Nothing Special   »   [go: up one dir, main page]

JP5384195B2 - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP5384195B2
JP5384195B2 JP2009122277A JP2009122277A JP5384195B2 JP 5384195 B2 JP5384195 B2 JP 5384195B2 JP 2009122277 A JP2009122277 A JP 2009122277A JP 2009122277 A JP2009122277 A JP 2009122277A JP 5384195 B2 JP5384195 B2 JP 5384195B2
Authority
JP
Japan
Prior art keywords
coil
power supply
tertiary
frequency
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009122277A
Other languages
Japanese (ja)
Other versions
JP2010273441A (en
Inventor
義範 片岡
悠 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heads Corp
Original Assignee
Heads Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heads Corp filed Critical Heads Corp
Priority to JP2009122277A priority Critical patent/JP5384195B2/en
Publication of JP2010273441A publication Critical patent/JP2010273441A/en
Application granted granted Critical
Publication of JP5384195B2 publication Critical patent/JP5384195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は移動自動車の負荷(例えば、バッテリ、電球、機械装置の電源等)に非接触で電力を供給する非接触電力供給装置に関する。 The present invention relates to a contactless power supply device that supplies power to a load (for example, a battery, a light bulb, a power supply of a mechanical device, etc.) of a mobile vehicle in a contactless manner.

例えば、工場等で電池で動く車両は、定期的に電池を充電する必要があり、所定の場所において充電器の近くに車両を止めて、接続コードを用いて車両の電池と充電器を接続し、電池への充電が行われていた。ところが、接続コードを用いて電池へ充電する場合、接続コードを電力供給源に接続する等、極めて手間であるので、例えば、特許文献1〜3に示すように、車両に非接触で電力を供給することが行われている。この特許文献1〜3においては、高周波電源に接続された一次コイルと、負荷に接続される二次コイルを有し、一次コイル側又は二次コイル側にL(リアクトル)とC(キャパシティ)からなる共振回路が設けられている。 For example, a vehicle powered by a battery in a factory, etc., needs to be charged regularly. Stop the vehicle near the charger at a predetermined place and connect the battery of the vehicle and the charger using a connection cord. The battery was being charged. However, when charging a battery using a connection cord, it is extremely troublesome to connect the connection cord to a power supply source. For example, as shown in Patent Documents 1 to 3, power is supplied to the vehicle without contact. To be done. In Patent Documents 1 to 3, a primary coil connected to a high-frequency power source and a secondary coil connected to a load are provided, and L (reactor) and C (capacity) are provided on the primary coil side or the secondary coil side. A resonant circuit is provided.

特開2005−94862号公報Japanese Patent Laid-Open No. 2005-94862 特開2006−325350号公報JP 2006-325350 A WO2006/022365号公報WO2006 / 022365 特開昭63−73837号公報JP-A-63-73837

しかしながら、特許文献1〜3に記載のように、一次コイル側又は二次コイル側に共振回路を組み込むと、大きな負荷電流を得にくいという問題が発生した。この理由については、明確ではないが、回路に負荷が接続されているので、回路のキュー(Q)が下がるためであると推定される。 However, as described in Patent Documents 1 to 3, when a resonance circuit is incorporated on the primary coil side or the secondary coil side, there is a problem that it is difficult to obtain a large load current. Although the reason for this is not clear, it is presumed that the circuit queue (Q) is lowered because a load is connected to the circuit.

一方、特許文献4の図7には、可飽和鉄心を用い、負荷を接続する二次コイルの他に、共振用のコンデンサ(キャパシター)を負荷とする三次コイルを設けた電力供給装置が提案され、このキャパシター回路と二次コイルは電気的に絶縁状態であることが記載されている。
そこで、本発明者は二次コイルの他に、三次コイルを設け、三次コイルに共振回路を組み込む、即ち、並列に所定量のコンデンサを接続して、二次コイルの近傍に配置すると、共振電流が流れて、二次コイルに十分に負荷電流を流せることを確認したが、二次コイルと三次コイルを絶縁状態で配置しても、二次コイルと三次コイルを同一コアに重ね巻きをすると、三次コイルに大容量の共振電流(例えば、100Aを超える)が流れるので、二次コイルが過度に加熱され、高周波電源の周波数を共振周波数からかなりずらして使用する必要があるという問題があることが判った。なお、共振周波数をずらすと、一次コイルから二次コイルへの電力伝搬効率が下がるという問題が発生する。
On the other hand, FIG. 7 of Patent Document 4 proposes a power supply device that uses a saturable iron core and includes a secondary coil that connects a load and a tertiary coil that uses a capacitor for resonance (capacitor) as a load. The capacitor circuit and the secondary coil are described as being electrically insulated.
Therefore, the present inventor provides a tertiary coil in addition to the secondary coil, and incorporates a resonance circuit in the tertiary coil, that is, when a predetermined amount of capacitor is connected in parallel and arranged near the secondary coil, It was confirmed that the load current can be sufficiently passed through the secondary coil, but even if the secondary coil and the tertiary coil are arranged in an insulated state, when the secondary coil and the tertiary coil are wound on the same core, Since a large-capacity resonance current (for example, more than 100 A) flows through the tertiary coil, there is a problem that the secondary coil is excessively heated and the frequency of the high-frequency power source needs to be shifted considerably from the resonance frequency. understood. If the resonance frequency is shifted, there arises a problem that the power propagation efficiency from the primary coil to the secondary coil decreases.

そこで、二次コイルと三次コイルを分離して非接触電力供給装置を試作してみたが、一次コイル、二次コイル、三次コイルの順番で配列すると、二次コイルが同じく過度(例えば、200℃以上)に加熱され、高周波電源の周波数を共振周波数からずらさなければ、実用化が困難であるという問題が発生した。ところが、一次コイル、三次コイル、二次コイルの順番に配置すると、理由については明確ではないが、高周波電源の周波数を共振周波数又はその近傍値に合わせても二次コイルの発熱はある程度抑えられるということが判った。 Then, although the secondary coil and the tertiary coil were separated and the trial production of the non-contact power supply device was made, when the primary coil, the secondary coil, and the tertiary coil are arranged in this order, the secondary coil is also excessive (for example, 200 ° C. If the frequency of the high-frequency power source is not shifted from the resonance frequency, the practical application is difficult. However, if the primary coil, the tertiary coil, and the secondary coil are arranged in this order, the reason is not clear, but even if the frequency of the high-frequency power source is adjusted to the resonance frequency or a value close thereto, the heat generation of the secondary coil can be suppressed to some extent. I found out.

本発明はかかる事情に鑑みてなされたもので、共振用コンデンサに接続される三次コイルと、負荷に供給する電力を発生させる二次コイルとの構成及び配置を工夫して、給電部と受電部の距離を離し、二次電流としてより大電流を得ることが可能な非接触電力供給装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and devised the configuration and arrangement of a tertiary coil connected to a resonance capacitor and a secondary coil that generates power to be supplied to a load, and a power feeding unit and a power receiving unit. It is an object of the present invention to provide a non-contact power supply apparatus that is capable of obtaining a larger current as a secondary current by separating the distance.

前記目的に沿う第1の発明に係る非接触電力供給装置は、固定状態で配置されて高周波電源に接続される一次コイルを備えた給電部と、移動車両に搭載されて、該移動車両が所定位置又は所定領域にある場合に、前記給電部に隙間を有して対向配置され、前記一次コイルに磁気結合する二次コイル及び三次コイルを有し、前記二次コイルに負荷に供給する電力を発生させ、前記三次コイルには共振用コンデンサが接続された受電部とを備える非接触電力供給装置であって、
前記二次コイルと前記三次コイルを別々に分離して配置し、しかも、前記三次コイルを前記二次コイルより前記一次コイルに近い前側に配置し
前記一次コイルは巻線が空心でかつ渦巻き平面状となって、前記一次コイルの背部に、該一次コイルを背部から覆うフェライトコアからなる磁気シールド板が配置され、前記三次コイル及び前記二次コイルはフェライトコアを用いて形成されるE形コアの中央磁極部に分けて巻回され、
更に、前記一次コイルと、該一次コイルと距離Lだけ離して配置される前記三次コイルと、該三次コイルの直後に配置される前記二次コイルと、前記共振用コンデンサとを有して形成される共振回路の共振周波数を、前記高周波電源の周波数に一致させ、前記一次コイルと前記三次コイルが距離Lより近づくと、前記共振回路の共振周波数が、前記高周波電源の周波数からずれて負荷電流を減少させる。
A non-contact power supply apparatus according to a first invention that meets the above-mentioned object is mounted on a moving vehicle, including a power feeding unit that is arranged in a fixed state and is connected to a high-frequency power source. When located at a position or in a predetermined region, the power feeding unit is opposed to each other with a gap, and has a secondary coil and a tertiary coil that are magnetically coupled to the primary coil, and supplies power to the load to the secondary coil. A non-contact power supply device including a power reception unit to which a resonance capacitor is connected to the tertiary coil,
The secondary coil and the tertiary coil are separately disposed, and the tertiary coil is disposed closer to the front side of the secondary coil than the secondary coil ,
The primary coil has an air core and a spiral flat surface, and a magnetic shield plate made of a ferrite core covering the primary coil from the back is disposed on the back of the primary coil, and the tertiary coil and the secondary coil Is wound around the central magnetic pole part of the E-shaped core formed using a ferrite core,
Furthermore, the primary coil, the tertiary coil disposed at a distance L from the primary coil, the secondary coil disposed immediately after the tertiary coil, and the resonance capacitor are formed. When the resonance frequency of the resonance circuit is matched with the frequency of the high-frequency power source, and the primary coil and the tertiary coil are closer than the distance L, the resonance frequency of the resonance circuit is shifted from the frequency of the high-frequency power source and the load current is reduced. Ru is reduced.

の発明に係る非接触電力供給装置は、第の発明に係る非接触電力供給装置において、前記距離Lは15〜50mmの範囲にある。 A contactless power supply apparatus according to the second invention, in the contactless power supply device according to the first invention, the distance L is in the range of 15 to 50 mm.

そして、第の発明に係る非接触電力供給装置は、第1、第2の発明に係る非接触電力供給装置において、前記負荷は前記移動車両の電源となるバッテリである。この場合、当然のことながら、二次コイルには整流回路を含むバッテリの充電回路が設けられている。 And the non-contact electric power supply apparatus which concerns on 3rd invention is the non-contact electric power supply apparatus which concerns on the 1st , 2nd invention. WHEREIN: The said load is a battery used as the power supply of the said mobile vehicle. In this case, as a matter of course, the secondary coil is provided with a battery charging circuit including a rectifier circuit.

請求項1〜記載の非接触電力供給装置は、二次コイルと三次コイルを別々に分離して配置しているので、大電流が流れる三次コイルからの熱伝導も減少し、しかも、三次コイルを二次コイルより一次コイルに近い前側に配置しているので、二次コイルが過度に加熱されない。このことは実験結果から明らかであるが、1)三次コイルによって発生する磁束は、電力が供給される一次コイル側の方が二次コイル側より大きいことと、2)三次コイルを二次コイルの後側に配置すると、三次コイルの磁束(漏洩磁束が主体)によって二次コイルが誘導加熱されることが原因と解される。 In the non-contact power supply device according to claims 1 to 3 , since the secondary coil and the tertiary coil are separately arranged, heat conduction from the tertiary coil through which a large current flows is reduced, and the tertiary coil Is arranged on the front side closer to the primary coil than the secondary coil, the secondary coil is not heated excessively. This is obvious from the experimental results. 1) The magnetic flux generated by the tertiary coil is larger on the primary coil side to which power is supplied, and 2) the tertiary coil is connected to the secondary coil side. If it arrange | positions at a rear side, it will be understood that a secondary coil is induction-heated by the magnetic flux (mainly leakage magnetic flux) of a tertiary coil.

特に、一次コイルと、この一次コイルと距離Lだけ離して配置される三次コイルと、該三次コイルの直後に配置される二次コイルと、共振用コンデンサとを有して形成される共振回路の共振周波数を、高周波電源の周波数に一致させ、一次コイルと三次コイルが距離Lより近づくと、共振回路の共振周波数が、高周波電源の周波数からずれるようにしているので、受電部を給電部に近づけすぎても、過大な電力が受電部に供給されることがなく、従って、安全に操業できる。 In particular, a resonance circuit formed by including a primary coil, a tertiary coil disposed at a distance L from the primary coil, a secondary coil disposed immediately after the tertiary coil, and a resonance capacitor. When the resonance frequency is matched with the frequency of the high frequency power supply and the primary coil and the tertiary coil are closer than the distance L, the resonance frequency of the resonance circuit is shifted from the frequency of the high frequency power supply. Even if it is too much, excessive electric power is not supplied to the power receiving unit, and therefore it can be operated safely.

請求項記載の非接触電力供給装置は、距離Lを15〜50mmの範囲にしている。これによって、給電部から受電部への送電を効率よく行うことができる。 In the non-contact power supply device according to claim 2 , the distance L is in the range of 15 to 50 mm. Thereby, power transmission from the power feeding unit to the power receiving unit can be performed efficiently.

また、請求項1〜3記載の非接触電力供給装置は、一次コイルは巻線が空心でかつ渦巻き平面状となって、一次コイルの背部に、一次コイルを背部から覆うフェライトコアからなる磁気シールド板が配置されているので、磁気シールド材がコアの役目をすると共に、背部に発生する磁束によって、機器が誘導加熱されるのを防止できる。また、三次コイル及び二次コイルはフェライトコアを用いて形成されるE形コアの中央磁極部に分けて巻回されているので、磁気効率を高めると共に、共振回路を構成する三次コイルによって発生する大きな磁束を外部に漏らすのを防止できる。
更に、一次コイルを巻線が空心かつ渦巻き平面状としているので、給電部を薄く形成できる。
Further, in the non-contact power supply device according to any one of claims 1 to 3 , the primary coil is a magnetic shield comprising a ferrite core covering the primary coil from the back portion on the back portion of the primary coil, the winding having an air core and a spiral plane shape. Since the plate is arranged, the magnetic shield material serves as a core, and the apparatus can be prevented from being induction heated by the magnetic flux generated at the back. Further, since the tertiary coil and the secondary coil are separately wound around the central magnetic pole portion of the E-shaped core formed using the ferrite core, the magnetic efficiency is increased and the tertiary coil is generated by the tertiary coil constituting the resonance circuit. A large magnetic flux can be prevented from leaking outside.
Further, since the primary coil has an air core and a spiral plane, the power feeding portion can be formed thin.

そして、請求項記載の非接触電力供給装置は、負荷は移動車両の電源となるバッテリであるので、受電部と給電部を非接触の状態で、移動車両のバッテリの充電ができることになる。 In the non-contact power supply apparatus according to the third aspect , since the load is a battery serving as a power source for the moving vehicle, the battery of the moving vehicle can be charged with the power receiving unit and the power feeding unit in a non-contact state.

本発明の一実施の形態に係る非接触電力供給装置の説明図である。It is explanatory drawing of the non-contact electric power supply apparatus which concerns on one embodiment of this invention. (A)、(B)は同非接触電力供給装置に使用する一次コイルの概略構成を示す正面図及び断面図である。(A), (B) is the front view and sectional drawing which show schematic structure of the primary coil used for the non-contact electric power supply apparatus. (A)、(B)は同非接触電力供給装置に使用する受電部の主要部の概略構成を示す正面図及び断面図である。(A), (B) is the front view and sectional drawing which show schematic structure of the principal part of the power receiving part used for the non-contact electric power supply apparatus. 本発明の非接触電力供給装置の動作を説明するためのグラフである。It is a graph for demonstrating operation | movement of the non-contact electric power supply apparatus of this invention. 本発明の他の実施の形態に係る非接触電力供給装置の説明図である。It is explanatory drawing of the non-contact electric power supply apparatus which concerns on other embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1〜図3に示すように、本発明の一実施の形態に係る非接触電力供給装置10は、側壁、床部又は天井部に配置された給電部11と、移動車両12に設けられた受電部13とを有している。以下、これらについて詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 to 3, the non-contact power supply device 10 according to one embodiment of the present invention is provided in a power supply unit 11 disposed on a side wall, a floor portion, or a ceiling portion, and a mobile vehicle 12. And a power receiving unit 13. These will be described in detail below.

給電部11には空心で渦巻き平面状に巻かれた一次コイル14が固定状態で配置され、この一次コイル14には高周波電源15が接続されている。この高周波電源15は交流電源の整流回路と、整流回路からの直流を20kHz〜100kHz(この実施の形態では、20kHz〜30kHz)の高周波に変換するインバータ回路とを有している。 A primary coil 14 wound in a spiral plane with an air core is disposed in a fixed state in the power supply unit 11, and a high-frequency power source 15 is connected to the primary coil 14. The high-frequency power supply 15 includes a rectifier circuit of an AC power supply and an inverter circuit that converts a direct current from the rectifier circuit to a high frequency of 20 kHz to 100 kHz (in this embodiment, 20 kHz to 30 kHz).

図3に示すように、受電部13には分離状態で配置された二次コイル17と三次コイル18を有し、これらの二次コイル17と三次コイル18は、それぞれE形コア20の中央磁極部21に巻かれている。三次コイル18の巻数は12回、二次コイル17の巻数は2回プラス2回の計4回で、中点を出力している。図3(A)において、22、23は三次コイル18の接続用リード線で、24〜27はそれぞれ2回巻の二次コイル17の接続用リード線となっている。なお、受電部13は移動車両12が所定位置又は所定領域にある場合に、給電部11に隙間を有して対向配置されて、一次コイル14に二次コイル17及び三次コイル18が磁気結合する。 As shown in FIG. 3, the power receiving unit 13 includes a secondary coil 17 and a tertiary coil 18 that are arranged in a separated state, and the secondary coil 17 and the tertiary coil 18 are each a central magnetic pole of the E-shaped core 20. It is wound around part 21. The number of turns of the tertiary coil 18 is 12, and the number of turns of the secondary coil 17 is 2 times plus 2 times, for a total of 4 times, and the middle point is output. In FIG. 3A, reference numerals 22 and 23 are connection lead wires for the tertiary coil 18, and reference numerals 24-27 are connection lead wires for the secondary coil 17 that is wound twice. In addition, when the moving vehicle 12 is in a predetermined position or a predetermined region, the power receiving unit 13 is disposed so as to face the power feeding unit 11 with a gap, and the secondary coil 17 and the tertiary coil 18 are magnetically coupled to the primary coil 14. .

E形コア20は、E形に形成した4枚の平面視してE形に成形されたフェライトコア板を重ね合わせて形成され、中央磁極部21の両側に端側磁極部28、29を有して、全体として、通過する磁束によって飽和しないような断面積を有している。このE形コア20の奥側に二次コイル17が手前側に三次コイル18が配置されている。即ち、三次コイル18は二次コイル17より一次コイル14に近い側に配置されている。これらの二次コイル17及び三次コイル18は樹脂封止することもできるが、この実施の形態では空冷環境を保つため、樹脂封止はされていない。 The E-shaped core 20 is formed by superposing four E-shaped ferrite core plates formed in an E shape in plan view, and has end-side magnetic pole portions 28 and 29 on both sides of the central magnetic pole portion 21. As a whole, it has a cross-sectional area that is not saturated by the passing magnetic flux. A secondary coil 17 is disposed on the back side of the E-shaped core 20 and a tertiary coil 18 is disposed on the near side. That is, the tertiary coil 18 is disposed closer to the primary coil 14 than the secondary coil 17. Although the secondary coil 17 and the tertiary coil 18 can be sealed with resin, in this embodiment, the resin is not sealed in order to maintain an air-cooled environment.

一方、給電部11は高周波電源15に接続される一次コイル14を有している。一次コイル14は、図2(A)、(B)に示すように、空心で角部が丸くなった角形(円形、楕円形であってもよい)で、かつ渦巻き平面状に銅線を8〜10回巻いて構成されている。なお、この一次コイル14の縦寸法及び横寸法は、三次コイル18(なお、この実施の形態では二次コイル17の寸法も同じ)の縦寸法及び横寸法と同一となっている。なお、図2において、31、32は接続用リード線を示す。 On the other hand, the power feeding unit 11 has a primary coil 14 connected to a high frequency power supply 15. As shown in FIGS. 2 (A) and 2 (B), the primary coil 14 has a square shape (which may be circular or elliptical) with rounded corners in the air center, and 8 copper wires in a spiral plane shape. It is composed of 10 to 10 turns. The vertical and horizontal dimensions of the primary coil 14 are the same as the vertical and horizontal dimensions of the tertiary coil 18 (the secondary coil 17 is the same in this embodiment). In FIG. 2, reference numerals 31 and 32 denote connection leads.

平面状となったこの一次コイル14の背部には、高周波磁気特性のよいフェライトコアからなるシールド板(磁気シールド板)33が配置されている。このシールド板33の平面視した寸法は、図3に示すように正面視したE形コア20の縦寸法a及び横寸法bと同一か、多少広くなっている。シールド板33の厚みは発生する磁束によって飽和しないような断面積を有する厚みとなっている。 A shield plate (magnetic shield plate) 33 made of a ferrite core having good high-frequency magnetic properties is disposed on the back of the flat primary coil 14. The dimensions of the shield plate 33 in plan view are the same as or slightly wider than the vertical dimension a and the horizontal dimension b of the E-shaped core 20 as viewed from the front as shown in FIG. The thickness of the shield plate 33 has a cross-sectional area that does not saturate with the generated magnetic flux.

図1に示すように、三次コイル18には共振用のコンデンサ35が接続されている。このコンデンサ35は高周波使用時に十分内部抵抗の小さい(即ち、tanδの小さい)、複数のコンデンサを並列に接続して構成される。一方、二次コイル17には、整流回路を含む充電回路36が接続され、負荷である電池(バッテリ)37に直流電力を供給するようになっている。なお、この移動車両12には、この電池37を電源とするモータ及び制御装置が設けられ、車輪を駆動している。 As shown in FIG. 1, a resonance capacitor 35 is connected to the tertiary coil 18. This capacitor 35 has a sufficiently small internal resistance (ie, a small tan δ) when using a high frequency, and is constituted by connecting a plurality of capacitors in parallel. On the other hand, a charging circuit 36 including a rectifier circuit is connected to the secondary coil 17 to supply DC power to a battery (battery) 37 that is a load. The moving vehicle 12 is provided with a motor and a control device using the battery 37 as a power source to drive the wheels.

この非接触電力供給装置10においては、高周波電源15側からみたインダクタンス(即ち、一次コイル14、二次コイル17、三次コイル18)と、コンデンサ35によって形成される共振回路Zの共振周波数fは、給電部11と受電部12を距離L、即ち一次コイル14と三次コイル18を距離L(この実施の形態では15〜50mm、より好ましくは、15〜25mmの範囲にある)に配置した場合に、高周波電源15の発振周波数に一致するように、コンデンサ35の値を決定している。 In this non-contact power supply device 10, the resonance frequency f of the resonance circuit Z formed by the inductance (that is, the primary coil 14, the secondary coil 17, the tertiary coil 18) and the capacitor 35 viewed from the high-frequency power supply 15 side is: When the power feeding unit 11 and the power receiving unit 12 are arranged at a distance L, that is, the primary coil 14 and the tertiary coil 18 are arranged at a distance L (in this embodiment, 15 to 50 mm, more preferably 15 to 25 mm), The value of the capacitor 35 is determined so as to match the oscillation frequency of the high frequency power supply 15.

これによって、給電部11と受電部12の距離が、Lより小さくなって0mmに近づくと、共振回路Zの共振周波数fが大きくなって、高周波電源15の発振周波数からずれる。一方、給電部11と受電部12の距離が小さくなると、一次コイル14と二次コイル17の結合が密になって、同一負荷の場合、電流が増加するが、共振回路Zの共振周波数fが、高周波電源15の発振周波数よりずれることによる負荷電流の減少の方が著しく、結果として、図4に示すように、距離Lから小さくなると負荷電流は減少する。 As a result, when the distance between the power feeding unit 11 and the power receiving unit 12 becomes smaller than L and approaches 0 mm, the resonance frequency f of the resonance circuit Z increases and deviates from the oscillation frequency of the high frequency power supply 15. On the other hand, when the distance between the power feeding unit 11 and the power receiving unit 12 is reduced, the coupling between the primary coil 14 and the secondary coil 17 becomes dense, and in the case of the same load, the current increases, but the resonance frequency f of the resonance circuit Z is As a result, the load current decreases as the distance from the distance L decreases, as shown in FIG.

なお、本願発明のように、三次コイル18にコンデンサ35を直接接続した共振回路を形成した場合は、共振回路のQが大きくなると思われ、共振時の負荷電流が大きくなり、共振状態から外れると、負荷電流が小さくなることが確認されている。一方、三次コイルを設けず、共振回路に負荷が接続されている場合には、共振回路のQが小さくなって、給電部と受電部の間の距離の相違による電流の増減が小さく、図4に示すような効果は顕著にはでないものと思慮される。 In addition, when the resonant circuit which directly connected the capacitor | condenser 35 to the tertiary coil 18 is formed like this invention, it is thought that Q of a resonant circuit becomes large, the load current at the time of resonance becomes large, and it remove | deviates from a resonant state. It has been confirmed that the load current becomes small. On the other hand, when the tertiary coil is not provided and a load is connected to the resonance circuit, the Q of the resonance circuit becomes small, and the increase / decrease in current due to the difference in distance between the power feeding unit and the power receiving unit is small. It is considered that the effect shown in is not remarkable.

また、共振回路Zの共振周波数fは、一次コイル14、二次コイル17、三次コイル18の巻数、形状、相互の間隔と、コンデンサ35の値によって形成される。従って、一次コイル14、二次コイル17、三次コイル18を予めセットしておき、給電部11と受電部13の距離(間隔)Lを所定値に決めた後、高周波電源の発振周波数を調整して、共振回路Zの共振周波数fに、高周波電源15の発振周波数を合わせるのがよい。
この非接触電力供給装置10を用いて実験すると、給電部11と受電部13を離し、供給されるAC電源の電圧は200V、10Aで、出力は50V、20Aで蓄電池37を充電することができた。
Further, the resonance frequency f of the resonance circuit Z is formed by the number of turns, the shape, the interval between the primary coil 14, the secondary coil 17 and the tertiary coil 18, and the value of the capacitor 35. Accordingly, the primary coil 14, the secondary coil 17, and the tertiary coil 18 are set in advance, and after the distance (interval) L between the power feeding unit 11 and the power receiving unit 13 is set to a predetermined value, the oscillation frequency of the high frequency power source is adjusted. Therefore, it is preferable to match the oscillation frequency of the high frequency power supply 15 with the resonance frequency f of the resonance circuit Z.
When an experiment is performed using this non-contact power supply device 10, the power supply unit 11 and the power receiving unit 13 are separated from each other, and the storage battery 37 can be charged with the supplied AC power supply voltage of 200 V and 10 A, and the output of 50 V and 20 A. It was.

前記実施の形態においては、受電部にE形コアを使用し、中央磁極部に二次コイル、及び三次コイルを分離して巻回したが、図5に示すように、一次コイル40、二次コイル41及び三次コイル42を空心で渦巻き平面状とし、受電部46には、一次コイル40に近い側に三次コイル42を、その直後に二次コイル41を、そして二次コイル41の直後にフェライトコアからなるシールド板43を配置することもできる。この場合、一次コイル40の背部にもフェライトコアからなるシールド板44を配置することになる。一次コイル40、二次コイル41及び三次コイル42の平面視した形状は、円形、矩形(角を丸くする場合も含む)、楕円、等とすることもできる。 In the above embodiment, the E-type core is used for the power receiving unit, and the secondary coil and the tertiary coil are separately wound around the central magnetic pole unit. However, as shown in FIG. The coil 41 and the tertiary coil 42 are spiral and flat in the air core. The power receiving unit 46 has a tertiary coil 42 on the side close to the primary coil 40, a secondary coil 41 immediately thereafter, and a ferrite immediately after the secondary coil 41. A shield plate 43 made of a core can also be disposed. In this case, a shield plate 44 made of a ferrite core is also arranged on the back of the primary coil 40. The shape of the primary coil 40, the secondary coil 41, and the tertiary coil 42 in a plan view may be a circle, a rectangle (including a case where a corner is rounded), an ellipse, or the like.

また、シールド板43の形状は二次コイル41より大きく、シールド板44の形状は一次コイル40より大きくして、それぞれ背部にある機器への加熱を防止し、更に各コイル40、41の磁路抵抗を小さくしている。高周波電源15の周波数の調整、充電回路36、電池37の構成は非接触電力供給装置10と同一である。図5において、45は給電部、Lは給電部45と受電部46の間隔(距離)を示す。 Further, the shield plate 43 is larger than the secondary coil 41 and the shield plate 44 is larger than the primary coil 40 to prevent heating of the equipment at the back, and the magnetic paths of the coils 40 and 41 are further reduced. The resistance is reduced. The frequency adjustment of the high frequency power supply 15 and the configuration of the charging circuit 36 and the battery 37 are the same as those of the non-contact power supply apparatus 10. In FIG. 5, 45 indicates a power supply unit, and L indicates a distance (distance) between the power supply unit 45 and the power reception unit 46.

本発明は前記実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲で、形状、寸法、巻数などは変更できる。
また、移動車両には自動車を含む。
更には、分離して配置される一次コイル、二次コイル、三次コイルの巻形状は任意であり、平面渦巻き状に巻く場合の他、有心又は無心に関わらず、これらの一部のコイル又は全部を分離状態で筒状巻、重ね巻する場合も本発明は適用される。
The present invention is not limited to the embodiment described above, and the shape, dimensions, number of turns, and the like can be changed without departing from the scope of the present invention.
The moving vehicle includes an automobile.
Furthermore, the winding shape of the primary coil, the secondary coil, and the tertiary coil that are separately arranged is arbitrary, and in addition to the case of winding in a plane spiral shape, some or all of these coils, regardless of whether they are centered or uncentered The present invention is also applied to a case where the tube is wound in a cylindrical state or an overlapped state in a separated state.

10:非接触電力供給装置、11:給電部、12:移動車両、13:受電部、14:一次コイル、15:高周波電源、17:二次コイル、18:三次コイル、20:E形コア、21:中央磁極部、22〜27:接続用リード線、28、29:端側磁極部、31、32:接続用リード線、33:シールド板、35:コンデンサ、36:充電回路、37:電池、40:一次コイル、41:二次コイル、42:三次コイル、43、44:シールド板、45:給電部、46:受電部 10: Non-contact power supply device, 11: Power feeding unit, 12: Mobile vehicle, 13: Power receiving unit, 14: Primary coil, 15: High frequency power source, 17: Secondary coil, 18: Tertiary coil, 20: E-shaped core, 21: Central magnetic pole part, 22-27: Connection lead wire, 28, 29: End side magnetic pole part, 31, 32: Connection lead wire, 33: Shield plate, 35: Capacitor, 36: Charging circuit, 37: Battery 40: primary coil, 41: secondary coil, 42: tertiary coil, 43, 44: shield plate, 45: power feeding unit, 46: power receiving unit

Claims (3)

固定状態で配置されて高周波電源に接続される一次コイルを備えた給電部と、移動車両に搭載されて、該移動車両が所定位置又は所定領域にある場合に、前記給電部に隙間を有して対向配置され、前記一次コイルに磁気結合する二次コイル及び三次コイルを有し、前記二次コイルに負荷に供給する電力を発生させ、前記三次コイルには共振用コンデンサが接続された受電部とを備える非接触電力供給装置であって、
前記二次コイルと前記三次コイルを別々に分離して配置し、しかも、前記三次コイルを前記二次コイルより前記一次コイルに近い前側に配置し
前記一次コイルは巻線が空心でかつ渦巻き平面状となって、前記一次コイルの背部に、該一次コイルを背部から覆うフェライトコアからなる磁気シールド板が配置され、前記三次コイル及び前記二次コイルはフェライトコアを用いて形成されるE形コアの中央磁極部に分けて巻回され、
更に、前記一次コイルと、該一次コイルと距離Lだけ離して配置される前記三次コイルと、該三次コイルの直後に配置される前記二次コイルと、前記共振用コンデンサとを有して形成される共振回路の共振周波数を、前記高周波電源の周波数に一致させ、前記一次コイルと前記三次コイルが距離Lより近づくと、前記共振回路の共振周波数が、前記高周波電源の周波数からずれて負荷電流を減少させることを特徴とする非接触電力供給装置。
A power supply unit provided with a primary coil that is arranged in a fixed state and connected to a high-frequency power supply, and when the mobile vehicle is located at a predetermined position or a predetermined region, the power supply unit has a gap. Power receiving unit having a secondary coil and a tertiary coil magnetically coupled to the primary coil, generating electric power to be supplied to a load to the secondary coil, and a resonance capacitor connected to the tertiary coil A contactless power supply device comprising:
The secondary coil and the tertiary coil are separately disposed, and the tertiary coil is disposed closer to the front side of the secondary coil than the secondary coil ,
The primary coil has an air core and a spiral flat surface, and a magnetic shield plate made of a ferrite core covering the primary coil from the back is disposed on the back of the primary coil, and the tertiary coil and the secondary coil Is wound around the central magnetic pole part of the E-shaped core formed using a ferrite core,
Furthermore, the primary coil, the tertiary coil disposed at a distance L from the primary coil, the secondary coil disposed immediately after the tertiary coil, and the resonance capacitor are formed. When the resonance frequency of the resonance circuit is matched with the frequency of the high-frequency power source, and the primary coil and the tertiary coil are closer than the distance L, the resonance frequency of the resonance circuit is shifted from the frequency of the high-frequency power source and the load current is reduced. A non-contact power supply device characterized by being reduced .
請求項記載の非接触電力供給装置において、前記距離Lは15〜50mmの範囲にあることを特徴とする非接触電力供給装置。 2. The non-contact power supply apparatus according to claim 1 , wherein the distance L is in a range of 15 to 50 mm. 請求項1又は2記載の非接触電力供給装置において、前記負荷は前記移動車両の電源となるバッテリであることを特徴とする非接触電力供給装置。 3. The contactless power supply apparatus according to claim 1 or 2 , wherein the load is a battery serving as a power source for the mobile vehicle.
JP2009122277A 2009-05-20 2009-05-20 Non-contact power supply device Active JP5384195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122277A JP5384195B2 (en) 2009-05-20 2009-05-20 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122277A JP5384195B2 (en) 2009-05-20 2009-05-20 Non-contact power supply device

Publications (2)

Publication Number Publication Date
JP2010273441A JP2010273441A (en) 2010-12-02
JP5384195B2 true JP5384195B2 (en) 2014-01-08

Family

ID=43421019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122277A Active JP5384195B2 (en) 2009-05-20 2009-05-20 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JP5384195B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143146A (en) * 2011-01-03 2012-07-26 Samsung Electronics Co Ltd Wireless power transmission apparatus and wireless power transmission system thereof
JP2012216687A (en) * 2011-03-31 2012-11-08 Sony Corp Power reception coil, power reception device, and non contact power transmission system
WO2012160660A1 (en) * 2011-05-25 2012-11-29 株式会社日立製作所 Charging system
KR101364185B1 (en) 2011-09-26 2014-02-20 한국과학기술원 Loop type emf shielding apparatus
EP2879273A4 (en) * 2013-03-06 2016-04-27 Heads Co Ltd Contactless power supply device
DE102014212842A1 (en) * 2014-07-02 2016-01-07 Robert Bosch Gmbh Device for inductive charging of an electrical storage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427663B2 (en) * 1996-06-18 2003-07-22 凸版印刷株式会社 Non-contact IC card
JP3598715B2 (en) * 1997-03-06 2004-12-08 神鋼電機株式会社 Non-contact power supply
JP2002017046A (en) * 2000-06-30 2002-01-18 Toko Inc Noncontact battery charger
JP5041830B2 (en) * 2006-03-15 2012-10-03 株式会社半導体エネルギー研究所 Automobile
KR101473600B1 (en) * 2007-09-17 2014-12-16 퀄컴 인코포레이티드 High efficiency and power transfer in wireless power magnetic resonators
JP2010263690A (en) * 2009-05-01 2010-11-18 Panasonic Electric Works Co Ltd Transmission system

Also Published As

Publication number Publication date
JP2010273441A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP6371364B2 (en) Non-contact power supply device
US10381148B2 (en) Transformer and power converter using the same
JP5970158B2 (en) Contactless power supply
JP5437650B2 (en) Non-contact power feeding device
JP4318742B1 (en) Non-contact power supply device
JP6154835B2 (en) Non-contact power supply device
JP5813973B2 (en) Non-contact power supply coil device
JP5384195B2 (en) Non-contact power supply device
US20150028687A1 (en) Power transmitting device, power receiving device and power transfer system
JP5490385B2 (en) Non-contact power feeding device
US11043845B2 (en) Power feeding device and wireless power transmission device
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
JP2013219210A (en) Non-contact power transmission device
US20160197492A1 (en) Contactless power transmission device
JP5646688B2 (en) Contactless power supply system
WO2012001758A1 (en) Non-contact electric power feeding device
JP6232779B2 (en) Coil unit
JP2021077826A (en) Coil unit, power transmitting device, power receiving device and power transmission system
US10305330B2 (en) Power transmission device
JP6583037B2 (en) Wireless power transmission system
JP2019179904A (en) Coil unit, wireless power transmission device, wireless power reception device, and wireless power transmission system
US10084351B2 (en) Power feeding device
JP2015023614A (en) Non-contact charging system of reach type electric forklift
JP2017147823A (en) Wireless power reception device and wireless power transmission system
KR101873399B1 (en) Resonant Inductor of Wireless Power Transfer Apparatus and a method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5384195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250