JP5252024B2 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- JP5252024B2 JP5252024B2 JP2011088139A JP2011088139A JP5252024B2 JP 5252024 B2 JP5252024 B2 JP 5252024B2 JP 2011088139 A JP2011088139 A JP 2011088139A JP 2011088139 A JP2011088139 A JP 2011088139A JP 5252024 B2 JP5252024 B2 JP 5252024B2
- Authority
- JP
- Japan
- Prior art keywords
- solder
- semiconductor chip
- circuit pattern
- layer
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83194—Lateral distribution of the layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8338—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/83385—Shape, e.g. interlocking features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8384—Sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/35—Mechanical effects
- H01L2924/351—Thermal stress
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Die Bonding (AREA)
Description
本発明は、パワー用IGBTモジュールなどを対象とする半導体装置に関し、詳しくは絶縁基板の回路パターン上にマウントした半導体チップの接合構造に係わる。 The present invention relates to a semiconductor device intended for a power IGBT module and the like, and more particularly to a bonding structure of a semiconductor chip mounted on a circuit pattern of an insulating substrate.
先ず、頭記のIGBTモジュールを例に、その組立構造を図4に示す。図において、1は放熱用銅ベース、2はセラミック板2aの上面,下面に銅回路パターン2b,銅箔2cを成層して銅ベース1に搭載した絶縁基板、3,4はIGBT,FWDの半導体チップ、5は銅ベース1と絶縁基板2の裏面銅箔2c,および絶縁基板2の回路パターン2aと半導体チップ3,4との間を接合した半田接合層、6は銅ベース1の下面にサーマルコンパウンド7で伝熱的に接合し冷却体(ヒートシンク)である。なお、図2では配線リード、モジュールの外囲ケースなどは省略して描かれてない。
First, the assembly structure is shown in FIG. 4 taking the IGBT module mentioned above as an example. In the figure, 1 is a heat-dissipating copper base, 2 is an insulating substrate mounted on the
ここで、銅ベース1/絶縁基板2の裏面銅箔2c,絶縁基板2の回路パターン2a/半導体チップ3,4を接合する半田材にはクリーム半田あるいは板半田を使用し、リフロー工程を経て半田接合層5を形成している。
Here, cream solder or plate solder is used as a solder material for joining the
一方、最近では環境問題からSn−Pb系半田の代替として鉛成分を含まない鉛フリー半田が採用されるようになっており、前記のIGBTモジュール(パワーモジュール)に適用する半田材としては、現在知られている各種組成の鉛フリー半田の中でも取りわけ接合性(半田濡れ性),機械的特性,伝熱抵抗などの面で比較的バランスがよく、かつ製品への実績もあるSn−Ag系の鉛フリー半田が多く使われている(例えば、非特許文献1参照)。
On the other hand, recently, lead-free solder containing no lead component has been adopted as an alternative to Sn-Pb solder due to environmental problems. As a solder material applied to the IGBT module (power module), Among the known lead-free solders of various compositions, Sn-Ag series has a relatively good balance in terms of jointability (solder wettability), mechanical properties, heat transfer resistance, etc., and has a track record in products. Lead-free solder is often used (see Non-Patent
また、鉛フリー半田として、Sn,AgのほかにNi,Cuを添加した半田材を適用し、その半田材中に生成した金属間化合物の特性(高温強度)を有効に生かして半導体チップと半導体チップをマウントする放熱基板との間を接合するようにしたものも知られている(例えば、特許文献1参照)。 Moreover, as a lead-free solder, a solder material to which Ni and Cu are added in addition to Sn and Ag is applied, and the characteristics (high-temperature strength) of the intermetallic compound generated in the solder material are effectively utilized to make a semiconductor chip and a semiconductor. There is also known one that joins a heat dissipation substrate on which a chip is mounted (for example, see Patent Document 1).
さらに、最近では半導体デバイスの製造技術分野でも金属ナノ粒子の量子サイズ効果による低温焼結現象および高い表面活性を利用した低温焼成形の導電性ペースト(以下、「ナノ金属ペースト」と称する)が開発,市販されており、このナノ金属ペーストを使って基板上に半導体チップを接合するなどの応用技術が提案されている(例えば、特許文献2)。
ところて、半導体チップ/絶縁基板の接合材にSn−Ag系の鉛フリー半田を適用した半導体モジュールについて、パワーサイクル試験(モジュールの実動作を模擬した断続通電試験)により半田接合部に発生した亀裂(欠陥)の進展形態を観察したところ、Sn−Ag系の鉛フリー半田接合層には図5で表すように発熱密度が高い半導体チップ3の中央部下付近を起点としてほぼ同心円状に亀裂(符号Aで表す)が進展することが認められた。また、この亀裂の特徴は、半田層の厚さ方向に平行な縦割れ,または網目状を呈してSnの結晶粒界を選択的に進展しており、このことからSn−Ag系の鉛フリー半田では熱劣化(組織変化)によって亀裂が進行するものと想定される(非特許文献1のp147参照)。
By the way, for a semiconductor module in which Sn-Ag-based lead-free solder is applied to the bonding material of the semiconductor chip / insulating substrate, a crack occurred in the solder joint portion by a power cycle test (intermittent current test simulating the actual operation of the module). As a result of observing the progress of (defects), the Sn-Ag lead-free solder joint layer was cracked almost concentrically starting from the vicinity of the central portion of the
このように、半導体チップ/絶縁基板の接合にSn−Ag系の鉛フリー半田を適用して接合した半導体装置について、従来の接合構造では半導体チップの中央部下付近の半田接合層に熱劣化(組織変化)が発生して亀裂が生じるために、長期に亘り高い信頼性を確保することが難しい。 As described above, with respect to a semiconductor device bonded by applying Sn-Ag lead-free solder to the semiconductor chip / insulating substrate bonding, the conventional bonding structure causes thermal degradation (structure) near the solder bonding layer near the center of the semiconductor chip. Change) and cracks occur, and it is difficult to ensure high reliability over a long period of time.
かかる点、例えば特許文献2に開示されている鉛フリー半田を適用し、その半田材中に生成した金属間化合物を半田層の全域に成長させて半導体チップ/回路パターン間を金属間化合物だけで接合するようにすれば、前記した半田層の熱劣化(組織変化)に起因して半導体チップの中央部下の接合層に亀裂が発生するのを防止できることが想定される。しかしながら、発明者が実験を通じて得た知見によれば、半導体チップ/絶縁基板の回路パターン間の接合面全域を全て半田材中に生成した金属間化合物で接合すると、半導体チップの中央部下の接合層に亀裂が発生するのを効果的に防止できるものの、外周側のフィレット部を起点として接合層の面方向に加わる剪断応力の作用方向に亀裂が発生,進展するのが認められた。これは、半導体チップ/絶縁基板の熱膨張係数差により熱サイクルで接合層に生じる熱応力(剪断応力)が半導体チップの中央部下よりもチップ外周のフィレット部付近に多く集中するのに対して、金属間化合物は半田層に比べて脆く、延性も低いために金属間化合物の接合層が疲労破壊して亀裂が発生するものと推測される。
In this respect, for example, the lead-free solder disclosed in
また、半導体チップ/回路パターン間をナノ金属粒子で接合したパッケージについても、前記の金属間化合物による接合と同様に半導体チップ中央部下の亀裂発生を効果的に防止できるものの、半導体チップの外周縁を起点として接合層の外周部には剪断応力の作用方向に亀裂の発生が認められる。 In addition, as for the package in which the semiconductor chip / circuit pattern is bonded with the nano metal particles, cracking under the center of the semiconductor chip can be effectively prevented as in the bonding with the intermetallic compound, but the outer peripheral edge of the semiconductor chip is As a starting point, the occurrence of cracks in the direction of shear stress is recognized in the outer peripheral portion of the bonding layer.
本発明は上記の点に鑑みなされたものであり、その目的は半導体チップ/絶縁基板間の半田接合部について、半導体チップの中央部下付近の接合層に亀裂が発生するのを抑制し、併せて半導体チップ/絶縁基板間の伝熱性を向上させて高いパワーサイクル耐性と長期信頼性の向上が図れるように接合構造を改良した半導体装置を提供することにある。 The present invention has been made in view of the above points, and the object thereof is to suppress the occurrence of cracks in the bonding layer near the center of the semiconductor chip at the solder bonding portion between the semiconductor chip and the insulating substrate. It is an object of the present invention to provide a semiconductor device having an improved junction structure so as to improve heat transfer between a semiconductor chip and an insulating substrate to improve high power cycle resistance and long-term reliability.
上記目的を達成するために、本発明によれば、絶縁基板の回路パターン上に鉛フリー半田を適用して半導体チップを半田マウントした半導体装置において、
半導体チップと回路パターンとの間の接合面を半導体チップの中央部下に対応する中央面域と、該中央面域を囲む外周面域とに分け、かつ回路パターンには前記中央面域に対応して台形状の凸部を形成した上で、回路パターン上に形成した前記凸部と半導体チップの中央部との間を、半田の代わりにナノ金属ペーストを適用して金属接合し、その外周面域を鉛フリー半田で接合する(請求項1)。
In order to achieve the above object, according to the present invention, in a semiconductor device in which a semiconductor chip is solder mounted by applying lead-free solder on a circuit pattern of an insulating substrate,
The bonding surface between the semiconductor chip and the circuit pattern is divided into a central surface area corresponding to the lower part of the semiconductor chip and an outer peripheral surface area surrounding the central surface area, and the circuit pattern corresponds to the central surface area. After forming a trapezoidal convex part, a metal joint is applied between the convex part formed on the circuit pattern and the central part of the semiconductor chip by applying a nano metal paste instead of solder, and its outer peripheral surface The areas are joined with lead-free solder (claim 1).
上記のように半導体チップ/回路パターン間の半田接合部について、チップ外周部に比べて通電に伴う発熱密度が大で高温となる半導体チップの中央部と向かい合う回路パターン上の部分に凸部を形成した上で、鉛フリー半田を適用して半導体チップ/回路パターン間を接合することにより、半導体チップの中央部下の半田接合層はチップ外周側に比べて厚さが薄く、したがってその部分の伝熱抵抗が小さくなって半導体チップからの放熱性も増す。これにより、半田接合層の中央面域については高温な温度上昇に伴う熱劣化(組織変化)が抑制されて該部分での亀裂発生を抑制できる。一方、熱膨張係数差に起因する剪断応力が集中する半田接合層の外周部には十分に厚い半田層が確保されているので、半田の塑性,延性を生かしてこの部分に作用する剪断応力を吸収緩和でき、その結果として半導体装置のパワーサイクル耐性,長期信頼性が向上する。 As described above, at the solder joint between the semiconductor chip and the circuit pattern, a convex part is formed on the part on the circuit pattern facing the central part of the semiconductor chip where the heat generation density caused by energization is large and high compared to the outer periphery of the chip. In addition, by applying lead-free solder to bond between the semiconductor chip / circuit pattern, the solder bonding layer below the center of the semiconductor chip is thinner than the outer periphery of the chip, so heat transfer in that part The resistance is reduced and the heat dissipation from the semiconductor chip is also increased. Thereby, about the center surface area of a solder joint layer, the thermal degradation (structure change) accompanying a high temperature rise is suppressed, and the crack generation | occurrence | production in this part can be suppressed. On the other hand, since a sufficiently thick solder layer is secured on the outer periphery of the solder joint layer where shear stress due to the difference in thermal expansion coefficient is concentrated, the shear stress acting on this part is utilized by taking advantage of the plasticity and ductility of the solder. Absorption can be relaxed, and as a result, the power cycle resistance and long-term reliability of the semiconductor device are improved.
また、回路パターンの凸部/半導体チップ間の半田接合層の厚さを5μm以下に設定してリフローし、半導体チップの中央部と回路パターンの凸部との間をリフロー工程を含む熱履歴により生成した金属間化合物で接合するようにすれば、鉛フリー半田(Sn−Ag系半田)の適用で従来問題となっていた半導体チップ中央部下の半田層に生じる熱劣化、およびその熱劣化に起因する亀裂の発生を防止しつつ、外周部側では層の厚い半田層が剪断応力に対する応力緩和層として有効に働き、これにより半導体装置の長期信頼性がより一層向上する。 Further, the thickness of the solder bonding layer between the convex part of the circuit pattern / semiconductor chip is set to 5 μm or less and reflow is performed, and the thermal history including the reflow process is performed between the central part of the semiconductor chip and the convex part of the circuit pattern If the generated intermetallic compound is used for joining, the thermal degradation that occurs in the solder layer under the center of the semiconductor chip, which has been a problem in the past by the application of lead-free solder (Sn-Ag solder), and the thermal degradation On the outer peripheral side, the thick solder layer effectively works as a stress relaxation layer against shear stress, thereby further improving the long-term reliability of the semiconductor device.
さらに、半導体チップ/回路パターン間の接合について、回路パターンに形成した凸部と半導体チップ中央部との間の接合面域では、半田の代わりにナノ金属ペーストを適用してナノ金属粒子間,ナノ金属粒子/接合母材間の低温焼結により金属同士で直接接合し、その外周面域には延性の高い鉛フリー半田を適用して層の厚い半田接合層を確保することにより、前記と同様に発熱密度の高い半導体チップの中央部に対してはナノ金属粒子により低熱抵抗,高耐熱性で熱劣化のない金属接合部を確保し、またチップ外周部では層の厚い半田接合層が剪断応力を効果的に吸収緩和して長期信頼性のさらなる向上が図れる。 Furthermore, with regard to the bonding between the semiconductor chip / circuit pattern, in the bonding surface area between the convex portion formed in the circuit pattern and the central portion of the semiconductor chip, a nano metal paste is applied in place of the solder to apply a nano metal paste between the nano metal particles. Similar to the above, by joining directly between metals by low-temperature sintering between metal particles / joining base material and applying a lead-free solder with high ductility to the outer peripheral surface area to ensure a thick solder joint layer At the center of the semiconductor chip, which has a high heat generation density, a metal joint with low thermal resistance, high heat resistance, and no thermal degradation is secured by nano metal particles. Can be effectively absorbed and relaxed to further improve long-term reliability.
以下、本発明の実施の形態を図1,図2,図3に示す各実施例に基づいて説明する。なお、図示実施例の図は半導体チップ3と絶縁基板2の回路パターン2bとの半田接合部を模式的に表しており、図中で図5に対応する部材には同じ符号を付している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the respective examples shown in FIGS. The drawing of the illustrated embodiment schematically shows a solder joint between the
図1(a),(b)は本発明の請求項1に対応する実施例を示すものであり、半導体チップ3をマウントとする回路パターン2aには、半導体チップ3の中央部下面と向かい合う面域に台形状の凸部2b−1をエッチング加工,あるいはプレス加工により形成しておく。なお、凸部2b−1の平面形状は図示のように円形とするほか、方形状あるいは多角形であってもよい。
FIGS. 1A and 1B show an embodiment corresponding to claim 1 of the present invention. A
そして、半導体チップ3/回路パターン2b間の半田リフロー工程では、前記凸部2b−1を含む回路パターン2a上の接合面域に鉛フリー半田(Sn−Ag系半田)のクリーム半田を印刷するか、あるいは板半田を載せ、この半田の上に半導体チップ3を重ね合わせた上で、炉内に搬入してリフロー半田付けを行う。
Then, in the solder reflow process between the
これにより、半導体チップ3と回路パターン2bとの間には、図1(a)の断面図で表すように半導体チップ2の中央部下では層の厚さが薄く、外周域では層の厚さが厚い半田接合層5が形成される。
Thereby, between the
上記の接合構造によれば、通電に伴う発熱密度の高い半導体チップ3の中央部下では半田接合層5の厚さが薄くて熱抵抗が小さくなり、半導体チップ3から伝熱する熱の放熱性も高まって半田層に生じる熱劣化,および熱劣化に起因する半田接合層5の亀裂(図5参照)の発生が抑制される。一方、半田接合部の外周部では十分な厚さの半田接合層5が確保されているので、熱サイクルに伴いこの外周のフィレット部分に集中する剪断応力は厚い半田接合層5により効果的に吸収緩和される。その結果、半田接合部のパワーサイクル耐性,長期信頼性が向上する。
According to the above bonding structure, the thickness of the
次に、先記実施例1をさらに発展させた本発明の請求項2に対応する実施例を図2に示す。この実施例では、先記実施例1で述べた回路パターン2bの凸部2b−1/半導体チップ3間を接合する鉛フリー半田(Sn−Ag系半田)の層厚さdを5μm以下に縮小設定して半田リフローする。このリフロー工程でリフロー温度を約250℃,時間を約2分として半田接合を行うと、熱履歴により半導体チップ3(チップ下面はNiメッキされている)/半田の接合界面,および回路パターン2b(Cu)/半田の接合界面に金属間化合物5a(Sn−Ni,Sn−Cu化合物)が生成し、その層厚さは2.5μm程度まで成長するようになる。これにより、回路パターン2bの凸部上面と半導体チップ3の中央部下面との間の領域が殆ど金属間化合物5aだけで接合された状態となる。これにより、半導体チップ3の中央部下の半田接合層5に対する熱劣化,亀裂の発生をより効果的に抑制することができる。なお、半田リフローで金属間化合物5aが十分に成長せずに半田層が残ったとしても、半導体装置の実使用時における熱履歴により金属間化合物5aの成長が進んで半導体チップ3の中央部下の接合層が全て金属間化合物となる。
Next, FIG. 2 shows an embodiment corresponding to claim 2 of the present invention, which is a further development of the first embodiment. In this embodiment, the layer thickness d of lead-free solder (Sn—Ag solder) that joins between the
一方、前記凸部2b−1の外周側接合部では、凸部2b−1の上面域に比べて半田層が厚いので金属間化合物5aの成長は半田接合層5の一部に止まる。したがって、実使用時の温度サイクルに伴い外周部に集中する熱応力(剪断応力)は、金属間化合物5aに比べて延性の高い半田層で吸収緩和される。
On the other hand, since the solder layer is thicker at the outer peripheral side joint portion of the
次に、本発明の請求項3に対応する実施例を図3に示す。この実施例では、回路パターン2bに形成した凸部2b−1と半導体チップ3の中央部下面との接合にナノ金属ペーストを適用し、該接合部を囲む外周部の接合には鉛フリー半田を適用して接合している。
Next, an embodiment corresponding to claim 3 of the present invention is shown in FIG. In this embodiment, a nano metal paste is applied to the joint between the
ここで、ナノ金属ペーストは、Ag,Cuなどの金属ナノ粒子,金属ナノ粒子が常温で凝集するのを抑制してナノ粒子を独立分散状態に保持する有機分散材(バインダ),加熱により有機分散材と反応して金属ナノ粒子を裸にする分散材捕捉材、および加熱により前記分散材と分散材捕捉材との反応物質を捕捉して揮散する揮発性有機成分(保護膜)を混合した組成であり、ペーストを加熱することによりバインダ−保護膜間で化学反応が進行してナノ金属粒子が裸の状態になり、その表面活性によりナノ金属粒子間,ナノ金属粒子/接合部の母材(回路パターン,半導体チップの金属メタライズ層)間で低温焼結が進行して最終的に金属同士で直接接合される。 Here, the nanometal paste is made of Ag, Cu, or other metal nanoparticles, an organic dispersion material (binder) that keeps the nanoparticles from aggregating at room temperature and maintaining the nanoparticles in an independently dispersed state, and organic dispersion by heating. Composition that mixes dispersion trapping material that reacts with the material to bare metal nanoparticles, and volatile organic component (protective film) that traps and volatilizes the reaction material between the dispersion material and the dispersion trapping material by heating When the paste is heated, the chemical reaction proceeds between the binder and the protective film, and the nano metal particles become bare, and the surface activity between the nano metal particles and the base metal of the nano metal particles / joint part ( The low temperature sintering proceeds between the circuit pattern and the metal metallization layer of the semiconductor chip, and finally the metals are directly joined together.
そして、回路パターン2に半導体チップ3を接合する工程では、回路パターン2bの凸部2b−1上面にナノ金属ペーストをスクリ−ン印刷法などにより均一厚さに塗布し、その外周側には鉛フリー半田(Sn−Ag系半田)を凸部2b−1の段差分を含めた厚さに塗布しておく。次いで、半導体チップ3を重ね合わせた状態で加熱(加熱温度:200〜250℃程度)し、加圧力を加えることにより、図示のように半導体チップ3の中央部下面と回路パターン2bの凸部2b−1との間がナノ金属粒子接合層8により、またその外周側が層の厚い半田接合層5で接合されるようになる。
Then, in the step of bonding the
この接合構造によれば、半導体チップ3の中央部と回路パターン2bの凸部2b−1との間が伝熱抵抗の小さなナノ金属粒子接合層8を介して金属接合されるので、従来の半田接合構造で問題となっていた半導体チップ3の中央部下の半田接合層における熱劣化,亀裂の発生(図5参照)を防止し、また、その外周側は層厚の厚い半田接合層5で半導体チップ3/回路パターン2b間が接合されるので、先記の実施例1,2と同様に熱サイクルでフィレット部に集中する熱応力(剪断応力)が効果的に吸収緩和される。これにより、半導体装置として長期信頼性がより一層向上する。
According to this bonding structure, the central portion of the
1 銅ベース
2 絶縁基板
2b 回路パターン
2b−1 凸部
3 半導体チップ
5 鉛フリー半田の半田接合層
5a 金属間化合物
8 ナノ金属粒子接合層
DESCRIPTION OF
Claims (1)
半導体チップと回路パターンとの間の接合面を半導体チップの中央部下に対応する中央面域と、該中央面域を囲む外周面域とに分け、かつ回路パターンには前記中央面域に対応して台形状の凸部を形成した上で、該凸部と半導体チップの中央部との間をナノ金属粒子で金属接合し、その外周面域を鉛フリー半田で接合したことを特徴とする半導体装置。 In a semiconductor device in which a lead-free solder is applied onto a circuit pattern of an insulating substrate and a semiconductor chip is solder mounted,
The bonding surface between the semiconductor chip and the circuit pattern is divided into a central surface area corresponding to the lower part of the semiconductor chip and an outer peripheral surface area surrounding the central surface area, and the circuit pattern corresponds to the central surface area. In addition, a semiconductor having a trapezoidal convex portion, a metal joint between the convex portion and the central portion of the semiconductor chip with nano metal particles, and an outer peripheral surface region joined with lead-free solder. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011088139A JP5252024B2 (en) | 2011-04-12 | 2011-04-12 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011088139A JP5252024B2 (en) | 2011-04-12 | 2011-04-12 | Semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005301427A Division JP4904767B2 (en) | 2005-10-17 | 2005-10-17 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011159994A JP2011159994A (en) | 2011-08-18 |
JP5252024B2 true JP5252024B2 (en) | 2013-07-31 |
Family
ID=44591630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011088139A Expired - Fee Related JP5252024B2 (en) | 2011-04-12 | 2011-04-12 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5252024B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5874516B2 (en) * | 2012-04-27 | 2016-03-02 | 株式会社村田製作所 | Electronic components |
JP5975007B2 (en) * | 2013-09-25 | 2016-08-23 | トヨタ自動車株式会社 | Semiconductor device and manufacturing method thereof |
EP3069811A4 (en) | 2013-11-11 | 2017-11-29 | Nippon Steel & Sumitomo Metal Corporation | Metal bonding structure, metal bonding method, and metal bonding material using metal nanoparticles |
JP2015177182A (en) * | 2014-03-18 | 2015-10-05 | 三菱電機株式会社 | power module |
JP6366766B2 (en) * | 2017-03-24 | 2018-08-01 | 三菱電機株式会社 | Semiconductor device |
JP7492375B2 (en) * | 2020-05-26 | 2024-05-29 | 株式会社 日立パワーデバイス | Semiconductor Device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5466073A (en) * | 1977-11-04 | 1979-05-28 | Nec Corp | Semiconductor device |
EP0495005A1 (en) * | 1989-10-05 | 1992-07-22 | Digital Equipment Corporation | Die attach structure |
JP4471470B2 (en) * | 2000-07-25 | 2010-06-02 | 京セラ株式会社 | Semiconductor device |
JP2002158238A (en) * | 2000-11-16 | 2002-05-31 | Mitsubishi Electric Corp | Method for connecting electronic component, electronic device and method for manufacturing the same |
JP2003142809A (en) * | 2001-11-05 | 2003-05-16 | Denki Kagaku Kogyo Kk | Metal base circuit board and module using the same |
-
2011
- 2011-04-12 JP JP2011088139A patent/JP5252024B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011159994A (en) | 2011-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4904767B2 (en) | Semiconductor device | |
JP6111764B2 (en) | Power module substrate manufacturing method | |
JP6307832B2 (en) | Power module board, power module board with heat sink, power module with heat sink | |
JP5705506B2 (en) | Clad material for insulating substrate | |
JP5214936B2 (en) | Semiconductor device | |
JP5252024B2 (en) | Semiconductor device | |
JP5991102B2 (en) | Power module substrate with heat sink, power module with heat sink, and method for manufacturing power module substrate with heat sink | |
JP2015211125A (en) | Substrate for power module, substrate for power module with heat sink, and power module with heat sink | |
TW201526171A (en) | Method of producing a jointed body and method of producing power module substrate | |
JPWO2015114987A1 (en) | Power module substrate and power module using the same | |
JP2011216772A (en) | Method of manufacturing semiconductor device, and bonding jig | |
KR101609495B1 (en) | Semiconductor device and fabrication method for semiconductor device | |
JP5936407B2 (en) | Power module manufacturing method | |
JP2006066716A (en) | Semiconductor device | |
JP4877046B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2009231716A (en) | Bonding material and method of manufacturing semiconductor module | |
JP5018250B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2007243118A (en) | Semiconductor device | |
JP2014146645A (en) | Semiconductor device | |
JP2017092168A (en) | Semiconductor module and power converter | |
JP2020136449A (en) | Method of manufacturing semiconductor device | |
JP2009147123A (en) | Semiconductor device, and manufacturing method therefor | |
JP4765098B2 (en) | Semiconductor device and manufacturing method thereof | |
JP6011410B2 (en) | Semiconductor device assembly, power module substrate and power module | |
JP5971543B2 (en) | Semiconductor module and semiconductor chip mounting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20110422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110518 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130401 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |