale-like natural graphite. . Specifically, it can be spheroidized by applying a high shearing force, bending by applying a rolling operation, or spheroidizing by concentric granulation. Before and after the spheronization treatment, a binder can be added to promote granulation. Spheroidizers that can be spheroidized include “counter jet mill” (manufactured by Hosokawa Micron Corporation), “current jet” (manufactured by Nissin Engineering Co., Ltd.), and “SARARA” (Kawasaki Heavy Industries, Ltd.). ), “GRANUREX” (manufactured by Freund Sangyo Co., Ltd.), “New Gramachine” (manufactured by Seishin Enterprise Co., Ltd.), “Agromaster” (manufactured by Hosokawa Micron Co., Ltd.), pressure kneader, Kneading machine such as this roll, “Mechano Micro System” (manufactured by Nara Machinery Co., Ltd.), Extruder, Ball Mill, Planetary Mill, “Mechano Fusion System” (manufactured by Hosokawa Micron Corporation), “Nobilta” (Hosokawa Micron Corporation) )), "Hybridization" (manufactured by Nara Machinery Co., Ltd.), compression shearing processing equipment such as a rotating ball mill, etc. Door can be.
本発明の天然黒鉛(B)の一部または全部に、炭素質材料または黒鉛質材料を付着させる方法としては、天然黒鉛(B)に炭素質材料または黒鉛質材料の前駆体を気相法、液相法、固相法のいずれかにより付着または被覆した後、熱処理することによって製造することができる。 As a method for attaching a carbonaceous material or a graphite material to a part or all of the natural graphite (B) of the present invention, a gas phase method is used in which a carbonaceous material or a precursor of the graphite material is attached to the natural graphite (B). It can be manufactured by heat treatment after being attached or coated by either liquid phase method or solid phase method.
気相法の具体例としては、天然黒鉛(B)の表面に、ベンゼン、トルエン等の炭化水素で代表される炭素質材料の前駆体の蒸気を900〜1200℃で蒸着する方法が挙げられる。蒸着時に炭化水素の前駆体が炭化し、炭素質材料が付着した天然黒鉛(B1)が得られる。 A specific example of the vapor phase method is a method in which vapor of a precursor of a carbonaceous material typified by hydrocarbons such as benzene and toluene is deposited on the surface of natural graphite (B) at 900 to 1200 ° C. A hydrocarbon precursor is carbonized during vapor deposition, and natural graphite (B1) with a carbonaceous material attached is obtained.
液相法の具体例としては、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ等の石油系または石炭系のタールピッチ類、ポリビニルアルコール等の熱可塑性樹脂、フェノール樹脂、フラン樹脂等の熱硬化性樹脂、糖類、セルローズ類(以下、炭素質材料前駆体とも記す)等の溶液に、天然黒鉛(B)を浸漬させた後、溶媒を除去し、最終的に500℃以上1500℃未満で熱処理することによって、炭素質材料が付着した天然黒鉛(B1)を製造する方法が挙げられる。同様に、熱処理温度を1500℃以上3300℃未満に高めることにより、黒鉛質材料が付着した天然黒鉛(B2)を製造することができる。 Specific examples of the liquid phase method include coal tar, tar light oil, tar middle oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, etc. Immerse natural graphite (B) in solutions such as pitches, thermoplastic resins such as polyvinyl alcohol, thermosetting resins such as phenolic resins and furan resins, sugars, and celluloses (hereinafter also referred to as carbonaceous material precursors). Then, after removing the solvent, a method of producing natural graphite (B1) to which the carbonaceous material is adhered can be exemplified by removing the solvent and finally performing heat treatment at 500 ° C. or more and less than 1500 ° C. Similarly, by increasing the heat treatment temperature to 1500 ° C. or higher and lower than 3300 ° C., natural graphite (B2) having a graphitic material attached thereto can be produced.
固相法の具体例としては、液相法の説明で例示した炭素質材料前駆体の粉末と天然黒鉛(B)を混合し、圧縮、剪断、衝突、摩擦等の機械的エネルギーを付与するメカノケミカル処理によって、天然黒鉛(B)の表面に炭素質材料前駆体の粉末を圧着する方法が挙げられる。メカノケミカル処理によって、炭素質材料前駆体が溶融または軟化し、天然黒鉛(B)に擦り付けられることにより付着する。メカノケミカル処理可能な装置としては、前記した各種圧縮剪断式加工装置を挙げることができる。炭素質材料前駆体の粉末が付着した天然黒鉛(B)、最終的に500℃以上1500℃未満で熱処理することによって、炭素質材料が付着した天然黒鉛(B1)を製造することができる。同様に、熱処理温度を1500℃以上3300℃未満に高めることにより、黒鉛質材料が付着した天然黒鉛(B2)を製造することができる。 As a specific example of the solid-phase method, a carbonaceous material precursor powder exemplified in the description of the liquid-phase method and natural graphite (B) are mixed to provide mechanical energy such as compression, shear, collision, friction and the like. There is a method in which the carbonaceous material precursor powder is pressure-bonded to the surface of natural graphite (B) by chemical treatment. By the mechanochemical treatment, the carbonaceous material precursor is melted or softened, and is adhered by being rubbed against natural graphite (B). Examples of the apparatus capable of mechanochemical treatment include the various compression shearing processing apparatuses described above. Natural graphite (B) to which the carbonaceous material precursor powder is adhered, and finally heat-treated at 500 ° C. or more and less than 1500 ° C., can produce natural graphite (B1) to which the carbonaceous material is adhered. Similarly, by increasing the heat treatment temperature to 1500 ° C. or higher and lower than 3300 ° C., natural graphite (B2) having a graphitic material attached thereto can be produced.
なお、炭素質材料前駆体とともに、炭素繊維やカーボンブラック等の導電材を用いてもよい。さらに、黒鉛質材料が付着した天然黒鉛(B2)を製造する場合には、炭素質材料前駆体とともに、Na、K等のアルカリ金属、Mg、Ca等のアルカリ土類金属、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、Nb、Mn、Mo、Tc、Ru、Rh、Pd、Hf、Ta、W、Re、Os、Ir、Pt等の遷移金属、Al、Ge等の金属、B、Si等の半金属、これらの金属化合物、例えば、水酸化物、酸化物、窒化物、塩化物、硫化物等を単独または2種以上混合して用いてもよい。 A conductive material such as carbon fiber or carbon black may be used together with the carbonaceous material precursor. Furthermore, in the case of producing natural graphite (B2) to which a graphite material is adhered, together with a carbonaceous material precursor, an alkali metal such as Na and K, an alkaline earth metal such as Mg and Ca, Ti, V, and Cr Mn, Fe, Co, Ni, Zr, Nb, Mn, Mo, Tc, Ru, Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt and other transition metals, Al, Ge and other metals, Semimetals such as B and Si, and metal compounds thereof, for example, hydroxides, oxides, nitrides, chlorides, sulfides and the like may be used alone or in combination.
[非造粒型黒鉛(C1)および造粒型黒鉛(C2)]
本発明の黒鉛(C)は非造粒型黒鉛(C1)および造粒型黒鉛(C2)のいずれでもよい。
非造粒型黒鉛(C1)は、その粒子内部が緻密な球状、楕円体状、塊状等の黒鉛粒子であり、造粒型黒鉛(C2)は微細な一次粒子が造粒されてなる球状、楕円体状、塊状等の黒鉛粒子である。
非造粒型黒鉛(C1)および造粒型黒鉛(C2)の平均粒子径は、小球体黒鉛化物(A)の平均粒子径よりも小さいことが必須であり、平均粒子径で2〜25μm、特に3〜20μmであることが好ましい。2μm未満の場合は、初期充放電効率の低下が生じることがある。25μm超の場合は、非造粒型黒鉛(C1)では、活物質層を高密度にするために高い圧力を必要とし、集電体である銅箔の変形、伸び、破断といった問題を生じることがあり、造粒型黒鉛(C2)では、活物質層を高密度にした場合に、造粒型黒鉛(C2)粒子が一方向に配向するので、リチウムイオンの拡散性が低下し、急速充電性、急速放電性、サイクル特性の低下を引起すことがある。
[Non-granulated graphite (C1) and granulated graphite (C2)]
The graphite (C) of the present invention may be either non-granulated graphite (C1) or granulated graphite (C2).
The non-granulated graphite (C1) is a fine spherical, ellipsoidal, or massive graphite particle inside the particle, and the granulated graphite (C2) is a spherical particle formed by granulating fine primary particles. Graphite particles such as ellipsoidal shape and lump shape.
The average particle diameter of the non-granulated graphite (C1) and the granulated graphite (C2) must be smaller than the average particle diameter of the small spherical graphitized product (A), and the average particle diameter is 2 to 25 μm. In particular, the thickness is preferably 3 to 20 μm. If it is less than 2 μm, the initial charge / discharge efficiency may be lowered. In the case of more than 25 μm, non-granulated graphite (C1) requires high pressure to make the active material layer high in density, and causes problems such as deformation, elongation and breakage of the copper foil as a current collector. In the case of granulated graphite (C2), when the active material layer is made dense, the granulated graphite (C2) particles are oriented in one direction, so that the diffusibility of lithium ions is reduced and rapid charging is performed. , Rapid discharge, and cycle characteristics may be deteriorated.
非造粒型黒鉛(C1)および造粒型黒鉛(C2)の平均粒子径が、小球体黒鉛化物(A)の平均粒子径より大きい場合、非造粒型黒鉛(C1)では、活物質層を高密度化するために高い圧力を必要とし、集電体である銅箔の変形、伸び、破断といった問題がより顕在化する。また、造粒型黒鉛(C2)では、活物質層を高密度化したときに、造粒型黒鉛(C2)がより潰れやすくなり、造粒型黒鉛(C2)の結晶構造が粒子内や負極上で一方向に配向してしまう。このため、リチウムイオンの拡散性が低下し、急速充電性、急速放電性、サイクル特性の低下を引起す。 When the average particle size of the non-granulated graphite (C1) and the granulated graphite (C2) is larger than the average particle size of the small spherical graphitized product (A), the non-granulated graphite (C1) High pressure is required to increase the density of the copper foil, and problems such as deformation, elongation, and breakage of the copper foil as the current collector become more apparent. Further, in the granulated graphite (C2), when the active material layer is densified, the granulated graphite (C2) is more easily crushed, and the crystal structure of the granulated graphite (C2) is in the particles or in the negative electrode. It will be oriented in one direction. For this reason, the diffusibility of lithium ions is lowered, causing rapid chargeability, rapid discharge properties, and cycle characteristics to be degraded.
非造粒型黒鉛(C1)および造粒型黒鉛(C2)の平均アスペクト比は2.0未満であることが好ましく、1.5未満であることがより好ましく、1.3未満であることがさらに好ましい。真球状に近い形状であるほど、非造粒型黒鉛(C1)および造粒型黒鉛(C2)の結晶構造が粒子内や負極上で一方向に配向しない上、電解液中のリチウムイオンの拡散性が高く、急速充電性、急速放電性やサイクル特性が良好になる。 The average aspect ratio of the non-granulated graphite (C1) and the granulated graphite (C2) is preferably less than 2.0, more preferably less than 1.5, and less than 1.3. Further preferred. The closer to a spherical shape, the more the crystal structure of non-granulated graphite (C1) and granulated graphite (C2) is not oriented in one direction in the particles or on the negative electrode, and the diffusion of lithium ions in the electrolytic solution High chargeability, quick chargeability, rapid discharge properties and cycle characteristics are improved.
非造粒型黒鉛(C1)および造粒型黒鉛(C2)は高い結晶性を有することが好ましく、平均格子面間隔d002が0.3363nm未満、特に0.3360nm以下であることが好ましい。
非造粒型黒鉛(C1)および造粒型黒鉛(C2)を二次電池の負極活物質に用いた場合の放電容量は、負極や評価電池の作製条件によって変化するものの、340mAh/g以上、好ましくは350mAh/g以上である。
非造粒型黒鉛(C1)および造粒型黒鉛(C2)の比表面積は、大きすぎると二次電池の初期充放電効率の低下を招くため、比表面積で20m2/g以下が好ましく、10m2/g以下がより好ましい。
造粒型黒鉛(C2)は、非造粒型黒鉛(C1)に比べ、リチウムイオンの挿入口が多く、急速充電性に優れることから好ましく使用される。
The non-granulated graphite (C1) and the granulated graphite (C2) preferably have high crystallinity, and the average lattice spacing d 002 is preferably less than 0.3363 nm, particularly preferably 0.3360 nm or less.
The discharge capacity when non-granulated graphite (C1) and granulated graphite (C2) are used as the negative electrode active material of the secondary battery varies depending on the production conditions of the negative electrode and the evaluation battery, but is 340 mAh / g or more, Preferably it is 350 mAh / g or more.
If the specific surface area of the non-granulated graphite (C1) and the granulated graphite (C2) is too large, the initial charge / discharge efficiency of the secondary battery is reduced. Therefore, the specific surface area is preferably 20 m 2 / g or less, preferably 10 m. 2 / g or less is more preferable.
The granulated graphite (C2) is preferably used because it has more lithium ion insertion ports and is excellent in quick chargeability than the non-granulated graphite (C1).
非造粒型黒鉛(C1)の製造は、例えば、石炭系のタール、ピッチを加熱して得られるメソフェーズ焼成炭素(バルクメソフェーズ)、メソフェーズ小球体の粉砕物、コークス類(生コークス、グリーンコークス、ピッチコークス、ニードルコークス、石油コークス等)を、あらかじめ最終の非造粒型黒鉛(C1)の粒子形状で、かつ平均粒子径で2〜25μmに粉砕した後、2500℃以上3300℃未満で熱処理して黒鉛化したもの、または、石油系タール、ピッチを同様に熱処理して黒鉛化したもの等が挙げられる。
粉砕方法は特に限定されず、各種の粉砕方式が適用可能であるが、粉砕と同時または粉砕後に破砕面の角を取ることが好ましく、ボールミル、渦流式粉砕機、摩砕式粉砕機等の使用が好ましい。
The production of non-granulated graphite (C1) includes, for example, coal-based tar, mesophase calcined carbon obtained by heating pitch (bulk mesophase), pulverized mesophase spherules, coke (raw coke, green coke, Pitch coke, needle coke, petroleum coke, etc.) are preliminarily pulverized to a final non-granulated graphite (C1) particle shape and an average particle size of 2 to 25 μm, and then heat treated at 2500 ° C. or more and less than 3300 ° C. And graphitized, or petroleum-based tar and pitch graphitized by heat treatment in the same manner.
The pulverization method is not particularly limited, and various pulverization methods can be applied. However, it is preferable to take a corner of the pulverization surface simultaneously with pulverization or after pulverization, and use of a ball mill, a vortex pulverizer, an attrition pulverizer, etc. Is preferred.
非造粒型黒鉛(C1)の原料や最終熱処理前の中間品に、金属、金属化合物、無機化合物、炭素材料、樹脂等の異種の成分を付着、埋設、被覆することもできる。さらに、最終熱処理後に、粒子形状を球状に近づけるための整粒処理を行うことが好ましい。整粒処理には、圧縮、剪断、衝突、摩擦等の機械的エネルギーを付与するメカノケミカル処理装置を使用することができる。 Different components such as metals, metal compounds, inorganic compounds, carbon materials, and resins can be attached, embedded, and coated on the raw material of non-granulated graphite (C1) and the intermediate product before final heat treatment. Furthermore, after the final heat treatment, it is preferable to perform a sizing treatment to bring the particle shape closer to a spherical shape. For the sizing treatment, a mechanochemical treatment apparatus that imparts mechanical energy such as compression, shearing, collision, and friction can be used.
造粒型黒鉛(C2)の製造方法としては、メソフェーズ焼成炭素(バルクメソフェーズ)、メソフェーズ小球体の粉砕物、コークス類(生コークス、グリーンコークス、ピッチコークス、ニードルコークス、石油コークス等)、または、石油系のタール、ピッチ等を熱処理したものを平均粒子径1〜15μmに微粉砕し、これをそのまま、または、500℃以上3300℃未満で熱処理し、これを前記炭素質材料前駆体を結着剤として造粒し、最終的に2500℃以上3300℃未満で熱処理して黒鉛化する方法、あるいは、平均粒子径1〜15μmの人造黒鉛、天然黒鉛を前記炭素質材料前駆体を結着剤として造粒したものを、最終的に2500℃以上3300℃未満で熱処理して黒鉛化する方法、さらに、平均粒子径1〜15μmの前記微粉砕物または平均粒子径1〜15μmの人造黒鉛、天然黒鉛を前記炭素質材料前駆体を付着剤として平均粒子径15μm超に造粒したものを、最終的に2500℃以上3300℃未満で熱処理して黒鉛化した後に、平均粒子径2〜25μmに粉砕する方法等が例示される。 As a method for producing granulated graphite (C2), mesophase calcined carbon (bulk mesophase), pulverized mesophase spheroids, coke (raw coke, green coke, pitch coke, needle coke, petroleum coke, etc.), or A heat-treated petroleum tar, pitch, etc. are finely pulverized to an average particle size of 1 to 15 μm and heat-treated as it is or at a temperature of 500 ° C. or higher and lower than 3300 ° C. to bind the carbonaceous material precursor. Granulated as an agent, and finally heat-treated at 2500 ° C. or higher and lower than 3300 ° C. for graphitization, or artificial graphite having an average particle diameter of 1 to 15 μm and natural graphite as a binder for the carbonaceous material precursor The granulated product is finally heat-treated at 2500 ° C. or higher and lower than 3300 ° C. for graphitization, and the fine particles having an average particle size of 1 to 15 μm Crushed material or artificial graphite having an average particle diameter of 1 to 15 μm, or natural graphite granulated with the carbonaceous material precursor as an adhesive to an average particle diameter of more than 15 μm is finally heat treated at 2500 ° C. or more and less than 3300 ° C. Examples thereof include a method of pulverizing to an average particle diameter of 2 to 25 μm after graphitization.
[非造粒型黒鉛(C1)の製造方法]
本発明の非造粒型黒鉛(C1)は、石炭系のタール、ピッチを加熱して得られるメソフェーズ焼成炭素(バルクメソフェーズ)、メソフェーズ小球体の粉砕物、コークス類(生コークス、グリーンコークス、ピッチコークス、ニードルコークス、石油コークス等)等をあらかじめ最終製品の粒子形状で、かつ平均粒子径で2〜25μmに粉砕した後、最終的に2500℃以上3300℃未満で熱処理して黒鉛化することにより製造することができる。粉砕方法は特に限定されず、各種の粉砕方式が適用可能であるが、粉砕と同時に破砕面の角を取ることが好ましく、ボールミル、渦流式粉砕機、摩砕式粉砕機等の使用が好ましい。
[Method for producing non-granulated graphite (C1)]
The non-granulated graphite (C1) of the present invention includes coal-based tar, mesophase calcined carbon (bulk mesophase) obtained by heating pitch, pulverized mesophase spheroids, coke (raw coke, green coke, pitch). Coke, needle coke, petroleum coke, etc.) are preliminarily pulverized to a final product particle shape and an average particle diameter of 2 to 25 μm, and finally heat treated at 2500 ° C. or higher and lower than 3300 ° C. to graphitize Can be manufactured. The pulverization method is not particularly limited, and various pulverization methods can be applied. However, it is preferable to take a corner of the pulverization surface simultaneously with the pulverization, and use of a ball mill, a vortex pulverizer, an attrition pulverizer, or the like is preferable.
非造粒型黒鉛(C1)の原料や最終熱処理前の中間品に、金属、金属化合物、無機化合物、炭素材料、樹脂等の異種の成分を付着、埋設、被覆することもできる。さらに、最終熱処理後に、粒子形状を球状に近づけるための整粒処理を行うことが好ましい。整粒処理は球状または楕円体状の天然黒鉛を製造することができる、圧縮、剪断、衝突、摩擦等の機械的エネルギーを付与するメカノケミカル処理装置を使用することができる。 Different components such as metals, metal compounds, inorganic compounds, carbon materials, and resins can be attached, embedded, and coated on the raw material of non-granulated graphite (C1) and the intermediate product before final heat treatment. Furthermore, after the final heat treatment, it is preferable to perform a sizing treatment to bring the particle shape closer to a spherical shape. The sizing treatment can use a mechanochemical processing apparatus that can produce spherical or ellipsoidal natural graphite and impart mechanical energy such as compression, shearing, collision, and friction.
[造粒型黒鉛(C2)の製造方法]
本発明の造粒型黒鉛(C2)は、メソフェーズ焼成炭素(バルクメソフェーズ)、メソフェーズ小球体の粉砕物、コークス類(生コークス、グリーンコークス、ピッチコークス、ニードルコークス、石油コークス等)を平均粒子径1〜15μmに微粉砕したものをそのまま、または、これを500℃以上3300℃未満で熱処理したもの、または、石油系タール、ピッチを熱処理した後、平均粒子径1〜15μmに微粉砕したものを、500℃以上3300℃未満で熱処理し、これら一次粒子を前記炭素質材料前駆体を結着剤として造粒し、最終的に2500℃以上3300℃未満で熱処理して黒鉛化したもの、あるいは、平均粒子径1〜15μmの人造黒鉛、天然黒鉛を一次粒子とし、これを前記炭素質材料前駆体を結着剤として造粒し、最終的に2500℃以上3300℃未満で熱処理して黒鉛化したものが例示される。さらに、前記一次粒子を前記炭素質材料前駆体を接着剤として平均粒子径15μm超の造粒体を形成し、最終的に2500℃以上3300℃未満で熱処理して黒鉛化した後に、平均粒子径2〜25μmに粉砕したものが例示される。
一次粒子の平均粒子径が1μm未満の場合には、初期充放電効率の低下を生じることがあり、15μm超の場合には、造粒後の平均粒子径を25μm以下に調整することが難しくなる。
[Production method of granulated graphite (C2)]
The granulated graphite (C2) of the present invention has an average particle size of mesophase calcined carbon (bulk mesophase), pulverized mesophase spheroids, coke (raw coke, green coke, pitch coke, needle coke, petroleum coke, etc.) What was finely pulverized to 1 to 15 μm, or was heat-treated at 500 ° C. or more and less than 3300 ° C., or after heat-treating petroleum tar and pitch and finely pulverized to an average particle size of 1 to 15 μm Heat treated at 500 ° C. or higher and lower than 3300 ° C., and granulate these primary particles using the carbonaceous material precursor as a binder and finally heat treated at 2500 ° C. or higher and lower than 3300 ° C., or Artificial graphite and natural graphite having an average particle diameter of 1 to 15 μm are used as primary particles, and the resultant is granulated using the carbonaceous material precursor as a binder. Those graphitized manner was heat-treated at lower than 2500 ° C. or higher 3300 ° C. is exemplified. Further, after forming the granulated body having an average particle diameter of more than 15 μm using the carbonaceous material precursor as an adhesive and finally heat-treating at 2500 ° C. to less than 3300 ° C., the primary particles are graphitized. The thing grind | pulverized to 2-25 micrometers is illustrated.
When the average particle diameter of the primary particles is less than 1 μm, the initial charge / discharge efficiency may be lowered. When the average particle diameter exceeds 15 μm, it is difficult to adjust the average particle diameter after granulation to 25 μm or less. .
造粒方法としては、一次粒子と前記炭素質材料前駆体の混合物を、二軸押出機等の高粘度で混練できる装置を用いて、炭素質材料前駆体の溶融温度以上の温度で均一混合することが好ましい。炭素質材料前駆体は溶液として配合してもよく、その場合には混練時に溶媒を除去することが望ましい。
混練後に、500〜1500℃で予備熱処理することが好ましい。予備熱処理の前後のいずれかにおいて粉砕することができるが、平均粒子径で2〜25μmになるように粉砕する場合の粉砕方法は特に限定されず、各種の粉砕方式が使用可能であるが、粉砕と同時に破砕面の角を取ることが好ましいことから、渦流式や摩砕式の粉砕機が好適である。また、粉砕後に粒子形状を球状に近づけるための整粒処理を行うことが好ましい。整粒処理方法には、前記の処理装置を使用することができる。混練後に粉砕せずに、最終的に2500℃以上3300℃未満で熱処理して黒鉛化した後に、平均粒子径2〜25μmに粉砕する場合においても、前記の粉砕機や処理装置を使用することができる。
As a granulation method, the mixture of the primary particles and the carbonaceous material precursor is uniformly mixed at a temperature equal to or higher than the melting temperature of the carbonaceous material precursor using an apparatus capable of kneading with high viscosity such as a twin screw extruder. It is preferable. The carbonaceous material precursor may be blended as a solution, in which case it is desirable to remove the solvent during kneading.
After kneading, it is preferable to perform a preliminary heat treatment at 500 to 1500 ° C. Although it can grind | pulverize either before and after preliminary heat processing, the grinding | pulverization method in the case of grind | pulverizing so that it may become 2-25 micrometers in an average particle diameter is not specifically limited, Although various grinding | pulverization systems can be used, it grind | pulverizes At the same time, since it is preferable to take a corner of the crushing surface, a vortex type or grinding type crusher is suitable. Moreover, it is preferable to perform a sizing treatment to make the particle shape close to spherical after pulverization. The said processing apparatus can be used for the sizing process method. Even when pulverizing to an average particle diameter of 2 to 25 μm after final heat treatment at 2500 ° C. or more and less than 3300 ° C. and then graphitizing without being pulverized after kneading, the above-mentioned pulverizer and processing device may be used. it can.
造粒型黒鉛(C2)の原料や最終熱処理前の中間品に、金属、金属化合物、無機化合物、炭素材料、樹脂等の異種の成分を配合することもできる。さらに、最終熱処理前に、あらかじめ酸化処理を施し、不融化させることもできる。最終熱処理後に、金属、金属化合物、無機化合物、炭素材料、樹脂等の異種の成分を付着、埋設、被覆することもできる。 Different components such as metals, metal compounds, inorganic compounds, carbon materials, and resins can be blended with the raw material of granulated graphite (C2) and the intermediate product before the final heat treatment. Furthermore, before the final heat treatment, an oxidation treatment can be performed in advance to make it infusible. After the final heat treatment, different components such as metals, metal compounds, inorganic compounds, carbon materials, and resins can be attached, embedded, and coated.
[リチウムイオン二次電池用負極材料]
本発明のリチウムイオン二次電池用負極材料(以下、単に負極材料とも記す)は、前記3成分(A)、(B)および(C)を含有する混合物である。本発明においては、これら3成分の質量割合をa:b=10〜70:90〜30、および、(a+b):c=60〜95:40〜5に規定する。ここで、a、bおよびcは、それぞれ、(A)、(B)および(C)の割合を示す。
[Anode material for lithium ion secondary battery]
The negative electrode material for lithium ion secondary batteries of the present invention (hereinafter also simply referred to as negative electrode material) is a mixture containing the three components (A), (B) and (C). In the present invention, the mass ratio of these three components is defined as a: b = 10 to 70:90 to 30 and (a + b): c = 60 to 95:40 to 5. Here, a, b, and c represent the ratios of (A), (B), and (C), respectively.
a:bが10未満:90超である場合には、小球体黒鉛化物(A)による黒鉛の配向防止効果が小さく、活物質に占める球状または楕円体状の天然黒鉛(B)が過剰になり、高密度化に伴って黒鉛が潰れ、黒鉛が一方向に配向してしまう。このため、リチウムイオンのイオン拡散性が低下し、急速充電性、急速放電性、サイクル特性の低下を引起す。また、活物質層の表面が閉塞しやすく、電解液の浸透性が低下して、二次電池の生産性が低下するほか、活物質層内部において、電解液の枯渇を生じることにより、サイクル特性も低下する。
一方、a:bが70超:30未満である場合には、相対的に硬質な小球体黒鉛化物(A)が過剰であるため、活物質層を高密度にするために高い圧力を必要とし、集電体である銅箔の変形、伸び、破断といった問題を生じることがある。
When a: b is less than 10: more than 90, the effect of preventing orientation of graphite by the small sphere graphitized product (A) is small, and the spherical or ellipsoidal natural graphite (B) in the active material becomes excessive. As the density increases, the graphite collapses and the graphite is oriented in one direction. For this reason, the ion diffusibility of lithium ions is lowered, causing rapid chargeability, rapid discharge properties, and cycle characteristics to be degraded. In addition, the surface of the active material layer is likely to be clogged, the electrolyte permeability is reduced, the productivity of the secondary battery is reduced, and the electrolyte solution is depleted inside the active material layer, resulting in cycle characteristics. Also decreases.
On the other hand, when a: b is more than 70:30 and less, relatively hard microsphere graphitized material (A) is excessive, and thus a high pressure is required to increase the density of the active material layer. In some cases, problems such as deformation, elongation and breakage of the copper foil as the current collector may occur.
(a+b):cが60未満:40超である場合には、平均粒子径が小さく、相対的に硬質な非造粒型黒鉛(C1)および/または造粒型黒鉛(C2)が過剰であり、集電体である銅箔の変形、伸び、破断といった問題を生じることがあるほか、反応性が高くなることによって、初期充放電効率やサイクル特性が低下することがある。
一方、(a+b):cが95超:5未満である場合には、非造粒型黒鉛(C1)および/または造粒型黒鉛(C2)による導電性向上効果が小さくなり、急速充電性、急速放電性、サイクル特性の低下を招くことがある。さらに好ましくは、a:b=25〜60:75〜40、および、(a+b):c=75〜90:25〜10である。
(A + b): When c is less than 60: more than 40, the average particle size is small, and relatively hard non-granulated graphite (C1) and / or granulated graphite (C2) is excessive. In addition to problems such as deformation, elongation and breakage of the copper foil as the current collector, initial charge / discharge efficiency and cycle characteristics may be reduced due to increased reactivity.
On the other hand, when (a + b): c is more than 95: less than 5, the effect of improving conductivity by the non-granulated graphite (C1) and / or the granulated graphite (C2) is reduced, and quick chargeability, Rapid discharge and cycle characteristics may be degraded. More preferably, a: b = 25-60: 75-40 and (a + b): c = 75-90: 25-10.
本発明の負極材料には、本発明の効果を損なわない限り、公知の活物質や導電材を混合することができる。例えば、前記の炭素質材料前駆体を500〜1500℃で熱処理してなる炭化物粒子、ケッチェンブラック、アセチレンブラック、気相成長炭素繊維、カーボンナノファイバー、カーボンナノチューブ等の導電材、リチウムと合金を形成するケイ素、錫またはこれらの酸化物等の金属類粒子が挙げられる。 A known active material or conductive material can be mixed with the negative electrode material of the present invention as long as the effects of the present invention are not impaired. For example, carbide particles obtained by heat-treating the carbonaceous material precursor at 500 to 1500 ° C., ketjen black, acetylene black, vapor-grown carbon fiber, carbon nanofiber, carbon nanotube and other conductive materials, lithium and alloys. Examples thereof include metal particles such as silicon, tin, and oxides thereof.
[リチウムイオン二次電池用負極]
本発明のリチウムイオン二次電池用負極(以下、単に負極とも記す)の作製は、通常の負極の作製方法に準じて行うことができるが、化学的、電気化学的に安定な負極を得ることができる作製方法であれば何ら制限されない。
本発明の負極の作製には、前記負極材料に結合剤を加えた負極合剤を用いることができる。結合剤としては、電解質に対して化学的安定性、電気化学的安定性を有するものを用いることが好ましく、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリビニルアルコール、スチレンブタジエンゴム、さらにはカルボキシメチルセルロース等が用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中1〜20質量%の割合であることが好ましい。
本発明の負極の作製には、負極作製用の通常の溶媒であるN−メチルピロリドン、ジメチルホルムアミド、水、アルコール等を用いることができる。
[Anode for lithium ion secondary battery]
The negative electrode for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as a negative electrode) can be produced in accordance with a normal method for producing a negative electrode, but a chemically and electrochemically stable negative electrode is obtained. There is no limitation as long as it is a manufacturing method capable of satisfying the requirements.
For the production of the negative electrode of the present invention, a negative electrode mixture obtained by adding a binder to the negative electrode material can be used. As the binder, those having chemical stability and electrochemical stability with respect to the electrolyte are preferably used. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, and styrene. Butadiene rubber, carboxymethyl cellulose and the like are used. These can also be used together. Usually, the binder is preferably in a proportion of 1 to 20% by mass in the total amount of the negative electrode mixture.
For production of the negative electrode of the present invention, N-methylpyrrolidone, dimethylformamide, water, alcohol, etc., which are ordinary solvents for producing a negative electrode, can be used.
本発明の負極は、例えば、負極合剤を溶媒に分散させ、ペースト状の負極合剤を調製した後、該負極合剤を集電体の片面または両面に塗布し、乾燥して作製される。これにより、負極合剤層(活物質層)が均一かつ強固に集電体に接着した負極が得られる。
より具体的には、例えば、前記負極材料の粒子、フッ素系樹脂粉末またはスチレンブタジエンゴムの水分散剤と溶媒を混合してスラリーとした後、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、負極合剤ペーストを調製する。これを集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着する。負極合剤層の膜厚は10〜200μm、好ましくは30〜100μmである。
The negative electrode of the present invention is produced, for example, by dispersing a negative electrode mixture in a solvent to prepare a paste-like negative electrode mixture, and then applying the negative electrode mixture to one or both sides of a current collector and drying it. . Thereby, a negative electrode in which the negative electrode mixture layer (active material layer) is uniformly and firmly bonded to the current collector is obtained.
More specifically, for example, after mixing the negative electrode material particles, fluorine resin powder or styrene butadiene rubber water dispersant and solvent into a slurry, a known stirrer, mixer, kneader, kneader or the like is used. The mixture is stirred and mixed to prepare a negative electrode mixture paste. When this is applied to the current collector and dried, the negative electrode mixture layer adheres uniformly and firmly to the current collector. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 30 to 100 μm.
また、負極合剤層は、前記負極材料の粒子と、ポリエチレン、ポリビニルアルコール等の樹脂粉末とを乾式混合し、金型内でホットプレス成形して作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、放電容量や急速充放電効率が低下することがある。
負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をさらに高めることができる。
負極合剤層の密度は、負極の体積容量を高めることから、1.70g/cm3以上、特に1.75g/cm3以上であることが好ましい。
負極に用いる集電体の形状は特に限定されないが、箔状、メッシュ、エキスパンドメタル等の網状物等が好ましい。集電体の材質としては、銅、ステンレス、ニッケル等が好ましい。集電体の厚みは、箔状の場合、好ましくは5〜20μmである。
The negative electrode mixture layer can also be produced by dry-mixing the particles of the negative electrode material and resin powder such as polyethylene and polyvinyl alcohol and hot pressing in a mold. However, dry mixing requires a large amount of binder to obtain sufficient negative electrode strength, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency may be reduced.
When the negative electrode mixture layer is formed and then pressure bonding such as pressurization is performed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
The density of the negative electrode mixture layer is preferably 1.70 g / cm 3 or more, particularly preferably 1.75 g / cm 3 or more in order to increase the volume capacity of the negative electrode.
The shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil, a mesh, a net-like material such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. When the current collector has a foil shape, the thickness is preferably 5 to 20 μm.
[リチウムイオン二次電池]
本発明のリチウムイオン二次電池は、前記負極を用いて形成される。
本発明の二次電池は、前記負極を用いること以外は特に限定されず、他の電池構成要素については、一般的な二次電池の要素に準じる。すなわち、電解液、負極および正極を主たる電池構成要素とし、これら要素が、例えば電池缶内に封入されている。そして負極および正極はそれぞれリチウムイオンの担持体として作用し、充電時には負極からリチウムイオンが離脱する。
[Lithium ion secondary battery]
The lithium ion secondary battery of the present invention is formed using the negative electrode.
The secondary battery of the present invention is not particularly limited except that the negative electrode is used, and other battery components conform to the elements of a general secondary battery. That is, an electrolytic solution, a negative electrode, and a positive electrode are the main battery constituent elements, and these elements are enclosed in, for example, a battery can. The negative electrode and the positive electrode each act as a lithium ion carrier, and lithium ions are released from the negative electrode during charging.
[正極]
本発明の二次電池に使用される正極は、例えば正極材料と結合剤および導電材よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)としては、リチウム化合物が用いられるが、充分な量のリチウムを吸蔵/脱離し得るものを選択するのが好ましい。例えば、リチウ含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物、その他のリチウム化合物、化学式MXMo6OS8−Y(式中Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは少なくとも一種の遷移金属元素である)で表されるシュブレル相化合物、活性炭、活性炭素繊維等を用いることができる。前記バナジウム酸化物はV2O5、V6O13、V2O4、V3O8等である。
[Positive electrode]
The positive electrode used in the secondary battery of the present invention is formed, for example, by applying a positive electrode mixture composed of a positive electrode material, a binder and a conductive material to the surface of the current collector. As the positive electrode material (positive electrode active material), a lithium compound is used, but it is preferable to select a material that can occlude / desorb a sufficient amount of lithium. For example, lithium-containing transition metal oxide, transition metal chalcogenide, vanadium oxide, other lithium compounds, chemical formula M X Mo 6 OS 8-Y (where X is 0 ≦ X ≦ 4, Y is 0 ≦ Y ≦ 1) And the like, and M is at least one kind of transition metal element), and the like can be used. The vanadium oxide is V 2 O 5 , V 6 O 13 , V 2 O 4 , V 3 O 8 or the like.
前記リチウム含有遷移金属合酸化物は、リチウムと遷移金属とに複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独でも、2種類以上組合せて用いてもよい。リチウム含有遷移金属合酸化物は、具体的には、LiM1 1−XM2 XO2(式中Xは0≦X≦1の範囲の数値であり、M1、M2は少なくとも一種の遷移金属元素である)またはLiM1 1−YM2 YO4(式中Yは0≦Y≦1の範囲の数値であり、M1、M2は少なくとも一種の遷移金属元素である)で示される。
M1、M2で示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Sn等であり、好ましいのはCo、Mn、Cr、Ti、V、Fe、Al等である。好ましい具体例は、LiCoO2、LiNiO2、LiMnO2、LiNi0.9 Co0.1O2、LiNi0.5Co0.5O2等である。
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
The lithium-containing transition metal composite oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. Complex oxides may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal compound oxide is LiM 1 1-X M 2 X O 2 (wherein X is a numerical value in the range of 0 ≦ X ≦ 1, and M 1 and M 2 are at least one kind) Is a transition metal element) or LiM 1 1-Y M 2 Y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 1, and M 1 and M 2 are at least one transition metal element). Indicated.
The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Mn, Cr, Ti, V Fe, Al and the like. Preferred examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2, and the like.
Examples of the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ˜1000 ° C.
正極活物質は、前記リチウム化合物を単独で使用しても2種類以上併用してもよい。また、正極中に炭酸リチウム等のアルカリ炭酸塩を添加することができる。
正極は、例えば、前記リチウム化合物、結合剤、および正極に導電性を付与するための導電材よりなる正極合剤を、集電体の片面または両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電材としては、黒鉛、カーボンブラック等の炭素材料が使用される。
As the positive electrode active material, the lithium compound may be used alone or in combination of two or more. Moreover, alkali carbonates, such as lithium carbonate, can be added in a positive electrode.
The positive electrode is formed by, for example, applying a positive electrode mixture composed of the lithium compound, the binder, and a conductive material for imparting conductivity to the positive electrode on one or both sides of the current collector to form a positive electrode mixture layer. Produced. As the binder, the same one as that used for producing the negative electrode can be used. Carbon materials such as graphite and carbon black are used as the conductive material.
正極も負極と同様に、正極合剤を溶媒に分散させ、ペースト状にした正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。
集電体の形状は特に限定されないが、箔状、メッシュ、エキスパンドメタル等の網状等のものが好ましい。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは、箔状の場合、10〜40μmが好適である。
Similarly to the negative electrode, the positive electrode mixture may be formed by dispersing the positive electrode mixture in a solvent and applying the paste-like positive electrode mixture to a current collector and drying to form a positive electrode mixture layer. After that, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.
The shape of the current collector is not particularly limited, but is preferably a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material of the current collector is aluminum, stainless steel, nickel or the like. In the case of a foil shape, the thickness is preferably 10 to 40 μm.
[非水電解質]
本発明の二次電池に用いる非水電解質(電解液)は、通常の非水電解液に使用される電解質塩である。電解質塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C6H5)4、LiCl、LiBr、LiCF3SO3、LiCH3SO3、LiN(CF3SO2)2、LiC(CF3SO2)3、LiN(CF3CH2OSO2)2、LiN(CF3CF2OSO2)2、LiN(HCF2CF2CH2OSO2)2、LiN[(CF3)2CHOSO2]2、LiB[C6H3(CF3)2]4、LiAlCl4、LiSiF5等のリチウム塩を用いることができる。特にLiPF6、LiBF4が酸化安定性の点から好ましい。
電解液の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜3.0mol/l がより好ましい。
[Nonaqueous electrolyte]
The nonaqueous electrolyte (electrolytic solution) used for the secondary battery of the present invention is an electrolyte salt used for a normal nonaqueous electrolytic solution. Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2. LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN [(CF 3 ) 2 CHOSO 2 ] 2 , LiB [C 6 H 3 (CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 5 and other lithium salts can be used. In particular, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.
The electrolyte salt concentration of the electrolytic solution is preferably from 0.1 to 5 mol / l, more preferably from 0.5 to 3.0 mol / l.
非水電解質は液状としてもよく、固体、ゲル状等の高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン二次電池として構成され、後者の場合は、それぞれ高分子固体電解質電池、高分子ゲル電解質電池等の高分子電解質電池として構成される。
非水電解質液を構成する溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテル等のエーテル、スルホラン、メチルスルホラン等のチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリル等のニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイト等の非プロトン性有機溶媒等を用いることができる。
The non-aqueous electrolyte may be liquid, or may be a solid or gel polymer electrolyte. In the former case, the nonaqueous electrolyte battery is configured as a so-called lithium ion secondary battery, and in the latter case, the nonaqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte battery or a polymer gel electrolyte battery.
As the solvent constituting the nonaqueous electrolyte solution, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2- Methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, nitriles such as acetonitrile, chloronitrile and propionitrile , Trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahy Rochiofen, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite, and the like.
前記高分子電解質を用いる場合には、可塑剤(非水電解液)でゲル化された高分子化合物をマトリックスとして使用することが好ましい。マトリクスを構成する高分子化合物としては、ポリエチレンオキサイドやその架橋体等のエーテル系高分子化合物、ポリメタクリレート系高分子化合物、ポリアクリレート系高分子化合物、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体等のフッ素系高分子化合物等を単独または混合して用いることができる。ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物を用いることが特に好ましい。 When the polymer electrolyte is used, it is preferable to use a polymer compound gelled with a plasticizer (non-aqueous electrolyte) as a matrix. Examples of the polymer compound constituting the matrix include ether-based polymer compounds such as polyethylene oxide and its crosslinked products, polymethacrylate-based polymer compounds, polyacrylate-based polymer compounds, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene. Fluorine polymer compounds such as copolymers can be used alone or in combination. It is particularly preferable to use a fluorine-based polymer compound such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.
前記高分子固体電解質または高分子ゲル電解質には、可塑剤が配合されるが、可塑剤として前記の電解質塩や非水溶媒を使用することができる。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜2.0mol/lがより好ましい。 A plasticizer is blended in the polymer solid electrolyte or polymer gel electrolyte, and the electrolyte salt or non-aqueous solvent can be used as the plasticizer. In the case of a polymer gel electrolyte, the concentration of the electrolyte salt in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol / l, and more preferably 0.5 to 2.0 mol / l.
前記高分子固体電解質の作製方法は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、混合用有機溶媒に高分子化合物、リチウム塩、および非水溶媒(可塑剤)を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線、分子線等を照射して、重合性モノマーを重合させ、高分子化合物を得る方法などを挙げることができる。
高分子固体電解質中の非水溶媒(可塑剤)の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると導電率が低くなり、90質量%を超えると機械的強度が弱くなり、製膜しにくくなる。
The method for producing the polymer solid electrolyte is not particularly limited. For example, the polymer compound constituting the matrix, the lithium salt, and the nonaqueous solvent (plasticizer) are mixed and heated to melt the polymer compound. Method of evaporating organic solvent for mixing after dissolving polymer compound, lithium salt, and non-aqueous solvent (plasticizer) in organic solvent, mixing polymerizable monomer, lithium salt and non-aqueous solvent (plasticizer) In addition, a method of obtaining a polymer compound by irradiating the mixture with ultraviolet rays, an electron beam, a molecular beam or the like to polymerize a polymerizable monomer can be exemplified.
10-90 mass% is preferable, and, as for the ratio of the nonaqueous solvent (plasticizer) in a polymer solid electrolyte, 30-80 mass% is more preferable. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and film formation will be difficult.
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜等が挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
In the lithium ion secondary battery of the present invention, a separator can also be used.
Although the material of a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
本発明の二次電池は、前記負極、正極および非水電解質を、例えば、負極、非水電解質、正極の順に積層し、電池の外装材内に収容することで作製される。
さらに、負極と正極の外側に非水電解質を配するようにしてもよい。
The secondary battery of the present invention is produced by laminating the negative electrode, the positive electrode, and the nonaqueous electrolyte in the order of, for example, the negative electrode, the nonaqueous electrolyte, and the positive electrode, and accommodating the laminate in the battery exterior material.
Further, a non-aqueous electrolyte may be disposed outside the negative electrode and the positive electrode.
本発明の二次電池の構造は特に限定されず、その形状、形態についても特に限定されるものではなく、用途、搭載機器、要求される充放電容量等に応じて、円筒型、角型、コイン型、ボタン型等の中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。
高分子電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。
The structure of the secondary battery of the present invention is not particularly limited, and the shape and form thereof are not particularly limited, and may be cylindrical, rectangular, depending on the application, mounted equipment, required charge / discharge capacity, and the like. A coin type, a button type, or the like can be arbitrarily selected. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include a means for detecting an increase in the internal pressure of the battery and shutting off the current when there is an abnormality such as overcharging.
In the case of a polymer electrolyte battery, a structure enclosed in a laminate film can also be used.
以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例および比較例においては、図1に示すような構成の評価用のボタン型二次電池を作製して評価した。該電池は、本発明の目的に基づき、公知の方法に準拠して作製することができる。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, button-type secondary batteries for evaluation having a configuration as shown in FIG. 1 were produced and evaluated. The battery can be produced according to a known method based on the object of the present invention.
[実施例1]
[メソフェーズ小球体黒鉛化物(A)の調製]
コールタールピッチを不活性雰囲気中450℃で90分間加熱処理し、メソフェーズ小球体をピッチマトリックス中に35質量%生成させた。その後、タール中油を用いて、メソフェーズ小球体を溶解抽出し、濾過によって分離し、窒素雰囲気中120℃で乾燥した。これを窒素雰囲気中600℃で3時間加熱処理して、メソフェーズ小球体焼成物を調製した。次いで、該焼成物を塩化第一鉄水溶液に浸漬した後、攪拌しながら水を除去し乾燥してメソフェーズ小球体焼成物の表面に塩化第一鉄を5質量%付着させた。
塩化第一鉄が付着したメソフェーズ小球体焼成物を黒鉛るつぼに充填し、非酸化性雰囲気下3150℃で5時間かけて加熱し黒鉛化処理を行い、メソフェーズ小球体黒鉛化物(A)を調製した。該黒鉛化物(A)には鉄化合物は含有されていなかった。
該黒鉛化物(A)の形状は表面に細かい凹凸を有するものの球状に近く、平均アスペクト比は1.1であった。平均粒子径は32μm、平均格子面間隔d002は0.3357nm、比表面積は2.9m2/gであった。
[Example 1]
[Preparation of mesophase microsphere graphitized product (A)]
The coal tar pitch was heat-treated at 450 ° C. for 90 minutes in an inert atmosphere to generate 35% by mass of mesophase microspheres in the pitch matrix. Thereafter, mesophase spherules were dissolved and extracted using oil in tar, separated by filtration, and dried at 120 ° C. in a nitrogen atmosphere. This was heat-treated at 600 ° C. for 3 hours in a nitrogen atmosphere to prepare a mesophase microsphere fired product. Next, the fired product was immersed in an aqueous ferrous chloride solution, and then water was removed while stirring, followed by drying to adhere 5% by mass of ferrous chloride to the surface of the mesophase microsphere fired product.
The mesophase small sphere calcined product to which ferrous chloride was adhered was filled in a graphite crucible and heated at 3150 ° C. for 5 hours in a non-oxidizing atmosphere to conduct graphitization to prepare a mesophase small sphere graphitized product (A). . The graphitized product (A) contained no iron compound.
The shape of the graphitized product (A) was close to a sphere with fine irregularities on the surface, and the average aspect ratio was 1.1. The average particle diameter was 32 μm, the average lattice spacing d 002 was 0.3357 nm, and the specific surface area was 2.9 m 2 / g.
[球状化または楕円体状化天然黒鉛(B)の調製]
球状〜楕円体状に造粒加工された天然黒鉛粒子(平均アスペクト比1.4、平均粒子径20μm、平均格子面間隔d0020.3356nm、比表面積5.0m2/g)を準備した。
[Preparation of Spheroidized or Ellipsoidized Natural Graphite (B)]
Natural graphite particles (average aspect ratio 1.4, average particle diameter 20 μm, average lattice spacing d 002 0.3356 nm, specific surface area 5.0 m 2 / g) granulated into spherical to ellipsoidal shapes were prepared.
[非造粒型黒鉛(C1)の調製]
前記メソフェーズ小球体焼成物(600℃で3時間加熱処理)を渦流式粉砕機で粉砕した。粉砕生成物を黒鉛るつぼに充填し、非酸化性雰囲気下、3150℃で5時間かけて黒鉛化した。次いで、得られた黒鉛化物100質量部に、酸化チタン粉末(平均粒子径21nm)0.5質量部を混合し、「メカノフュージョンシステム」(ホソカワミクロン(株)製)に投入し、回転ドラムの周速20m/秒、処理時間60分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を繰返し付与し、メカノケミカル処理を行った。得られた非造粒型メソフェーズ小球体黒鉛(C1)は、粒子の角が取れた塊状であり、表面に酸化チタン粉末が均一に埋設されていた。該非造粒型メソフェーズ小球体黒鉛(C1)の平均アスペクト比は1.3、平均粒子径は13μm、平均格子面間隔d002は0.3359nm、比表面積は3.5m2/gであった。
[Preparation of non-granulated graphite (C1)]
The mesophase microsphere fired product (heat treatment at 600 ° C. for 3 hours) was pulverized by a vortex pulverizer. The pulverized product was filled in a graphite crucible and graphitized at 3150 ° C. for 5 hours in a non-oxidizing atmosphere. Next, 0.5 parts by mass of titanium oxide powder (average particle size 21 nm) was mixed with 100 parts by mass of the obtained graphitized material, and the mixture was put into a “Mechano-Fusion System” (manufactured by Hosokawa Micron Co., Ltd.). Under the conditions of a speed of 20 m / sec, a processing time of 60 minutes, and a distance of 5 mm between the rotating drum and the internal member, a compressive force and a shearing force were repeatedly applied to perform a mechanochemical treatment. The obtained non-granulated mesophase small spherical graphite (C1) was a lump with a rounded particle, and the titanium oxide powder was uniformly embedded on the surface. The non-granulated mesophase small spherical graphite (C1) had an average aspect ratio of 1.3, an average particle diameter of 13 μm, an average lattice spacing d 002 of 0.3359 nm, and a specific surface area of 3.5 m 2 / g.
[負極材料の調製]
前記メソフェーズ小球体黒鉛化物(A)40質量部、球状化または楕円体状化天然黒鉛粒子(B)40質量部および非造粒型メソフェーズ小球体黒鉛(C1)20質量部を混合し、負極材料を調製した。
[Preparation of negative electrode material]
40 parts by mass of the mesophase microsphere graphitized product (A), 40 parts by mass of spheroidized or ellipsoidal natural graphite particles (B) and 20 parts by mass of non-granulated mesophase microsphere graphite (C1) are mixed, and negative electrode material Was prepared.
[負極合剤の調製]
前記負極材料98質量部、結合剤カルボキシメチルセルロース1質量部およびスチレンブタジエンゴム1質量部を水に入れ、攪拌して負極合剤ペーストを調製した。
[Preparation of negative electrode mixture]
98 parts by mass of the negative electrode material, 1 part by mass of the binder carboxymethyl cellulose and 1 part by mass of styrene butadiene rubber were put in water and stirred to prepare a negative electrode mixture paste.
[作用電極の作製]
前記負極合剤ペーストを、厚さ16μmの銅箔上に均一な厚さで塗布し、さらに真空中90℃で分散媒の水を蒸発させて乾燥した。次に、この銅箔上に塗布された負極合剤をハンドプレスによって12kN/cm2(120MPa)で加圧し、さらに直径15.5mmの円形状に打抜くことで、銅箔に密着した負極合剤層(厚み60μm)を有する作用電極を作製した。負極合剤層の密度は1.75g/cm3であった。作用電極には伸び、変形がなく、断面から見た集電体に凹みがなかった。
[Production of working electrode]
The negative electrode mixture paste was applied on a copper foil having a thickness of 16 μm to a uniform thickness, and further, water in a dispersion medium was evaporated at 90 ° C. in a vacuum to dry the paste. Next, the negative electrode mixture coated on the copper foil was pressed with a hand press at 12 kN / cm 2 (120 MPa) and punched into a circular shape having a diameter of 15.5 mm, thereby adhering to the negative electrode mixture adhered to the copper foil. A working electrode having an agent layer (thickness 60 μm) was prepared. The density of the negative electrode mixture layer was 1.75 g / cm 3 . The working electrode was stretched and not deformed, and the current collector viewed from the cross section had no dent.
[対極の作製]
リチウム金属箔を、ニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔(厚さ0.5mm)からなる対極(正極)を作製した。
[Production of counter electrode]
A lithium metal foil is pressed onto a nickel net and punched into a circular shape with a diameter of 15.5 mm, and consists of a current collector made of nickel net and a lithium metal foil (thickness 0.5 mm) in close contact with the current collector. A counter electrode (positive electrode) was produced.
[電解液・セパレータ]
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶媒に、LiPF6 を1mol/lとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚さ20μm)に含浸させ、電解液が含浸されたセパレータを作製した。
[Electrolyte / Separator]
LiPF 6 was dissolved in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% at a concentration of 1 mol / l to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body (thickness: 20 μm) to produce a separator impregnated with the electrolytic solution.
[評価電池の作製]
評価電池として図1に示すボタン型二次電池を作製した。
外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸したセパレータ5、負極合剤からなる円盤状の作用電極(負極)2および銅箔からなる集電体7bが積層された電池である。
評価電池は、電解液が含浸したセパレータ5を、集電体7bに密着した作用電極2と、集電材7aに密着した対極4との間に挟んで積層した後、作用電極2を外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。
評価電池は、実電池において、負極活物質として使用可能な黒鉛質物粒子を含有する作用電極2と、リチウム金属箔とからなる対極4とから構成される電池である。
[Production of evaluation battery]
A button-type secondary battery shown in FIG. 1 was prepared as an evaluation battery.
The
In the evaluation battery, the separator 5 impregnated with the electrolytic solution was sandwiched between the working
The evaluation battery is a battery composed of a working
前記のように作製された評価電池について、25℃の温度下で下記のような充放電試験を行い、質量当たりの放電容量、体積当たりの放電容量、初期充放電効率、急速充電率、急速放電率およびサイクル特性を評価した。評価結果を表1に示した。 The evaluation battery produced as described above was subjected to the following charge / discharge test at a temperature of 25 ° C., discharge capacity per mass, discharge capacity per volume, initial charge / discharge efficiency, rapid charge rate, rapid discharge. Rate and cycle characteristics were evaluated. The evaluation results are shown in Table 1.
[質量当たりの放電容量、体積当たりの放電容量]
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から質量当たりの充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から質量当たりの放電容量を求めた。これを第1サイクルとした。第1サイクルにおける充電容量と放電容量から、次式(1)により初期充放電効率を計算した。
初期充放電効率(%)=(放電容量/充電容量)×100 (1)
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料から離脱する過程を放電とした。
[Discharge capacity per mass, discharge capacity per volume]
After 0.9 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity per mass was determined from the energization amount during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity per mass was determined from the amount of electricity supplied during this period. This was the first cycle. From the charge capacity and discharge capacity in the first cycle, the initial charge / discharge efficiency was calculated by the following equation (1).
Initial charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100 (1)
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching from the negative electrode material was discharged.
[急速充電率]
第1サイクルに引続き、第2サイクルにて急速充電を行なった。
回路電圧が0mVに達するまで、電流値を第1サイクルの5倍の4.5mAとして、定電流充電を行い、定電流充電容量を求め、次式(2)から急速充電率を計算した。
急速充電率(%)=(第2サイクルにおける定電流充電容量/第1サイクルにおける
放電容量)×100 (2)
[Quick charge rate]
Following the first cycle, rapid charging was performed in the second cycle.
Until the circuit voltage reached 0 mV, constant current charging was performed by setting the current value to 4.5 mA which is five times the first cycle, the constant current charging capacity was obtained, and the rapid charging rate was calculated from the following equation (2).
Rapid charge rate (%) = (constant current charge capacity in the second cycle / in the first cycle
Discharge capacity) x 100 (2)
[急速放電率]
別の評価電池を用い、第1サイクルに引続き、第2サイクルにて急速放電を行なった。前記同様に、第1サイクルを行った後、第1サイクルと同様に充電し、次いで、電流値
を第1サイクルの20倍の18mAとして、回路電圧が1.5Vに達するまで、定電流放電を行った。この間の通電量から質量当たりの放電容量を求め、次式(3)により急速放電率を計算した。
急速放電率(%)=(第2サイクルにおける放電容量/第1サイクルにおける放電容
量)×100 (3)
[Rapid discharge rate]
Using another evaluation battery, rapid discharge was performed in the second cycle following the first cycle. As described above, after performing the first cycle, charging is performed in the same manner as in the first cycle, and then the constant current discharge is performed until the circuit voltage reaches 1.5 V with the current value set to 18 mA, which is 20 times the first cycle. went. The discharge capacity per mass was calculated | required from the amount of electricity supply in the meantime, and the rapid discharge rate was calculated by following Formula (3).
Rapid discharge rate (%) = (discharge capacity in the second cycle / discharge capacity in the first cycle)
Amount) x 100 (3)
[サイクル特性]
質量当たりの放電容量、急速充電率、急速放電率を評価した評価電池とは別の評価電池を作製し、以下のような評価を行なった。
回路電圧が0mVに達するまで4.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。20回充放電を繰返し、得られた質量当たりの放電容量から、次式(4)を用いてサイクル特性を計算した。
サイクル特性(%)=(第20サイクルにおける放電容量/第1サイクルにおける
放電容量)×100 (4)
[Cycle characteristics]
An evaluation battery different from the evaluation battery that evaluated the discharge capacity per mass, the rapid charge rate, and the rapid discharge rate was produced and evaluated as follows.
After 4.0 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 20 times, and the cycle characteristics were calculated from the obtained discharge capacity per mass using the following equation (4).
Cycle characteristics (%) = (discharge capacity in the 20th cycle / in the first cycle)
Discharge capacity) x 100 (4)
表1に示すように、作用電極に実施例1の負極材料を用いて得られた評価電池は、活物質層の密度を高くすることができ、かつ、高い質量当たりの放電容量を示す。このため、体積当たりの放電容量を大幅に向上させることができる。その高い密度においても、急速充電率、急速放電率およびサイクル特性は優れた結果を維持している。 As shown in Table 1, the evaluation battery obtained by using the negative electrode material of Example 1 as the working electrode can increase the density of the active material layer and exhibits a high discharge capacity per mass. For this reason, the discharge capacity per volume can be improved significantly. Even at its high density, the rapid charge rate, rapid discharge rate, and cycle characteristics maintain excellent results.
[実施例4、5、参考例2、3]
実施例1において、メソフェーズ小球体黒鉛化物(A)、造粒加工された天然黒鉛粒子(B)および非造粒型メソフェーズ小球体黒鉛(C1)の質量割合を表1に示すように変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
本発明の規定する質量割合に入る負極材料によって作用電極を作製した場合、負極合剤層の密度を高くすることができ、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のいずれもが優れていた。
[Examples 4 and 5 , Reference Examples 2 and 3 ]
In Example 1, except that the mass ratio of the mesophase microsphere graphitized product (A), the granulated natural graphite particles (B), and the non-granulated mesophase microsphere graphite (C1) was changed as shown in Table 1. Produced a working electrode by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 in the same manner as in Example 1 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
When the working electrode is made of a negative electrode material that falls within the mass ratio specified by the present invention, the density of the negative electrode mixture layer can be increased, and the discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, cycle characteristics None of them were excellent.
[比較例1]
実施例1で用いたメソフェーズ小球体黒鉛化物(A)を単独で負極材料とした以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、負極材料としてメソフェーズ小球体黒鉛化物(A)を単独で用いた場合には、急速充電率、サイクル特性が不十分であった。
[Comparative Example 1]
The working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 in the same manner as in Example 1 except that the mesophase microsphere graphitized product (A) used in Example 1 was used alone as the negative electrode material. An evaluation battery was prepared. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when the mesophase microsphere graphitized material (A) was used alone as the negative electrode material, the rapid charge rate and cycle characteristics were insufficient.
[比較例2]
実施例1で用いた造粒加工された天然黒鉛粒子(B)を単独で負極材料とした以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、負極材料として造粒加工された天然黒鉛粒子(B)を単独で用いた場合には、急速充電率、急速放電率、サイクル特性が不十分であった。
[Comparative Example 2]
The density of the negative electrode mixture layer was adjusted to 1.75 g / cm 3 in the same manner as in Example 1 except that the granulated natural graphite particles (B) used in Example 1 were used alone as the negative electrode material. Thus, a working electrode was produced, and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when the natural graphite particles (B) granulated as the negative electrode material were used alone, the rapid charge rate, rapid discharge rate, and cycle characteristics were insufficient.
[比較例3]
実施例1で用いた非造粒型メソフェーズ小球体黒鉛(C1)を単独で負極材料とした以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、負極材料として非造粒型メソフェーズ小球体黒鉛(C1)を単独で用いた場合には、負極合剤層の密度を1.75g/cm3に調整する際に高いプレス圧力を必要とし、集電体である銅箔が伸び、活物質層の一部が剥離した。非剥離部について充放電試験を行ったところ、初期充放電効率、急速充電率、サイクル特性が不十分であった。
[Comparative Example 3]
The density of the negative electrode mixture layer was adjusted to 1.75 g / cm 3 in the same manner as in Example 1 except that the non-granulated mesophase microsphere graphite (C1) used in Example 1 was used alone as the negative electrode material. Thus, a working electrode was produced, and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when non-granulated mesophase small spherical graphite (C1) is used alone as the negative electrode material, a high press is required when adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3. Pressure was required, the copper foil as the current collector was stretched, and a part of the active material layer was peeled off. When a charge / discharge test was performed on the non-peeled portion, initial charge / discharge efficiency, rapid charge rate, and cycle characteristics were insufficient.
[比較例4〜7]
実施例1において、メソフェーズ小球体黒鉛化物(A)、造粒加工された天然黒鉛粒子(B)および非造粒型メソフェーズ小球体黒鉛(C1)の質量割合を表1に示すように変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、本発明の規定する質量割合を逸脱した負極材料によって作用電極を作製した場合、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のうちのいずれかが不十分であった。
[Comparative Examples 4 to 7]
In Example 1, except that the mass ratio of the mesophase microsphere graphitized product (A), the granulated natural graphite particles (B), and the non-granulated mesophase microsphere graphite (C1) was changed as shown in Table 1. Produced a working electrode by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 in the same manner as in Example 1 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when the working electrode is made of a negative electrode material that deviates from the mass ratio specified by the present invention, any one of discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, cycle characteristics Was insufficient.
[実施例6]
[球状化または楕円体状化天然黒鉛(B1)の調製]
球状〜楕円体状に造粒加工された天然黒鉛粒子(平均粒子径20μm、平均格子面間隔d0020.3356nm、平均アスペクト比1.4、比表面積5.0m2/g)100質量部に、軟化点150℃のメソフェーズピッチ粉末(平均粒子径2μm)3質量部およびケッチェンブラック(平均粒子径30nm)0.1質量部を混合し、「メカノフュージョンシステム」(ホソカワミクロン(株)製)に投入し、回転ドラムの周速20m/秒、処理時間60分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を繰返し付与し、メカノケミカル処理を行った。得られたメソフェーズピッチ被覆天然黒鉛を、黒鉛るつぼに充填し、非酸化性雰囲気下、1200℃で3時間かけて焼成を行った。得られたメソフェーズピッチ炭化物被覆天然黒鉛(B1)の平均アスペクト比は1.4、平均粒子径は20μm、平均格子面間隔d002は0.3358nm、比表面積は3.5m2/gであった。
[Example 6]
[Preparation of Spheroidized or Ellipsoidized Natural Graphite (B1)]
100 parts by mass of natural graphite particles granulated into spherical to ellipsoidal shapes (average particle size 20 μm, average lattice spacing d 002 0.3356 nm, average aspect ratio 1.4, specific surface area 5.0 m 2 / g) , 3 parts by mass of mesophase pitch powder (
実施例1において、球状〜楕円体状に造粒加工された天然黒鉛粒子(B)を、該メソフェーズピッチ炭化物被覆天然黒鉛(B1)に変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、メソフェーズピッチ炭化物被覆天然黒鉛(B1)を用いて負極材料を作製した場合、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
A negative electrode mixture in the same manner as in Example 1, except that the natural graphite particles (B) granulated into spherical to ellipsoidal shapes in Example 1 were changed to the mesophase pitch carbide-coated natural graphite (B1). A working electrode was prepared by adjusting the density of the layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when a negative electrode material is produced using mesophase pitch carbide-coated natural graphite (B1), the active material layer has a high density and a high discharge capacity per mass. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[実施例7]
実施例6のメソフェーズピッチ炭化物被覆天然黒鉛(B1)を、黒鉛るつぼに充填し、非酸化性雰囲気下、3000℃で5時間かけて黒鉛化を行い、メソフェーズピッチ黒鉛化物被覆天然黒鉛(B2)を調製した。得られたメソフェーズピッチ黒鉛化物被覆天然黒鉛(B2)の平均アスペクト比は1.4、平均粒子径は20μm、平均格子面間隔d002は0.3356nm、比表面積は2.7m2/gであった。
実施例1の球状〜楕円体状に造粒加工された天然黒鉛粒子(B)を、該メソフェーズピッチ黒鉛化物被覆天然黒鉛(B2)に変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、メソフェーズピッチ黒鉛化物被覆天然黒鉛(B2)を用いて負極材料を作製した場合、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
[Example 7]
Mesophase pitch carbide-coated natural graphite (B1) of Example 6 was filled in a graphite crucible and graphitized at 3000 ° C. for 5 hours in a non-oxidizing atmosphere to obtain mesophase pitch graphite-coated natural graphite (B2). Prepared. The obtained mesophase pitch graphitized natural graphite (B2) had an average aspect ratio of 1.4, an average particle diameter of 20 μm, an average lattice spacing d 002 of 0.3356 nm, and a specific surface area of 2.7 m 2 / g. It was.
A negative electrode mixture in the same manner as in Example 1 except that the natural graphite particles (B) granulated into spherical to ellipsoidal shapes in Example 1 were changed to the mesophase pitch graphitized natural graphite (B2). A working electrode was prepared by adjusting the density of the layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when a negative electrode material is prepared using mesophase pitch graphitized natural graphite (B2), the active material layer has a high density and a high discharge capacity per mass. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[実施例8]
[造粒型黒鉛(C2)の調製]
コークス粒子(平均粒子径5μm)80質量部とコールタールピッチ20質量部を、二軸ニーダーを用いて、200℃で1時間混練した。混練生成物を200℃で箱型に成形した後、非酸化性雰囲気下、600℃で3時間焼成した。焼成生成物を黒鉛るつぼに充填し、非酸化性雰囲気下、3150℃で5時間かけて黒鉛化を行った。得られた黒鉛化物を摩砕式粉砕機で粉砕し、造粒型黒鉛(C2)を調製した。平均粒子径は15μm、平均アスペクト比は1.7、平均格子面間隔d002は0.3358nm、比表面積は3.2m2/gであった。
実施例1の非造粒型メソフェーズ小球体黒鉛(C1)を、該造粒型黒鉛(C2)に変更し、実施例1の球状〜楕円体状に造粒加工された天然黒鉛粒子(B)を、実施例6で調製したメソフェーズピッチ炭化物被覆天然黒鉛(B1)に変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、造粒型黒鉛(C2)を用いて負極材料を作製した場合、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
[Example 8]
[Preparation of granulated graphite (C2)]
Coke particles (average particle size 5 μm) 80 parts by mass and coal tar pitch 20 parts by mass were kneaded at 200 ° C. for 1 hour using a biaxial kneader. The kneaded product was molded into a box shape at 200 ° C. and then calcined at 600 ° C. for 3 hours in a non-oxidizing atmosphere. The fired product was filled into a graphite crucible and graphitized at 3150 ° C. for 5 hours in a non-oxidizing atmosphere. The obtained graphitized material was pulverized with a grinding pulverizer to prepare granulated graphite (C2). The average particle size was 15 μm, the average aspect ratio was 1.7, the average lattice spacing d 002 was 0.3358 nm, and the specific surface area was 3.2 m 2 / g.
The non-granulated mesophase microsphere graphite (C1) of Example 1 is changed to the granulated graphite (C2), and natural graphite particles (B) granulated into spherical to ellipsoidal shapes of Example 1 Was changed to mesophase pitch carbide-coated natural graphite (B1) prepared in Example 6, and the density of the negative electrode mixture layer was adjusted to 1.75 g / cm 3 in the same manner as in Example 1 to obtain a working electrode. An evaluation battery was prepared. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when a negative electrode material is produced using granulated graphite (C2), the density of the active material layer is high and the discharge capacity per mass is high. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[比較例8〜10]
実施例6〜8において用いた、メソフェーズピッチ炭化物被覆天然黒鉛(B1)、メソフェーズピッチ黒鉛化物被覆天然黒鉛(B2)および造粒型黒鉛(C2)をそれぞれ単独で用いた以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、メソフェーズピッチ炭化物被覆天然黒鉛(B1)、メソフェーズピッチ黒鉛化物被覆天然黒鉛(B2)および造粒型黒鉛(C2)をそれぞれ単独で用いた場合には、高密度において黒鉛が配向し、特に、急速放電率、サイクル特性が不十分であった。
[Comparative Examples 8 to 10]
Example 1 except that mesophase pitch carbide-coated natural graphite (B1), mesophase pitch graphitized-coated natural graphite (B2) and granulated graphite (C2) used in Examples 6 to 8 were used alone. Similarly, the working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when each of mesophase pitch carbide-coated natural graphite (B1), mesophase pitch graphitized-coated natural graphite (B2) and granulated graphite (C2) is used alone, the graphite has a high density. Oriented, in particular, rapid discharge rate and cycle characteristics were insufficient.
[実施例9]
実施例1のメソフェーズ小球体黒鉛化物(A)の調製において、コールタールピッチの不活性雰囲気中450℃での熱処理時間を30分と短くする以外は、実施例1と同様にして小球体黒鉛化物(A)を調製した。得られたメソフェーズ小球体黒鉛化物(A)の形状は表面に細かい凹凸を有するものの球状に近く、平均アスペクト比は1.1、平均粒子径は15μm、平均格子面間隔d002は0.3360nm、比表面積は3.9m2/gであった。
実施例1の天然黒鉛粒子(B)の調製において、球状〜楕円体状に造粒加工された天然黒鉛粒子(平均アスペクト比1.3、平均粒子径12μm、平均格子面間隔d0020.3356nm、比表面積6.5m2/g)を準備した。
[Example 9]
In the preparation of the mesophase microsphere graphitized product (A) of Example 1, the microsphere graphitized product was prepared in the same manner as in Example 1 except that the heat treatment time at 450 ° C. in an inert atmosphere of coal tar pitch was shortened to 30 minutes. (A) was prepared. The shape of the obtained mesophase small sphere graphitized product (A) is close to a sphere although it has fine irregularities on the surface, the average aspect ratio is 1.1, the average particle diameter is 15 μm, the average lattice spacing d 002 is 0.3360 nm, The specific surface area was 3.9 m 2 / g.
In the preparation of the natural graphite particles (B) of Example 1, natural graphite particles granulated into spherical to ellipsoid shapes (average aspect ratio 1.3, average particle diameter 12 μm, average lattice spacing d 002 0.3356 nm The specific surface area was 6.5 m 2 / g).
実施例1の非造粒型メソフェーズ小球体黒鉛(C1)の調製において、メソフェーズ小球体焼成物を渦流式粉砕機で粉砕する際に、さらに粒子径を小さく設定した。また、酸化チタン粉末に代えて酸化ケイ素粉末(平均粒子径30nm)を用いた。得られた非造粒型メソフェーズ小球体黒鉛(C1)は、粒子の角が取れた塊状であり、表面に酸化ケイ素粉末が均一に埋設されていた。平均アスペクト比は1.2、平均粒子径は5μm、平均格子面間隔d002は0.3360nm、比表面積は4.2m2/gであった。
実施例1において、これらの成分を用いる以外、実施例1と同様にして、負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、本発明の規定する質量割合からなる負極材料によって作用電極を作製した場合、活物質層の密度を高くすることができ、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のいずれもが優れる。
In the preparation of the non-granulated mesophase small sphere graphite (C1) of Example 1, the particle diameter was further reduced when the mesophase small sphere fired product was pulverized by a vortex pulverizer. Moreover, it replaced with the titanium oxide powder and used the silicon oxide powder (average particle diameter of 30 nm). The obtained non-granulated mesophase small spherical graphite (C1) had a lump shape with rounded corners, and silicon oxide powder was uniformly embedded on the surface. The average aspect ratio was 1.2, the average particle diameter was 5 μm, the average lattice spacing d 002 was 0.3360 nm, and the specific surface area was 4.2 m 2 / g.
In Example 1, except that these components were used, in the same manner as in Example 1, the working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when the working electrode is made of a negative electrode material having a mass ratio defined by the present invention, the density of the active material layer can be increased, and the discharge capacity, initial charge / discharge efficiency, rapid charge rate, Both rapid discharge rate and cycle characteristics are excellent.
[実施例10]
実施例1のメソフェーズ小球体黒鉛化物(A)の調製において、コールタールピッチの不活性雰囲気中450℃での熱処理時間を110分と長くする以外は、実施例1と同様にして小球体黒鉛化物(A)を調製した。得られたメソフェーズ小球体黒鉛化物(A)の形状は表面に細かい凹凸を有するものの球状に近く、平均アスペクト比は1.1、平均粒子径は36μm、平均格子面間隔d002は0.3356nm、比表面積は2.3m2/gであった。
実施例1の球状化または楕円体状化天然黒鉛(B)の調製において、球状〜楕円体状に造粒加工された天然黒鉛粒子(平均アスペクト比1.8、平均粒子径28μm、平均格子面間隔d0020.3356nm、比表面積3.5m2/g)を準備した。
[Example 10]
In the preparation of the mesophase microsphere graphitized product (A) of Example 1, the microsphere graphitized product was prepared in the same manner as in Example 1 except that the heat treatment time at 450 ° C. in an inert atmosphere of coal tar pitch was increased to 110 minutes. (A) was prepared. The shape of the obtained mesophase microsphere graphitized material (A) is close to a sphere although it has fine irregularities on the surface, the average aspect ratio is 1.1, the average particle diameter is 36 μm, the average lattice plane distance d 002 is 0.3356 nm, The specific surface area was 2.3 m 2 / g.
In the preparation of spheroidized or ellipsoidal natural graphite (B) of Example 1, natural graphite particles granulated into a spherical to ellipsoidal shape (average aspect ratio 1.8, average particle diameter 28 μm, average lattice plane) The distance d 002 0.3356 nm and the specific surface area 3.5 m 2 / g) were prepared.
実施例1の非造粒型メソフェーズ小球体黒鉛(C1)の調製において、メソフェーズ小球体焼成物を渦流式粉砕機を用いて粉砕する際に、さらに粒子径を大きく設定した。また、酸化チタン粉末に代えて酸化ケイ素粉末(平均粒子径30nm)を用いた。得られた非造粒型黒鉛(C1)は、粒子の角が取れた塊状であり、表面に酸化ケイ素粉末が均一に埋設されていた。平均アスペクト比は1.3、平均粒子径は18μm、平均格子面間隔d002は0.3358nm、比表面積は3.2m2/gであった。
実施例1において、これらの成分を用いる以外、実施例1と同様にして、負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、本発明の規定する質量割合からなる負極材料によって作用電極を作製した場合、活物質層の密度を高くすることができ、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のいずれもが優れる。
In the preparation of the non-granulated mesophase microsphere graphite (C1) of Example 1, when the mesophase microsphere fired product was pulverized using a vortex pulverizer, the particle size was set to be larger. Moreover, it replaced with the titanium oxide powder and used the silicon oxide powder (average particle diameter of 30 nm). The obtained non-granulated graphite (C1) was in a lump shape with corners of the particles, and silicon oxide powder was uniformly embedded on the surface. The average aspect ratio was 1.3, the average particle size was 18 μm, the average lattice spacing d 002 was 0.3358 nm, and the specific surface area was 3.2 m 2 / g.
In Example 1, except that these components were used, in the same manner as in Example 1, the working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when the working electrode is made of a negative electrode material having a mass ratio defined by the present invention, the density of the active material layer can be increased, and the discharge capacity, initial charge / discharge efficiency, rapid charge rate, Both rapid discharge rate and cycle characteristics are excellent.
[比較例11〜15]
実施例1のメソフェーズ小球体黒鉛化物(A)の調製において、コールタールピッチの不活性雰囲気中450℃での熱処理時間を調整して、表1に示すような平均粒子径のメソフェーズ小球体黒鉛化物(A)を実施例1と同様にして調製した。
実施例1の天然黒鉛粒子(B)についても、表1に示すような球状〜楕円体状に造粒加工された天然黒鉛粒子を準備した。
実施例1の非造粒型メソフェーズ小球体黒鉛(C1)の調製において、メソフェーズ小球体焼成物を渦流式粉砕機を用いて粉砕条件を操作し、表1に示すような平均粒子径のコールタールピッチの不活性雰囲気中450℃での熱処理時間を調整して、表1に示すような平均粒子径の非造粒型メソフェーズ小球体黒鉛(C1)を調製した。
実施例1において、これらの成分を用いる以外、実施例1と同様にして、負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、本発明の規定する平均粒子径から逸脱した負極材料によって作用電極を作製した場合、放電容量、初期充放電効率、急速充電率、急速放電率、サイクル特性のいずれかが劣化している。
[Comparative Examples 11-15]
In the preparation of the mesophase microsphere graphitized product (A) of Example 1, the heat treatment time at 450 ° C. in an inert atmosphere of coal tar pitch was adjusted, and the mesophase microsphere graphitized product having an average particle size as shown in Table 1 (A) was prepared in the same manner as Example 1.
As for the natural graphite particles (B) of Example 1, natural graphite particles granulated into spherical to ellipsoidal shapes as shown in Table 1 were prepared.
In the preparation of the non-granulated mesophase microsphere graphite (C1) of Example 1, the pulverized conditions of the mesophase microsphere calcined product were operated using a vortex crusher, and coal tar having an average particle diameter as shown in Table 1 was obtained. By adjusting the heat treatment time at 450 ° C. in an inert atmosphere of pitch, non-granulated mesophase microsphere graphite (C1) having an average particle size as shown in Table 1 was prepared.
In Example 1, except that these components were used, in the same manner as in Example 1, the working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when the working electrode is made of a negative electrode material deviating from the average particle diameter defined in the present invention, any one of discharge capacity, initial charge / discharge efficiency, rapid charge rate, rapid discharge rate, and cycle characteristics is It has deteriorated.
[実施例11]
[球状化または楕円体状化天然黒鉛(B2)の調製]
球状〜楕円体状に造粒加工された天然黒鉛粒子(平均粒子径20μm、平均格子面間隔d0020.3356nm、平均アスペクト比1.4、比表面積5.0m2/g)100質量部を、揮発分含有量約40質量%のコールタールピッチ25質量部をタール中油75質量部に溶解した溶液100質量部に浸漬し、150℃、圧力5mmHg以下で攪拌を続け、溶媒であるタール中油を除去乾燥した。得られたピッチ含浸天然黒鉛粒子を非酸化性雰囲気下、450℃で30時間熱処理し、炭素質材料と天然黒鉛粒子の複合体を得た。
該複合体100質量部と、気相成長炭素繊維の黒鉛化物(直径150nm、平均アスペクト比約50)2質量部を混合し、「メカノフュージョンシステム」(ホソカワミクロン(株)製)に投入し、回転ドラムの周速20m/秒、処理時間60分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を繰返し付与し、メカノケミカル処理を行った。得られた炭素繊維の黒鉛化物付着複合体を黒鉛るつぼに充填し、非酸化性雰囲気下、3000℃で5時間かけて黒鉛化を行った。得られたピッチ黒鉛化物被覆天然黒鉛粒子(B2)は、その表面に炭素繊維の黒鉛化物が付着しており、平均アスペクト比は1.4、平均粒子径は20μm、平均格子面間隔d002は0.3357nm、比表面積は1.7m2/gであった。
[Example 11]
[Preparation of Spheroidized or Ellipsoidized Natural Graphite (B2)]
100 parts by mass of natural graphite particles granulated into a spherical to ellipsoidal shape (average particle diameter 20 μm, average lattice spacing d 002 0.3356 nm, average aspect ratio 1.4, specific surface area 5.0 m 2 / g) Then, 25 parts by mass of coal tar pitch having a volatile content of about 40% by mass is immersed in 100 parts by mass of a solution obtained by dissolving 75 parts by mass of tar oil, and stirring is continued at 150 ° C. and a pressure of 5 mmHg or less. Removed and dried. The obtained pitch-impregnated natural graphite particles were heat-treated at 450 ° C. for 30 hours in a non-oxidizing atmosphere to obtain a composite of carbonaceous material and natural graphite particles.
100 parts by mass of the composite and 2 parts by mass of vapor-grown carbon fiber graphitized material (diameter: 150 nm, average aspect ratio: about 50) are mixed and put into a “Mechano-Fusion System” (manufactured by Hosokawa Micron Corporation) for rotation. A mechanochemical treatment was performed by repeatedly applying a compressive force and a shearing force under the conditions of a peripheral speed of the drum of 20 m / second, a treatment time of 60 minutes, and a distance of 5 mm between the rotating drum and the internal member. The obtained carbon fiber graphitized substance-attached composite was filled in a graphite crucible and graphitized at 3000 ° C. for 5 hours in a non-oxidizing atmosphere. The obtained pitch-graphitized-coated natural graphite particles (B2) have carbon fiber graphitized particles attached to their surfaces, an average aspect ratio of 1.4, an average particle size of 20 μm, and an average lattice spacing d 002 of 0.3357nm, the specific surface area was 1.7m 2 / g.
実施例1において、メソフェーズピッチ炭化物被覆天然黒鉛(B1)を、該気相成長炭素繊維の黒鉛化物付着ピッチ黒鉛化物被覆天然黒鉛(B2)に変更し、非造粒型黒鉛(C1)を、実施例8で調製した造粒型黒鉛(C2)に変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、炭素繊維の黒鉛化物付着ピッチ黒鉛化物被覆天然黒鉛(B2)用いて負極材料を作製した場合、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
In Example 1, the mesophase pitch carbide-coated natural graphite (B1) was changed to the vapor-grown carbon fiber graphitized material-attached pitch graphitized-coated natural graphite (B2), and the non-granulated graphite (C1) was carried out. A working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 in the same manner as in Example 1 except that the granulated graphite (C2) prepared in Example 8 was changed to an evaluation battery. Was made. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when a negative electrode material was produced using carbon fiber graphitized material-attached pitch graphitized coated natural graphite (B2), the density of the active material layer was high and the discharge capacity per mass was high. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[実施例12]
[球状化または楕円体状化天然黒鉛(B1)の調製]
球状〜楕円体状に造粒加工された天然黒鉛粒子(平均粒子径20μm、平均格子面間隔d0020.3356nm、平均アスペクト比1.4、比表面積5.0m2/g)90質量部を、残炭率40質量%のフェノール樹脂25質量部、エチレングリコール500質量部およびヘキサメチレンテトラミン2.5質量部からなる混合溶液に浸漬し、150℃で30分間攪拌した。次いで、150℃、5mmHg以下で攪拌を続け、溶媒であるエチレングリコールを除去乾燥した。得られた樹脂含浸天然黒鉛粒子を空気中で、270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。僅かな融着物を解砕した後、窒素雰囲気中1250℃で炭化処理を行った。得られた樹脂炭化物被覆天然黒鉛粒子(B1)の平均アスペクト比は1.4、平均粒子径は20μm、平均格子面間隔d002は0.3359nm、比表面積は3.9m2/gであった。
[Example 12]
[Preparation of Spheroidized or Ellipsoidized Natural Graphite (B1)]
90 parts by mass of natural graphite particles granulated into spherical to ellipsoidal shapes (average particle diameter 20 μm, average lattice spacing d 002 0.3356 nm, average aspect ratio 1.4, specific surface area 5.0 m 2 / g) Then, it was immersed in a mixed solution consisting of 25 parts by mass of a phenol resin having a residual carbon ratio of 40% by mass, 500 parts by mass of ethylene glycol and 2.5 parts by mass of hexamethylenetetramine, and stirred at 150 ° C. for 30 minutes. Subsequently, stirring was continued at 150 ° C. and 5 mmHg or less, and the solvent was ethylene glycol, which was then dried. The obtained resin-impregnated natural graphite particles were heated in air to 270 ° C. over 5 hours, further held at 270 ° C. for 2 hours, and heated. After crushing a few fused materials, carbonization was performed at 1250 ° C. in a nitrogen atmosphere. The obtained resin carbide-coated natural graphite particles (B1) had an average aspect ratio of 1.4, an average particle diameter of 20 μm, an average lattice spacing d 002 of 0.3359 nm, and a specific surface area of 3.9 m 2 / g. .
実施例1において、メソフェーズピッチ炭化物被覆天然黒鉛(B1)を、該樹脂炭化物被覆天然黒鉛粒子(B1)に変更し、非造粒型黒鉛(C1)を、実施例8で調製した造粒型黒鉛(C2)に変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、樹脂炭化物被覆天然黒鉛粒子(B1)を用いて負極材料を作製した場合、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
In Example 1, the mesophase pitch carbide-coated natural graphite (B1) is changed to the resin carbide-coated natural graphite particles (B1), and the non-granulated graphite (C1) is granulated graphite prepared in Example 8. Except for changing to (C2), the density of the negative electrode mixture layer was adjusted to 1.75 g / cm 3 in the same manner as in Example 1 to produce a working electrode, and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when a negative electrode material is produced using resin carbide-coated natural graphite particles (B1), the active material layer has a high density and a high discharge capacity per mass. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[実施例13]
[球状化または楕円体状化天然黒鉛(B1)の調製]
球状〜楕円体状に造粒加工された天然黒鉛粒子(平均粒子径20μm、平均格子面間隔d0020.3356nm、平均アスペクト比1.4、比表面積5.0m2/g)100質量部に、軟化点150℃のメソフェーズピッチ粉末(平均粒子径2μm)1.5質量部、および、気相成長炭素繊維の黒鉛化物(直径150nm、平均アスペクト比約50)0.5質量部を混合し、「メカノフュージョンシステム」(ホソカワミクロン(株)製)に投入し、回転ドラムの周速20m/秒、処理時間60分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を繰返し付与し、メカノケミカル処理を行った。得られた炭素繊維の黒鉛化物付着複合体を黒鉛るつぼに充填し、非酸化性雰囲気下、1200℃で3時間かけて焼成を行った。得られたピッチ炭化物被覆天然黒鉛粒子(B1)は、その表面に炭素繊維の黒鉛化物が付着しており、平均アスペクト比は1.4、平均粒子径は20μm、平均格子面間隔d002は0.3356nm、比表面積は4.4m2/gであった。
[Example 13]
[Preparation of Spheroidized or Ellipsoidized Natural Graphite (B1)]
100 parts by mass of natural graphite particles granulated into spherical to ellipsoidal shapes (average particle size 20 μm, average lattice spacing d 002 0.3356 nm, average aspect ratio 1.4, specific surface area 5.0 m 2 / g) , 1.5 parts by mass of mesophase pitch powder with a softening point of 150 ° C. (
実施例1において、メソフェーズピッチ炭化物被覆天然黒鉛(B1)を、該炭素繊維の黒鉛化物付着ピッチ炭化物被覆天然黒鉛粒子(B1)に変更し、非造粒型黒鉛(C1)を、実施例8で調製した造粒型黒鉛(C2)に変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、樹脂炭化物被覆天然黒鉛粒子(B1)を用いて負極材料を作製した場合、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
In Example 1, mesophase pitch carbide-coated natural graphite (B1) was changed to graphitized material-attached pitch carbide-coated natural graphite particles (B1) of the carbon fiber, and non-granulated graphite (C1) was obtained in Example 8. Except for changing to the prepared granulated graphite (C2), the density of the negative electrode mixture layer was adjusted to 1.75 g / cm 3 in the same manner as in Example 1 to produce a working electrode, and an evaluation battery was produced. . The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when a negative electrode material is produced using resin carbide-coated natural graphite particles (B1), the active material layer has a high density and a high discharge capacity per mass. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[実施例14]
[非造粒型黒鉛(C1)の調製]
揮発分含有量約40質量%のコールタールピッチを鋼鉄製容器に充填し、非酸化性雰囲気下、20時間かけて480℃で焼成した。得られたバルクメソフェーズを鋼鉄製容器から取出し、摩砕式粉砕機で粉砕した。粉砕生成物を「メカノフュージョンシステム」(ホソカワミクロン(株)製)に投入し、回転ドラムの周速20m/秒、処理時間60分、回転ドラムと内部部材との距離5mmの条件で、圧縮力、剪断力を繰返し付与し、メカノケミカル処理を行った。得られたバルクメソフェーズ粒子を黒鉛るつぼに充填し、非酸化性雰囲気下、3000℃で5時間かけて黒鉛化を行った。得られた非造粒型バルクメソフェーズ黒鉛粒子(C1)は、粒子の角が取れた塊状であった。平均アスペクト比は1.5、平均粒子径は10μm、平均格子面間隔d002は0.3360nm、比表面積は2.0m2/gであった。
[Example 14]
[Preparation of non-granulated graphite (C1)]
A coal tar pitch having a volatile content of about 40% by mass was filled in a steel container and fired at 480 ° C. for 20 hours in a non-oxidizing atmosphere. The obtained bulk mesophase was taken out from the steel container and pulverized by a grinding pulverizer. The pulverized product was put into a “Mechano-Fusion System” (manufactured by Hosokawa Micron Co., Ltd.), and the compression force, Shear force was repeatedly applied to perform mechanochemical treatment. The obtained bulk mesophase particles were filled in a graphite crucible and graphitized at 3000 ° C. for 5 hours in a non-oxidizing atmosphere. The obtained non-granulated bulk mesophase graphite particles (C1) were agglomerated with the corners of the particles removed. The average aspect ratio was 1.5, the average particle diameter was 10 μm, the average lattice spacing d 002 was 0.3360 nm, and the specific surface area was 2.0 m 2 / g.
実施例1において、メソフェーズ小球体粉砕生成物の黒鉛化物(C1)を、該バルクメソフェーズ黒鉛粒子(C1)に変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、バルクメソフェーズ黒鉛粒子(C1)を用いて負極材料を作製した場合でも、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
In Example 1, the density of the negative electrode mixture layer was changed to 1.75 g in the same manner as in Example 1 except that the graphitized product (C1) of the mesophase microsphere pulverized product was changed to the bulk mesophase graphite particles (C1). A working electrode was prepared by adjusting to / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, even when a negative electrode material is produced using bulk mesophase graphite particles (C1), the density of the active material layer is high and the discharge capacity per mass is high. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[実施例15]
[造粒型黒鉛(C2)の調製]
ほぼ球状に造粒加工された天然黒鉛粒子(平均粒子径5μm)70質量部とコールタールピッチ30質量部を、二軸ニーダーを用いて、200℃で1時間混練した。混練生成物を非酸化性雰囲気下、500℃で3時間焼成した。焼成生成物を摩砕式粉砕機で粉砕して、塊状造粒焼成物(平均粒子径13μm)を得た。該塊状造粒焼成物を黒鉛るつぼに充填し、非酸化性雰囲気下、3150℃で5時間かけて黒鉛化を行った。得られた造粒型黒鉛(C2)は葡萄型の塊状であった。平均アスペクト比は1.5、平均粒子径は17μm、平均格子面間隔d002は0.3358nm、比表面積は2.8m2/gであった。
[Example 15]
[Preparation of granulated graphite (C2)]
70 parts by mass of natural graphite particles (average particle size 5 μm) granulated into a substantially spherical shape and 30 parts by mass of coal tar pitch were kneaded at 200 ° C. for 1 hour using a biaxial kneader. The kneaded product was calcined at 500 ° C. for 3 hours in a non-oxidizing atmosphere. The calcined product was pulverized with a grinding pulverizer to obtain a lump granulated calcined product (average particle size 13 μm). The massive granulated fired product was filled in a graphite crucible and graphitized at 3150 ° C. for 5 hours in a non-oxidizing atmosphere. The obtained granulated graphite (C2) was a bowl-shaped lump. The average aspect ratio was 1.5, the average particle size was 17 μm, the average lattice spacing d 002 was 0.3358 nm, and the specific surface area was 2.8 m 2 / g.
実施例8のコークス造粒型黒鉛(C2)を、該ほぼ球状に造粒加工された天然黒鉛(C2)に変更した以外は、実施例1と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、ほぼ球状に造粒加工された天然黒鉛(C2)を用いて負極材料を作製した場合、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
The density of the negative electrode mixture layer was changed to 1. in the same manner as in Example 1 except that the coke granulated graphite (C2) of Example 8 was changed to natural graphite (C2) granulated into a substantially spherical shape. A working electrode was prepared by adjusting to 75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when a negative electrode material is produced using natural graphite (C2) granulated into a substantially spherical shape, the active material layer has a high density and a high discharge capacity per mass. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[実施例16]
[メソフェーズ小球体黒鉛化物(A)の調製]
実施例1のメソフェーズ小球体黒鉛化物(A)の調製において、メソフェーズ小球体焼成物に塩化第一鉄を付着させないほかは、実施例1と同様にメソフェーズ小球体黒鉛化物(A)を調製した。得られた該黒鉛化物(A)は、表面が平滑で球状に近く、平均アスペクト比は1.1、平均粒子径は32μm、平均格子面間隔d002は0.3359nm、比表面積は0.5m2/gであった。
[Example 16]
[Preparation of mesophase microsphere graphitized product (A)]
In the preparation of the mesophase small sphere graphitized product (A) of Example 1, the mesophase small sphere graphitized product (A) was prepared in the same manner as in Example 1 except that ferrous chloride was not attached to the calcined mesophase small sphere. The obtained graphitized product (A) has a smooth and nearly spherical surface, an average aspect ratio of 1.1, an average particle diameter of 32 μm, an average lattice spacing d 002 of 0.3359 nm, and a specific surface area of 0.5 m. 2 / g.
[球状化または楕円体状化天然黒鉛(B)の調製]
球状〜楕円体状に造粒加工された天然黒鉛粒子(平均粒子径25μm、平均格子面間隔d0020.3356nm、平均アスペクト比1.6、比表面積3.9m2/g)を準備した。
[Preparation of Spheroidized or Ellipsoidized Natural Graphite (B)]
Natural graphite particles (average particle diameter 25 μm, average lattice spacing d 002 0.3356 nm, average aspect ratio 1.6, specific surface area 3.9 m 2 / g) granulated into spherical to ellipsoidal shapes were prepared.
[非造粒型黒鉛(C1)の調製]
実施例1のメソフェーズ小球体黒鉛化物(粉砕生成物)に酸化チタン粉末を配合するメカノケミカル処理を施さずに該黒鉛化物をそのまま非造粒型黒鉛(C1)として用いた。該非造粒型黒鉛(C1)は塊状であり、平均アスペクト比は1.5、平均粒子径は14μm、平均格子面間隔d002は0.3359nm、比表面積は0.9m2/gであった。
[Preparation of non-granulated graphite (C1)]
The mesophase microsphere graphitized product (pulverized product) of Example 1 was used as it was as non-granulated graphite (C1) without being subjected to the mechanochemical treatment in which the titanium oxide powder was mixed. The non-granulated graphite (C1) was agglomerated, the average aspect ratio was 1.5, the average particle diameter was 14 μm, the average lattice spacing d 002 was 0.3359 nm, and the specific surface area was 0.9 m 2 / g. .
[負極材料の調製]
前記メソフェーズ小球体黒鉛化物(A)40質量部、球状化または楕円体状化天然黒鉛(B1)40質量部および非造粒型黒鉛(C1)20質量部を混合し、負極材料を調製した。
[Preparation of negative electrode material]
The mesophase microsphere graphitized product (A) 40 parts by mass, spheroidized or ellipsoidized natural graphite (B1) 40 parts by mass and non-granulated graphite (C1) 20 parts by mass were mixed to prepare a negative electrode material.
[負極合剤の調製]
前記負極材料95質量部、結合剤ポリフッ化ビニリデン5質量部をN−メチルピロリドンに入れ、攪拌して負極合剤ペーストを調製した。
[Preparation of negative electrode mixture]
95 parts by mass of the negative electrode material and 5 parts by mass of a binder polyvinylidene fluoride were placed in N-methylpyrrolidone and stirred to prepare a negative electrode mixture paste.
実施例1において、負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、メソフェーズ小球体黒鉛化物(A)40質量部、球状化または楕円体状化天然黒鉛(B1)40質量部および非造粒型黒鉛(C1)20質量部を混合してなる負極材料を用いた場合、活物質層の密度が高く、高い質量当たりの放電容量を有する。このため、体積当たりの放電容量が大幅に向上する。また、高い密度においても、急速充電率、急速放電率、サイクル特性が優れる。
In Example 1, the working electrode was prepared by adjusting the density of the negative electrode mixture layer to 1.75 g / cm 3 to prepare an evaluation battery. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, 40 parts by mass of mesophase microsphere graphitized material (A), 40 parts by mass of spheroidized or ellipsoidized natural graphite (B1) and 20 parts by mass of non-granulated graphite (C1) were mixed. When the negative electrode material is used, the density of the active material layer is high and the discharge capacity per mass is high. For this reason, the discharge capacity per volume is significantly improved. Further, even at a high density, the rapid charge rate, rapid discharge rate, and cycle characteristics are excellent.
[比較例16]
実施例8において、造粒型黒鉛(C2)に代えて、鱗片状天然黒鉛(平均粒子径8μm、平均格子面間隔d0020.3356nm、平均アスペクト比5.2、比表面積7.6m2/g)を用いた。実施例8と同様にして負極合剤層の密度を1.75g/cm3に調整して作用電極を作製し、評価電池を作製した。実施例1と同様の充放電試験を行い、電池特性の評価結果を表1に示した。
表1に示すように、造粒型黒鉛(C2)を配合せず、鱗片状天然黒鉛を配合して負極材料を作製した場合、高い密度に、急速充電率、急速放電率、サイクル特性が低下する。
[Comparative Example 16]
In Example 8, instead of granulated graphite (C2), scaly natural graphite (average particle diameter 8 μm, average lattice spacing d 002 0.3356 nm, average aspect ratio 5.2, specific surface area 7.6 m 2 / g) was used. In the same manner as in Example 8, the density of the negative electrode mixture layer was adjusted to 1.75 g / cm 3 to produce a working electrode, and an evaluation battery was produced. The same charge / discharge test as in Example 1 was performed, and the evaluation results of the battery characteristics are shown in Table 1.
As shown in Table 1, when a negative electrode material is produced by blending granulated graphite (C2) and scale-like natural graphite, the rapid charge rate, rapid discharge rate, and cycle characteristics are reduced to a high density. To do.
本発明の負極材料は、搭載する機器の小型化および高性能化に有効に寄与するリチウムイオン二次電池の負極材料に用いることができる。 The negative electrode material of the present invention can be used as a negative electrode material for a lithium ion secondary battery that contributes effectively to downsizing and high performance of equipment to be mounted.
1 外装カップ
2 作用電極(負極)
3 外装缶
4 対極(正極)
5 セパレータ
6 絶縁ガスケット
7a、7b集電体
1
3 Exterior can 4 Counter electrode (positive electrode)
5 Separator 6
Claims (6)
平均粒子径が5〜35μmで、かつ、前記メソフェーズ小球体黒鉛化物(A)の平均粒子径よりも小さく、平均アスペクト比が2.0未満である球状化または楕円体状化天然黒鉛(B)、ならびに、
平均粒子径が2〜25μmで、かつ、前記メソフェーズ小球体黒鉛化物(A)の平均粒子径よりも小さく、平均アスペクト比が2.0未満である黒鉛(C)
の混合物であり、前記混合物中の前記メソフェーズ小球体黒鉛化物(A)、前記球状化または楕円体状化天然黒鉛(B)および前記黒鉛(C)の質量割合が下記式(1)および式(2)を満足することを特徴とするリチウムイオン二次電池用負極材料。
a:b=(10〜70):(90〜30) (1)
(a+b):c=(80〜95):(20〜5) (2)
ここで、aは前記メソフェーズ小球体黒鉛化物(A)の割合、bは前記球状化または楕円体状化された天然黒鉛(B)の割合、cは前記黒鉛(C)の割合を示す。 Average particle diameter of 10 to 40 [mu] m, average aspect ratio Ri der less than 1.2, coal or heavy oil petroleum, optical obtained by heat treatment of at least one selected from the tars and pitches such Mesophase small sphere graphitized product (A) obtained by graphitizing spherical polymer having mechanical anisotropy ,
Spherical or ellipsoidal natural graphite having an average particle size of 5 to 35 μm, smaller than the average particle size of the mesophase small sphere graphitized product (A) and having an average aspect ratio of less than 2.0 (B) As well as
Graphite (C) having an average particle diameter of 2 to 25 μm, smaller than the average particle diameter of the mesophase microsphere graphitized product (A), and having an average aspect ratio of less than 2.0
The mesophase microsphere graphitized product (A), the spheroidized or ellipsoidized natural graphite (B) and the graphite (C) in the mixture have a mass ratio of the following formulas (1) and ( 2) The negative electrode material for lithium ion secondary batteries characterized by satisfying | filling.
a: b = (10 to 70): (90 to 30) (1)
(A + b): c = ( 80 to 95): ( 20 to 5) (2)
Here, a is the ratio of the mesophase microsphere graphitized product (A), b is the ratio of the spheroidized or ellipsoidized natural graphite (B), and c is the ratio of the graphite (C).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009150992A JP5322804B2 (en) | 2009-06-25 | 2009-06-25 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009150992A JP5322804B2 (en) | 2009-06-25 | 2009-06-25 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011009051A JP2011009051A (en) | 2011-01-13 |
JP5322804B2 true JP5322804B2 (en) | 2013-10-23 |
Family
ID=43565470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009150992A Active JP5322804B2 (en) | 2009-06-25 | 2009-06-25 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5322804B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5473886B2 (en) * | 2010-12-21 | 2014-04-16 | Jfeケミカル株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP5668667B2 (en) * | 2011-11-02 | 2015-02-12 | 株式会社豊田自動織機 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode |
JP6040022B2 (en) * | 2012-03-02 | 2016-12-07 | Jfeケミカル株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP6127427B2 (en) * | 2012-09-26 | 2017-05-17 | 三菱化学株式会社 | Non-aqueous secondary battery carbon material, negative electrode, and non-aqueous secondary battery |
JP2014067680A (en) * | 2012-09-27 | 2014-04-17 | Mitsubishi Chemicals Corp | Graphite particle for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery |
JP6492407B2 (en) * | 2014-03-25 | 2019-04-03 | 三菱ケミカル株式会社 | Carbon material for non-aqueous secondary battery negative electrode, and non-aqueous secondary battery |
JP6379565B2 (en) * | 2014-03-25 | 2018-08-29 | 三菱ケミカル株式会社 | Non-aqueous secondary battery negative electrode carbon material and non-aqueous secondary battery |
US10629909B2 (en) | 2015-12-08 | 2020-04-21 | Gs Yuasa International Ltd. | Energy storage device |
US20200381688A1 (en) * | 2017-09-15 | 2020-12-03 | Lg Chem, Ltd. | Negative Electrode for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same |
CN111525105B (en) * | 2020-03-20 | 2023-06-27 | 力神(青岛)新能源有限公司 | Negative electrode material of lithium iron phosphate battery and preparation method of negative electrode plate |
EP4135065A4 (en) * | 2020-04-10 | 2023-06-28 | Ningde Amperex Technology Limited | Negative electrode active material, and electrochemical device and electronic device using same |
CN113437293B (en) * | 2021-06-21 | 2022-06-17 | 宁德新能源科技有限公司 | Negative electrode active material, secondary battery, and electronic device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001236950A (en) * | 2000-02-24 | 2001-08-31 | Japan Storage Battery Co Ltd | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP5081375B2 (en) * | 2004-02-12 | 2012-11-28 | 三菱化学株式会社 | Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same |
JP5172089B2 (en) * | 2005-11-14 | 2013-03-27 | Jfeケミカル株式会社 | Method for producing negative electrode for lithium ion secondary battery |
JP4989114B2 (en) * | 2006-06-02 | 2012-08-01 | 日本カーボン株式会社 | Negative electrode and negative electrode active material for lithium secondary battery |
-
2009
- 2009-06-25 JP JP2009150992A patent/JP5322804B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011009051A (en) | 2011-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5473886B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6040022B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5322804B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6240586B2 (en) | Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery | |
JP3957692B2 (en) | Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery | |
JP6087648B2 (en) | Composite graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5346962B2 (en) | Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4040606B2 (en) | Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP5941437B2 (en) | Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5671110B2 (en) | Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5953249B2 (en) | Composite graphite particles and their use in lithium ion secondary batteries | |
JP2018092916A (en) | Carbonous coated graphite particles for lithium ion secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery negative electrode, and lithium ion secondary battery | |
JP5551883B2 (en) | Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery | |
JP4933092B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4707570B2 (en) | Method for producing fine graphite particles | |
JP5133543B2 (en) | Method for producing mesocarbon microsphere graphitized material | |
JP2008047427A (en) | Mesocarbon microsphere graphitized material, its manufacturing method, lithium-ion secondary battery, negative-electrode material therefor, and negative electrode therefor | |
JP2019160791A (en) | Method for manufacturing carbon-coated graphite particles for lithium ion secondary battery negative electrode material, carbon-coated graphite particles for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130409 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130716 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5322804 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |