Nothing Special   »   [go: up one dir, main page]

JP5353618B2 - Reactor iron core parts - Google Patents

Reactor iron core parts Download PDF

Info

Publication number
JP5353618B2
JP5353618B2 JP2009234828A JP2009234828A JP5353618B2 JP 5353618 B2 JP5353618 B2 JP 5353618B2 JP 2009234828 A JP2009234828 A JP 2009234828A JP 2009234828 A JP2009234828 A JP 2009234828A JP 5353618 B2 JP5353618 B2 JP 5353618B2
Authority
JP
Japan
Prior art keywords
iron core
case
reactor
wall
core member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009234828A
Other languages
Japanese (ja)
Other versions
JP2011082412A (en
Inventor
常弘 山路
勝司 笠井
雅人 尾川
克明 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009234828A priority Critical patent/JP5353618B2/en
Publication of JP2011082412A publication Critical patent/JP2011082412A/en
Application granted granted Critical
Publication of JP5353618B2 publication Critical patent/JP5353618B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、リアクトルの鉄芯用部品に関するものである。   The present invention relates to a core part for a reactor.

軟磁性鋼板を積層させた積層体からなる鉄芯が、リアクトルなどに広く使用されている。一般に従来の鉄芯は、打ち抜き加工して得られた鋼板(コア材)を積層・接着することでブロック状の積層体とし、この積層体を磁路が形成されるように複数個組み付けて構成される。このような積層体の組み付けを伴うリアクトルの製造工程では、ギャップ材を挟みながら積層体どうしを組み付け、その間にコイルの装着も行う必要があるため、工程数が多く作業全体が煩雑であり、しかもギャップ材を高精度に取り付けすることが難しく、振動を生じさせるような取り付け不良も生じやすい。
このような問題に対して、複数の積層体の組み付けを容易にし、或いはギャップ形成を容易にするために、樹脂製の鉄芯ケースに積層体を収納して鉄芯を構成するようにした技術が、例えば、特許文献1,2などに示されている。
An iron core made of a laminate in which soft magnetic steel plates are laminated is widely used for reactors and the like. In general, conventional iron cores are constructed by laminating and bonding steel plates (core materials) obtained by punching into a block-shaped laminate, and assembling a plurality of such laminates so that a magnetic path is formed. Is done. In the manufacturing process of the reactor that involves the assembly of such a laminated body, it is necessary to assemble the laminated bodies with the gap material sandwiched between them, and also to install the coil between them, so that the number of processes is large and the entire operation is complicated. It is difficult to attach the gap material with high accuracy, and an attachment failure that causes vibration is likely to occur.
In order to make it easy to assemble a plurality of laminates or to form gaps in order to solve such problems, a technique in which a laminate is housed in a resin iron case to form an iron core. Is disclosed in Patent Documents 1 and 2, for example.

特開2002−025831号公報JP 2002-025831 A 特開2006−202922号公報JP 2006-202922 A

しかし、特許文献1,2に示される技術でも、鉄芯を完成させるまでの組み立て工程数が多く、作業性に難があり、また、その分組み立て精度に問題を生じやすい。すなわち、特許文献1の技術は、その図4に示されるように、結合可能な1対の鉄芯ケース(コアケース)を用いるものであるが、一方の鉄芯ケースのケース結合部に、左右1対の積層体ブロックの各一端側を差込んだ後、これにコイルを外装し、次いで、他方の鉄芯ケースのケース結合部に、前記左右1対の積層体ブロックの各他端側を差込むという工程が必要である。また、特許文献2の技術は、その図1に示されるように、分割コア(積層体)が収納された左右1対の鉄芯ケース(ボビン)と上下1対の積層コア(積層体)を、ギャップ材を挟み込ながら組み付けする工程が必要である。
したがって本発明の目的は、リアクトルを少ない工程で効率的に製造することができる鉄芯用部品を提供することにある。
However, even the techniques disclosed in Patent Documents 1 and 2 have a large number of assembly steps until the iron core is completed, resulting in difficulty in workability, and a problem in assembly accuracy. That is, the technique of Patent Document 1 uses a pair of iron core cases (core cases) that can be coupled as shown in FIG. After inserting each one end side of a pair of laminate blocks, a coil is sheathed on this, and then each other end side of the left and right pair of laminate blocks is attached to the case coupling portion of the other iron core case. A process of plugging is required. Further, as shown in FIG. 1, the technique of Patent Document 2 includes a pair of left and right iron core cases (bobbins) in which a split core (laminate) is accommodated and a pair of upper and lower laminate cores (laminate). The process of assembling while sandwiching the gap material is necessary.
Accordingly, an object of the present invention is to provide an iron core component capable of efficiently producing a reactor with a small number of steps.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]略同一形状の2つを、それらの端面どうしを突き合わせて接合することにより、コイルが外装される1対の平行な柱状部(A)と、該1対の柱状部(A)の両端部間を連絡する1対の連絡部(B)とからなる鉄芯が構成される鉄芯用部品であって、
樹脂製の鉄芯ケース(1)と、該鉄芯ケース(1)内に収納される鉄芯部材(2)を有し、
前記鉄芯ケース(1)は、上面が開放したケースであり、少なくとも、鉄芯軸線方向における2つの端面を構成する壁部(10)と、鉄芯部材(2)をその両側から保持する壁部(11)を有するとともに、壁部(10)の高さが壁部(11)の高さよりも低く構成され、
前記鉄芯ケース(1)内に鉄芯のギャップを構成する仕切壁部(12)が設けられ、該仕切壁部(12)により、鉄芯ケース(1)の内部が鉄芯部材収納用の複数の収納部に分割されるとともに、仕切壁部(12)の高さが壁部(11)の高さよりも低く構成され、
前記鉄芯部材(2)は、柱状部(A)を構成すべき鉄芯部材(2a)と、連絡部(B)を構成すべき鉄芯部材(2b)とからなり、
前記壁部(10)を介して他の鉄芯用部品と接合された状態において、該壁部(10)が鉄芯のギャップを構成することを特徴とするリアクトルの鉄芯用部品。
The gist of the present invention for solving the above problems is as follows.
[1] A pair of parallel columnar portions (A) in which the coils are sheathed by joining two end faces having substantially the same shape to each other, and the pair of columnar portions (A) An iron core component comprising an iron core composed of a pair of connecting portions (B) that communicate between both ends,
A resin-made iron core case (1) and an iron core member (2) housed in the iron core case (1);
The iron core case (1) is a case having an open upper surface, and at least a wall portion (10) constituting two end surfaces in the iron core axial direction, and a wall for holding the iron core member (2) from both sides thereof. parts as well as have a (11), the height of the wall portion (10) is configured lower than the height of the wall portion (11),
In the iron core case (1), a partition wall portion (12) constituting a gap of the iron core is provided, and the inner portion of the iron core case (1) is used for housing the iron core member by the partition wall portion (12). While being divided into a plurality of storage parts, the height of the partition wall part (12) is configured to be lower than the height of the wall part (11),
The iron core member (2) includes an iron core member (2a) that should constitute the columnar part (A) and an iron core member (2b) that should constitute the connecting part (B),
The core part for a reactor, wherein the wall part (10) forms a gap of the iron core in a state where it is joined to another iron core part via the wall part (10) .

[2]上記[1]の鉄芯用部品において、鉄芯ケース(1)内に収納された鉄芯部材(2)が、接着剤で鉄芯ケース(1)に固定されていることを特徴とするリアクトルの鉄芯用部品。
[3]上記[2]の鉄芯用部品おいて、鉄芯ケース(1)の内面(但し、仕切壁部(12)が設けられている場合には、その壁面を含む)と鉄芯部材(2)との間に接着剤が充填されていることを特徴とするリアクトルの鉄芯用部品。
[4]上記[1]〜[3]のいずれかの鉄芯用部品おいて、鉄芯軸線方向における2つの端面が、鉄芯の1対の柱状部(A)の途中に位置することを特徴とするリアクトルの鉄芯用部品。
[5]上記[1]〜[4]のいずれかの鉄芯用部品おいて、鉄芯軸線方向における2つの端面に、他の鉄芯用部品の端面と連結するための連結部または他の鉄芯用部品の端面と位置合わせするために係合部を有することを特徴とするリアクトルの鉄芯用部品。
[6]上記[1]〜[5]のいずれかの鉄芯用部品おいて、鉄芯ケース(1)の下面に開口が形成され、若しくは下面が開放されていることを特徴とするリアクトルの鉄芯用部品。
[2] In the iron core component of [1], the iron core member (2) housed in the iron core case (1) is fixed to the iron core case (1) with an adhesive. Reactor iron core parts.
[3] In the iron core component of the above [2] , the inner surface of the iron core case (1) (including the wall surface when the partition wall (12) is provided) and the iron core member (2) A core part for a reactor, which is filled with an adhesive.
[4] In the iron core part according to any one of the above [1] to [3] , the two end faces in the iron core axial direction are located in the middle of the pair of columnar portions (A) of the iron core. Reactor iron core parts.
[5] In the iron core part according to any one of the above [1] to [4] , two end faces in the iron core axial direction may be connected to an end face of another iron core part or other A reactor core part for a reactor, characterized by having an engaging portion for aligning with an end face of the core part.
[6] In the iron core part according to any one of [1] to [5] , an opening is formed on the lower surface of the iron core case (1) or the lower surface is opened. Iron core parts.

[7]上記[1]〜[6]のいずれかの鉄芯用部品を用いたリアクトルの製造方法であって、
2つの鉄芯用部品(x),(x)にコイル(Y)を外装した後、両鉄芯用部品(x),(x)の2つの端面どうしを突き合わせて接合して鉄芯(X)を構成することを特徴とするリアクトルの製造方法。
[8]上記[7]の製造方法において、鉄芯用部品(x),(x)を接合する際または接合した後に、鉄芯用部品(x),(x)の鉄芯部材(2a),(2b)上の壁部(11)で囲まれた空間に放熱材を構成する樹脂を注入し、固化させることにより、各鉄芯用部品(x),(x)において、放熱材が壁部(11)よりも高さが低い仕切壁部(12)を越えて鉄芯部材(2a),(2b)を一体的に覆い、且つ両鉄芯用部品(x),(x)の前記放熱材が、壁部(11)よりも高さが低い壁部(10)を越えて繋がり一体化されることを特徴とするリアクトルの製造方法。
[9]上記[1]〜[6]のいずれかの鉄芯用部品を用いたリアクトルであって、
2つの鉄芯用部品(x),(x)を、それらの2つの端面どうしを突き合わせて接合して構成された鉄芯(X)と、該鉄芯(X)の柱状部(A)に外装されたコイル(Y)を有することを特徴とするリアクトル。
[10]上記[9]のリアクトルにおいて、鉄芯用部品(x),(x)の鉄芯部材(2a),(2b)上の壁部(11)で囲まれた空間に放熱材を構成する樹脂を注入し、固化させることにより放熱材が装着され、各鉄芯用部品(x),(x)において、前記放熱材が壁部(11)よりも高さが低い仕切壁部(12)を越えて鉄芯部材(2a),(2b)を一体的に覆い、且つ両鉄芯用部品(x),(x)の前記放熱材が、壁部(11)よりも高さが低い壁部(10)を越えて繋がり一体化したことを特徴とするリアクトル。
[7] A method for manufacturing a reactor using the iron core part according to any one of [1] to [6] above,
Two iron core parts (x 1), (x 2 ) after the outer coil (Y), both iron core parts (x 1), and joined butt two end faces each other of (x 2) The manufacturing method of the reactor characterized by comprising an iron core (X).
In the manufacturing method of [8] above [7], for the iron core component (x 1), after or during bonding to bond the (x 2), for iron core component (x 1), the iron core (x 2) Each core part (x 1 ), (x 2 ) is made by injecting and solidifying a resin constituting the heat dissipation material into the space surrounded by the wall (11) on the members (2a) and (2b). , The heat dissipating material integrally covers the iron core members (2a) and (2b) beyond the partition wall portion (12) whose height is lower than that of the wall portion (11), and both iron core components (x 1 ), (X 2 ), wherein the heat dissipating material is connected and integrated over the wall (10) whose height is lower than that of the wall (11).
[9] A reactor using the iron core part of any one of [1] to [6] above,
Two iron core parts (x 1 ), (x 2 ) are joined by abutting their two end faces and joined to each other, and a columnar part (A) of the iron core (X) ) Having a coil (Y) sheathed on the reactor.
[10] In the reactor of [9] above, a heat dissipation material is provided in a space surrounded by the wall portion (11) on the iron core members (2a) and (2b) of the iron core components (x 1 ) and (x 2 ). The heat-dissipating material is mounted by injecting and solidifying the resin that constitutes the partition, and in each of the iron core parts (x 1 ) and (x 2 ), the heat-dissipating material is a partition whose height is lower than that of the wall (11). The iron core members (2a) and (2b) are integrally covered beyond the wall (12), and the heat dissipating material of both iron core parts (x 1 ) and (x 2 ) Reactor characterized by being connected and integrated over a wall (10) having a height lower than that.

本発明の鉄芯用部品を用いることにより、略同一形状の2つの鉄芯用部品にコイルを外装し、それらの端面どうしを突き合わせて接合するだけでリアクトルを構成することができ、製造メーカーにおいて最小の工程数でリアクトルを製造することができる。   By using the iron core parts of the present invention, a reactor can be constructed simply by attaching a coil to two iron core parts having substantially the same shape, and butting and joining the end faces. A reactor can be manufactured with the minimum number of steps.

本発明の鉄芯用部品の一実施形態を示す斜視図The perspective view which shows one Embodiment of the components for iron cores of this invention 図1の実施形態の鉄芯用部品の平面図Plan view of the iron core component of the embodiment of FIG. 図1の実施形態の鉄芯用部品において、鉄芯ケースと鉄芯部材を分解した状態で示す斜視図1 is a perspective view showing an iron core case and an iron core member in an exploded state in the iron core component of the embodiment of FIG. 本発明の鉄芯用部品の他の実施形態を示す平面図The top view which shows other embodiment of the components for iron cores of this invention 本発明の鉄芯用部品を結合して構成したリアクトルの鉄芯を示す平面図The top view which shows the iron core of the reactor comprised combining the components for iron cores of this invention 本発明の鉄芯用部品について、鉄芯部材および鉄芯ケースを接着剤で固定した場合と固定しない場合の加熱時における熱時定数を調べた結果を示すグラフThe graph which shows the result of having investigated the thermal time constant at the time of the heating in the case where the iron core member and the iron core case are fixed with an adhesive and not when the iron core component of the present invention is fixed 本発明の鉄芯用部品について、鉄芯部材および鉄芯ケースを接着剤で固定した場合と固定しない場合の放熱時における熱時定数を調べた結果を示すグラフThe graph which shows the result of having investigated the thermal time constant at the time of heat dissipation when the iron core member and the iron core case are fixed with an adhesive and when not fixing the iron core component of the present invention 本発明の鉄芯用部品を用いて製作されたリアクトルについて、騒音周波数応答および騒音値(A特性)を測定した結果を示すグラフThe graph which shows the result of having measured the noise frequency response and the noise value (A characteristic) about the reactor manufactured using the components for iron cores of this invention 図8の騒音測定における測定位置を示す説明図Explanatory drawing which shows the measurement position in the noise measurement of FIG.

図1〜図3は、本発明の鉄芯用部品の一実施形態を示すもので、図1は斜視図、図2は平面図、図3は鉄芯ケースと鉄芯部材を分解した状態で示す斜視図である。なお、図2において仮想線で示されるのは、結合すべきもう一方の鉄芯用部品である。
本発明の鉄芯用部品は、図2および図5に示すように、略同一形状の2つ(鉄芯用部品x,x)を、それらの端面どうしを突き合わせて接合することにより、コイルYが外装される1対の平行な柱状部Aと、この1対の柱状部Aの両端部間を連絡する1対の連絡部Bとからなる鉄芯Xが構成されるようにしたものである。
この鉄芯用部品は、樹脂製の鉄芯ケース1と、この鉄芯ケース1内に収納される鉄芯部材2(2a,2b)を有する。
1 to 3 show an embodiment of an iron core part according to the present invention. FIG. 1 is a perspective view, FIG. 2 is a plan view, and FIG. 3 is an exploded view of an iron core case and an iron core member. It is a perspective view shown. In addition, what is shown with a virtual line in FIG. 2 is another iron core part to be coupled.
As shown in FIG. 2 and FIG. 5, the iron core component of the present invention is obtained by joining two substantially identical shapes (iron core components x 1 , x 2 ) with their end faces butted together. An iron core X composed of a pair of parallel columnar portions A on which the coil Y is sheathed and a pair of connecting portions B communicating between both ends of the pair of columnar portions A is configured. It is.
This iron core component includes a resin iron core case 1 and an iron core member 2 (2a, 2b) housed in the iron core case 1.

前記鉄芯ケース1は、少なくとも、鉄芯軸線方向における2つの端面を構成する壁部10と、鉄芯部材2をその両側から保持する壁部11を有する。本実施形態の鉄芯ケース1は、全体が略J字形の平面形状を有する上面が開放したケースであり、この平面形状が略J字形のケース体の両端部に前記壁部10を有している。本発明の鉄芯用部品どうしが、この壁部10を介して接合された状態において、壁部10は鉄芯のギャップを構成する。
鉄芯ケース1の内部は、鉄芯のギャップを構成する仕切壁部12により、鉄芯部材収納用の複数の収納部に分割されており、この実施形態では、柱状部Aを構成すべき平面矩形状の鉄芯部材2aを収納する収納部14a〜14aと、連絡部Bを構成すべき平面U字状の鉄芯部材2bを収納する収納部14bに分割されている。
The iron core case 1 has at least a wall portion 10 that forms two end faces in the iron core axis direction, and a wall portion 11 that holds the iron core member 2 from both sides thereof. The iron core case 1 of the present embodiment is a case having an open top surface that has a substantially J-shaped planar shape as a whole, and the planar shape has the wall portions 10 at both ends of a substantially J-shaped case body. Yes. In a state where the iron core components of the present invention are joined via the wall portion 10, the wall portion 10 constitutes a gap of the iron core.
The interior of the iron core case 1 is divided into a plurality of storage portions for storing iron core members by partition walls 12 that form a gap of the iron core. In this embodiment, the plane that should form the columnar portion A is divided. a holding section 14a 1 to 14A 3 for accommodating a rectangular iron core member 2a, is divided iron core member 2b of the flat U-shaped for constituting contact portions B in the accommodating portion 14b for accommodating.

後述するように、鉄芯の放熱性を高めるためには、柱状部Aを構成すべき複数の鉄芯部材2aと連絡部Bを構成すべき鉄芯部材2bの上部を放熱材で一体に覆うことが好ましく、このため本実施形態では、収納部14a〜14a,14b間の仕切壁部12の高さを鉄芯ケース1(外壁部)の高さよりも低くし、複数の鉄芯部材2aと鉄芯部材2bの上部全体に放熱材(樹脂等が)が回り込み、放熱材で一体に覆うことができるようにしている。また、仕切壁部12は、その上面と装入された鉄芯部材2a,2bの上面とがほぼ面一になるような高さを有している。
また、この実施形態の鉄芯用部品は、図3に示すように略同一形状の2つ(鉄芯用部品x,x)を接合する際または接合した後に、放熱材の装着(放熱材を構成する樹脂を鉄芯部材上面に注入した後、固化させる工程)を行うことを前提として、両端の壁部10の高さも鉄芯ケース1(外壁部)の高さよりも低くし、鉄芯用部品x,xの放熱材どうしも一体化できるようにしている。
なお、放熱性の観点からは、鉄芯ケース1の厚みは、必要強度を満たした上で、なるべく薄くすることが好ましい。また、等方的に放熱させるという設計上の観点からは、鉄芯とコイルを構成する巻き線との位置関係が対称となるように、鉄芯ケース1の底部の厚さと壁部11の厚さをほぼ等しくすることが好ましい。
As will be described later, in order to improve the heat dissipation of the iron core, a plurality of iron core members 2a that should constitute the columnar part A and the upper part of the iron core member 2b that should constitute the connecting part B are integrally covered with a heat dissipation material. For this reason, in this embodiment, the height of the partition wall portion 12 between the storage portions 14a 1 to 14a 3 and 14b is made lower than the height of the iron core case 1 (outer wall portion), and a plurality of iron core members A heat radiating material (resin or the like) wraps around the entire upper part of 2a and the iron core member 2b so that it can be covered integrally with the heat radiating material. Further, the partition wall portion 12 has a height such that the upper surface thereof is substantially flush with the upper surfaces of the inserted iron core members 2a and 2b.
In addition, as shown in FIG. 3, the iron core component of this embodiment is mounted with a heat dissipation material (heat dissipation) when or after two substantially identical shapes (iron core components x 1 , x 2 ) are bonded. On the premise that the resin constituting the material is injected into the upper surface of the iron core member and then solidified), the height of the wall portions 10 at both ends is made lower than the height of the iron core case 1 (outer wall portion) The heat dissipating materials of the core parts x 1 and x 2 can be integrated.
From the viewpoint of heat dissipation, the thickness of the iron core case 1 is preferably as thin as possible after satisfying the required strength. From the design point of view of isotropic heat dissipation, the thickness of the bottom portion of the iron core case 1 and the thickness of the wall portion 11 so that the positional relationship between the iron core and the windings constituting the coil is symmetric. It is preferable to make the lengths approximately equal.

前記壁部10が形成された鉄芯軸線方向における2つの端部には、他の鉄芯用部品の端部と連結(接合)するための連結部13が設けられている。鉄芯軸線方向における2つの端部のうち、一方の端部の連結部13は、壁部10の両側に突設された1対の板部130で構成され、他方の端部の連結部13は、前記1対の板部130の内側に嵌め込まれる段部131により構成されている。なお、このような連結部13に代えて、他の鉄芯用部品の端面と位置合わせするための係合部を設けてもよい。
なお、寸歩精度を確保する観点からは、上記のような連結部13や係合部を設けて鉄芯用部品どうしを接合することが好ましいが、そのような連結部13や係合部を設けることなく、鉄芯軸線方向における2つの端部どうしを突き合わせ、接着剤で接着することで接合するようにしてもよく、また、バンドなどで鉄芯ケース1どうしを締結することで接合してもよい。
At two end portions in the iron core axis direction where the wall portion 10 is formed, a connecting portion 13 for connecting (joining) with an end portion of another iron core component is provided. Of the two end portions in the iron core axial direction, the connecting portion 13 at one end portion is composed of a pair of plate portions 130 projecting on both sides of the wall portion 10, and the connecting portion 13 at the other end portion. Is constituted by a step portion 131 fitted inside the pair of plate portions 130. In addition, it may replace with such a connection part 13 and may provide the engaging part for aligning with the end surface of other components for iron cores.
In addition, from the viewpoint of ensuring accuracy, it is preferable to provide the connecting portion 13 and the engaging portion as described above to join the iron core components together. Without being provided, the two end portions in the iron core axis direction may be butted together and bonded by an adhesive, or may be joined by fastening the iron case 1 with a band or the like. Also good.

また、鉄芯ケース1を構成する樹脂は、耐熱性、強度などの観点から適宜選定すればよい。例えば、ポリフェニレンサルファイド樹脂(PPS樹脂)、ポリブチレンテレフタレート樹脂(PBT樹脂)、ナイロンなどを用いることができる。なお、放熱性の観点からは、熱伝導率の高い樹脂で構成すること好ましく、例えば、樹脂にカーボンやアルミナを混合してもよい。
前記各収納部14a〜14aには、柱状部Aを構成すべき平面矩形状の鉄芯部材2aが収納され、前記収納部14bには、連絡部Bを構成すべき平面U字状の鉄芯部材2bが収納されている。本実施形態では、鉄芯部材2a,2bは、打ち抜き鋼板を積層させた積層体(ブロック)で構成されているが、例えば、圧粉鉄芯、ダストコア、フェライト、アモルファスなどで構成されたものでもよい。また、鉄芯部材2a,2bは、同種材料であってもよいし、異種材料であってもよい。
なお、図1〜図3などの実施形態では、「鉄芯部材2の積層方向=鉄芯ケース1の高さ方向」となっているが、鉄芯部材2の積層方向は、積層面が鉄芯軸線方向(磁路方向)と平行になるようにすればよく、したがって、放熱性や生産性の観点から、「鉄芯部材2の積層方向=鉄芯ケース1の幅方向」(すなわち、図3に示す鉄芯部材2aを、鉄芯軸線を回転軸として90度回転させた状態)としてもよい。
Moreover, what is necessary is just to select resin which comprises the iron core case 1 suitably from viewpoints, such as heat resistance and intensity | strength. For example, polyphenylene sulfide resin (PPS resin), polybutylene terephthalate resin (PBT resin), nylon, or the like can be used. From the viewpoint of heat dissipation, it is preferable to use a resin with high thermal conductivity. For example, carbon or alumina may be mixed into the resin.
Each of the storage portions 14a 1 to 14a 3 stores a flat rectangular iron core member 2a that should form the columnar portion A, and the storage portion 14b has a flat U-shape that should form the connecting portion B. The iron core member 2b is accommodated. In the present embodiment, the iron core members 2a and 2b are configured by a laminated body (block) in which punched steel plates are stacked. For example, the iron core members 2a and 2b may be configured by a pressed iron core, a dust core, ferrite, amorphous, or the like. Good. Further, the iron core members 2a and 2b may be the same material or different materials.
In addition, in embodiment, such as FIGS. 1-3, it has become "the lamination direction of the iron core member 2 = the height direction of the iron core case 1," but the lamination surface is iron in the lamination direction. Therefore, from the viewpoint of heat dissipation and productivity, “the stacking direction of the iron core member 2 = the width direction of the iron core case 1” (that is, FIG. 3 may be a state in which the iron core member 2a shown in Fig. 3 is rotated 90 degrees about the iron core axis.

放熱材の装着(放熱材を構成する樹脂を鉄芯部材上面に注入した後、固化させる工程)は、通常、図2に示すように略同一形状の2つの鉄芯用部品x,xを接合する際または接合した後に行われる。本実施形態では、収納部14a〜14a,14b内に装入された鉄芯部材2a,2bの上に壁部11で囲まれた空間があり、且つ、収納部14a〜14a,14b間の仕切壁部12の高さが壁部11よりも低いため、上記空間に放熱材を構成する樹脂を注入(充填)することにより、収納部14a〜14a,14b内の鉄芯部材2a,2bが放熱材で一体的に覆われることになる。また、壁部10の高さが壁部11よりも低いため、2つの鉄芯用部品x,xを接合する際または接合した後に、放熱材の装着を行うことにより、両鉄芯用部品x,xの放熱材どうしも繋がり、一体化されることになる。 The mounting of the heat radiating material (the step of injecting the resin constituting the heat radiating material into the upper surface of the iron core member and solidifying it) is normally performed as shown in FIG. 2 with two iron core components x 1 , x 2 having substantially the same shape. This is performed at the time of joining or after joining. In the present embodiment, there is enclosed space accommodating portion 14a 1 to 14A 3, the iron core member 2a, which is loaded into the 14b, the wall portion 11 on the 2b, and, housing portion 14a 1 to 14A 3, since the height of the partition wall portion 12 between 14b is lower than the wall portion 11, by the resin constituting the heat radiating member in the space is injected (filled), storage section 14a 1 to 14A 3, the iron core in the 14b The members 2a and 2b are integrally covered with the heat dissipation material. In addition, since the height of the wall portion 10 is lower than that of the wall portion 11, when the two iron core components x 1 and x 2 are joined or after joining, a heat dissipating material is attached so that both the iron core components are used. The heat dissipating materials of the parts x 1 and x 2 are connected and integrated.

このように収納部14a〜14a,14b内の鉄芯部材2a,2bが放熱材で一体的に覆われることにより、例えば、収納部14b内の鉄芯部材2bの放熱材面を冷却手段で冷却することにより、コイルの内側となるために直接的な冷却が困難となる収納部14a〜14a内の鉄芯部材2aについても、放熱を促進することができる。鉄芯部材2bの放熱材面を冷却する手段に特別な制約はないが、例えば、放熱材面に銅やアルミニウムなどのような熱伝導率の高い金属からなる抜熱部材(ヒートシンク)を接触させるなどの構成とすることができる。 Iron core member 2a of the thus accommodating portion 14a 1 to 14A 3, in 14b, by 2b is integrally covered with the heat radiation member, for example, cooling means the heat radiation member surface of the iron core member 2b in the accommodating portion 14b in by cooling, the iron core member 2a of the holding section 14a 1 to 14A 3 which direct cooling is difficult to become the inner coil can also facilitate heat dissipation. There is no particular restriction on the means for cooling the heat dissipation material surface of the iron core member 2b. For example, a heat removal member (heat sink) made of a metal having high thermal conductivity such as copper or aluminum is brought into contact with the heat dissipation material surface. It can be set as a structure.

なお、放熱材の装着形態は上記のような形態に限られるものではなく、例えば、
収納部14aと収納部14b間の仕切壁部12の高さを他の仕切壁部12よりも高くし、収納部14a〜14a内の鉄芯部材2aのみ放熱材で一体的に覆われるようにしてもよい。
また、上述したように、一般に放熱材の装着は、2つの鉄芯用部品x,xを接合する際または接合した後に行われるが、各鉄芯用部品自体に放熱材を装着してもよい。この場合、例えば、鉄芯部材2bの放熱材面に抜熱部材(ヒートシンク)を装着してもよい。
放熱材としては、例えば、シリコーン樹脂、グラファイト系グリス、アクリル系グリスなどの樹脂が用いられる。また、鉄芯部材2を構成する各鋼板間や鉄芯部材2−鉄芯ケース1間に充填する接着剤などを用いてもよい。
In addition, the mounting form of the heat dissipation material is not limited to the above form,
The height of the housing portion 14a 3 and the housing portion 14b between the partition wall portion 12 of the higher than the other partition walls 12, only iron core member 2a of the holding section 14a 1 to 14A 3 covering integrally from a radiation material You may be made to be.
In addition, as described above, the mounting of the heat dissipation material is generally performed when or after the two iron core components x 1 and x 2 are bonded. Also good. In this case, for example, a heat removal member (heat sink) may be attached to the heat dissipation material surface of the iron core member 2b.
As the heat radiating material, for example, a resin such as a silicone resin, graphite-based grease, or acrylic-based grease is used. Moreover, you may use the adhesive agent etc. which are filled between each steel plate which comprises the iron core member 2, or between the iron core member 2 and the iron core case 1. FIG.

図4は、本発明の鉄芯用部品の他の実施形態を示す平面図である。
図1〜図3の実施形態では、鉄芯軸線方向における2つの端面(壁部10)が、鉄芯の1対の柱状部Aの端部に位置しているのに対して、図4の実施形態では、鉄芯軸線方向における2つの端面(壁部10)が、鉄芯の1対の柱状部Aの途中に位置したものである。したがって、この実施形態では、鉄芯ケース1の内部は、鉄芯のギャップを構成する仕切壁部12により、一方の柱状部Aの一部を構成すべき平面矩形状の鉄芯部材2aを収納する収納部14a,14a、連絡部Bを構成すべき平面U字状の鉄芯部材2bを収納する収納部14b、他方の柱状部Aの一部を構成すべき平面矩形状の鉄芯部材2aを収納する収納部14aに、それぞれ分割されている。
FIG. 4 is a plan view showing another embodiment of the iron core component of the present invention.
In the embodiment of FIGS. 1 to 3, two end faces (wall portions 10) in the iron core axial direction are located at the ends of the pair of columnar portions A of the iron core, whereas in FIG. In the embodiment, two end surfaces (wall portions 10) in the iron core axial direction are located in the middle of the pair of columnar portions A of the iron core. Therefore, in this embodiment, the inside of the iron core case 1 accommodates the flat rectangular iron core member 2a that should constitute a part of one columnar portion A by the partition wall portion 12 that constitutes the gap of the iron core. Storage portion 14a 1 , 14a 2 to be stored, storage portion 14b to store the flat U-shaped iron core member 2b to form the connecting portion B, flat rectangular iron core to form a part of the other columnar portion A the housing portion 14a 3 for housing the member 2a, is divided, respectively.

このような構造では、鉄芯軸線方向における2つの端面(壁部10)は、柱状部Aに外装されるコイルYの内側に位置することになるため、ギャップを構成する壁部10の厚さが大きくても磁束漏れが生じにくい。したがって、壁部10の厚さを十分にとる(例えば、壁部11の厚さと同程度にする)ことができるので、鉄芯ケース1の強度確保や製作性の面で好ましい。
なお、他の実施形態としては、鉄芯軸線方向における2つの端面(壁部10)が、鉄芯の1対の柱状部Aの中央に位置するような構造としてもよい。
In such a structure, the two end surfaces (wall portion 10) in the iron core axial direction are located inside the coil Y that is externally mounted on the columnar portion A, and thus the thickness of the wall portion 10 that constitutes the gap. Even if is large, magnetic flux leakage hardly occurs. Therefore, the thickness of the wall portion 10 can be sufficiently taken (for example, the same as the thickness of the wall portion 11), which is preferable in terms of securing the strength of the iron core case 1 and manufacturability.
In addition, as another embodiment, it is good also as a structure where two end surfaces (wall part 10) in an iron core axial direction are located in the center of a pair of columnar part A of an iron core.

鉄芯ケース1に鉄芯部材2を収納した鉄芯用部品では、鉄芯部材2−鉄芯ケース1間の空隙により振動が生じやすく、また、放熱性も低くなりやすい。また、鉄芯部材が積層体の場合には、鉄芯部材を構成する各鋼板間の空隙も振動や放熱性低下の原因となる。このため鉄芯ケース1内に収納された鉄芯部材2は、接着剤で鉄芯ケース1に固定されることが好ましく、特に、鉄芯ケース1の内面(但し、仕切壁部12が設けられている場合には、その壁面を含む)と鉄芯部材2との間に接着剤が充填されることが好ましい。また、鉄芯部材2が積層体である場合には、積層体を構成する鋼板間にも接着剤が充填されることが好ましい。このように鉄芯部材2と鉄芯ケース1間の空隙、さらには、鉄芯部材2を構成する各鋼板間の空隙に接着剤が充填されることにより空隙がなくなり、しかも接着剤により全体が一体的に固定されるので、低振動・低騒音で且つ放熱性にも優れた鉄芯用部品が得られる。   In the iron core component in which the iron core member 2 is housed in the iron core case 1, vibration is likely to occur due to the gap between the iron core member 2 and the iron core case 1, and heat dissipation is also likely to be lowered. In addition, when the iron core member is a laminate, the gap between the steel plates constituting the iron core member also causes vibration and heat dissipation. For this reason, the iron core member 2 housed in the iron core case 1 is preferably fixed to the iron core case 1 with an adhesive. In particular, the inner surface of the iron core case 1 (provided that a partition wall portion 12 is provided). The adhesive is filled between the core member 2 and the iron core member 2. Moreover, when the iron core member 2 is a laminated body, it is preferable that an adhesive is filled also between the steel plates which comprise a laminated body. As described above, the gap between the iron core member 2 and the iron core case 1, and further, the gap between the steel plates constituting the iron core member 2 is filled with the adhesive so that the gap is eliminated. Since it is fixed integrally, it is possible to obtain an iron core component that is low in vibration, low in noise, and excellent in heat dissipation.

鉄芯部材2と鉄芯ケース1間の空隙、さらには、鉄芯部材2を構成する各鋼板間の空隙に接着剤が充填されるようにするには、鉄芯部材2を鉄芯ケース1に装入した状態で、鉄芯部材2−鉄芯ケース1間と、鉄芯部材2を構成する各鋼板間に、未硬化の接着剤を存在させ、その後、接着剤を硬化させるようにすることが好ましい。
ここで、未硬化の接着剤とは、流動性を有する状態の接着剤を意味する。例えば、熱硬化性の接着剤の場合には、熱を付与しない限り未硬化の状態に維持される。一方、常温硬化性の接着剤については、例えば、紫外線硬化型の接着剤の場合は、紫外線を照射しない限り、嫌気性の接着剤の場合は空気を遮断しない限り、それぞれ未硬化の状態に維持される。また、シアノアクリレート系瞬間型接着剤の場合は、水分との接触を阻止することで、架橋が開始される前の状態(未硬化の状態)に維持される。
In order to fill the gap between the iron core member 2 and the iron core case 1, and further the gap between the steel plates constituting the iron core member 2, the iron core member 2 is changed to the iron core case 1. In an inserted state, uncured adhesive is present between the iron core member 2 and the iron core case 1 and between the steel plates constituting the iron core member 2, and then the adhesive is cured. It is preferable.
Here, the uncured adhesive means an adhesive having fluidity. For example, in the case of a thermosetting adhesive, it is maintained in an uncured state unless heat is applied. On the other hand, for room temperature curable adhesives, for example, in the case of UV curable adhesives, each is maintained in an uncured state unless UV light is irradiated, and in the case of anaerobic adhesives, unless air is shut off. Is done. Moreover, in the case of a cyanoacrylate-based instantaneous adhesive, by preventing contact with moisture, it is maintained in a state before starting crosslinking (uncured state).

鉄芯部材2−鉄芯ケース1間と、鉄芯部材2を構成する各鋼板間に、未硬化の接着剤を存在させるには、下記(イ)〜(ハ)の少なくとも1つを行えばよい。勿論、下記(イ)〜(ハ)は、その2つ以上を組み合わせて実施してもよい。これらの方法を採ることにより、未硬化の接着剤は、鉄芯部材2−鉄芯ケース1間と、鉄芯部材2を構成する各鋼板間に毛細管現象により浸透する。
(イ)鉄芯部材2を装入する前の鉄芯ケース1内に接着剤を入れておく。
(ロ)鉄芯ケース1に装入する前の鉄芯部材2または/および鋼板に接着剤を付着させておく。
(ハ)鉄芯部材2を鉄芯ケース1に装入した後、鉄芯ケース1内に接着剤を流し込む。
In order to make an uncured adhesive exist between the iron core member 2 and the iron core case 1 and between the steel plates constituting the iron core member 2, at least one of the following (a) to (c) is performed. Good. Of course, the following (A) to (C) may be implemented in combination of two or more thereof. By adopting these methods, the uncured adhesive penetrates by capillarity between the iron core member 2 and the iron core case 1 and between each steel plate constituting the iron core member 2.
(A) An adhesive is put in the iron core case 1 before the iron core member 2 is inserted.
(B) An adhesive is attached to the iron core member 2 and / or the steel plate before being inserted into the iron core case 1.
(C) After the iron core member 2 is inserted into the iron core case 1, an adhesive is poured into the iron core case 1.

鉄芯部材2を鉄芯ケース1に装入した状態とするには、鉄芯部材2が積層体の場合には、各鋼板間が接着剤で部分的に仮接着された鉄芯部材2を予め作製し、この鉄芯部材2を鉄芯ケース1(積層体収納部)内に装入するようにしてもよいし、或いは、鉄芯部材2を構成すべき鋼板を鉄芯ケース1(収納部14a〜14a,14b)内に順次装入することにより、鉄芯ケース1内で鉄芯部材2が形成されるようにしてもよい。いずれの場合も、鉄芯部材2は鉄芯ケース1にほぼ嵌合するように装入された状態となる。 In order to set the iron core member 2 in the iron core case 1, when the iron core member 2 is a laminated body, the iron core member 2 is partially bonded temporarily with an adhesive between the steel plates. The iron core member 2 may be prepared in advance and inserted into the iron core case 1 (laminated body housing portion), or a steel plate that constitutes the iron core member 2 may be inserted into the iron core case 1 (housing). The iron core member 2 may be formed in the iron core case 1 by sequentially inserting into the portions 14a 1 to 14a 3 , 14b). In either case, the iron core member 2 is in a state of being inserted so as to substantially fit into the iron core case 1.

各鋼板間が接着剤で部分的に仮接着された鉄芯部材2(積層体)は、例えば、接着剤を数ヶ所に点状に塗布した鋼板を順次重ねることにより得られる。一般の鉄芯部材(積層体)の製造ラインでは、打ち抜かれる鋼板部分に事前にまたは打ち抜きと同時に接着剤が部分的に塗布され(例えば数ヶ所に点状に塗布)、打ち抜かれた鋼板が順次重ねられることにより、鋼板間が接着剤で部分的に仮接着された鉄芯部材2が得られる。   The iron core member 2 (laminated body) in which the steel plates are partially temporarily bonded with an adhesive is obtained, for example, by sequentially stacking steel plates coated with dots in several places. In the production line of general iron core members (laminates), adhesive is partially applied to the steel plate part to be punched in advance or at the same time as the punching (for example, it is applied in the form of dots in several places), and the punched steel plates are sequentially By superimposing, the iron core member 2 in which the steel plates are partially temporarily bonded with an adhesive is obtained.

上記(イ)〜(ハ)の方法のなかで、鉄芯部材2−鉄芯ケース1間や鉄芯部材2を構成する各鋼板間の空隙に接着剤を効率的に浸透させるという観点からは、(イ)、(ロ)の方法が有利であり、一方、作業性の観点からは(ハ)の方法が有利である。また、(イ)〜(ハ)のいずれも方法においても、鉄芯部材2を構成する各鋼板間や鉄芯部材2を構成する各鋼板間の空隙に接着剤を適切に浸透させるために、真空含浸を利用することが特に好ましい。この真空含浸を行うに際し、(イ)の場合には、接着剤を入れた鉄芯ケース1内に鉄芯部材2を装入した後、鉄芯ケース1ごと真空引きを行う。また、(ロ)の場合には、鉄芯部材2に対して接着剤を真空含浸させた後、鉄芯ケース1内に装入する。また(ハ)の場合には、鉄芯部材2が装入された鉄芯ケース1内に接着剤を流し込んだ後、鉄芯ケース1ごと真空引きを行う。   From the viewpoint of efficiently allowing the adhesive to penetrate between the iron core member 2 and the iron core case 1 and between the steel plates constituting the iron core member 2 among the methods (a) to (c) above. The methods (a) and (b) are advantageous, while the method (c) is advantageous from the viewpoint of workability. Further, in any of the methods (A) to (C), in order to appropriately penetrate the adhesive into the gaps between the steel plates constituting the iron core member 2 and between the steel plates constituting the iron core member 2, It is particularly preferred to utilize vacuum impregnation. In carrying out this vacuum impregnation, in the case of (a), after the iron core member 2 is inserted into the iron core case 1 containing the adhesive, the whole iron core case 1 is evacuated. In the case of (b), the iron core member 2 is vacuum-impregnated with an adhesive and then inserted into the iron core case 1. In the case of (c), an adhesive is poured into the iron core case 1 in which the iron core member 2 is inserted, and then the whole iron core case 1 is evacuated.

鉄芯の放熱性を高めるために、以下のような構成とすることが好ましい。
(a)鉄芯ケース1内に装入された鉄芯部材2の上の空間に放熱材を充填し、鉄芯部材2を放熱材で覆う。
(b)鉄芯ケース1の下面(底面)に開口を形成するか、若しくは下面を開放した構造とする。
上記(a)の構成については、さきに述べたとおりである。
また、上記(b)の構成は、鉄芯ケース1の上面のみが開放した構造よりも、鉄芯ケース1の上面が開放するとともに、下面にも開口が形成され若しくは下面側も開放した構造の方が、放熱の面で有利であるからである。このような鉄芯用部品を製造する際に、鉄芯ケース1内に未硬化の接着剤を存在させる場合、下面側から接着剤が漏れないようにするため、鉄芯ケース1の下面を台で塞いで、接着剤および鉄芯部材2の注入、装入を行う。
In order to improve the heat dissipation of the iron core, the following configuration is preferable.
(A) The space above the iron core member 2 inserted in the iron core case 1 is filled with a heat dissipation material, and the iron core member 2 is covered with the heat dissipation material.
(B) An opening is formed on the lower surface (bottom surface) of the iron core case 1 or the lower surface is opened.
The configuration (a) is as described above.
Further, the configuration of (b) has a structure in which the upper surface of the iron core case 1 is opened and the opening is formed on the lower surface or the lower surface side is opened, as compared with the structure in which only the upper surface of the iron core case 1 is opened. This is because it is more advantageous in terms of heat dissipation. When manufacturing such an iron core part, when an uncured adhesive is present in the iron core case 1, the lower surface of the iron core case 1 is placed on the base to prevent the adhesive from leaking from the lower surface side. Then, the adhesive and the iron core member 2 are injected and charged.

次に、本発明の鉄芯用部品を用いたリアクトルの製造方法と製造されるリアクトルについて説明する。
この製造方法では、図5に示すように、2つの本発明の鉄芯用部品x,xを準備し、各鉄芯用部品x,xにおいて鉄芯の柱状部Aとなるべき部分(すなわち、鉄芯部材2aを収納した収納部14a〜14aの部分)にコイルYを外装した上で、両鉄芯用部品x,xの2つの端面(壁部10)どうしを突き合わせ、連結部13を介して接合することで、リアクトルが得られる。すなわち、基本的に、各鉄芯用部品x,xにコイルYを外装する工程と、両鉄芯用部品x,xの端面どうしを突き合わせて接合する工程だけで、リアクトルを完成させることができる。
なお、両鉄芯用部品x,xの2つの端面(壁部10)間は、接着剤で接合してもよい。
Next, the manufacturing method of the reactor using the iron core components of the present invention and the manufactured reactor will be described.
In this manufacturing method, as shown in FIG. 5, two iron core parts x 1 and x 2 of the present invention should be prepared, and the iron core parts x 1 and x 2 should become iron core pillars A. moiety (i.e., the portion of the housing portion 14a 1 to 14A 3 accommodating the iron core member 2a) on which the outer coil Y to, and how the two end faces of the iron core parts x 1, x 2 (wall 10) Are joined together via the connecting portion 13 to obtain a reactor. In other words, the reactor is basically completed only by the process of sheathing the coil Y on each of the iron core parts x 1 and x 2 and the process of joining the end surfaces of both iron core parts x 1 and x 2 together. Can be made.
Incidentally, between two end faces of the iron core parts x 1, x 2 (wall 10) may be adhesively bonded.

また、鉄芯用部品x,xを接合する際または接合した後に、上述したような放熱材の装着(放熱材を構成する樹脂を鉄芯部材上面に注入した後、固化させる工程)を行ってもよい。
このようにして製造されたリアクトルは、2つの鉄芯用部品x,xを、それらの2つの端面どうしを突き合わせて接合して構成された鉄芯Xと、この鉄芯Xの柱状部Aに外装されたコイルYを有するものである。
リアクトルを製造するのに用いる2つの鉄芯用部品x,xは、予め組み合わせを決めておいてもよいし、ランダムに組み合わせできるようにしてもよい。
Further, when or after joining the iron core parts x 1 and x 2 , mounting of the heat dissipation material as described above (step of injecting the resin constituting the heat dissipation material into the upper surface of the iron core member and solidifying it) You may go.
The reactor manufactured in this way includes two iron core components x 1 and x 2 that are joined by butting two end surfaces of each other, and a columnar portion of the iron core X. It has a coil Y sheathed on A.
The two iron core parts x 1 and x 2 used to manufacture the reactor may be determined in advance or may be combined randomly.

図1〜図3に示す構造を有する、以下のような鉄芯用部品を製造した。
・鉄芯用部品(i):鉄芯部材および鉄芯ケースを接着剤で固定したもの
薄鋼帯を打ち抜き加工して得られた250枚の鋼板(板厚0.1mmの6.5%珪素鋼板)の両面全体にアクリル系熱硬化性接着剤を塗布(浸漬による塗布)した後、鉄芯ケース1(ガラスフィラー30質量%含有PPS樹脂製)内に順次嵌め込んで装入し、鉄芯部材2a,2b(いずれも占積率は約93%)を構成した。
鉄芯部材2a用の鋼板のサイズは20mm×14mm、鉄芯部材2b用の鋼板は幅20mmのU型とした。また、鉄芯ケース1のサイズは、最大外形寸法(長さ×幅(U型部幅)×高さ)を75mm×60mm×32mmとした。また、接着剤塗布量は、各鉄芯部材2aでは2g、鉄芯部材2bでは3gとした。
The following iron core parts having the structure shown in FIGS. 1 to 3 were manufactured.
-Iron core parts (i): Iron core member and iron core case fixed with an adhesive 250 steel plates obtained by punching a thin steel strip (6.5% silicon with a thickness of 0.1 mm) After applying an acrylic thermosetting adhesive on both sides of the steel sheet (applying by dipping), the steel core case 1 (made of PPS resin containing 30% by weight of glass filler) is sequentially fitted and charged, and the iron core is inserted. Members 2a and 2b (both have a space factor of about 93%) were constructed.
The size of the steel plate for the iron core member 2a was 20 mm × 14 mm, and the steel plate for the iron core member 2b was U-shaped with a width of 20 mm. The size of the iron core case 1 was set to 75 mm × 60 mm × 32 mm with the maximum outer dimensions (length × width (U-shaped portion width) × height). The amount of adhesive applied was 2 g for each iron core member 2a and 3 g for the iron core member 2b.

上記のように複枚の鋼板が装入され、内部に鉄芯部材2a,2bが構成された鉄芯ケース1を、150℃で1時間保持して接着剤を硬化させた。この加熱工程では、接着剤に気泡が出ないようにするため、段階的に昇温(常温→60℃→100℃→150℃)させた。以上により、鉄芯用部品(i)を製造した。
・鉄芯用部品(ii):鉄芯部材および鉄芯ケースを接着剤で固定しないもの
上記と同様の枚数の鋼板を、接着剤を塗布することなく鉄芯ケース1内に嵌め込んで装入することにより鉄芯部材2a,2bを構成し、鉄芯用部品(ii)を製造した。
As described above, the iron core case 1 in which a plurality of steel plates were inserted and the iron core members 2a and 2b were formed therein was held at 150 ° C. for 1 hour to cure the adhesive. In this heating step, the temperature was raised stepwise (normal temperature → 60 ° C. → 100 ° C. → 150 ° C.) in order to prevent bubbles from appearing in the adhesive. Thus, the iron core part (i) was manufactured.
-Iron core parts (ii): Iron core member and iron core case not fixed with adhesive The same number of steel plates as above are fitted into the iron core case 1 without applying adhesive. By doing so, the iron core members 2a and 2b were constituted, and the iron core part (ii) was manufactured.

以上のようにして得られた2つの鉄芯用部品(i)、(ii)について、以下の方法で放熱性を測定した。
鉄芯用部品を150℃の熱源(ホットプレート)で加熱し、鉄芯(鉄芯部材2)の表面と鉄芯ケース1表面の温度変化を測定した。鉄芯用部品の表面温度が完全に飽和したところで、製品を熱源から外し、空気中で放熱させ、その際の温度変化を測定した。加熱時と放熱時の温度変化は、下記(1)、(2)式で表すことができ、得られたデータを(1)、(2)式に最小二乗法でフィッティングし、加熱時の熱時定数と放熱時の熱時定数を求めた。
With respect to the two iron core parts (i) and (ii) obtained as described above, the heat dissipation was measured by the following method.
The iron core component was heated with a heat source (hot plate) at 150 ° C., and the temperature change between the surface of the iron core (iron core member 2) and the surface of the iron core case 1 was measured. When the surface temperature of the iron core parts was completely saturated, the product was removed from the heat source, dissipated in the air, and the temperature change at that time was measured. The temperature change during heating and heat dissipation can be expressed by the following formulas (1) and (2). Fitting the obtained data to formulas (1) and (2) using the least square method, The time constant and the thermal time constant during heat dissipation were determined.

Figure 0005353618
Figure 0005353618

図6(加熱時の熱時定数)および図7(放熱時の熱時定数)は、その結果を示している。これによれば、鉄芯用部品(i)は、鋼板間に充填された接着剤により、積層方向の熱伝導性が改善されていることが判る。また、鉄芯(鉄芯部材2a,2b)と鉄芯ケース1の間にも接着剤が充填されているため、鉄芯から鉄芯ケースへの熱伝導性も改善されていることが判る。鋼板の面内方向と積層方向のどちらにも同程度の熱伝導性が得られていることから、鉄損によって鉄芯に生じた熱は、鉄芯から直接空気に放熱するだけでなく、鉄芯ケースを介しても空気中に適切に放熱していることが判る。   FIG. 6 (thermal time constant during heating) and FIG. 7 (thermal time constant during heat dissipation) show the results. According to this, it can be seen that the thermal conductivity in the stacking direction of the iron core component (i) is improved by the adhesive filled between the steel plates. Moreover, since the adhesive is also filled between the iron core (iron core members 2a, 2b) and the iron core case 1, it can be seen that the thermal conductivity from the iron core to the iron core case is also improved. Since the same degree of thermal conductivity is obtained in both the in-plane direction and the laminating direction of the steel sheet, the heat generated in the iron core due to iron loss is not only radiated directly from the iron core to the air, It can be seen that heat is properly radiated into the air even through the lead case.

次に、上述した鉄芯用部品(i),(ii)を用い、リアクトルを製作した。それぞれの鉄芯用部品を1対用意し、この1対の鉄芯用部品を接合するとともに、コイルを装着してリアクトルとした。コイルは、1PEW線を角型状に30ターン巻いた空芯形状のものを用いた。1対の鉄芯ケースの連結部13と壁部10は接着剤で接着し、固定した。このリアクトルに、ピーク値0〜12Aのサイン波形状を有し、励磁周波数1〜20kHzで変動する電流を供給し、各励磁周波数に対して発生する騒音周波数応答および騒音値(A特性)を測定した。その結果を図8に示す。騒音の測定位置は、図9(図9(a)は平面図、図9(b)は側面図)に示すように、鉄芯用部品の上方の5mmの位置とした。   Next, a reactor was manufactured using the iron core parts (i) and (ii) described above. A pair of each iron core part was prepared, the pair of iron core parts were joined, and a coil was attached to form a reactor. The coil used was an air-core shape in which 1 PEW wire was wound in a square shape for 30 turns. The connecting portion 13 and the wall portion 10 of the pair of iron core cases were bonded and fixed with an adhesive. This reactor has a sine wave shape with a peak value of 0 to 12A, supplies a current that fluctuates at an excitation frequency of 1 to 20 kHz, and measures the noise frequency response and noise value (A characteristic) generated for each excitation frequency. did. The result is shown in FIG. As shown in FIG. 9 (FIG. 9 (a) is a plan view and FIG. 9 (b) is a side view), the noise measurement position was 5 mm above the iron core component.

図8において、曲線は周波数応答であり、プロットは騒音値(A特性)の10kHz〜20kHzオーバーオールである。これによれば、鉄芯用部品(i)によるリアクトルは、鉄芯用部品(ii)のものに較べて14kHz〜17kHzの範囲で騒音が効果的に抑制されていることが判る。鉄芯用部品(i),(ii)の騒音値の詳細は、以下の通りである。
14kHz 鉄芯用部品(i):60.8dB 鉄芯用部品(ii):72.9dB
15kHz 鉄芯用部品(i):69.4dB 鉄芯用部品(ii):79.4dB
17kHz 鉄芯用部品(i):68.5dB 鉄芯用部品(ii):83.2dB
In FIG. 8, the curve is the frequency response, and the plot is the 10 kHz to 20 kHz overall of the noise value (A characteristic). According to this, it turns out that the noise by the reactor by iron core components (i) is effectively suppressed in the range of 14 kHz-17 kHz compared with the thing of iron core components (ii). Details of the noise values of the iron core parts (i) and (ii) are as follows.
14kHz Iron core parts (i): 60.8dB Iron core parts (ii): 72.9dB
15 kHz Iron core parts (i): 69.4 dB Iron core parts (ii): 79.4 dB
17 kHz Iron core parts (i): 68.5 dB Iron core parts (ii): 83.2 dB

鉄芯用部品(i)では、鉄芯部材2を構成する鋼板間、および鉄芯部材2と鉄芯ケース1間に接着剤が充填されることにより空気層が排除され、磁歪振動が原因となる騒音の伝播が抑制され、さらに、接着剤により鉄芯部材2を構成する鋼板どうしが結合され、且つ鉄芯部材2と鉄芯ケース1も結合され、全体が一体化することによって振動そのものが抑制され、これらの結果、騒音が効果的に抑制されたものと考えられる。   In the iron core component (i), the air layer is eliminated by filling the adhesive between the steel plates constituting the iron core member 2 and between the iron core member 2 and the iron core case 1, which is caused by magnetostrictive vibration. The propagation of noise is suppressed, the steel plates constituting the iron core member 2 are joined together by an adhesive, the iron core member 2 and the iron core case 1 are also joined, and the whole is integrated to generate vibration itself. As a result, it is considered that noise was effectively suppressed.

1 鉄芯ケース
2,2a,2b 鉄芯部材
10,11 壁部
12 仕切壁部
13 連結部
14a〜14a,14b 収納部
130 板部
131 段部
X 鉄芯
,x 鉄芯用部品
Y コイル
A 柱状部
B 連絡部
1 iron core casing 2, 2a, 2b iron core members 10 and 11 the wall portion 12 partition wall portion 13 connecting portion 14a 1 to 14A 3, 14b accommodating portion 130 plate portion 131 stepped portion X iron core x 1, x 2 for iron core Parts Y Coil A Column part B Connection part

Claims (10)

略同一形状の2つを、それらの端面どうしを突き合わせて接合することにより、コイルが外装される1対の平行な柱状部(A)と、該1対の柱状部(A)の両端部間を連絡する1対の連絡部(B)とからなる鉄芯が構成される鉄芯用部品であって、
樹脂製の鉄芯ケース(1)と、該鉄芯ケース(1)内に収納される鉄芯部材(2)を有し、
前記鉄芯ケース(1)は、上面が開放したケースであり、少なくとも、鉄芯軸線方向における2つの端面を構成する壁部(10)と、鉄芯部材(2)をその両側から保持する壁部(11)を有するとともに、壁部(10)の高さが壁部(11)の高さよりも低く構成され、
前記鉄芯ケース(1)内に鉄芯のギャップを構成する仕切壁部(12)が設けられ、該仕切壁部(12)により、鉄芯ケース(1)の内部が鉄芯部材収納用の複数の収納部に分割されるとともに、仕切壁部(12)の高さが壁部(11)の高さよりも低く構成され、
前記鉄芯部材(2)は、柱状部(A)を構成すべき鉄芯部材(2a)と、連絡部(B)を構成すべき鉄芯部材(2b)とからなり、
前記壁部(10)を介して他の鉄芯用部品と接合された状態において、該壁部(10)が鉄芯のギャップを構成することを特徴とするリアクトルの鉄芯用部品。
A pair of parallel columnar portions (A) on which the coils are sheathed and joined between two end portions of the pair of columnar portions (A) by joining two substantially identical shapes while butting their end faces together An iron core part composed of a pair of connecting parts (B) that communicate with each other,
A resin-made iron core case (1) and an iron core member (2) housed in the iron core case (1);
The iron core case (1) is a case having an open upper surface, and at least a wall portion (10) constituting two end surfaces in the iron core axial direction, and a wall for holding the iron core member (2) from both sides thereof. And the height of the wall (10) is lower than the height of the wall (11).
In the iron core case (1), a partition wall portion (12) constituting a gap of the iron core is provided, and the inner portion of the iron core case (1) is used for housing the iron core member by the partition wall portion (12). While being divided into a plurality of storage parts, the height of the partition wall part (12) is configured to be lower than the height of the wall part (11),
The iron core member (2) includes an iron core member (2a) that should constitute the columnar part (A) and an iron core member (2b) that should constitute the connecting part (B),
The core part for a reactor, wherein the wall part (10) forms a gap of the iron core in a state where it is joined to another iron core part via the wall part (10).
鉄芯ケース(1)内に収納された鉄芯部材(2)が、接着剤で鉄芯ケース(1)に固定されていることを特徴とする請求項1に記載のリアクトルの鉄芯用部品。   The core component for a reactor according to claim 1, wherein the iron core member (2) housed in the iron core case (1) is fixed to the iron core case (1) with an adhesive. . 鉄芯ケース(1)の内面(但し、仕切壁部(12)が設けられている場合には、その壁面を含む)と鉄芯部材(2)との間に接着剤が充填されていることを特徴とする請求項2に記載のリアクトルの鉄芯用部品。   An adhesive is filled between the inner surface of the iron core case (1) (including the wall surface when the partition wall (12) is provided) and the iron core member (2). The reactor core part for a reactor according to claim 2. 鉄芯軸線方向における2つの端面が、鉄芯の1対の柱状部(A)の途中に位置することを特徴とする請求項1〜3のいずれかに記載のリアクトルの鉄芯用部品。   The core part for a reactor according to any one of claims 1 to 3, wherein two end faces in the iron core axial direction are located in the middle of the pair of columnar portions (A) of the iron core. 鉄芯軸線方向における2つの端面に、他の鉄芯用部品の端面と連結するための連結部または他の鉄芯用部品の端面と位置合わせするために係合部を有することを特徴とする請求項1〜4のいずれかに記載のリアクトルの鉄芯用部品。   It has an engaging part in order to align with the connection part for connecting with the end surface of other iron core components, or the end surface of other iron core components in two end surfaces in an iron core axis direction The core part for reactors according to any one of claims 1 to 4. 鉄芯ケース(1)の下面に開口が形成され、若しくは下面が開放されていることを特徴とする請求項1〜5のいずれかに記載のリアクトルの鉄芯用部品。   The core part for a reactor according to any one of claims 1 to 5, wherein an opening is formed on the lower surface of the iron core case (1) or the lower surface is opened. 請求項1〜6のいずれかに記載の鉄芯用部品を用いたリアクトルの製造方法であって、
2つの鉄芯用部品(x),(x)にコイル(Y)を外装した後、両鉄芯用部品(x),(x)の2つの端面どうしを突き合わせて接合して鉄芯(X)を構成することを特徴とするリアクトルの製造方法。
A method for manufacturing a reactor using the iron core part according to claim 1,
Two iron core parts (x 1), (x 2 ) after the outer coil (Y), both iron core parts (x 1), and joined butt two end faces each other of (x 2) The manufacturing method of the reactor characterized by comprising an iron core (X).
鉄芯用部品(x),(x)を接合する際または接合した後に、鉄芯用部品(x),(x)の鉄芯部材(2a),(2b)上の壁部(11)で囲まれた空間に放熱材を構成する樹脂を注入し、固化させることにより、各鉄芯用部品(x),(x)において、放熱材が壁部(11)よりも高さが低い仕切壁部(12)を越えて鉄芯部材(2a),(2b)を一体的に覆い、且つ両鉄芯用部品(x),(x)の前記放熱材が、壁部(11)よりも高さが低い壁部(10)を越えて繋がり一体化されることを特徴とする請求項7に記載のリアクトルの製造方法。 Wall portions on the iron core members (2a) and (2b) of the iron core components (x 1 ) and (x 2 ) when or after joining the iron core components (x 1 ) and (x 2 ) By injecting and solidifying the resin that constitutes the heat dissipation material into the space surrounded by (11), the heat dissipation material is more than the wall portion (11) in each of the iron core parts (x 1 ) and (x 2 ). The iron core members (2a) and (2b) are integrally covered beyond the partition wall portion (12) having a low height, and the heat dissipating materials of both iron core components (x 1 ) and (x 2 ) are: The method for manufacturing a reactor according to claim 7, wherein the reactor is connected and integrated over a wall (10) having a height lower than that of the wall (11). 請求項1〜6のいずれかに記載の鉄芯用部品を用いたリアクトルであって、
2つの鉄芯用部品(x),(x)を、それらの2つの端面どうしを突き合わせて接合して構成された鉄芯(X)と、該鉄芯(X)の柱状部(A)に外装されたコイル(Y)を有することを特徴とするリアクトル。
A reactor using the iron core component according to claim 1,
Two iron core parts (x 1 ), (x 2 ) are joined by abutting their two end faces and joined to each other, and a columnar part (A) of the iron core (X) ) Having a coil (Y) sheathed on the reactor.
鉄芯用部品(x),(x)の鉄芯部材(2a),(2b)上の壁部(11)で囲まれた空間に放熱材を構成する樹脂を注入し、固化させることにより放熱材が装着され、各鉄芯用部品(x),(x)において、前記放熱材が壁部(11)よりも高さが低い仕切壁部(12)を越えて鉄芯部材(2a),(2b)を一体的に覆い、且つ両鉄芯用部品(x),(x)の前記放熱材が、壁部(11)よりも高さが低い壁部(10)を越えて繋がり一体化したことを特徴とする請求項9に記載のリアクトル。 Injecting the resin constituting the heat dissipation material into the space surrounded by the wall (11) on the iron core members (2a) and (2b) of the iron core components (x 1 ) and (x 2 ) and solidifying them. heat dissipating material is mounted, the respective iron core parts (x 1), the iron core member beyond the (x 2), said heat radiating member is a partition wall is lower in height than the wall portion (11) (12) (2a), (2b) are integrally covered, and the heat dissipating material of both iron core parts (x 1 ), (x 2 ) has a lower wall part (10) than the wall part (11) The reactor according to claim 9, wherein the reactor is connected and integrated.
JP2009234828A 2009-10-09 2009-10-09 Reactor iron core parts Expired - Fee Related JP5353618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009234828A JP5353618B2 (en) 2009-10-09 2009-10-09 Reactor iron core parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234828A JP5353618B2 (en) 2009-10-09 2009-10-09 Reactor iron core parts

Publications (2)

Publication Number Publication Date
JP2011082412A JP2011082412A (en) 2011-04-21
JP5353618B2 true JP5353618B2 (en) 2013-11-27

Family

ID=44076148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234828A Expired - Fee Related JP5353618B2 (en) 2009-10-09 2009-10-09 Reactor iron core parts

Country Status (1)

Country Link
JP (1) JP5353618B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028572A (en) * 2010-07-23 2012-02-09 Toyota Industries Corp Induction device
JP2013004932A (en) * 2011-06-21 2013-01-07 Sumitomo Electric Ind Ltd Reactor and method for manufacturing the same
US8749335B2 (en) 2011-06-27 2014-06-10 Toyota Jidosha Kabushiki Kaisha Reactor
US9153372B2 (en) 2011-06-27 2015-10-06 Toyota Jidosha Kabushiki Kaisha Inductor and manufacturing method therefor
JP5874959B2 (en) * 2011-10-11 2016-03-02 住友電装株式会社 Reactor and manufacturing method thereof
JP5899926B2 (en) * 2011-12-28 2016-04-06 トヨタ自動車株式会社 Reactor and its manufacturing method
JP5957950B2 (en) * 2012-02-24 2016-07-27 住友電気工業株式会社 Reactor, converter, power converter, and reactor core components
JP6179701B2 (en) * 2012-02-24 2017-08-16 住友電気工業株式会社 Reactor, converter, and power converter
JP6005961B2 (en) * 2012-03-23 2016-10-12 株式会社タムラ製作所 Reactor and manufacturing method thereof
JP6041562B2 (en) * 2012-07-26 2016-12-07 株式会社ケーヒン Reactor device
JP5781485B2 (en) * 2012-10-03 2015-09-24 大崎電気工業株式会社 Electronic energy meter
JP2015141997A (en) * 2014-01-28 2015-08-03 Jfeスチール株式会社 Reactor core, and reactor using the same
JP5987847B2 (en) * 2014-01-30 2016-09-07 Jfeスチール株式会社 Reactor
DE102014108929A1 (en) * 2014-06-25 2015-12-31 Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg Stacking unit for receiving core plates for an inductive component
JP6484068B2 (en) * 2015-03-04 2019-03-13 Ntn株式会社 Resin case for inductance element and inductance element
JP6660800B2 (en) * 2015-08-27 2020-03-11 株式会社タムラ製作所 Reactor
JP6592209B2 (en) * 2019-01-15 2019-10-16 Ntn株式会社 Resin case for inductance element and inductance element
JP7126600B2 (en) * 2019-02-22 2022-08-26 三菱電機株式会社 Power conversion device and coil device
JP7199250B2 (en) * 2019-02-26 2023-01-05 利昌工業株式会社 Mold transformer and mold transformer manufacturing method
JP7433412B2 (en) * 2020-02-28 2024-02-19 三菱電機株式会社 Reactor and its assembly method
JP7437989B2 (en) * 2020-03-24 2024-02-26 三菱電機株式会社 Case, reactor, electronic equipment and reactor manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107111U (en) * 1982-12-31 1984-07-19 ティーディーケイ株式会社 inductor
JPS6088518U (en) * 1983-11-24 1985-06-18 株式会社トーキン choke coil
JPH0242413U (en) * 1988-09-14 1990-03-23
JPH0320006A (en) * 1989-05-16 1991-01-29 Matsushita Electric Ind Co Ltd Transformer
JPH0327019U (en) * 1989-07-27 1991-03-19
JP2514075Y2 (en) * 1989-09-22 1996-10-16 ミドリ安全工業株式会社 High voltage split current transformer
JP4387857B2 (en) * 2004-04-08 2009-12-24 株式会社エス・エッチ・ティ Coil device and manufacturing method thereof
JP4858035B2 (en) * 2006-09-19 2012-01-18 トヨタ自動車株式会社 Reactor core and reactor

Also Published As

Publication number Publication date
JP2011082412A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5353618B2 (en) Reactor iron core parts
JP2008028290A (en) Reactor device and assembly method thereof
JP5263720B2 (en) Reactor component manufacturing method and reactor body manufacturing method
JP5597106B2 (en) Reactor
JP5626466B2 (en) Reactor and manufacturing method thereof
JP6358565B2 (en) Reactor and manufacturing method of reactor
JP5278559B2 (en) Reactor and manufacturing method thereof
JP5310460B2 (en) Manufacturing method of laminated core
WO2013001592A1 (en) Inductor and manufacturing method therefor
JP6365941B2 (en) Reactor
JP5961986B2 (en) Trance
JP2007201203A (en) Reactor
JP2011029336A (en) Reactor and mounting structure of reactor
JP5234517B2 (en) Reactor, reactor manufacturing method, and converter
JP2012238659A (en) Reactor and manufacturing method of the same
JP5890966B2 (en) Coil device
JP5362756B2 (en) Trance
CN108604495B (en) Electric reactor
JP2012209341A (en) Reactor
JP2011049494A (en) Fixation structure of reactor
JP2006294830A (en) Core and reactor
CN111316390B (en) Electric reactor
JP7189740B2 (en) Reactor
CN111316389B (en) Electric reactor
CN111788646B (en) Electric reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees