Nothing Special   »   [go: up one dir, main page]

JP5302679B2 - Film, heat-shrinkable film, and molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article - Google Patents

Film, heat-shrinkable film, and molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article Download PDF

Info

Publication number
JP5302679B2
JP5302679B2 JP2008522667A JP2008522667A JP5302679B2 JP 5302679 B2 JP5302679 B2 JP 5302679B2 JP 2008522667 A JP2008522667 A JP 2008522667A JP 2008522667 A JP2008522667 A JP 2008522667A JP 5302679 B2 JP5302679 B2 JP 5302679B2
Authority
JP
Japan
Prior art keywords
resin
film
heat
shrinkable
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008522667A
Other languages
Japanese (ja)
Other versions
JPWO2008001917A1 (en
Inventor
隆 比留間
剛幹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2008522667A priority Critical patent/JP5302679B2/en
Publication of JPWO2008001917A1 publication Critical patent/JPWO2008001917A1/en
Application granted granted Critical
Publication of JP5302679B2 publication Critical patent/JP5302679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Disclosed is a film having at least one layer mainly composed of a polyolefin resin (A) and further containing a polylactic acid resin (B) and an acrylic resin (C). The film has excellent transparency and places little burden on the environment.

Description

本発明は、環境負荷が少なく、透明性に優れたフィルム、熱収縮性フィルム、ならびにこの熱収縮性フィルムを用いた成形品、熱収縮性ラベルおよびこの成形品を用いた、またはこのラベルを装着した容器に関する。   The present invention relates to a film having a low environmental load and excellent transparency, a heat-shrinkable film, and a molded article using the heat-shrinkable film, a heat-shrinkable label, and the molded article, or the label mounted thereon. Related to the container.

現在、ジュース等の清涼飲料、ビール等のアルコール飲料等は、瓶、ペットボトル等の容器に充填された状態で販売されている。その際、他の商品と差別化し、商品の視認性を向上させるために、容器の外側に印刷を施した熱収縮性ラベルを装着していることが多い。この熱収縮性ラベルの素材としては、通常、塩化ビニル系樹脂、スチレン系樹脂、ポリエステル系樹脂等が用いられている。これらの樹脂で形成された熱収縮性フィルムは、高い透明性や光沢性、剛性を有し、かつ優れた低温収縮特性を有することから、熱収縮性フィルムとして好適に使用することができる。   Currently, soft drinks such as juice and alcoholic drinks such as beer are sold in a state of being filled in containers such as bottles and plastic bottles. At that time, in order to differentiate from other products and improve the visibility of the products, a heat-shrinkable label printed on the outside of the container is often attached. As a material for the heat-shrinkable label, a vinyl chloride resin, a styrene resin, a polyester resin, or the like is usually used. A heat-shrinkable film formed of these resins has high transparency, gloss, rigidity, and excellent low-temperature shrinkage characteristics, and therefore can be suitably used as a heat-shrinkable film.

これに対し、ポリオレフィン系樹脂は燃焼生成ガスやいわゆる環境ホルモンである内分泌攪乱化学物質に関する問題が比較的少なく、また比重が小さいためゴミ重量の削減につながるという環境負荷の少ない、好ましい素材である。しかしながら、このポリオレフィン系樹脂からなる熱収縮性フィルムは、フィルムの剛性、低温収縮性が十分ではなく、熱収縮時における収縮が不足し、さらには自然収縮(常温よりやや高い温度、例えば夏場においてフィルムが本来の使用前に少し収縮してしまうこと)が起こりやすいなどといった問題があった(例えば、特許文献1参照)。   On the other hand, polyolefin resin is a preferable material with less environmental load that has less problems with combustion-generated gases and endocrine disrupting chemical substances, which are so-called environmental hormones, and has a low specific gravity, leading to a reduction in the weight of garbage. However, this heat-shrinkable film made of polyolefin resin has insufficient film rigidity and low-temperature shrinkability, lacks shrinkage at the time of heat shrinkage, and further spontaneous shrinkage (film at a temperature slightly higher than room temperature, for example, in summer) There is a problem that it is likely to shrink slightly before the original use) (see, for example, Patent Document 1).

また、ポリ乳酸系樹脂も環境負荷の小さい素材として注目されている。ポリ乳酸系樹脂は、澱粉の発酵により得られる乳酸を原料とする植物由来樹脂であり、化石資源の節約や二酸化炭素の排出抑制が可能である。また、ポリ乳酸系樹脂は剛性、透明性等の物性にも優れる素材である。しかし、ポリ乳酸系樹脂は、脆いという欠点がある。また、ポリ乳酸系樹脂からなる熱収縮フィルムは、収縮温度に対し鋭敏な収縮率変化を示すため、均一な収縮が得られにくく、収縮ムラを生じる、などといった収縮仕上がりの面で問題があった(例えば、特許文献2、3および4参照)。   Polylactic acid resins are also attracting attention as materials with a low environmental impact. The polylactic acid-based resin is a plant-derived resin that uses lactic acid obtained by fermentation of starch as a raw material, and can save fossil resources and suppress emission of carbon dioxide. In addition, polylactic acid resin is a material excellent in physical properties such as rigidity and transparency. However, the polylactic acid resin has a drawback of being brittle. In addition, the heat-shrinkable film made of a polylactic acid-based resin has a sharp shrinkage rate change with respect to the shrinkage temperature, and thus there is a problem in terms of shrinkage finish such that uniform shrinkage is difficult to obtain and shrinkage unevenness occurs. (For example, see Patent Documents 2, 3 and 4).

前記状況を鑑みて、ポリ乳酸系樹脂と変性ポリオレフィン樹脂との混合樹脂組成物について検討が行われている(例えば、特許文献5、6および7参照)。しかしながら、ポリ乳酸系樹脂およびポリオレフィン系樹脂の屈折率差は大きく、得られる混合樹脂組成物からなるシートは透明性が著しく劣る問題があった。また、該発明は、マトリックスを生分解樹脂としたもので、衝撃強度に代表される機械特性の向上と生分解性維持の両立を主目的としたものであり、熱収縮フィルムに必要である収縮仕上がり性、延伸製膜性を得ることは困難であった。   In view of the above situation, a mixed resin composition of a polylactic acid resin and a modified polyolefin resin has been studied (for example, see Patent Documents 5, 6 and 7). However, the difference in refractive index between the polylactic acid-based resin and the polyolefin-based resin is large, and the sheet made of the obtained mixed resin composition has a problem that the transparency is remarkably deteriorated. In addition, the present invention uses a matrix as a biodegradable resin, and is mainly intended to improve both mechanical properties typified by impact strength and maintain biodegradability. It was difficult to obtain finish and stretch film-forming properties.

また、ベース成分としてポリオレフィン系樹脂、さらに、ポリ乳酸系合成樹脂成分、および、酢酸ビニル・エチレン共重合体等を含むポリオレフィン系樹脂組成物からなるシート状物が記載されている(例えば、特許文献8参照)。しかしながら、該発明は、ロールによるシート状物への加工に際して、ロール表面への付着を防ぐこと、および生分解性の維持を主目的としており、熱収縮性フィルムへ適応しようとした場合、やはり透明性、延伸性に欠けるという問題があった。
特開2003−253008号公報 特開2006−063302号公報 特開2003−205548号公報 特開2001−354786号公報 特開2005−68232号公報 特開平5−179110号公報 特開平9−316310号公報 特開2003−301077号公報
In addition, a sheet-like material comprising a polyolefin-based resin composition containing a polyolefin-based resin as a base component, a polylactic acid-based synthetic resin component, and a vinyl acetate / ethylene copolymer is described (for example, Patent Documents). 8). However, the invention is mainly intended to prevent adhesion to the roll surface and maintain biodegradability when processing into a sheet-like material by a roll. There was a problem of lacking in stretchability and stretchability.
JP 2003-253008 A JP 2006-066332 A JP 2003-205548 A JP 2001-354786 A JP 2005-68232 A Japanese Patent Laid-Open No. 5-179110 JP 9-316310 A Japanese Patent Laid-Open No. 2003-301077

本発明は、前記従来技術の課題に鑑みてなされたものであり、本発明の目的は環境負荷が少なく、透明性に優れたフィルムを提供することにある。   This invention is made | formed in view of the subject of the said prior art, and the objective of this invention is that there is little environmental impact and provides the film excellent in transparency.

本発明のもう一つの目的は、環境負荷が少なく、かつ収縮特性、透明性に優れた収縮包装、収縮結束包装や収縮ラベル等の用途に適した熱収縮性フィルムを提供することにある。   Another object of the present invention is to provide a heat-shrinkable film suitable for uses such as shrink wrap, shrink-bound wrap, and shrink label with low environmental burden and excellent shrinkage characteristics and transparency.

さらに、本発明は、収縮包装、収縮結束包装、収縮ラベル等の用途に適した前記熱収縮性フィルムを用いた成形品、熱収縮性ラベル、および該成形品または熱収縮性ラベルを装着した容器を提供することを目的としている。   Furthermore, the present invention relates to a molded product using the heat-shrinkable film suitable for applications such as shrink-wrapping, shrink-bound packaging, and shrinkable labels, a heat-shrinkable label, and a container equipped with the molded product or heat-shrinkable label. The purpose is to provide.

本発明者らは、ポリオレフィン系樹脂とポリ乳酸系樹脂、およびアクリル系樹脂の組成、配合比、および加工条件を鋭意検討した結果、前記従来技術の課題を解決し得るフィルムを得ることに成功し、本発明を完成するに至った。   As a result of intensive studies on the composition, blending ratio, and processing conditions of the polyolefin-based resin, the polylactic acid-based resin, and the acrylic-based resin, the present inventors have succeeded in obtaining a film that can solve the problems of the prior art. The present invention has been completed.

第1の本発明は、ポリオレフィン系樹脂(A)を主成分として含有するとともに、該ポリオレフィン系樹脂(A)100質量部に対し、ポリ乳酸系樹脂(B)を1質量部以上50質量部以下、アクリル系樹脂(C)を1質量部以上50質量部以下含有する層を少なくとも1層有し、アクリル系樹脂(C)が、メタクリル酸メチル単独重合体、または、メタクリル酸メチルと、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸、メタクリル酸から選ばれる1種以上の他のビニル単量体と、の共重合体であることを特徴とするフィルムである。
1st this invention contains polyolefin-type resin (A) as a main component, and polylactic acid-type resin (B) is 1 mass part or more and 50 mass parts or less with respect to 100 mass parts of this polyolefin resin (A). , Having at least one layer containing 1 part by mass or more and 50 parts by mass or less of the acrylic resin (C), and the acrylic resin (C) is a methyl methacrylate homopolymer or methyl methacrylate and methacrylic acid A film characterized by being a copolymer of at least one other vinyl monomer selected from ethyl, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, acrylic acid, and methacrylic acid It is.

ここに本発明において単に「フィルム」という場合、この用語は延伸フィルム、無延伸フィルム、および、熱収縮性フィルムのいずれをも含む概念である。   Here, in the present invention, when the term “film” is simply used, this term includes a stretched film, an unstretched film, and a heat-shrinkable film.

第1の本発明において、ポリオレフィン系樹脂(A)は、ポリエチレン系樹脂、ポリプロピレン系樹脂、エチレン‐酢酸ビニル共重合体、またはこれらの混合樹脂からなる群から選ばれるいずれかの樹脂であることが好ましい。   In the first invention, the polyolefin resin (A) is any resin selected from the group consisting of a polyethylene resin, a polypropylene resin, an ethylene-vinyl acetate copolymer, or a mixed resin thereof. preferable.

第1の本発明において、ポリ乳酸系樹脂(B)の含有量は、ポリオレフィン系樹脂100質量部に対し1質量部以上50質量部以下であることが好ましい。   In 1st this invention, it is preferable that content of polylactic acid-type resin (B) is 1 to 50 mass parts with respect to 100 mass parts of polyolefin resin.

第1の本発明において、アクリル系樹脂(C)の含有量は、ポリオレフィン系樹脂100質量部に対し1質量部以上50質量部以下であることが好ましい。   In 1st this invention, it is preferable that content of acrylic resin (C) is 1 to 50 mass parts with respect to 100 mass parts of polyolefin resin.

第1の本発明のフィルムは、両側にポリ乳酸系樹脂(B)を主成分とする表裏層を有していることが好ましい。   The film of the first aspect of the present invention preferably has front and back layers mainly composed of a polylactic acid resin (B) on both sides.

第2の本発明は、第1の本発明のフィルムが熱収縮性を有する熱収縮性フィルム(以下において、「本発明の熱収縮性フィルム」ということもある。)である。   The second present invention is a heat-shrinkable film (hereinafter, also referred to as “heat-shrinkable film of the present invention”) in which the film of the first present invention has heat-shrinkability.

第2の本発明の熱収縮性フィルムにおいて、80℃温水中に10秒間浸積させた際の少なくとも一方向の収縮率は20%以上であることが好ましい。   In the heat-shrinkable film of the second invention, it is preferable that the shrinkage rate in at least one direction when immersed in warm water at 80 ° C. for 10 seconds is 20% or more.

第3の本発明は、第2の本発明の熱収縮性フィルムを基材として用いた成形品、熱収縮性ラベル、ならびに該成形品および該熱収縮性ラベルを装着した容器である。   The third aspect of the present invention is a molded article using the heat-shrinkable film of the second aspect of the present invention as a base material, a heat-shrinkable label, and a container equipped with the molded article and the heat-shrinkable label.

第1の本発明によれば、環境負荷が少なく、かつ透明性に優れたフィルムを提供できる。また、第2の本発明によれば、環境負荷が少なく、かつ収縮特性、透明性に優れた熱収縮性フィルムを提供できる。   According to the first aspect of the present invention, it is possible to provide a film having a low environmental load and excellent transparency. In addition, according to the second aspect of the present invention, it is possible to provide a heat-shrinkable film having a low environmental load and excellent in shrinkage characteristics and transparency.

第3の本発明によれば、装着物の形状にかかわらず所望の位置に密着固定させることができ、皺、アバタの発生、収縮不十分等の異常がなく、綺麗な外観を呈した熱収縮性ラベル、成形品および熱収縮性ラベルを装着した容器を提供できる。   According to the third aspect of the present invention, the heat shrinkage can be fixed in a desired position regardless of the shape of the attachment, and there is no abnormality such as wrinkles, avatars, insufficient shrinkage, etc., and a beautiful appearance Containers equipped with adhesive labels, molded articles and heat-shrinkable labels can be provided.

以下、本発明のフィルム、熱収縮性フィルム、この熱収縮性フィルムを用いた成形品および熱収縮性ラベル、ならびに、該成形品または該熱収縮性ラベルを装着した容器(以下、これらを「本発明の成形品」、「本発明のラベル」、および「本発明の容器」ともいう。)について詳細に説明する。   Hereinafter, the film of the present invention, a heat-shrinkable film, a molded product and a heat-shrinkable label using the heat-shrinkable film, and a container equipped with the molded product or the heat-shrinkable label (hereinafter referred to as “the present” The molded article of the invention "," label of the present invention "and" container of the present invention ") will be described in detail.

なお、本明細書において、「主成分とする」とは、各層を構成する樹脂の作用・効果を妨げない範囲で、他の成分を含むことを許容する趣旨である。さらに、この用語は、具体的な含有率を制限するものではないが、各層の構成成分全体の50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上100質量%以下の範囲を占める成分である。また、本明細書において「主収縮方向」とは、フィルムの縦方向(長手方向)とフィルムの横方向(幅方向)のうち熱収縮率の大きい方向を意味し、例えば、ボトルに装着する場合にはその外周方向に相当する方向を意味し、「直交方向」とは主収縮方向と直交する方向を意味する。   In the present specification, “main component” is intended to allow other components to be included as long as the action and effect of the resin constituting each layer is not hindered. Further, this term does not limit the specific content, but it is 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass with respect to the total components of each layer. It is a component occupying a range of not less than 100% and not more than 100% by mass. Further, in this specification, the “main shrinkage direction” means a direction in which the thermal shrinkage rate is large between the longitudinal direction (longitudinal direction) of the film and the lateral direction (width direction) of the film. Means a direction corresponding to the outer circumferential direction, and “orthogonal direction” means a direction perpendicular to the main contraction direction.

[フィルム]
本発明のフィルムは、ポリオレフィン系樹脂(A)を主成分とし、ポリ乳酸系樹脂(B)、およびアクリル系樹脂(C)を含有する層を少なくとも1層有する。
[the film]
The film of the present invention has at least one layer containing a polyolefin resin (A) as a main component and containing a polylactic acid resin (B) and an acrylic resin (C).

<ポリオレフィン系樹脂(A)>
本発明において、樹脂(A)として使用されるポリオレフィン系樹脂は特に限定されないが、熱収縮特性、機械的物性、および成形性の観点から、ポリエチレン系樹脂、ポリプロピレン系樹脂、エチレン‐酢酸ビニル共重合体、またはこれらの混合物を用いることが好ましい。以下に、本発明で用いられる好ましいポリエチレン系樹脂、ポリプロピレン系樹脂、およびエチレン‐酢酸ビニル共重合体を例示する。
<Polyolefin resin (A)>
In the present invention, the polyolefin resin used as the resin (A) is not particularly limited, but from the viewpoints of heat shrinkage properties, mechanical properties, and moldability, polyethylene resins, polypropylene resins, ethylene-vinyl acetate copolymer It is preferable to use a combination or a mixture thereof. Examples of preferable polyethylene resins, polypropylene resins, and ethylene-vinyl acetate copolymers used in the present invention are shown below.

本発明で用いられるポリエチレン系樹脂としては、密度が0.94g/cm以上0.97g/cm以下の高密度ポリエチレン樹脂(HDPE)、密度が0.92g/cm以上0.94g/cm未満の中密度ポリエチレン樹脂(MDPE)、密度が0.92g/cm未満の低密度ポリエチレン樹脂(LDPE)や直鎖状低密度ポリエチレン樹脂(LLDPE)が挙げられる。この中でも延伸性、フィルムの耐衝撃性、透明性等の観点から、直鎖状低密度ポリエチレン樹脂(LLDPE)が特に好適に用いられる。The polyethylene resin used in the present invention is a high density polyethylene resin (HDPE) having a density of 0.94 g / cm 3 or more and 0.97 g / cm 3 or less, and a density of 0.92 g / cm 3 or more and 0.94 g / cm 3. density polyethylene resins in less than 3 (MDPE), density of 0.92 g / cm 3 less than the low-density polyethylene resin (LDPE) or linear low density polyethylene resin (LLDPE). Among these, linear low density polyethylene resin (LLDPE) is particularly preferably used from the viewpoints of stretchability, impact resistance of the film, transparency, and the like.

前記直鎖状低密度ポリエチレン樹脂(LLDPE)としては、エチレンと炭素数3乃至20、好ましくは炭素数4乃至12のα‐オレフィンとの共重合体が挙げられる。α‐オレフィンとしては、例えば、プロピレン、1‐ブテン、1‐ペンテン、1‐へキセン、1‐へプテン、1‐オクテン、1‐ノネン、1‐デセン、3‐メチル‐1‐ブテン、4‐メチル‐1‐ペンテン等が例示される。この中でも1‐ブテン、1‐ヘキセン、1‐オクテンが好適に用いられる。また、共重合するα‐オレフィンは1種のみを単独で、または2種以上を組み合わせて用いても構わない。   Examples of the linear low density polyethylene resin (LLDPE) include a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 3-methyl-1-butene, 4- Examples include methyl-1-pentene. Of these, 1-butene, 1-hexene, and 1-octene are preferably used. Further, the α-olefin to be copolymerized may be used alone or in combination of two or more.

ポリエチレン系樹脂の密度は0.80g/cm以上、好ましくは0.85g/cm以上、さらに好ましくは0.90g/cm以上であり、かつ、0.945g/cm以下、好ましくは0.935g/cm以下、さらに好ましくは0.925g/cm以下の範囲である。密度が0.80g/cm以上であればフィルム全体の腰(常温での剛性)や耐熱性を著しく低下させないため、実用上好ましい。一方、密度が0.945g/cm以下であれば、低温での延伸性が維持され、熱収縮性フィルムとして構成した場合には、実用温度域(70℃以上90℃以下程度)の熱収縮率を充分得ることができる点で好ましい。The density of the polyethylene resin is 0.80 g / cm 3 or more, preferably 0.85 g / cm 3 or more, more preferably 0.90 g / cm 3 or more, and 0.945 g / cm 3 or less, preferably 0. .935g / cm 3 or less, more preferably 0.925 g / cm 3 or less. If the density is 0.80 g / cm 3 or more, the waist (rigidity at room temperature) and heat resistance of the whole film are not significantly lowered, which is practically preferable. On the other hand, if the density is 0.945 g / cm 3 or less, the stretchability at a low temperature is maintained, and when configured as a heat-shrinkable film, heat shrinkage in a practical temperature range (70 ° C. or more and about 90 ° C. or less). It is preferable in that a sufficient rate can be obtained.

また、ポリエチレン系樹脂のメルトフローレート(MFR)は、特に制限されるものではないが、通常、MFR(JIS K7210、温度:190℃、荷重:21.18N)が好ましくは0.5g/10分以上、より好ましくは1.0g/10分以上であり、かつ、好ましくは15g/10分以下、より好ましくは10g/10分以下である。ポリエチレン系樹脂のMFRは、均一な厚みのフィルムを得るためにポリ乳酸系樹脂の溶融時の粘度に近いものを選択することが好ましい。   Further, the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually MFR (JIS K7210, temperature: 190 ° C., load: 21.18 N) is preferably 0.5 g / 10 min. As mentioned above, More preferably, it is 1.0 g / 10min or more, Preferably it is 15 g / 10min or less, More preferably, it is 10 g / 10min or less. The MFR of the polyethylene resin is preferably selected to have a viscosity close to that of the polylactic acid resin in order to obtain a film having a uniform thickness.

次に、ポリプロピレン系樹脂としては、ホモプロピレン樹脂、ランダムポリプロピレン樹脂、ブロックポリプロピレン樹脂、エチレン‐プロピレンゴム等が挙げられる。中でも延伸性、透明性、剛性などの観点からランダムポリプロピレン樹脂が特に好適に使用される。   Next, examples of the polypropylene resin include homopropylene resin, random polypropylene resin, block polypropylene resin, and ethylene-propylene rubber. Among these, a random polypropylene resin is particularly preferably used from the viewpoints of stretchability, transparency, rigidity, and the like.

前記ランダムポリプロピレン樹脂において、プロピレンと共重合させるα‐オレフィンとしては、好ましくは炭素数2から20まで、より好ましくは炭素数4から12までのものが挙げられ、例えば、エチレン、1‐ブテン、1‐ペンテン、1‐へキセン、1‐へプテン、1‐オクテン、1‐ノネン、1‐デセンなどを例示できる。本発明においては、延伸性、熱収縮特性、フィルムの耐衝撃性や透明性、剛性等の観点から、α‐オレフィンとしてエチレン単位の含有率が2質量%以上10質量%以下のランダムポリプロピレンが特に好適に用いられる。また、共重合するα‐オレフィンは1種のみを単独で、または2種以上を組み合わせて用いても構わない。   In the random polypropylene resin, the α-olefin copolymerized with propylene preferably includes those having 2 to 20 carbon atoms, more preferably 4 to 12 carbon atoms, such as ethylene, 1-butene, 1 -Pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene and the like can be exemplified. In the present invention, from the viewpoints of stretchability, heat shrinkage characteristics, impact resistance, transparency, rigidity, and the like of the film, a random polypropylene having an ethylene unit content of 2% by mass to 10% by mass as the α-olefin is particularly preferred. Preferably used. Further, the α-olefin to be copolymerized may be used alone or in combination of two or more.

また、ポリプロピレン系樹脂のメルトフローレート(MFR)は、特に制限されるものではないが、通常、MFR(JIS K7210、温度:230℃、荷重:21.18N)は、好ましくは0.5g/10分以上15g/10分以下であり、より好ましくは1.0g/10分以上10g/10分以下である。ポリプロピレンのMFRは、均一な厚みのフィルムを得るためにポリ乳酸系樹脂の溶融時の粘度に近いものを選択することが好ましい。   Further, the melt flow rate (MFR) of the polypropylene resin is not particularly limited, but usually MFR (JIS K7210, temperature: 230 ° C., load: 21.18 N) is preferably 0.5 g / 10. It is not less than 15 g / 10 minutes and more preferably not less than 1.0 g / 10 minutes and not more than 10 g / 10 minutes. The MFR of polypropylene is preferably selected to have a viscosity close to that of the polylactic acid-based resin in order to obtain a film having a uniform thickness.

次にエチレン‐酢酸ビニル共重合体としては、エチレン単位の含有率が50モル%以上95モル%以下、好ましくは60モル%以上85モル%以下であるエチレン‐酢酸ビニル共重合体を用いることが望ましい。エチレン単位の含有率が50モル%以上であれば、フィルム全体の剛性を良好に維持できるため、好ましい。一方、エチレン単位の含有率が95モル%以下であれば、フィルム全体の腰(常温での剛性)や耐熱性を著しく低下させないため、実用上好ましい。   Next, as the ethylene-vinyl acetate copolymer, an ethylene-vinyl acetate copolymer having an ethylene unit content of 50 mol% to 95 mol%, preferably 60 mol% to 85 mol% is used. desirable. An ethylene unit content of 50 mol% or more is preferable because the rigidity of the entire film can be maintained satisfactorily. On the other hand, if the ethylene unit content is 95 mol% or less, the waist (rigidity at room temperature) and heat resistance of the entire film are not significantly lowered, which is practically preferable.

前記エチレン‐酢酸ビニル共重合体のメルトフローレート(MFR)は、特に制限されるものではないが、通常、MFR(JIS K7210、温度:190℃、荷重:21.18N)が、0.5g/10分以上15g/10分以下であることが好ましく、1.0g/10分以上10g/10分以下であることがさらに好ましい。エチレン‐酢酸ビニル共重合体のMFRは均一な厚みのフィルムを得るためにポリ乳酸系樹脂の溶融時の粘度に近いものを選択することが好ましい。   The melt flow rate (MFR) of the ethylene-vinyl acetate copolymer is not particularly limited, but usually MFR (JIS K7210, temperature: 190 ° C., load: 21.18 N) is 0.5 g / It is preferably 10 minutes or more and 15 g / 10 minutes or less, and more preferably 1.0 g / 10 minutes or more and 10 g / 10 minutes or less. The MFR of the ethylene-vinyl acetate copolymer is preferably selected to have a viscosity close to that of the polylactic acid resin in order to obtain a film having a uniform thickness.

前記樹脂(A)の製造方法は、特に限定されるものではなく、例えば、公知のオレフィン重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた、スラリー重合法、溶液重合法、塊状重合法、気相重合法等、また、ラジカル開始剤を用いた塊状重合法等が挙げられる。   The method for producing the resin (A) is not particularly limited. For example, a known polymerization method using a known olefin polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene-based catalyst. Examples thereof include a slurry polymerization method, a solution polymerization method, a bulk polymerization method, and a gas phase polymerization method using a single site catalyst typified by a catalyst, and a bulk polymerization method using a radical initiator.

本発明において、ポリオレフィン系樹脂は、例えば、ポリエチレン系樹脂として商品名「ノバテックHD、LD、LL」「カーネル」「タフマーA、P」(日本ポリエチレン社製)、「クリオレックス」(旭化成ケミカルズ社製)、「エスプレンSPO」「エクセレンVL」(住友化学社製)、「Engage」(ダウケミカル社製)など市販されている商品を使用できる。また、ポリプロピレン系樹脂としては、例えば、商品名「ノバテックPP」「WINTEC」(日本ポリプロ社製)、「バーシファイ」「ノティオ」「タフマーXR」(三井化学社製)、「ゼラス」「サーモラン」(三菱化学社製)、「住友ノーブレン」「タフセレン」(住友化学社製)、「IDEMITSU TPO」(出光興産社製)、「Adflex」「Adsyl」(サンアロマー社製)など市販されている商品を使用できる。また、エチレン酢酸ビニル共重合体としては、例えば「エバフレックス」(三井・デュポンポリケミカル社製)、「ノバテックEVA」(日本ポリエチレン社製)など市販されている商品を使用できる。   In the present invention, the polyolefin resin is, for example, a polyethylene resin having the trade names “Novatech HD, LD, LL”, “Kernel”, “Toughmer A, P” (manufactured by Japan Polyethylene Corporation), “Cryolex” (manufactured by Asahi Kasei Chemicals Corporation). ), “Esplen SPO”, “Excellen VL” (manufactured by Sumitomo Chemical Co., Ltd.), “Engege” (manufactured by Dow Chemical Co., Ltd.), etc., can be used. Examples of the polypropylene resin include trade names “Novatech PP” “WINTEC” (manufactured by Nippon Polypro), “Versify” “Notio” “Toughmer XR” (manufactured by Mitsui Chemicals), “Zeras” “Thermolan” ( Commercially available products such as “Mitsubishi Chemical Co., Ltd.”, “Sumitomo Noblen” “Tough Selenium” (manufactured by Sumitomo Chemical Co., Ltd.), “IDEMITSU TPO” (manufactured by Idemitsu Kosan Co., Ltd.), “Adflex” “Adsyl” (manufactured by Sun Aroma) it can. As the ethylene vinyl acetate copolymer, commercially available products such as “Evaflex” (Mitsui / DuPont Polychemical Co., Ltd.), “Novatech EVA” (Nihon Polyethylene Co., Ltd.) can be used.

本発明において、ポリオレフィン系樹脂(A)は炭化水素樹脂類をさらに含有していてもよい。炭化水素樹脂類をポリオレフィン系樹脂に含有させた場合、ポリオレフィン系樹脂(例えば、ポリエチレン系樹脂やポリプロピレン系樹脂)等の結晶化を抑制し、フィルムの透明性を向上させるほか、低温での延伸性が維持でき、熱収縮性フィルムとして構成した場合には、熱収縮特性の向上が期待できる。   In the present invention, the polyolefin resin (A) may further contain hydrocarbon resins. When hydrocarbon resins are included in polyolefin resins, crystallization of polyolefin resins (for example, polyethylene resins and polypropylene resins) is suppressed to improve film transparency and stretchability at low temperatures. In the case where it is configured as a heat-shrinkable film, improvement in heat-shrinkage characteristics can be expected.

本発明において炭化水素樹脂類とは、石油樹脂類、テルペン樹脂、ロジン系樹脂等を指す。石油樹脂類としては、シクロペンタジエンまたはその二量体からの脂環式石油樹脂やC成分からの芳香族石油樹脂を例示できる。また、テルペン樹脂としては、β‐ピネンからのテルペン樹脂やテルペン‐フェノール樹脂が例示できる。また、ロジン系樹脂としては、ガムロジン、ウッドロジン等のロジン樹脂、グリセリンやペンタエリスリトール等で変性したエステル化ロジン樹脂等が例示できる。炭化水素樹脂類は、ポリオレフィン系樹脂等に混合した場合に比較的良好な相溶性を示すことが知られているが、色調、熱安定性、および相溶性から水素添加誘導体を用いることが好ましく、水添石油樹脂や部分水添石油樹脂が特に好ましい。In the present invention, hydrocarbon resins refer to petroleum resins, terpene resins, rosin resins, and the like. The petroleum resins can be exemplified by aromatic petroleum resins from alicyclic petroleum resins and C 9 components from cyclopentadiene or dimer thereof. Examples of the terpene resin include terpene resins derived from β-pinene and terpene-phenol resins. Examples of rosin resins include rosin resins such as gum rosin and wood rosin, and esterified rosin resins modified with glycerin, pentaerythritol, and the like. Hydrocarbon resins are known to exhibit relatively good compatibility when mixed with polyolefin resins, etc., but it is preferable to use a hydrogenated derivative from the viewpoint of color tone, thermal stability, and compatibility. Particularly preferred are hydrogenated petroleum resins and partially hydrogenated petroleum resins.

上記炭化水素樹脂類は、分子量に応じて種々の軟化温度を有するものがある。本発明では軟化温度が100℃以上、好ましくは110℃以上であり、かつ、150℃以下、好ましくは140℃以下のものが好適に用いられる。軟化温度が100℃以上であれば、混合した際にシート表面にブリードし、ブロッキングを招いたり、シート全体の機械的強度が低下して破れやすくなったりすることがなく、実用的で好ましい。一方、軟化温度が150℃以下であれば、ポリオレフィン系樹脂との相溶性が良好に維持され、経時的にフィルム表面にブリードし、ブロッキングや透明性の低下を招いたりすることがなく、好ましい。   Some of the hydrocarbon resins have various softening temperatures depending on the molecular weight. In the present invention, those having a softening temperature of 100 ° C. or higher, preferably 110 ° C. or higher, and 150 ° C. or lower, preferably 140 ° C. or lower are suitably used. When the softening temperature is 100 ° C. or higher, it is practically preferable because it does not bleed to the surface of the sheet when mixed, causing blocking, or lowering the mechanical strength of the entire sheet and being easily broken. On the other hand, if the softening temperature is 150 ° C. or lower, the compatibility with the polyolefin-based resin is favorably maintained, and it is preferable that the film does not bleed on the surface of the film with time and blocking or transparency is not lowered.

上記炭化水素樹脂類の含有量は、ポリオレフィン系樹脂(A)全量を基準(100質量%)として、好ましくは5質量%以上、より好ましくは8質量%以上、さらに好ましくは10質量%以上であり、かつ好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。ここで、炭化水素樹脂類の含有量が5質量%以上であれば、フィルムの透明性や熱収縮性フィルムとして構成した場合には、収縮特性の向上効果が顕著であり、また50質量%以下であれば、経時的に表面にブリードし、フィルム同士がブロッキングしやすくなったり、耐衝撃性が低下したりするなどの問題が発生し難く、好ましい。   The content of the hydrocarbon resins is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more, based on the total amount of the polyolefin-based resin (A) (100% by mass). And, Preferably it is 50 mass% or less, More preferably, it is 40 mass% or less, More preferably, it is 30 mass% or less. Here, when the content of the hydrocarbon resins is 5% by mass or more, when the film is configured as a film transparency or heat-shrinkable film, the effect of improving the shrinkage property is remarkable, and 50% by mass or less. If this is the case, it is preferable because problems such as bleed to the surface over time and the films tend to block each other and impact resistance is reduced are unlikely to occur.

上記炭化水素樹脂類としては、例えば、商品名「ハイレッツ」(三井化学社製)、「ペトロジン」(三井化学社製)、「アルコン」(荒川化学工業社製)、「クリアロン」(ヤスハラケミカル社製)、「アイマーブ」(出光石油化学社製)、「エスコレッツ」(トーネックス社製)等の市販されている商品を使用することができる。   Examples of the hydrocarbon resins include, for example, trade names “HIRAYS” (manufactured by Mitsui Chemicals), “Petrogin” (manufactured by Mitsui Chemicals), “Arcon” (manufactured by Arakawa Chemical Industries), and “Clearon” (manufactured by Yasuhara Chemical Co., Ltd.). ), “Imabe” (manufactured by Idemitsu Petrochemical Co., Ltd.), “Escollet” (manufactured by Tonex Co., Ltd.) and the like can be used.

<ポリ乳酸系樹脂(B)>
次に樹脂(B)として使用されるポリ乳酸系樹脂について説明する。本発明におけるポリ乳酸系樹脂とは、D‐乳酸若しくはL‐乳酸の単独重合体またはそれらの共重合体であり、これらの混合物も含まれる。より具体的には、構造単位がD‐乳酸であるポリ(D‐乳酸)、構造単位がL‐乳酸であるポリ(L‐乳酸)、L‐乳酸とD‐乳酸との共重合体であるポリ(DL‐乳酸)、またはこれらの混合物である。
<Polylactic acid resin (B)>
Next, the polylactic acid resin used as the resin (B) will be described. The polylactic acid resin in the present invention is a homopolymer of D-lactic acid or L-lactic acid or a copolymer thereof, and a mixture thereof is also included. More specifically, poly (D-lactic acid) whose structural unit is D-lactic acid, poly (L-lactic acid) whose structural unit is L-lactic acid, and a copolymer of L-lactic acid and D-lactic acid. Poly (DL-lactic acid), or a mixture thereof.

本発明で用いられるポリ乳酸系樹脂がD‐乳酸とL‐乳酸との混合物である場合、D‐乳酸とL‐乳酸との混合比はD‐乳酸:L‐乳酸=99.8:0.2乃至75:25であるか、またはD‐乳酸:L‐乳酸=0.2:99.8乃至25:75であることが好ましく、D‐乳酸:L‐乳酸=99.5:0.5乃至80:20またはD‐乳酸:L‐乳酸=0.5:99.5乃至20:80であることがより好ましい。D‐乳酸単独またはL‐乳酸単独からなるポリ乳酸は、非常に高い結晶性を示し、融点が高く、耐熱性および機械的物性に優れる傾向がある。しかしながら、熱収縮性フィルムとして使用する場合は、通常、印刷および溶剤を用いた製袋工程が伴うため、印刷適性および溶剤シール性を向上させるために構成材料自体の結晶性を適度に下げることが必要となる。また、結晶性が過度に高い場合、延伸時に配向結晶化が進行し、収縮特性が低下する傾向がある。これらのことより、本発明のフィルムを熱収縮性フィルムとして構成する場合において、用いられるポリ乳酸系樹脂はD‐乳酸:L‐乳酸=99:1乃至85:15、またはD‐乳酸:L‐乳酸=1:99乃至15:85であることがさらに好ましい。   When the polylactic acid resin used in the present invention is a mixture of D-lactic acid and L-lactic acid, the mixing ratio of D-lactic acid and L-lactic acid is D-lactic acid: L-lactic acid = 99.8: 0. 2 to 75:25 or D-lactic acid: L-lactic acid = 0.2: 99.8 to 25:75, preferably D-lactic acid: L-lactic acid = 99.5: 0.5 Or more preferably 80:20 or D-lactic acid: L-lactic acid = 0.5: 99.5 to 20:80. Polylactic acid composed of D-lactic acid alone or L-lactic acid alone exhibits very high crystallinity, has a high melting point, and tends to have excellent heat resistance and mechanical properties. However, when used as a heat-shrinkable film, it usually involves printing and a bag-making process using a solvent, so that the crystallinity of the constituent material itself can be lowered appropriately in order to improve printability and solvent sealability. Necessary. Moreover, when crystallinity is too high, orientation crystallization advances at the time of extending | stretching, and there exists a tendency for shrinkage | contraction characteristic to fall. From these facts, when the film of the present invention is constituted as a heat shrinkable film, the polylactic acid resin used is D-lactic acid: L-lactic acid = 99: 1 to 85:15, or D-lactic acid: L- More preferably, the lactic acid ratio is 1:99 to 15:85.

本発明において、ポリ乳酸系樹脂は、異なる共重合比を有するD‐乳酸とL‐乳酸の共重合体を混合して使用することもできる。その場合には、複数の乳酸系重合体のD‐乳酸とL‐乳酸との共重合比を平均した値が前記範囲内に入るように調整すればよい。使用用途に合わせて、D‐乳酸とL‐乳酸との共重合体比の異なるポリ乳酸系樹脂を二種以上混合し、結晶性を調整することにより、耐熱性と熱収縮特性のバランスをとることができる。   In the present invention, the polylactic acid resin can be used by mixing copolymers of D-lactic acid and L-lactic acid having different copolymerization ratios. In that case, what is necessary is just to adjust so that the value which averaged the copolymerization ratio of D-lactic acid of a some lactic acid-type polymer and L-lactic acid may enter into the said range. Mixing two or more polylactic acid resins with different copolymer ratios of D-lactic acid and L-lactic acid according to the intended use, and adjusting the crystallinity to balance heat resistance and heat shrinkage characteristics be able to.

また、本発明で用いられるポリ乳酸系樹脂は、乳酸と、α‐ヒドロキシカルボン酸や脂肪族ジオール、脂肪族ジカルボン酸との共重合体であってもよい。ここで、乳酸系樹脂に共重合される「α‐ヒドロキシカルボン酸」としては、乳酸の光学異性体(L‐乳酸に対してはD‐乳酸、D‐乳酸に対してはL‐乳酸をそれぞれ指す。)、グリコール酸、3‐ヒドロキシ酪酸、4‐ヒドロキシ酪酸、2‐ヒドロキシ‐n‐酪酸、2‐ヒドロキシ‐3,3‐ジメチル酪酸、2‐ヒロドキシ‐3‐メチル酪酸、2‐メチル酪酸、2‐ヒドロキシカプロラクトン酸などの2官能脂肪族ヒドロキシ‐カルボン酸、およびカプロラクトン、ブチルラクトン、バレロラクトンなどのラクトン類が挙げられる。また、乳酸系樹脂に共重合される「脂肪族ジオール」としては、エチレングリコール、1,4‐ブタンジオール、1,4‐シクロヘキサンジメタノールなどが挙げられる。また共重合される「脂肪族ジカルボン酸」としては、コハク酸、アジピン酸、スベリン酸、セバシン酸およびドデカン二酸などが挙げられる。乳酸と、α‐ヒドロキシカルボン酸、脂肪族ジオール、または脂肪族ジカルボン酸との共重合体の共重合比は乳酸:α‐ヒドロキシカルボン酸、脂肪族ジオール、または脂肪族ジカルボン酸=90:10乃至10:90の範囲であることが好ましく、より好ましくは80:20乃至20:80であり、さらに好ましくは30:70乃至70:30である。共重合比が上記範囲内であれば、剛性、透明性、耐衝撃性などの物性バランスの良好なフィルムを得ることができる。   The polylactic acid resin used in the present invention may be a copolymer of lactic acid and α-hydroxycarboxylic acid, aliphatic diol, or aliphatic dicarboxylic acid. Here, the “α-hydroxycarboxylic acid” copolymerized with the lactic acid-based resin includes optical isomers of lactic acid (D-lactic acid for L-lactic acid and L-lactic acid for D-lactic acid, respectively). Glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methylbutyric acid, Bifunctional aliphatic hydroxy-carboxylic acids such as 2-hydroxycaprolactone acid, and lactones such as caprolactone, butyllactone, valerolactone and the like. Examples of the “aliphatic diol” copolymerized with the lactic acid-based resin include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like. Examples of the “aliphatic dicarboxylic acid” to be copolymerized include succinic acid, adipic acid, suberic acid, sebacic acid and dodecanedioic acid. The copolymerization ratio of the copolymer of lactic acid and α-hydroxycarboxylic acid, aliphatic diol, or aliphatic dicarboxylic acid is lactic acid: α-hydroxycarboxylic acid, aliphatic diol, or aliphatic dicarboxylic acid = 90: 10 to The range is preferably 10:90, more preferably 80:20 to 20:80, and still more preferably 30:70 to 70:30. If the copolymerization ratio is within the above range, a film having a good balance of physical properties such as rigidity, transparency and impact resistance can be obtained.

前記ポリ乳酸系樹脂は、縮合重合法、開環重合法などの公知の重合法により作製することができる。例えば、縮合重合法であれば、D‐乳酸、L‐乳酸、またはこれらの混合物を直接脱水縮合重合して任意の組成を有するポリ乳酸系樹脂を得ることができる。また、開環重合法では、乳酸の環状2量体であるラクチドを、必要に応じて重合調整剤などを用いながら、所定の触媒の存在下で開環重合することにより任意の組成を有するポリ乳酸系樹脂を得ることができる。前記ラクチドには、L‐乳酸とD−乳酸のラセミ混合体であるDL‐ラクチドがあり、これらを必要に応じて混合して重合することにより、任意の組成、結晶性を有するポリ乳酸系樹脂を得ることができる。さらには、分子量増大を目的として少量の鎖延長剤、例えば、ジイソシアネート化合物、ジエポキシ化合物、酸無水物、酸クロライド等を使用しても構わない。   The polylactic acid resin can be prepared by a known polymerization method such as a condensation polymerization method or a ring-opening polymerization method. For example, in the case of a condensation polymerization method, a polylactic acid resin having an arbitrary composition can be obtained by directly dehydrating condensation polymerization of D-lactic acid, L-lactic acid, or a mixture thereof. Further, in the ring-opening polymerization method, a lactide which is a cyclic dimer of lactic acid is subjected to ring-opening polymerization in the presence of a predetermined catalyst while using a polymerization regulator or the like, if necessary. A lactic acid resin can be obtained. The lactide includes DL-lactide, which is a racemic mixture of L-lactic acid and D-lactic acid, and these are mixed as necessary to polymerize to give a polylactic acid resin having an arbitrary composition and crystallinity. Can be obtained. Furthermore, a small amount of chain extender such as a diisocyanate compound, diepoxy compound, acid anhydride, acid chloride, etc. may be used for the purpose of increasing the molecular weight.

前記ポリ乳酸系樹脂の重量(質量)平均分子量は、好ましくは20,000以上、より好ましくは40,000以上、さらに好ましくは60,000以上であり、かつ、好ましくは400,000以下、より好ましくは350,000以下、さらに好ましくは300,000以下である。重量(質量)平均分子量が20,000以上であれば、適度な樹脂凝集力が得られ、フィルムの強伸度が不足したり、脆化したりすることを抑えることができる。一方、重量(質量)平均分子量が400,000以下であれば、溶融粘度を下げることができ、製造、生産性向上の観点からは好ましい。   The weight (mass) average molecular weight of the polylactic acid-based resin is preferably 20,000 or more, more preferably 40,000 or more, still more preferably 60,000 or more, and preferably 400,000 or less. Is 350,000 or less, more preferably 300,000 or less. When the weight (mass) average molecular weight is 20,000 or more, an appropriate resin cohesive force can be obtained, and the film can be prevented from being insufficiently stretched or embrittled. On the other hand, if the weight (mass) average molecular weight is 400,000 or less, the melt viscosity can be lowered, which is preferable from the viewpoint of production and productivity improvement.

前記ポリ乳酸系樹脂の市販品としては、例えば、「NatureWorks」(NatureWorksLLC社製)、「LACEA」(三井化学社製)等が挙げられる。   As a commercial item of the said polylactic acid-type resin, "NatureWorks" (made by NatureWorks LLC), "LACEA" (made by Mitsui Chemicals), etc. are mentioned, for example.

本発明において、ポリ乳酸系樹脂(B)の含有量は、ポリオレフィン系樹脂(A)100質量部に対しポリ乳酸系樹脂(B)が、好ましくは1質量部以上、より好ましくは5質量部以上、さらに好ましくは10質量部以上であり、かつ、好ましくは50質量部以下、より好ましくは40質量部以下である。ポリ乳酸系樹脂(B)の含有量を50質量部以下とすることで、耐衝撃性、透明性の優れたフィルムとすることができる。一方、ポリ乳酸系樹脂(B)を1質量部以上含ませることにより、環境負荷の少ないフィルムとすることができ、また、熱収縮性フィルムとして構成した場合には、熱収縮特性に優れ、かつ自然収縮性の抑制されたフィルムを得ることができる。   In the present invention, the content of the polylactic acid resin (B) is preferably 1 part by mass or more, more preferably 5 parts by mass or more, with respect to 100 parts by mass of the polyolefin resin (A). More preferably, it is 10 parts by mass or more, and preferably 50 parts by mass or less, more preferably 40 parts by mass or less. By setting the content of the polylactic acid resin (B) to 50 parts by mass or less, a film having excellent impact resistance and transparency can be obtained. On the other hand, by including 1 part by mass or more of the polylactic acid-based resin (B), it can be made into a film with little environmental load, and when configured as a heat shrinkable film, it has excellent heat shrink characteristics, and A film with suppressed natural shrinkage can be obtained.

<アクリル系樹脂(C)>
次に、アクリル系樹脂(C)について説明する。本発明で用いるアクリル系樹脂とは、メタクリル酸メチル単独重合体、またはメタクリル酸メチルと、他のビニル単量体との共重合体である。該ビニル単量体としては、例えばメタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸‐2‐エチルヘキシル、メタクリル酸‐2‐ヒドロキシエチル等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸‐2‐エチルヘキシル、アクリル酸‐2‐ヒドロキシエチル等のアクリル酸エステル類;メタクリル酸、アクリル酸などの不飽和酸類;スチレン、α‐メチルスチレン、アクリロニトリル、メタクリロニトリル、無水マレイン酸、フェニルマレイミド、シクロヘキシルマレイミド等である。
また、この共重合体には、ポリブタジエンまたはブタジエン/アクリル酸ブチル共重合体、ポリアクリル酸ブチル共重合体などのエラストマー成分や無水グルタル酸単位、グルタルイミド単位をさらに含んでいてもよい。中でも、剛性、成形性の観点から、メタクリル酸メチルの単独重合体であるポリメタクリル酸メチル樹脂(PMMA)、または、メタクリル酸メチルと、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸、メタクリル酸から選ばれる1種以上の他のビニル単量体との共重合体が好適に用いられる。アクリル系樹脂としてメタクリル酸メチルと、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸、メタクリル酸から選ばれる少なくとも1種以上との共重合体を用いる場合、メタクリル酸メチル単位は好ましくは30質量%以上、より好ましくは40質量%、さらに好ましくは50質量%以上である。メタクリル酸メチル単位を30質量%以上とすることで、アクリル系樹脂の剛性を保ち、剛性に優れたフィルムを得ることができ、好ましい。また、アクリル系樹脂は、本発明の目的を損なわない範囲で、さらに他の単量体単位を共重合成分として含んでいてもよい。
<Acrylic resin (C)>
Next, the acrylic resin (C) will be described. The acrylic resin used in the present invention is a methyl methacrylate homopolymer or a copolymer of methyl methacrylate and another vinyl monomer. Examples of the vinyl monomer include methacrylic acid esters such as ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, methacrylic acid-2-ethylhexyl, and methacrylic acid-2-hydroxyethyl; Acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate; methacrylic acid, acrylic acid Unsaturated acids such as styrene, α-methylstyrene, acrylonitrile, methacrylonitrile, maleic anhydride, phenylmaleimide, cyclohexylmaleimide and the like.
The copolymer may further contain an elastomer component such as polybutadiene, butadiene / butyl acrylate copolymer, polybutyl acrylate copolymer, glutaric anhydride unit, or glutarimide unit. Among them, from the viewpoint of rigidity and moldability, polymethyl methacrylate resin (PMMA), which is a homopolymer of methyl methacrylate, or methyl methacrylate and ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate A copolymer with one or more other vinyl monomers selected from butyl acrylate, acrylic acid and methacrylic acid is preferably used. When using a copolymer of methyl methacrylate and at least one selected from ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, acrylic acid, methacrylic acid as an acrylic resin, The methyl methacrylate unit is preferably 30% by mass or more, more preferably 40% by mass, and still more preferably 50% by mass or more. By setting the methyl methacrylate unit to 30% by mass or more, it is preferable because the rigidity of the acrylic resin can be maintained and a film having excellent rigidity can be obtained. Moreover, the acrylic resin may further contain other monomer units as a copolymerization component as long as the object of the present invention is not impaired.

また、アクリル系樹脂(C)はアクリル系弾性体粒子を含有していても良い。アクリル系弾性体粒子は、アクリル系重合体からなりゴム弾性を有する粒子である。アクリル系弾性体粒子は、単層のものであってもよいし、ゴム弾性層を含む多層構造アクリル系重合体であってもよい。ゴム弾性層を含む多層構造アクリル系重合体は、透明性に優れたアクリル系樹脂フィルムとなる点で好ましく用いられる。多層構造アクリル系重合体とは、少なくとも2層、好ましくは3層の多層構造を有するアクリル系重合体であり、例えば内層がアルキル基の炭素数が4から8までのアクリル酸アルキルエステルと多官能単量体との共重合体からなるゴム弾性体であり、外層がメタクリル酸メチルを主成分とする硬質重合体である2層構造アクリル系重合体などが挙げられる。中でも最内層がメタクリル酸メチルを主成分とする硬質重合体であり、中間層がアルキル基の炭素数が4から8までのアクリル酸アルキルエステルと多官能単量体との共重合体からなるゴム弾性体であり、最外層がメタクリル酸メチルを主成分とする硬質重合体である3層構造アクリル系重合体が好ましい。かかる多層構造アクリル系重合体は、例えば特公昭55−27576号公報などに記載の方法によって製造することができる。   The acrylic resin (C) may contain acrylic elastic particles. The acrylic elastic particles are particles made of an acrylic polymer and having rubber elasticity. The acrylic elastic particles may be a single layer or a multilayer structure acrylic polymer including a rubber elastic layer. A multilayer structure acrylic polymer including a rubber elastic layer is preferably used in that it becomes an acrylic resin film excellent in transparency. The multilayer structure acrylic polymer is an acrylic polymer having a multilayer structure of at least two layers, preferably three layers. For example, the inner layer is an alkyl acrylate ester having an alkyl group having 4 to 8 carbon atoms and polyfunctional. Examples thereof include a rubber elastic body made of a copolymer with a monomer, and a two-layer acrylic polymer whose outer layer is a hard polymer whose main component is methyl methacrylate. Among them, the innermost layer is a hard polymer whose main component is methyl methacrylate, and the intermediate layer is a rubber made of a copolymer of an alkyl acrylate having an alkyl group having 4 to 8 carbon atoms and a polyfunctional monomer. A three-layer acrylic polymer which is an elastic body and whose outermost layer is a hard polymer whose main component is methyl methacrylate is preferable. Such a multilayer structure acrylic polymer can be produced, for example, by the method described in Japanese Patent Publication No. 55-27576.

アクリル系弾性体粒子はマトリックスとなるアクリル系樹脂(C)100質量部に対し100質量部以下であることが好ましく、60質量部以下であることがより好ましい。アクリル系弾性体粒子を100質量部以下とすることで、フィルムの剛性と透明性を維持することができるため、好ましい。   The acrylic elastic particles are preferably 100 parts by mass or less, more preferably 60 parts by mass or less, with respect to 100 parts by mass of the acrylic resin (C) serving as a matrix. It is preferable to set the acrylic elastic particles to 100 parts by mass or less because the rigidity and transparency of the film can be maintained.

前記アクリル系樹脂(C)のJIS K7206で測定されるビカット軟化点は好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは60℃以下である。ビカット軟化点が100℃以下であることで、樹脂(A)、(B)、(C)からなる混合樹脂を延伸した際に、ポリオレフィン系樹脂(A)との界面でのボイドの発生を抑制することができ、フィルムの透明性を維持することが可能であり、好ましい。   The Vicat softening point of the acrylic resin (C) measured by JIS K7206 is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 60 ° C. or lower. Vicat softening point of 100 ° C or less suppresses the generation of voids at the interface with the polyolefin resin (A) when the mixed resin consisting of the resins (A), (B), and (C) is stretched It is possible to maintain the transparency of the film, which is preferable.

本発明で用いられるアクリル系樹脂(C)の重量(質量)平均分子量は、20,000以上、好ましくは40,000以上、さらに好ましくは60,000以上であり、かつ、400,000以下、好ましくは350,000以下、さらに好ましくは300,000以下である。重量(質量)平均分子量が20,000以上であれば、フィルムの強伸度が不足したり、脆化したりすることを抑えることができる。一方、重量(質量)平均分子量が400,000以下であれば、溶融粘度を下げることができ、製造、生産性向上の観点から好ましい。   The weight (mass) average molecular weight of the acrylic resin (C) used in the present invention is 20,000 or more, preferably 40,000 or more, more preferably 60,000 or more, and 400,000 or less, preferably Is 350,000 or less, more preferably 300,000 or less. When the weight (mass) average molecular weight is 20,000 or more, it is possible to prevent the film from being insufficiently stretched or embrittled. On the other hand, if the weight (mass) average molecular weight is 400,000 or less, the melt viscosity can be lowered, which is preferable from the viewpoint of production and productivity improvement.

上記アクリル系樹脂(C)の市販品としては、例えば、「スミペックス」(住友化学社製)、「アクリペット」(三菱レイヨン社製)、「パラペット」(クラレ社製)、「アルテュグラス」(アトフィナ・ジャパン社製)、「デルペット」(旭化成社製)等が挙げられる。   Commercially available products of the acrylic resin (C) include, for example, “SUMIPEX” (manufactured by Sumitomo Chemical Co., Ltd.), “ACRYPET” (manufactured by Mitsubishi Rayon Co., Ltd.), “Parapet” (manufactured by Kuraray Co., Ltd.), “Artuglass” (Atofina) -Made by Japan), "Delpet" (made by Asahi Kasei) and the like.

本発明においては、アクリル系樹脂(C)の含有量は、ポリオレフィン系樹脂(A)100質量部に対しアクリル系樹脂(C)が1質量部以上50質量部以下であることが好ましく、より好ましくは5質量部以上40質量部以下、さらに好ましくは10質量部以上40質量部以下である。アクリル系樹脂(C)の含有量を50質量部以下とすることで、耐衝撃性に優れたフィルム、さらに熱収縮性フィルムとして構成した場合には熱収縮性の優れた熱収縮性フィルムとすることができる。一方、アクリル系樹脂(C)を1質量部以上含ませることにより、透明性が向上し、かつ自然収縮性の抑制されたフィルムを得ることができる。   In the present invention, the content of the acrylic resin (C) is preferably 1 part by mass or more and 50 parts by mass or less of the acrylic resin (C) with respect to 100 parts by mass of the polyolefin resin (A). Is 5 to 40 parts by mass, more preferably 10 to 40 parts by mass. By setting the content of the acrylic resin (C) to 50 parts by mass or less, a heat-shrinkable film having excellent heat-shrinkability when configured as a film having excellent impact resistance and a heat-shrinkable film is obtained. be able to. On the other hand, by including 1 part by mass or more of the acrylic resin (C), it is possible to obtain a film having improved transparency and reduced natural shrinkage.

本発明においては、ポリオレフィン系樹脂(A)、ポリ乳酸系樹脂(B)、アクリル系樹脂(C)の分散性を向上させ、より透明性や機械物性の優れたフィルムとするために、相溶化剤を添加することもできる。相溶化剤としては、ポリオレフィン系樹脂(A)、ポリ乳酸系樹脂(B)、アクリル系樹脂(C)の分散性を向上させるものであれば特に限定されるものではない。相溶化剤として、好ましいものとしては、エチレンと酢酸ビニル、アクリル酸、(メタ)アクリル酸、(メタ)アクリル酸エチル、メチル(メタ)アクリル酸、無水マレイン酸、および(メタ)アクリル酸グリシジルからなる群から選ばれる少なくとも1種以上との共重合体、例えば、無水マレイン酸変性SEBS、無水マレイン酸変性SEPS、エポキシ変性SEBS、エポキシ変性SEPS等に代表される変性スチレン系樹脂、不飽和カルボン酸またはその無水物などで変性された変性オレフィン系樹脂などが挙げられる。相溶化剤は単独でも、2種以上を添加してもよい。   In the present invention, in order to improve the dispersibility of the polyolefin-based resin (A), the polylactic acid-based resin (B), and the acrylic-based resin (C), and to obtain a film having more excellent transparency and mechanical properties, the compatibilization is performed. An agent can also be added. The compatibilizer is not particularly limited as long as it improves the dispersibility of the polyolefin resin (A), the polylactic acid resin (B), and the acrylic resin (C). Preferred compatibilizers are ethylene and vinyl acetate, acrylic acid, (meth) acrylic acid, ethyl (meth) acrylate, methyl (meth) acrylic acid, maleic anhydride, and glycidyl (meth) acrylate. Copolymers with at least one selected from the group consisting of, for example, maleic anhydride-modified SEBS, maleic anhydride-modified SEPS, epoxy-modified SEBS, epoxy-modified SEPS, etc., modified styrene resins, unsaturated carboxylic acids Or the modified olefin resin modified | denatured with the anhydride etc. is mentioned. The compatibilizer may be used alone or in combination of two or more.

上記相溶化剤の市販品としては、例えば、エチレン系共重合体として「ボンドファースト」「ボンダイン」「アクリフト」(住友化学社製)、「エルバロイ」(三井・デュポンポリケミカル社製)、変性スチレン系樹脂として「エポフレンド」(ダイセル化学社製)、「タフテックM」(旭化成ケミカルズ社製)、「レゼダ」(日本合成社製)、変性ポリオレフィン系樹脂として「アドマー」(三井化学社製)などが挙げられる。   Commercially available products of the above-mentioned compatibilizer include, for example, “bond first”, “bondine”, “Aclift” (manufactured by Sumitomo Chemical Co., Ltd.), “Elvalloy” (manufactured by Mitsui DuPont Polychemical Co., Ltd.), and modified styrene. "Epofriend" (manufactured by Daicel Chemical), "Tuftec M" (manufactured by Asahi Kasei Chemicals), "Reseda" (manufactured by Nippon Gosei Co., Ltd.), "Admer" (manufactured by Mitsui Chemicals) as modified polyolefin resin, etc. Is mentioned.

前記相溶化剤の混合量は、ポリオレフィン系樹脂(A)、ポリ乳酸系樹脂(B)、アクリル系樹脂(C)からなる混合樹脂100質量部に対し、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上であり、かつ好ましくは30質量部以下、より好ましくは25質量部以下、さらに好ましくは20質量部以下である。相溶化剤の混合量が前記混合樹脂100質量部に対し1質量部以上であれば、フィルムに優れた透明性と耐衝撃性を付与できる。一方、相溶化剤の含有量を30質量部以下とすることで、フィルムの剛性を維持できる。   The mixing amount of the compatibilizer is preferably 1 part by mass or more, more preferably 100 parts by mass of the mixed resin composed of the polyolefin resin (A), the polylactic acid resin (B), and the acrylic resin (C). 2 parts by mass or more, more preferably 3 parts by mass or more, and preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and further preferably 20 parts by mass or less. When the mixing amount of the compatibilizer is 1 part by mass or more with respect to 100 parts by mass of the mixed resin, excellent transparency and impact resistance can be imparted to the film. On the other hand, the rigidity of a film is maintainable by making content of a compatibilizing agent into 30 mass parts or less.

本発明のフィルムは、前記ポリオレフィン系樹脂(A)を主成分とし、ポリ乳酸系樹脂(B)、アクリル系樹脂(C)を含有する層を中間層とし、その両側にポリ乳酸系樹脂(B)を主成分とする表裏層を設けることもできる。ポリ乳酸系樹脂(B)を主成分とする表裏層を設けることで、より透明性が良好なフィルムを得ることができる。   The film of the present invention has the polyolefin resin (A) as a main component, a polylactic acid resin (B) and a layer containing an acrylic resin (C) as intermediate layers, and a polylactic acid resin (B ) May be provided as a main component. By providing the front and back layers containing the polylactic acid resin (B) as a main component, a film with better transparency can be obtained.

表裏層を設ける場合、フィルムの耐衝撃性を向上させる目的で表裏層にポリ乳酸系樹脂以外の他のゴム成分を添加することができる。このゴム成分は特に限定されるものではないが、ポリ乳酸系樹脂以外の脂肪族ポリエステル、芳香族‐脂肪族ポリエステル、ジオールとジカルボン酸と乳酸系樹脂との共重合体やコアシェル構造ゴムなどを好適に使用できる。   When the front and back layers are provided, other rubber components other than the polylactic acid resin can be added to the front and back layers for the purpose of improving the impact resistance of the film. Although this rubber component is not particularly limited, aliphatic polyesters other than polylactic acid resins, aromatic-aliphatic polyesters, copolymers of diols, dicarboxylic acids and lactic acid resins, and core-shell structure rubbers are suitable. Can be used for

本発明のフィルムは、ポリオレフィン系樹脂(A)、ポリ乳酸系樹脂(B)、アクリル系樹脂(C)の混合樹脂からなる中間層とポリ乳酸系樹脂(B)を主成分とする表裏層との間に接着性を向上させる目的で、さらに接着層を設けてもよい。接着層を構成する樹脂は、接着性を発現できる樹脂であれば特に限定されないが、相溶化剤で例示した樹脂を好適に用いることができる。   The film of the present invention comprises an intermediate layer composed of a mixed resin of a polyolefin resin (A), a polylactic acid resin (B), and an acrylic resin (C), and a front and back layer mainly composed of a polylactic acid resin (B). In order to improve the adhesiveness, an adhesive layer may be further provided. The resin constituting the adhesive layer is not particularly limited as long as it is a resin capable of exhibiting adhesiveness, but the resin exemplified as the compatibilizing agent can be suitably used.

本発明のフィルムに表裏層および接着層を設ける場合、各層の厚み比は透明性等を考慮した上で適宜決定することができる。例えば、フィルム全体の厚みに対する表裏層の厚み比(表裏層の合計の厚み比)は、好ましくは10%以上、より好ましくは15%以上、さらに好ましくは20%以上であり、かつ好ましくは70%以下、より好ましくは60%以下、さらに好ましくは50%以下である。また、接着層はその機能から、好ましくは0.5μm以上、より好ましくは0.75μm以上、さらに好ましくは1μm以上であり、かつ好ましくは6μm以下、より好ましくは5μm以下である。各層の厚み比が前記範囲内であれば、透明性に優れた積層フィルムを得ることができる。   When the front and back layers and the adhesive layer are provided on the film of the present invention, the thickness ratio of each layer can be appropriately determined in consideration of transparency and the like. For example, the thickness ratio of the front and back layers to the thickness of the entire film (total thickness ratio of the front and back layers) is preferably 10% or more, more preferably 15% or more, still more preferably 20% or more, and preferably 70%. Below, more preferably 60% or less, and still more preferably 50% or less. The adhesive layer is preferably 0.5 μm or more, more preferably 0.75 μm or more, further preferably 1 μm or more, and preferably 6 μm or less, more preferably 5 μm or less because of its function. When the thickness ratio of each layer is within the above range, a laminated film having excellent transparency can be obtained.

本発明のフィルムは、前記フィルム各層のいずれか一層または二層以上に対して、上述した成分のほか、本発明の効果を著しく阻害しない範囲内で、成形加工性、生産性および熱収縮性フィルムの諸物性を改良・調整する目的で、フィルムの耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤等の添加剤を適宜添加できる。   The film of the present invention has a moldability, productivity and heat-shrinkable film as long as it does not significantly impair the effects of the present invention in addition to the above-described components with respect to any one layer or two or more layers of the respective layers of the film. Recycled resin generated from trimming loss such as film ears, inorganic particles such as silica, talc, kaolin and calcium carbonate, pigments such as titanium oxide and carbon black, flame retardants, etc. Additives such as a weather resistance stabilizer, a heat resistance stabilizer, an antistatic agent, a melt viscosity improver, a crosslinking agent, a lubricant, a nucleating agent, a plasticizer, and an antiaging agent can be added as appropriate.

本発明のフィルムの透明性は、透明性が要求される用途においては、例えば厚み200μmのフィルムをJIS K7105に準拠して測定した場合、ヘーズ値は20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。ヘーズ値が20%以下であれば、透明性が要求される用途で使用可能である。   In applications where transparency is required, the transparency of the film of the present invention is, for example, when a film having a thickness of 200 μm is measured according to JIS K7105, the haze value is preferably 20% or less, and 15% or less. More preferably, it is more preferably 10% or less. If the haze value is 20% or less, it can be used in applications requiring transparency.

<フィルムの製造方法・用途>
本発明のフィルムは、無延伸フィルム、延伸フィルム、および熱収縮性フィルムを含む。これらのフィルムは公知の方法によって製造することができる。フィルムの形態としては平面状、チューブ状のいずれであってもよいが、生産性から平面状が好ましい。チューブラー法により製造したフィルムを切り開いて平面状とする方法も適用できる。平面状とすることで、原反フィルムの幅方向に製品として数丁取りが可能となる。平面状のフィルムの製造方法としては、例えば、無延伸フィルムについては、複数の押出機を用いて樹脂を溶融し、Tダイから共押出し、チルドロールで冷却固化した後、印刷が施される場合にはその面にコロナ放電処理をした後、巻取機にて巻き取ることによりロール状の無延伸フィルムを得る方法が例示できる。また、延伸フィルムは、複数の押出機を用いて樹脂を溶融し、Tダイから共押出し、チルドロールで冷却固化し縦方向および/または横方向に延伸をし、樹脂の結晶化を促すアニールを行い、印刷が施される場合にはその面にコロナ放電処理をした後、巻取機にて巻き取ることによりロール状の延伸フィルムを得る方法が例示できる。熱収縮性フィルムの製造方法については後述する。
<Film production method / use>
The film of the present invention includes an unstretched film, a stretched film, and a heat-shrinkable film. These films can be produced by a known method. The form of the film may be either a flat shape or a tube shape, but a flat shape is preferable in terms of productivity. A method of cutting a film produced by a tubular method into a flat shape can also be applied. By making it flat, several products can be taken in the width direction of the original film. As a method for producing a flat film, for example, for an unstretched film, a resin is melted using a plurality of extruders, co-extruded from a T die, cooled and solidified with a chilled roll, and then printed. Examples of the method include a method of obtaining a roll-shaped unstretched film by performing corona discharge treatment on the surface and then winding it with a winder. The stretched film melts the resin using a plurality of extruders, co-extrudes from a T-die, cools and solidifies with a chilled roll, stretches in the machine direction and / or transverse direction, and anneals to promote crystallization of the resin. When printing is performed, a method of obtaining a roll-shaped stretched film by performing corona discharge treatment on the surface and then winding it with a winder can be exemplified. A method for producing the heat-shrinkable film will be described later.

本発明のフィルムは、後述する熱収縮性フィルムとしての用途のほか、無延伸フィルムとして、食品包装用、農業用、園芸用、建築土木用等の用途に、また、延伸フィルムとして、ペットボトル用ラベル、シュリンクチューブ、食品包装用、農業用等の用途に使用することができる。   The film of the present invention is used as a heat-shrinkable film, which will be described later, as an unstretched film, for food packaging, agriculture, horticulture, architectural civil engineering, etc., and as a stretched film for PET bottles It can be used for applications such as labels, shrink tubes, food packaging, and agriculture.

[熱収縮性フィルム]
本発明の熱収縮性フィルムは、上記に記載した本発明のフィルムが熱収縮性を有するものである。熱収縮性は、例えば所定の温度域にて延伸し、その後結晶化を規制しつつ冷却して、与えることができる。
[Heat shrinkable film]
The heat-shrinkable film of the present invention is the film of the present invention described above having heat-shrinkability. The heat shrinkability can be imparted, for example, by stretching in a predetermined temperature range and then cooling while regulating crystallization.

本発明の熱収縮性フィルムは、前記本発明のフィルムと同様、前記ポリオレフィン系樹脂(A)、ポリ乳酸系樹脂(B)、アクリル系樹脂(C)の混合樹脂からなる層を中間層とし、その両側にポリ乳酸系樹脂(B)を主成分とする表裏層を設けることができる。ポリ乳酸系樹脂(B)を主成分とする表裏層を設けることで、より透明性、熱収縮特性の良好で自然収縮性の抑制された熱収縮性フィルムとすることが可能である。その場合、各層の厚み比は、前記フィルムと同様の範囲とすることができる。各層の厚み比が前記範囲内であれば、特に優れた熱収縮性、透明性に優れ、かつ自然収縮の抑制された収縮包装、収縮結束包装や収縮ラベル等の用途に適した熱収縮性積層フィルムを、バランスよく得ることができる。   The heat-shrinkable film of the present invention has a layer composed of a mixed resin of the polyolefin resin (A), the polylactic acid resin (B), and the acrylic resin (C) as an intermediate layer, similar to the film of the present invention. Front and back layers mainly composed of the polylactic acid resin (B) can be provided on both sides thereof. By providing the front and back layers mainly composed of the polylactic acid-based resin (B), it is possible to obtain a heat-shrinkable film with better transparency and heat-shrinkage characteristics and with reduced natural shrinkage. In that case, the thickness ratio of each layer can be in the same range as the film. If the thickness ratio of each layer is within the above range, the heat-shrinkable laminate is particularly suitable for applications such as shrink-wrapping, shrink-bound wrapping, and shrink-labeling with excellent heat-shrinkability and transparency and with reduced natural shrinkage. A film can be obtained with good balance.

その他、表裏層を設ける場合には、前記フィルムと同様、収縮特性およびフィルムの剛性(腰強さ)を損なわない範囲内で、フィルムの耐衝撃性を向上させる目的で表裏層にポリ乳酸系樹脂以外の他のゴム成分を添加することもできる。また、ポリオレフィン系樹脂(A)、ポリ乳酸系樹脂(B)、アクリル系樹脂(C)の混合樹脂からなる中間層とポリ乳酸系樹脂(B)を主成分とする表裏層との間に接着性を向上させる目的で、上記フィルムと同様の材料および厚みで接着層を設けることもできる。   In addition, when the front and back layers are provided, as in the case of the film, a polylactic acid-based resin is used for the front and back layers for the purpose of improving the impact resistance of the film within a range that does not impair the shrinkage characteristics and the rigidity (back strength) of the film. Other rubber components other than the above can also be added. Moreover, it adheres between the intermediate layer which consists of mixed resin of polyolefin resin (A), polylactic acid resin (B), and acrylic resin (C), and the front and back layers which have polylactic acid resin (B) as a main component. In order to improve the property, an adhesive layer can be provided with the same material and thickness as the film.

本発明の熱収縮性フィルムは、前記フィルムと同様、各層のいずれか一層または二層以上に対して、上述した成分のほか、本発明の効果を著しく阻害しない範囲内で、成形加工性、生産性および熱収縮性フィルムの諸物性を改良・調整する目的で、フィルムの耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤などの添加剤を適宜添加できる。   The heat-shrinkable film of the present invention is the same as the above-mentioned film, with respect to any one layer or two or more layers, in addition to the above-described components, within a range not significantly impairing the effects of the present invention, moldability, production Recycled resin generated from trimming loss such as film ears, inorganic particles such as silica, talc, kaolin, calcium carbonate, titanium oxide, carbon black, etc. Additives such as pigments, flame retardants, weather resistance stabilizers, heat resistance stabilizers, antistatic agents, melt viscosity improvers, cross-linking agents, lubricants, nucleating agents, plasticizers and anti-aging agents can be appropriately added.

<物理的・機械的特性>
本発明の熱収縮性フィルムは、80℃温水中10秒浸漬したときの熱収縮率が少なくとも一方向において20%以上であることが好ましい。
<Physical and mechanical properties>
The heat shrinkable film of the present invention preferably has a heat shrinkage rate of 20% or more in at least one direction when immersed in 80 ° C. warm water for 10 seconds.

これは、ペットボトルの収縮ラベル用途等の比較的短時間(数秒〜十数秒程度)での収縮加工工程への適応性を判断する指標となる。例えば、ペットボトルの収縮ラベル用途に適用される熱収縮性フィルムに要求される収縮率はその形状によって様々であるが一般に20%乃至70%程度である。   This is an index for determining the adaptability to the shrinking process in a relatively short time (several seconds to about several tens of seconds) such as the use of shrinkage labels for PET bottles. For example, the shrinkage rate required for a heat-shrinkable film applied to the use of shrinkage labels for PET bottles varies depending on the shape, but is generally about 20% to 70%.

また、現在ペットボトルのラベル装着用途に工業的に最も多く用いられている収縮加工機は、収縮加工を行う加熱媒体として水蒸気を用いる蒸気シュリンカーと一般に呼ばれているものである。熱収縮性フィルムは被覆対象物への熱の影響などの点からできるだけ低い温度で十分熱収縮することが必要である。さらに、近年のラベリング工程の高速化に伴い、より低温で素早く収縮する要求が高くなってきた。このような工業生産性も考慮して、前記条件における熱収縮率が20%以上のフィルムであれば、収縮加工時間内に十分に被覆対象物に密着することができるため好ましい。これらのことから、80℃の温水中に10秒浸漬したときの熱収縮率は、少なくとも一方向、通常主収縮方向に、下限が好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上であり、上限が好ましくは85%以下、より好ましくは80%以下、さらに好ましくは75%以下である。   Further, the shrinkage processing machine that is most widely used industrially for labeling of PET bottles is generally called a steam shrinker that uses steam as a heating medium for shrinking. The heat-shrinkable film needs to sufficiently heat-shrink at a temperature as low as possible from the viewpoint of the influence of heat on the object to be coated. Furthermore, with the recent increase in the speed of the labeling process, there has been an increasing demand for shrinking quickly at a lower temperature. In consideration of such industrial productivity, a film having a heat shrinkage rate of 20% or more under the above conditions is preferable because it can sufficiently adhere to the object to be coated within the shrinkage processing time. From these facts, the heat shrinkage rate when immersed in warm water at 80 ° C. for 10 seconds is preferably at least 20%, more preferably 30%, and even more preferably the lower limit in at least one direction, usually the main shrinkage direction. The upper limit is preferably 85% or less, more preferably 80% or less, and still more preferably 75% or less.

なお、「主収縮方向」とは、縦方向(長手方向)と横方向(幅方向)のうち熱収縮率の大きい方向を意味し、例えば、ボトルに装着する場合にはその外周方向に相当する方向を意味し、「直交方向」とは主収縮方向と直交する方向を意味する。また本明細書の実施例では、積層フィルムの引き取り(流れ)方向およびその直角方向は、それぞれ「直交方向」および「主収縮方向」と一致するものとする。   The “main shrinkage direction” means a direction having a large thermal shrinkage rate in the longitudinal direction (longitudinal direction) and the transverse direction (width direction). For example, in the case of mounting on a bottle, it corresponds to the outer circumferential direction. It means a direction, and “orthogonal direction” means a direction orthogonal to the main contraction direction. In the examples of the present specification, the take-up (flow) direction of the laminated film and the direction perpendicular thereto are the same as the “orthogonal direction” and the “main contraction direction”, respectively.

本発明の熱収縮性フィルムにおいて、80℃の温水中に10秒浸漬したときの熱収縮率を上記範囲に調整するためには、樹脂の組成を上記に記載したように調整するとともに、延伸温度を後述する範囲に調整することが好ましい。例えば、熱収縮率をより増加させたい場合には、フィルムを構成するポリ乳酸系樹脂(B)の組成比率を上げる、延伸倍率を高くする、延伸温度を低くする、ポリオレフィン系樹脂(A)を主成分とする表裏層を設ける等の手段を用いるとよい。   In the heat-shrinkable film of the present invention, in order to adjust the heat shrinkage rate when immersed in warm water at 80 ° C. for 10 seconds to the above range, the resin composition is adjusted as described above, and the stretching temperature is adjusted. Is preferably adjusted to a range described later. For example, when it is desired to further increase the heat shrinkage rate, the polyolefin resin (A) is increased by increasing the composition ratio of the polylactic acid resin (B) constituting the film, increasing the draw ratio, lowering the stretching temperature. Means such as providing front and back layers as main components may be used.

また、本発明の熱収縮性フィルムの自然収縮率はできるだけ小さいことが望ましく、40℃50%RHの環境下で7日保存した際の自然収縮率は10%未満であることが好ましく、より好ましくは8%以下、さらに好ましくは6%以下、最も好ましくは3%未満である。前記条件下における自然収縮率が10%未満であれば作製したフィルムを長期保存する場合であっても容器等に安定して装着することができ、実用上問題を生じにくい。   Further, the natural shrinkage ratio of the heat-shrinkable film of the present invention is desirably as small as possible, and the natural shrinkage ratio when stored for 7 days in an environment of 40 ° C. and 50% RH is preferably less than 10%, more preferably. Is 8% or less, more preferably 6% or less, and most preferably less than 3%. If the natural shrinkage rate under the above conditions is less than 10%, even if the produced film is stored for a long period of time, it can be stably attached to a container or the like, and problems are hardly caused in practice.

本発明の熱収縮性フィルムにおいて、40℃50%RHの環境下で7日保存した際の自然収縮率を上記範囲に調整するためには、樹脂の組成を上記に記載したように調整することが重要であるが、さらに延伸温度を後述する範囲に調整することや表裏層を設けることによっても調整可能である。例えば、自然収縮率をより小さくしたい場合は、熱収縮性フィルムを構成するポリ乳酸系樹脂(B)の組成比率を上げる、延伸倍率を低くする、延伸温度を高くする、ポリ乳酸系樹脂(B)を主成分とする表裏層を設ける等の手段を用いるとよい。   In the heat-shrinkable film of the present invention, in order to adjust the natural shrinkage ratio when stored for 7 days in an environment of 40 ° C. and 50% RH to the above range, the resin composition should be adjusted as described above. However, it is also possible to adjust the stretching temperature by adjusting the stretching temperature to a range described later or by providing front and back layers. For example, when it is desired to reduce the natural shrinkage rate, the composition ratio of the polylactic acid resin (B) constituting the heat-shrinkable film is increased, the stretching ratio is decreased, the stretching temperature is increased, and the polylactic acid resin (B It is advisable to use means such as providing front and back layers whose main component is.

本発明の熱収縮性フィルムの透明性は、透明性が要求される用途、例えば、熱収縮性フィルムの裏面に印刷された印刷面を表面から視認させるような用途においては、厚み40μmのフィルムをJIS K7105に準拠して測定した場合、ヘーズ値は10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましい。ヘーズ値が10%以下であれば、フィルムの透明性が得られ、ディスプレー効果を奏することができる。   The heat-shrinkable film according to the present invention has a transparency of 40 μm thickness in applications where transparency is required, for example, in which the printed surface printed on the back surface of the heat-shrinkable film is visible from the surface. When measured according to JIS K7105, the haze value is preferably 10% or less, more preferably 7% or less, and even more preferably 5% or less. If the haze value is 10% or less, the transparency of the film can be obtained and a display effect can be obtained.

本発明の熱収縮性フィルムの耐衝撃性は、引張破断伸度により評価され、0℃環境下の引張試験において、特にラベル用途では熱収縮性フィルムの引き取り(流れ)方向(MD)で伸び率が、好ましくは100%以上、より好ましくは150%以上、さらに好ましくは200%以上ある。0℃環境下での引張破断伸度が100%以上あれば印刷・製袋などの工程時に熱収縮性フィルムが破断するなどの不具合を生じにくくなり好ましい。また、印刷・製袋などの工程のスピードアップに伴って熱収縮性フィルムに対してかかる張力が増加するような場合にも、引張破断伸度が100%以上あれば破断しづらく好ましい。   The impact resistance of the heat-shrinkable film of the present invention is evaluated by the tensile elongation at break, and in the tensile test under the environment of 0 ° C., particularly in the label application, the elongation rate in the take-off (flow) direction (MD) of the heat-shrinkable film. However, it is preferably 100% or more, more preferably 150% or more, and still more preferably 200% or more. If the tensile elongation at break in an environment of 0 ° C. is 100% or more, it is preferable that problems such as breakage of the heat-shrinkable film during the printing / bag making process are less likely to occur. Further, even when the tension applied to the heat-shrinkable film increases as the speed of processes such as printing and bag making increases, it is preferable that the tensile breaking elongation is 100% or more, so that it is difficult to break.

本発明の熱収縮性フィルムにおいて、0℃環境下の引張試験においての伸び率を前記範囲とするためには、樹脂組成を本発明で記載するように構成することが好ましく、より具体的な調整方法としては、例えば、熱収縮性フィルムを構成するポリ乳酸系樹脂(B)、アクリル系樹脂(C)の比率を下げること等が挙げられる。   In the heat-shrinkable film of the present invention, it is preferable to configure the resin composition as described in the present invention in order to make the elongation rate in the tensile test under a 0 ° C. environment the above range, and more specific adjustment. Examples of the method include reducing the ratio of the polylactic acid resin (B) and the acrylic resin (C) constituting the heat-shrinkable film.

本発明の熱収縮性フィルムは、フィルムの主収縮方向と直交する方向のJIS K7127に準拠して測定された引張弾性率が1200MPa以上であり、好ましくは1300MPaであり、さらに好ましくは1400MPa以上である。また、通常使用される熱収縮性フィルムの引張弾性率の上限値は、3000MPa程度、好ましくは2900MPa程度であり、さらに好ましくは2800MPa程度である。ここで、引張弾性率が1200MPa以上であれば、フィルム全体としての腰(常温での剛性)が高く、特に、フィルムの厚みを薄くした場合にも、ペットボトルなどの容器に製袋したフィルムをラベリングマシン等で被せる際に、斜めに被り、あるいはフィルムの腰折れなどで歩留まりが低下しやすいなどの問題点が発生し難く好ましい。上記引張弾性率は、JIS K7127に準じて、23℃の条件で測定することができる。   The heat-shrinkable film of the present invention has a tensile modulus measured in accordance with JIS K7127 in a direction orthogonal to the main shrinkage direction of the film is 1200 MPa or more, preferably 1300 MPa, more preferably 1400 MPa or more. . Moreover, the upper limit of the tensile elasticity modulus of the heat shrinkable film used normally is about 3000 MPa, preferably about 2900 MPa, and more preferably about 2800 MPa. Here, if the tensile elastic modulus is 1200 MPa or more, the film as a whole has high waist (rigidity at room temperature), and in particular, even when the film thickness is thinned, When covering with a labeling machine or the like, it is preferable that problems such as covering at an angle or the yield being liable to decrease due to film folding or the like hardly occur. The said tensile elasticity modulus can be measured on 23 degreeC conditions according to JISK7127.

<熱収縮性フィルムの製造方法>
本発明の熱収縮性フィルムは、公知の方法によって製造することができる。熱収縮性フィルムの形態としては平面状、チューブ状のいずれであってもよいが、生産性(原反フィルムの幅方向に製品として数丁取りが可能)や内面に印刷が可能という点から平面状が好ましい。平面状の熱収縮性フィルムの製造方法としては、例えば、複数の押出機を用いて樹脂を溶融し、Tダイから共押出し、チルドロールで冷却固化し、縦方向にロール延伸をし、横方向にテンター延伸をし、アニールし、樹脂の結晶化を規制しうる条件のもと冷却し、(印刷が施される場合にはその面にコロナ放電処理をして、)巻取機にて巻き取り、所定の長さ(通常は1000m以上、好ましくは2000mm以上、さらに好ましくは3000m以上の長さ。以下同じ。)を有する熱収縮性フィルムロールを作製する方法が例示できる。また、チューブラー法により製造したフィルムを切り開いて平面状とする方法も適用できる。
<Method for producing heat-shrinkable film>
The heat-shrinkable film of the present invention can be produced by a known method. The shape of the heat-shrinkable film may be either a flat shape or a tube shape, but it is flat in terms of productivity (a few products can be taken in the width direction of the original film) and printing on the inner surface. The shape is preferred. As a method for producing a flat heat-shrinkable film, for example, a resin is melted using a plurality of extruders, co-extruded from a T-die, cooled and solidified with a chilled roll, roll-stretched in the vertical direction, The film is then stretched, annealed, cooled under conditions that can regulate the crystallization of the resin, and if printing is applied, the surface is subjected to corona discharge treatment and wound with a winder. And a method for producing a heat-shrinkable film roll having a predetermined length (usually 1000 m or more, preferably 2000 mm or more, more preferably 3000 m or more, the same shall apply hereinafter). Moreover, the method of cutting open the film manufactured by the tubular method and making it flat is also applicable.

延伸倍率は、オーバーラップ用等、二方向に収縮させる用途では、縦方向が好ましくは2倍以上、より好ましくは3倍以上であり、かつ、好ましくは10倍以下、より好ましくは6倍以下であり、また、横方向が好ましくは2倍以上、より好ましくは3倍以上であり、かつ、好ましくは10倍以下、より好ましくは6倍以下である。一方、熱収縮性ラベル用等、主として一方向に収縮させる用途では、主収縮方向に相当する方向が好ましくは2倍以上10倍以下、より好ましくは4倍以上8倍以下、それと直交する方向が好ましくは1倍以上2倍以下(1倍とは延伸していな場合を指す。)、より好ましくは1.1倍以上1.5倍以下の、実質的には一軸延伸の範疇にある倍率比が選定される。前記範囲内の延伸倍率で延伸した二軸延伸フィルムは、主収縮方向と直交する方向の熱収縮率が大きくなりすぎることはなく、例えば、収縮ラベルとして用いる場合、容器に装着するとき容器の高さ方向にもフィルムが熱収縮する、いわゆる縦引け現象を抑えることができるため好ましい。   The stretching ratio is preferably 2 times or more, more preferably 3 times or more, and preferably 10 times or less, more preferably 6 times or less in the longitudinal direction in applications such as overlap for shrinking in two directions. In addition, the lateral direction is preferably 2 times or more, more preferably 3 times or more, and preferably 10 times or less, more preferably 6 times or less. On the other hand, in applications such as for heat-shrinkable labels that shrink mainly in one direction, the direction corresponding to the main shrinkage direction is preferably 2 to 10 times, more preferably 4 to 8 times, and the direction orthogonal thereto. Preferably, the magnification ratio is 1 to 2 times (where 1 times refers to the case where the film is not stretched), more preferably 1.1 to 1.5 times, which is substantially in the range of uniaxial stretching. Is selected. A biaxially stretched film stretched at a stretch ratio within the above range does not have an excessively large thermal shrinkage rate in the direction orthogonal to the main shrinkage direction.For example, when used as a shrinkage label, It is preferable because the so-called vertical shrinkage phenomenon, in which the film is thermally contracted in the vertical direction, can be suppressed.

延伸温度は、用いる樹脂のガラス転移温度や熱収縮性フィルムに要求される特性によって変える必要があるが、概ね50℃以上、好ましくは60℃以上であり、上限が130℃以下、好ましくは110℃以下の範囲で制御される。次いで、延伸したフィルムは、必要に応じて、自然収縮率の低減や熱収縮特性の改良等を目的として、50℃以上100℃以下程度の温度で熱処理や弛緩処理を行った後、分子配向が緩和しない時間内に速やかに冷却され、熱収縮性フィルムとなる。   The stretching temperature needs to be changed depending on the glass transition temperature of the resin used and the properties required for the heat-shrinkable film, but is generally 50 ° C. or higher, preferably 60 ° C. or higher, and the upper limit is 130 ° C. or lower, preferably 110 ° C. It is controlled within the following range. Next, the stretched film is subjected to a heat treatment or relaxation treatment at a temperature of about 50 ° C. or more and 100 ° C. or less for the purpose of reducing the natural shrinkage rate or improving the heat shrink property, if necessary. It cools rapidly within the time not to relax, and becomes a heat-shrinkable film.

また本発明の熱収縮性フィルムは、必要に応じてコロナ処理、印刷、コーティング、蒸着等の表面処理や表面加工、さらには、各種溶剤やヒートシールによる製袋加工やミシン目加工などを施すことができる。   The heat-shrinkable film of the present invention is subjected to surface treatment and surface treatment such as corona treatment, printing, coating and vapor deposition, and bag making and perforation treatment with various solvents and heat seals as necessary. Can do.

本発明の熱収縮性フィルムは、被包装物によってフラット状から円筒状等に加工して包装に供される。ペットボトル等の円筒状の容器で印刷を要するものの場合、まずロールに巻き取られた広幅のフラットフィルムの一面に必要な画像を印刷し、そしてこれを必要な幅にカットしつつ印刷面が内側になるように折り畳んでセンターシール(シール部の形状はいわゆる封筒貼り)して円筒状とすれば良い。センターシール方法としては、有機溶剤による接着方法、ヒートシールによる方法、接着剤による方法、インパルスシーラーによる方法が考えられる。この中でも、生産性、見栄えの観点から有機溶剤による接着方法が好適に使用される。   The heat-shrinkable film of the present invention is processed from a flat shape to a cylindrical shape or the like by an article to be packaged and provided for packaging. When printing is required in a cylindrical container such as a plastic bottle, first print the required image on one side of a wide flat film wound up on a roll, and then cut it to the required width while the print side is inside. The center seal (the shape of the seal portion is a so-called envelope) may be folded into a cylindrical shape. As the center sealing method, an organic solvent bonding method, a heat sealing method, an adhesive method, and an impulse sealer method can be considered. Among these, from the viewpoint of productivity and appearance, an adhesion method using an organic solvent is preferably used.

[成形品、熱収縮性ラベルおよび容器]
本発明の熱収縮性フィルムは、フィルムの低温収縮性、収縮仕上がり性、透明性、自然収縮等に優れているため、その用途が特に制限されるものではないが、必要に応じて印刷層、蒸着層その他機能層を形成することにより、ボトル(ブローボトル)、トレー、弁当箱、総菜容器、乳製品容器等の様々な成形品として用いることができる。特に本発明の熱収縮性フィルムを食品容器(例えば清涼飲料水用または食品用のPETボトル、ガラス瓶、好ましくはPETボトル)用熱収縮性ラベルとして用いる場合、複雑な形状(例えば、中心がくびれた円柱、角のある四角柱、五角柱、六角柱など)であっても該形状に密着可能であり、シワやアバタ等のない美麗なラベルが装着された容器が得られる。本発明の成形品および容器は、通常の成形法を用いることにより作製することができる。
[Molded products, heat-shrinkable labels and containers]
The heat-shrinkable film of the present invention is excellent in low-temperature shrinkage, shrinkage finish, transparency, natural shrinkage, etc. of the film, and its use is not particularly limited. By forming a vapor deposition layer and other functional layers, it can be used as various molded products such as bottles (blow bottles), trays, lunch boxes, prepared food containers, and dairy products containers. In particular, when the heat-shrinkable film of the present invention is used as a heat-shrinkable label for food containers (eg, PET bottles, glass bottles, preferably PET bottles for soft drinks or foods), a complicated shape (eg, a narrow center) Even if it is a cylinder, a square column with a corner, a pentagonal column, a hexagonal column, etc., it can adhere to the shape, and a container with a beautiful label without wrinkles or avatars can be obtained. The molded article and container of the present invention can be produced by using a normal molding method.

本発明の熱収縮性フィルムは、優れた収縮特性、収縮仕上がり性を有するため、高温に加熱すると変形を生じるようなプラスチック成形品の熱収縮性ラベル素材のほか、熱膨張率や吸水性等が本発明の熱収縮性フィルムとは極めて異なる材質、例えば金属、磁器、ガラス、紙、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン系樹脂、ポリメタクリル酸エステル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリアミド系樹脂から選ばれる少なくとも1種を構成素材として用いた包装体(容器)の熱収縮性ラベル素材として好適に利用できる。   Since the heat-shrinkable film of the present invention has excellent shrinkage properties and shrinkage finishing properties, in addition to the heat-shrinkable label material of a plastic molded product that is deformed when heated to a high temperature, it has a coefficient of thermal expansion and water absorption. Materials very different from the heat-shrinkable film of the present invention, for example, polyolefin resin such as metal, porcelain, glass, paper, polyethylene, polypropylene, polybutene, polymethacrylate resin, polycarbonate resin, polyethylene terephthalate, polybutylene terephthalate It can utilize suitably as a heat-shrinkable label raw material of the package (container) which used at least 1 sort (s) chosen from polyester-type resins, such as such as a constituent material.

本発明の熱収縮性フィルムが利用できるプラスチック包装体を構成する材質としては、上記した「フィルム」の項で説明した樹脂の他、ポリスチレン、ゴム変性耐衝撃性ポリスチレン(HIPS)、スチレン−ブチルアクリレート共重合体、スチレン−アクリロニトリル共重合体、スチレン−無水マレイン酸共重合体、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)、(メタ)アクリル酸−ブタジエン−スチレン共重合体(MBS)、ポリ塩化ビニル系樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等を挙げることができる。これらのプラスチック包装体は2種以上の樹脂類の混合物でも、積層体であってもよい。   Examples of the material constituting the plastic package in which the heat-shrinkable film of the present invention can be used include polystyrene, rubber-modified impact-resistant polystyrene (HIPS), and styrene-butyl acrylate, in addition to the resin described in the above section “Film”. Copolymer, styrene-acrylonitrile copolymer, styrene-maleic anhydride copolymer, acrylonitrile-butadiene-styrene copolymer (ABS), (meth) acrylic acid-butadiene-styrene copolymer (MBS), polychlorinated Examples thereof include vinyl resins, phenol resins, urea resins, melamine resins, epoxy resins, unsaturated polyester resins, and silicone resins. These plastic packages may be a mixture of two or more resins or a laminate.

以下に本発明について、実施例を用いて詳細に説明する。実施例では、フィルムの引取り(流れ)方向をMD、その直角方向をTDと記載する。   Hereinafter, the present invention will be described in detail with reference to examples. In the examples, the film take-up (flow) direction is described as MD, and the perpendicular direction thereof as TD.

また、以下の各実施例、比較例において使用した原材料は以下の通りである。
<オレフィン系樹脂(A)>
A‐1:日本ポリプロ社製PP Wintec WFX6(MFR3.0、Tm132℃)
A‐2:宇部興産社製LLDPE UMERI T0540F(MFR4.0、Tm103℃)
A‐3:荒川化学社製水添石油樹脂 アルコンP140(軟化点 90℃)
A‐4:日本ポリエチレン社製EVA ノバテックEVA LV430 (MFR1.0、Tm:89℃)
The raw materials used in the following examples and comparative examples are as follows.
<Olefin resin (A)>
A-1: PP Wintec WFX6 (MFR3.0, Tm132 ° C.) manufactured by Nippon Polypro Co., Ltd.
A-2: Ube Industries, Ltd. LLDPE UMERI T0540F (MFR4.0, Tm103 ° C.)
A-3: Hydrogenated petroleum resin Arakawa Chemical Co., Ltd. Alcon P140 (softening point 90 ° C)
A-4: Nippon Polyethylene EVA Novatec EVA LV430 (MFR1.0, Tm: 89 ° C.)

<ポリ乳酸系樹脂(B)>
B‐1:NatureWorksLLC社製ポリ乳酸 NatureWorks 4060D
B‐2:大日本インキ化学工業社製軟質ポリ乳酸系樹脂 プラメート PD150
B‐3:NatureWorksLLC社製ポリ乳酸 NatureWorks 4050D
<Polylactic acid resin (B)>
B-1: Polylactic acid NatureWorks 4060D manufactured by NatureWorks LLC
B-2: Soft polylactic acid resin Puramate PD150 manufactured by Dainippon Ink & Chemicals, Inc.
B-3: Polylactic acid NatureWorks 4050D manufactured by NatureWorks LLC

<アクリル系樹脂(C)>
C‐1:住友化学工業社製アクリル スミペックス LG21(メタクリル酸メチルとアクリル酸メチルとの共重合体)
C‐2:住友化学工業社製軟質アクリル スミペックス FA(メタクリル酸メチルとアクリル酸ブチルとの共重合体)
C‐3:クラレ社製アクリル パラペット GR H24(メタクリル酸メチルとアクリル酸ブチルとの共重合体)
<Acrylic resin (C)>
C-1: Sumitomo Chemical Co., Ltd. acrylic Sumipex LG21 (copolymer of methyl methacrylate and methyl acrylate)
C-2: Soft acrylic Sumipex FA (copolymer of methyl methacrylate and butyl acrylate) manufactured by Sumitomo Chemical Co., Ltd.
C-3: Kuraray acrylic parapet GR H24 (copolymer of methyl methacrylate and butyl acrylate)

<相溶化剤>
D‐1:旭化成ケミカルズ社製酸変性SEBS タフテックM1913
D‐2:住友化学社製Et‐GMA共重合体 ボンドファースト 7M
<Compatibilizer>
D-1: Acid-modified SEBS Tuftec M1913 manufactured by Asahi Kasei Chemicals
D-2: Et-GMA copolymer Bond First 7M manufactured by Sumitomo Chemical Co., Ltd.

<接着層樹脂>
E‐1:三井化学社製変性PO アドマーSE800
E‐2:三井・デュポンポリケミカル社製EMA エルバロイAC1242
<Adhesive layer resin>
E-1: Modified PO Admer SE800 manufactured by Mitsui Chemicals, Inc.
E-2: EMA Elvalloy AC1242 manufactured by Mitsui DuPont Polychemical Co., Ltd.

さらに、各実施例、比較例にて得られたフィルムにつき、以下に記載する測定および評価を行った。但し、未延伸フィルムについては、フィルム厚み150μmのフィルムをJIS K7105に準拠してヘーズ値のみ評価した。   Furthermore, the measurement and evaluation described below were performed for the films obtained in each of the examples and comparative examples. However, for the unstretched film, only a haze value was evaluated in accordance with JIS K7105 for a film having a film thickness of 150 μm.

(1)熱収縮率
得られた熱収縮性フィルムロールよりMD100mm、TD100mmの大きさにフィルムを切り取り、80℃の温水バスに10秒間それぞれ浸漬し、収縮量を測定した。熱収縮率は、MDおよびTDについて、収縮前の原寸に対する収縮量の比率を%値で表示した。
(1) Heat Shrinkage The film was cut into a size of MD 100 mm and TD 100 mm from the obtained heat-shrinkable film roll, immersed in a hot water bath at 80 ° C. for 10 seconds, and the amount of shrinkage was measured. As for the thermal shrinkage rate, the ratio of shrinkage to the original size before shrinkage was expressed as a% value for MD and TD.

(2)自然収縮率
得られた熱収縮性フィルムロールよりMD100mm、TD1000mmの大きさにフィルムを切り取り、40℃、50%RHの雰囲気の恒温槽に7日間放置し、主収縮方向(TD)について、収縮前の原寸に対する収縮量を測定し、その比率を%値で算出し、下記の基準で評価した。
◎:自然収縮率が6.0%以下である場合
○:自然収縮率が6.0%を超え10.0%以下である場合
×:自然収縮率が10.0%を超える場合
(2) Natural shrinkage rate The film was cut into a size of MD 100 mm and TD 1000 mm from the obtained heat-shrinkable film roll, and left in a constant temperature bath in an atmosphere of 40 ° C. and 50% RH for 7 days, about the main shrinkage direction (TD) The amount of shrinkage relative to the original size before shrinkage was measured, the ratio was calculated as a% value, and evaluated according to the following criteria.
◎: When the natural shrinkage rate is 6.0% or less ○: When the natural shrinkage rate is over 6.0% and 10.0% or less ×: When the natural shrinkage rate is over 10.0%

(3)ヘーズ値
JIS K7105に準拠して厚み40μmのフィルムのヘーズ値を測定した。測定結果につき、下記基準で評価を行った。
◎:ヘーズ値が5%未満
○:ヘーズ値が5%以上10%未満
×:ヘーズ値が10%以上
(3) Haze value The haze value of a film having a thickness of 40 μm was measured according to JIS K7105. The measurement results were evaluated according to the following criteria.
◎: Haze value is less than 5% ○: Haze value is 5% or more and less than 10% ×: Haze value is 10% or more

(4)引張破断伸度
JIS K7127に準じて、1号形試験片、温度0℃、試験速度100mm/分の条件でフィルムの主収縮方向と直交する方向(MD)について引張破断伸度測定した。測定結果につき、下記基準で評価を行った。
◎:引張破断伸度が200%以上
○:引張破断伸度が100%以上200%未満
×:引張破断伸度が100%未満
(4) Tensile Breaking Elongation According to JIS K7127, tensile breaking elongation was measured in the direction (MD) perpendicular to the main shrinkage direction of the film under the conditions of No. 1 type test piece, temperature 0 ° C., test speed 100 mm / min. . The measurement results were evaluated according to the following criteria.
A: Tensile breaking elongation is 200% or more B: Tensile breaking elongation is 100% or more and less than 200% X: Tensile breaking elongation is less than 100%

(5)収縮仕上がり性
10mm間隔の格子目を印刷したフィルムをMD100mm×TD298mmの大きさに切り取り、TDの両端を10mm重ねてヒートシール機にて熱融着し、円筒状フィルムを作製した。この円筒状フィルムを、容量1.5Lの円筒型ペットボトルに装着し、蒸気加熱方式の長さ3.2m(3ゾーン)の収縮トンネル中を回転させずに、約8秒間で通過させた。各ゾーンでのトンネル内雰囲気温度は、蒸気量を蒸気バルブで調整し、75〜95℃の範囲とした。フィルム被覆後は下記基準で評価した。
◎:収縮は十分で、装着ラベルにタイト感が十分にある。
○:収縮は十分だが、装着ラベルにタイト感が不足している。
×:収縮が不充分で、装着ラベルが弛んでいる。
(5) Shrinkage finish The film which printed the grid of the 10 mm space | interval was cut out to the magnitude | size of MD100mmxTD298mm, the both ends of TD were piled up 10mm, and it heat-sealed with the heat seal machine, and produced the cylindrical film. This cylindrical film was attached to a cylindrical PET bottle having a capacity of 1.5 L, and passed through the shrinking tunnel having a length of 3.2 m (3 zones) of the steam heating system in about 8 seconds. The atmospheric temperature in the tunnel in each zone was set to a range of 75 to 95 ° C. by adjusting the amount of steam with a steam valve. After film coating, the following criteria were evaluated.
A: Shrinkage is sufficient, and the attached label has a tight feeling.
○: Shrinkage is sufficient, but the attached label is not tight.
X: Shrinkage is insufficient and the attached label is loose.

以上5つの評価項目の全てが◎であったフィルムを(◎)、○が含まれるフィルムを(○)、1つでも×があったフィルムを(×)として総合評価した。   The film was evaluated as (◎) for a film in which all of the above five evaluation items were ◎, (○) for a film containing ○, and (×) for a film having at least one x.

<実施例1〜4、比較例1、2>
表1に示す、ポリオレフィン系樹脂、ポリ乳酸系樹脂、アクリル系樹脂、その他の樹脂や添加物を東芝機械株式会社製の2軸押出機に投入し、設定温度200℃で溶融混合後、単層または積層Tダイより押出し、50℃のキャストロールで引き取り、冷却固化させて、幅300mm、厚さ150μmの未延伸シートを得た。実施例3の積層フィルムは、裏層(40μm)/芯層(70μm)/表層(40μm)であり、実施例4の積層フィルムは、裏層(40μm)/接着層(10μm)/芯層(50μm)/接着層(10μm)/表層(40μm)である。
<Examples 1-4, Comparative Examples 1 and 2>
The polyolefin resin, polylactic acid resin, acrylic resin, and other resins and additives shown in Table 1 are put into a twin-screw extruder manufactured by Toshiba Machine Co., Ltd., melt mixed at a set temperature of 200 ° C., and then a single layer Alternatively, it was extruded from a laminated T die, taken up with a cast roll at 50 ° C., and cooled and solidified to obtain an unstretched sheet having a width of 300 mm and a thickness of 150 μm. The laminated film of Example 3 is a back layer (40 μm) / core layer (70 μm) / surface layer (40 μm), and the laminated film of Example 4 is a back layer (40 μm) / adhesive layer (10 μm) / core layer ( 50 μm) / adhesive layer (10 μm) / surface layer (40 μm).

得られた未延伸シートのヘーズ値を測定したところ、表2に示す結果を得た。この結果、本発明により規定される未延伸シート(実施例1〜4)は、比較例1、2のシートと比較した場合、良好なヘーズ値が得られることが確認された。   When the haze value of the obtained unstretched sheet was measured, the results shown in Table 2 were obtained. As a result, it was confirmed that the unstretched sheets (Examples 1 to 4) defined by the present invention can obtain good haze values when compared with the sheets of Comparative Examples 1 and 2.

Figure 0005302679
Figure 0005302679

Figure 0005302679
Figure 0005302679

<実施例5〜10、比較例3および4、参考例1および2>
表3に示すポリオレフィン系樹脂、ポリ乳酸系樹脂、アクリル系樹脂、その他の樹脂や添加物を東芝機械株式会社製の2軸押出機に投入し、設定温度200℃で溶融混合後、単層または積層Tダイより押出し、50℃のキャストロールで引き取り、冷却固化させて、幅300mm、厚さ200μmの未延伸シートを得た。この未延伸シートを、京都機械株式会社製フィルムテンターにて、予熱温度80℃、延伸温度73℃で横一軸方向に5.0倍に延伸後、80℃にて熱処理を行い、熱収縮性フィルムを得た。次いで得られた熱収縮性フィルム端部をスリットし、除去した後、このフィルムを1000m巻き取った。得られた熱収縮性フィルムの厚さは40μmであった。
<Examples 5 to 10, Comparative Examples 3 and 4, Reference Examples 1 and 2>
The polyolefin resin, polylactic acid resin, acrylic resin, and other resins and additives shown in Table 3 are put into a twin-screw extruder manufactured by Toshiba Machine Co., Ltd. The sheet was extruded from a laminated T die, taken up with a cast roll at 50 ° C., and cooled and solidified to obtain an unstretched sheet having a width of 300 mm and a thickness of 200 μm. This unstretched sheet was stretched 5.0 times in the transverse uniaxial direction at a preheating temperature of 80 ° C. and a stretching temperature of 73 ° C. by a film tenter manufactured by Kyoto Machine Co., Ltd., and then heat treated at 80 ° C. Got. Subsequently, after slitting and removing the edge part of the obtained heat-shrinkable film, this film was wound up by 1000 m. The thickness of the obtained heat-shrinkable film was 40 μm.

実施例8の未延伸シートの各層厚は、裏層(50μm)/芯層(100μm)/表層(50μm)であり、実施例9および10の未延伸シートの各層厚は、裏層(50μm)/接着層(10μm)/芯層(80μm)/接着層(10μm)/表層(50μm)である。   Each layer thickness of the unstretched sheet of Example 8 is back layer (50 μm) / core layer (100 μm) / surface layer (50 μm), and each layer thickness of the unstretched sheets of Examples 9 and 10 is back layer (50 μm). / Adhesive layer (10 μm) / core layer (80 μm) / adhesive layer (10 μm) / surface layer (50 μm).

得られた熱収縮性フィルムの各種性能を測定したところ、表4に示す結果が得られた。   When various performances of the obtained heat-shrinkable film were measured, the results shown in Table 4 were obtained.

Figure 0005302679
Figure 0005302679

Figure 0005302679
Figure 0005302679

表4の結果から示されるとおり、本発明に規定する熱収縮性フィルム(実施例5〜10)は、各性能の評価結果が優れていた。特に、実施例9、および10に示す構成の熱収縮性フィルムは総合的に高い性能評価結果を示した。これに対し、樹脂(A)のみからなる比較例3のフィルムは、自然収縮率、および収縮仕上がり性の点で評価が劣るものであった。
また、樹脂(A)及び(B)からなり、樹脂(C)を有しない比較例4のフィルムは、ヘーズ値が10%を超え、透明性に劣るものであった。
As shown from the results in Table 4, the heat-shrinkable films (Examples 5 to 10) defined in the present invention were excellent in the evaluation results of each performance. In particular, the heat-shrinkable film having the structure shown in Examples 9 and 10 showed a high overall performance evaluation result. On the other hand, the film of Comparative Example 3 consisting only of the resin (A) was inferior in evaluation in terms of the natural shrinkage rate and shrinkage finish.
Moreover, the film of the comparative example 4 which consists of resin (A) and (B) and does not have resin (C) had a haze value exceeding 10%, and was inferior to transparency.

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うフィルム、熱収縮性フィルム等もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. However, the present invention can be changed as appropriate without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and a film accompanying such a change, a heat-shrinkable film, and the like are also within the technical scope of the present invention. It must be understood as included.

本発明のフィルムおよび熱収縮性フィルムは、ボトル、トレー等の成形品を形成するため、あるいは、ボトル等の包装体用の熱収縮性ラベルとして用いることができる。   The film and heat-shrinkable film of the present invention can be used for forming molded articles such as bottles and trays, or as heat-shrinkable labels for packaging bodies such as bottles.

Claims (9)

ポリオレフィン系樹脂(A)を主成分として含有するとともに、該ポリオレフィン系樹脂(A)100質量部に対し、ポリ乳酸系樹脂(B)を1質量部以上50質量部以下、アクリル系樹脂(C)を1質量部以上50質量部以下含有する層を少なくとも1層有し、
前記アクリル系樹脂(C)が、
メタクリル酸メチル単独重合体、または、
メタクリル酸メチルと、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸、メタクリル酸から選ばれる1種以上の他のビニル単量体と、の共重合体
であることを特徴とするフィルム。
The polyolefin resin (A) is contained as a main component, and the polylactic acid resin (B) is added in an amount of 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the polyolefin resin (A), and the acrylic resin (C). Having at least one layer containing 1 part by weight or more and 50 parts by weight or less,
The acrylic resin (C) is
Methyl methacrylate homopolymer, or
A copolymer of methyl methacrylate and one or more other vinyl monomers selected from ethyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, acrylic acid, and methacrylic acid. A film characterized by being.
前記ポリオレフィン系樹脂(A)がポリエチレン系樹脂、ポリプロピレン系樹脂、エチレン‐酢酸ビニル共重合体、およびこれらの混合樹脂からなる群から選ばれるいずれかの樹脂であることを特徴とする請求項1に記載のフィルム。 The polyolefin resin (A) is any resin selected from the group consisting of a polyethylene resin, a polypropylene resin, an ethylene-vinyl acetate copolymer, and a mixed resin thereof. The film described. 前記ポリオレフィン系樹脂(A)、前記ポリ乳酸系樹脂(B)および前記アクリル系樹脂(C)からなる混合樹脂100質量部に対し、相溶化剤(D)として、エチレンと、酢酸ビニル;(メタ)アクリル酸;(メタ)アクリル酸エチル;メチル(メタ)アクリル酸;無水マレイン酸;および(メタ)アクリル酸グリシジルからなる群から選ばれる少なくとも1種以上と、の共重合体を、1質量部以上30質量部以下さらに含む、請求項1または2に記載のフィルム。 (Compounding agent (D) as a compatibilizer (D) with respect to 100 parts by mass of the mixed resin comprising the polyolefin resin (A), the polylactic acid resin (B), and the acrylic resin (C); 1 part by weight of a copolymer of acrylic acid; ethyl (meth) acrylate; methyl (meth) acrylic acid; maleic anhydride; and at least one selected from the group consisting of glycidyl (meth) acrylates The film according to claim 1 or 2, further comprising 30 parts by mass or less. ポリ乳酸系樹脂(B)を主成分とする表裏層を両側に有することを特徴とする請求項1〜3のいずれかに記載のフィルム。 The film according to any one of claims 1 to 3, further comprising front and back layers mainly composed of a polylactic acid resin (B). 請求項1〜4のいずれかに記載のフィルムが熱収縮性を有することを特徴とする熱収縮性フィルム。 A heat shrinkable film, wherein the film according to claim 1 has heat shrinkability. 80℃温水中に10秒間浸積させた際に少なくとも一方向の収縮率が20%以上であることを特徴とする請求項5に記載の熱収縮性フィルム。 6. The heat-shrinkable film according to claim 5, wherein a shrinkage rate in at least one direction is 20% or more when immersed in warm water at 80 ° C. for 10 seconds. 請求項5または6に記載の熱収縮性フィルムを基材として用いた成形品。 A molded article using the heat-shrinkable film according to claim 5 as a substrate. 請求項5または6に記載の熱収縮性フィルムを基材として用いた熱収縮性ラベル。 A heat-shrinkable label using the heat-shrinkable film according to claim 5 or 6 as a substrate. 請求項7に記載の成形品または請求項8に記載の熱収縮性ラベルを装着した、容器。 A container equipped with the molded article according to claim 7 or the heat-shrinkable label according to claim 8.
JP2008522667A 2006-06-30 2007-06-29 Film, heat-shrinkable film, and molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article Active JP5302679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522667A JP5302679B2 (en) 2006-06-30 2007-06-29 Film, heat-shrinkable film, and molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006182664 2006-06-30
JP2006182664 2006-06-30
JP2008522667A JP5302679B2 (en) 2006-06-30 2007-06-29 Film, heat-shrinkable film, and molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
PCT/JP2007/063181 WO2008001917A1 (en) 2006-06-30 2007-06-29 Film, heat shrinkable film, molded article using the heat shrinkable film, heat shrinkable label, and container using the molded article or attached with the label

Publications (2)

Publication Number Publication Date
JPWO2008001917A1 JPWO2008001917A1 (en) 2009-12-03
JP5302679B2 true JP5302679B2 (en) 2013-10-02

Family

ID=38845677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008522667A Active JP5302679B2 (en) 2006-06-30 2007-06-29 Film, heat-shrinkable film, and molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article

Country Status (3)

Country Link
JP (1) JP5302679B2 (en)
TW (1) TW200813134A (en)
WO (1) WO2008001917A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672474B2 (en) * 2009-04-30 2015-02-18 三菱レイヨン株式会社 Compatibilizer, thermoplastic resin composition and molded article
JP5695829B2 (en) * 2010-01-25 2015-04-08 三菱樹脂株式会社 Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container using or mounting the molded product
JP5540315B2 (en) * 2010-03-30 2014-07-02 株式会社フジシール Plastic label
JP5517849B2 (en) * 2010-09-09 2014-06-11 ユニチカ株式会社 Resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301077A (en) * 2002-04-11 2003-10-21 Japan Wavelock Co Ltd Polyolefinic resin composition having biodegradability and sheet-shaped product having biodegradability
WO2005078017A1 (en) * 2004-02-16 2005-08-25 Mitsui Chemicals, Inc. Copolymer-containing aliphatic polyester resin composition
JP2005239957A (en) * 2004-02-27 2005-09-08 Hitachi Ltd Polylactic acid resin composition
JP2006051826A (en) * 2005-09-16 2006-02-23 Mitsubishi Plastics Ind Ltd Shrinkable sheet material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902371B2 (en) * 2000-01-24 2007-04-04 三菱樹脂株式会社 Biodegradable laminated sheet
JP2001354786A (en) * 2000-06-14 2001-12-25 Asahi Kasei Corp Heat-shrinkable polylactic acid resin film
JP4178742B2 (en) * 2000-11-20 2008-11-12 東レ株式会社 Thermoplastic composition and film comprising the same
JP4013555B2 (en) * 2002-01-11 2007-11-28 住友化学株式会社 Shrink wrapping film and label
JP4261242B2 (en) * 2002-04-19 2009-04-30 株式会社イシダ Food packaging bags
JP2005169972A (en) * 2003-12-15 2005-06-30 Toray Ind Inc Biaxially oriented laminated film and its manufacturing method
JP2005125803A (en) * 2005-02-04 2005-05-19 Mitsubishi Plastics Ind Ltd Multilayer biodegradable plastic film
JP4815214B2 (en) * 2005-12-28 2011-11-16 三菱樹脂株式会社 Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP2007144906A (en) * 2005-11-30 2007-06-14 Mitsubishi Plastics Ind Ltd Heat-shrinkable laminated film, molding and heat-shrinkable label using the film, and container
JP5033326B2 (en) * 2005-12-12 2012-09-26 三菱樹脂株式会社 Heat-shrinkable pore-containing film, molded article using the film, heat-shrinkable label, and container
JP4772491B2 (en) * 2005-12-12 2011-09-14 三菱樹脂株式会社 Heat-shrinkable pore-containing film, molded article using this heat-shrinkable pore-containing film, heat-shrinkable label, and container using or mounting this molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301077A (en) * 2002-04-11 2003-10-21 Japan Wavelock Co Ltd Polyolefinic resin composition having biodegradability and sheet-shaped product having biodegradability
WO2005078017A1 (en) * 2004-02-16 2005-08-25 Mitsui Chemicals, Inc. Copolymer-containing aliphatic polyester resin composition
JP2005239957A (en) * 2004-02-27 2005-09-08 Hitachi Ltd Polylactic acid resin composition
JP2006051826A (en) * 2005-09-16 2006-02-23 Mitsubishi Plastics Ind Ltd Shrinkable sheet material

Also Published As

Publication number Publication date
TW200813134A (en) 2008-03-16
WO2008001917A1 (en) 2008-01-03
JPWO2008001917A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5247150B2 (en) Polyolefin-based heat-shrinkable film, and molded products, heat-shrinkable labels, and containers using the film
EP2123699B1 (en) Thermally shrinkable film, molded article and thermally shrinkable label both using the thermally shrinkable film, and container using the molded article or having the label attached thereon
JP5160257B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP5052243B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP2009013405A (en) Film, molded article using the film, stretched film, heat shrinkable film, heat shrinkable label, and container with the label attached
JP4297911B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP5413830B2 (en) Polylactic acid-based heat-shrinkable laminated film, molded article and heat-shrinkable label using the heat-shrinkable laminated film as a base material, and container equipped with the molded article and heat-shrinkable label
JP5351007B2 (en) Polylactic acid-based heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container using or mounting the molded product
JP5209380B2 (en) Laminated body, stretched film, heat-shrinkable film, molded article using the laminated body, and container equipped with the film
JP4632866B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP4953587B2 (en) Heat-shrinkable film and molded article and container using the film
JP4334555B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP5025191B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container
JP5302679B2 (en) Film, heat-shrinkable film, and molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP5537351B2 (en) Polylactic acid heat shrinkable film
JP5042730B2 (en) Heat-shrinkable laminated film, molded article using the film, heat-shrinkable label, and container
JP5037249B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container equipped with the molded product or heat-shrinkable label
JP4815214B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP5095168B2 (en) Heat-shrinkable film, molded article using the heat-shrinkable film, heat-shrinkable label, and container using or fitted with the molded article
JP5097733B2 (en) Heat-shrinkable film, molded product and heat-shrinkable label using the heat-shrinkable film as a base material, and container equipped with the molded product and heat-shrinkable label
JP2007144906A (en) Heat-shrinkable laminated film, molding and heat-shrinkable label using the film, and container
JP5695829B2 (en) Heat-shrinkable laminated film, molded product using the film, heat-shrinkable label, and container using or mounting the molded product
JP2008044364A (en) Heat-shrinkable laminated film, molded product using it, heat-shrinkable label and container on which molded product or heat-shrinkable label is mounted

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350