Nothing Special   »   [go: up one dir, main page]

JP5120580B1 - Liquid crystal alignment agent - Google Patents

Liquid crystal alignment agent Download PDF

Info

Publication number
JP5120580B1
JP5120580B1 JP2012110903A JP2012110903A JP5120580B1 JP 5120580 B1 JP5120580 B1 JP 5120580B1 JP 2012110903 A JP2012110903 A JP 2012110903A JP 2012110903 A JP2012110903 A JP 2012110903A JP 5120580 B1 JP5120580 B1 JP 5120580B1
Authority
JP
Japan
Prior art keywords
amino
liquid crystal
dicarboxynaphthalene
dianhydride
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012110903A
Other languages
Japanese (ja)
Other versions
JP2013238700A (en
Inventor
幸志 樫下
孝人 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2012110903A priority Critical patent/JP5120580B1/en
Application granted granted Critical
Publication of JP5120580B1 publication Critical patent/JP5120580B1/en
Priority to KR1020130030709A priority patent/KR101866834B1/en
Priority to CN201310143413.0A priority patent/CN103421518B/en
Priority to TW102116458A priority patent/TWI537309B/en
Publication of JP2013238700A publication Critical patent/JP2013238700A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】重合体のイミド化工程およびこれに続く溶媒置換工程を省略しつつ、ポリアミック酸の部分イミド化重合体を含有する液晶配向剤を凌駕する特性を有する液晶配向剤を提供すること。
【解決手段】下記式(1)で表される化合物を含むテトラカルボン酸二無水物とジアミンとを反応させて得られるポリアミック酸を含有することを特徴とする、液晶配向剤。

Figure 0005120580
(式(1)中、YおよびYは、それぞれ独立に、2価の有機基であり、ZおよびZは、それぞれ独立に、3価の有機基であり、Qは4価の有機基であり、そしてn1およびn2は、それぞれ独立に、0または1である。)
【選択図】なしDisclosed is a liquid crystal aligning agent having characteristics superior to a liquid crystal aligning agent containing a partially imidized polymer of polyamic acid while omitting the imidization step of the polymer and the subsequent solvent substitution step.
A liquid crystal aligning agent comprising a polyamic acid obtained by reacting a tetracarboxylic dianhydride containing a compound represented by the following formula (1) with a diamine.
Figure 0005120580
(In Formula (1), Y 1 and Y 2 are each independently a divalent organic group, Z 1 and Z 2 are each independently a trivalent organic group, and Q is a tetravalent organic group. And is an organic group, and n1 and n2 are each independently 0 or 1.)
[Selection figure] None

Description

本発明は液晶配向剤に関する。
本発明は、ポリアミック酸の部分イミド化重合体を含有する液晶配向剤を凌駕する特性を有する液晶配向剤を与えるものである。本発明の好ましい態様によると、該液晶配向剤は、重合体のイミド化工程およびこれに続く溶媒置換工程を必要とせずに製造することができる。
The present invention relates to a liquid crystal aligning agent.
The present invention provides a liquid crystal aligning agent having characteristics superior to those of a liquid crystal aligning agent containing a partially imidized polymer of polyamic acid. According to a preferred embodiment of the present invention, the liquid crystal aligning agent can be produced without requiring a polymer imidation step and a subsequent solvent replacement step.

液晶表示素子は、液晶分子を一定の方向に配向させる機能を有する液晶配向膜を具備している。この液晶配向膜は、一般に、重合体を含有する液晶配向剤を基板上に塗布する工程を経由して形成される。液晶配向剤に含有される重合体としては、ポリアミック酸、ポリアミック酸のイミド化重合体、ポリアミド、ポリエステル、ポリオルガノシロキサンなどが知られており、特にポリアミック酸の部分イミド化重合体は、溶解性と電気特性とが両立されていることから、好ましく使用されている(特許文献1)。
ポリアミック酸の部分イミド化重合体を含有する液晶配向剤は、通常、以下のような多段階の工程を経由して調製される。先ず、テトラカルボン酸二無水物とジアミンとを有機溶媒中で反応させて、ポリアミック酸を合成する工程を行う。次にポリアミック酸を含有する溶液に脱水剤および脱水触媒を加えて加熱することにより、ポリアミック酸を部分的にイミド化して部分イミド化重合体を得る。このイミド化工程には例えば4〜6時間程度の長時間が必要である。また、このイミド化工程で得られた反応混合物には、目的の重合体とともに脱水剤および脱水触媒が残存しているから、次にこれらを除去するために溶媒置換工程またはポリマーの再沈殿精製を行う必要がある。さらに必要に応じてその他の成分を配合することにより、ようやく所望の液晶配向剤が得られることとなる。
このように、一般に、ポリアミック酸の部分イミド化重合体を含有する液晶配向剤の調製には長時間を要するうえ、工程中に溶媒置換または再沈殿が予定されているため、反応原料の仕込みを反応釜の本来の容量の数分の一程度にとどめる必要があり、製造コストがさらにかさむこととなる。重合体を含有する溶液の溶媒を置換する工程だけでも、そのエネルギー・コストは甚大である。
The liquid crystal display element includes a liquid crystal alignment film having a function of aligning liquid crystal molecules in a certain direction. This liquid crystal alignment film is generally formed through a step of applying a liquid crystal alignment agent containing a polymer on a substrate. As the polymer contained in the liquid crystal aligning agent, polyamic acid, imidized polymer of polyamic acid, polyamide, polyester, polyorganosiloxane, etc. are known, and in particular, partially imidized polymer of polyamic acid is soluble. And electric characteristics are compatible with each other (Patent Document 1).
A liquid crystal aligning agent containing a partially imidized polymer of polyamic acid is usually prepared through the following multi-step process. First, a step of reacting tetracarboxylic dianhydride and diamine in an organic solvent to synthesize a polyamic acid is performed. Next, a polyamic acid is partially imidized by adding a dehydrating agent and a dehydrating catalyst to the solution containing the polyamic acid and heating to obtain a partially imidized polymer. This imidization step requires a long time of about 4 to 6 hours, for example. In addition, since the dehydrating agent and the dehydration catalyst remain together with the target polymer in the reaction mixture obtained in this imidization step, a solvent replacement step or reprecipitation purification of the polymer is then performed to remove these. There is a need to do. Furthermore, a desired liquid crystal aligning agent will be finally obtained by mix | blending another component as needed.
Thus, in general, it takes a long time to prepare a liquid crystal aligning agent containing a partially imidized polymer of polyamic acid, and solvent replacement or reprecipitation is scheduled during the process. It is necessary to keep the reaction kettle to be a fraction of the original capacity of the reaction kettle, which further increases the manufacturing cost. Even the process of replacing the solvent of the solution containing the polymer alone has a significant energy cost.

特開平9−157392号公報JP-A-9-157392 特開2010−97188号公報JP 2010-97188 A

本発明は、上記のような現状を打開しようとしてなされたものであり、重合体のイミド化工程およびこれに続く溶媒置換工程を省略しつつ、ポリアミック酸の部分イミド化重合体を含有する液晶配向剤を凌駕する特性を有する液晶配向剤を提供することを目的とする。   The present invention has been made in order to overcome the above-described situation, and a liquid crystal alignment containing a partially imidized polymer of polyamic acid while omitting the imidization step of the polymer and the subsequent solvent replacement step. It aims at providing the liquid crystal aligning agent which has the characteristic which surpasses an agent.

本発明によると、本発明の上記目的および利点は、
下記式(1)で表される化合物を含むテトラカルボン酸二無水物とジアミンとを反応させて得られるポリアミック酸を含有することを特徴とする、液晶配向剤によって達成される。
According to the present invention, the above objects and advantages of the present invention are:
It is achieved by a liquid crystal aligning agent characterized by containing a polyamic acid obtained by reacting a tetracarboxylic dianhydride containing a compound represented by the following formula (1) with a diamine.

Figure 0005120580
Figure 0005120580

(式(1)中、YおよびYは、それぞれ独立に、2価の有機基であり、
およびZは、それぞれ独立に、3価の有機基であり、
Qは4価の有機基であり、そして
n1およびn2は、それぞれ独立に、0または1である。)
(In formula (1), Y 1 and Y 2 are each independently a divalent organic group,
Z 1 and Z 2 are each independently a trivalent organic group,
Q is a tetravalent organic group, and n1 and n2 are each independently 0 or 1. )

本発明によると、従来知られているポリアミック酸の部分イミド化重合体を含有する液晶配向剤を凌駕する特性を有する液晶配向剤が提供される。
本発明の液晶配向剤に含有され得るポリアミック酸は、原料のテトラカルボン酸二無水物に由来するイミド環を有しているから、重合後のイミド化工程および溶媒置換工程を経由する必要がない。そして、前記テトラカルボン酸二無水物を製造するためのコストは、重合体のイミド化工程および溶媒置換工程にかかるコストと比較して僅少であるから、液晶配向剤を調製するためのトータルのコストが削減される。
さらに、本発明の液晶配向剤に含有され得るポリアミック酸は、分子内にイミド環とアミック酸ユニットとが交互に連結したユニークな構造を有するから、これを含有する本発明の液晶配向剤は、従来の材料には発現できなかった特性、例えば可及的に均一な塗膜形成能、を発現することができる。
According to the present invention, there is provided a liquid crystal aligning agent having properties superior to those of a conventionally known liquid crystal aligning agent containing a partially imidized polymer of polyamic acid.
Since the polyamic acid that can be contained in the liquid crystal aligning agent of the present invention has an imide ring derived from the raw material tetracarboxylic dianhydride, there is no need to go through an imidization step and a solvent substitution step after polymerization. . The cost for producing the tetracarboxylic dianhydride is very small compared to the costs for the imidization step and the solvent substitution step of the polymer, so the total cost for preparing the liquid crystal alignment agent Is reduced.
Furthermore, since the polyamic acid that can be contained in the liquid crystal aligning agent of the present invention has a unique structure in which imide rings and amic acid units are alternately connected in the molecule, the liquid crystal aligning agent of the present invention containing this has It is possible to develop characteristics that could not be exhibited by conventional materials, for example, as uniform a film-forming ability as possible.

本発明の液晶配向剤は、上記式(1)で表される化合物を含むテトラカルボン酸二無水物とジアミンとを反応させて得られるポリアミック酸を含有する。
上記式(1)におけるn1およびn2は、ともに0であるか、あるいはともに1であることが好ましい。
上記式(1)中のn1およびn2がそれぞれ0である場合、上記式(1)で表される化合物は、下記式(T−1)で表されるテトラカルボン酸二無水物とモノアミノジカルボン酸化合物とを反応させて中間体化合物であるテトラカルボン酸化合物を得た後、該テトラカルボン酸化合物を脱水閉環することによって得ることができる。
The liquid crystal aligning agent of this invention contains the polyamic acid obtained by making the tetracarboxylic dianhydride containing the compound represented by the said Formula (1) react with diamine.
It is preferable that n1 and n2 in the above formula (1) are both 0 or both.
When n1 and n2 in the above formula (1) are each 0, the compound represented by the above formula (1) is a tetracarboxylic dianhydride represented by the following formula (T-1) and a monoaminodicarboxylic acid. It can be obtained by reacting with an acid compound to obtain a tetracarboxylic acid compound as an intermediate compound, and then dehydrating and ring-closing the tetracarboxylic acid compound.

Figure 0005120580
Figure 0005120580

(式(T−1)中、Qは上記式(1)におけるのと同じ意味である。)
この場合、上記式(1)中の下記式(T)で表されるユニットは、上記式(T−1)で表されるテトラカルボン酸二無水物に由来する4価の基であり、
−ZからなるユニットおよびY−Zからなるユニットは、モノアミノジカルボン酸化合物に由来する3価の基であることとなる。
(In formula (T-1), Q has the same meaning as in formula (1) above.)
In this case, the unit represented by the following formula (T) in the above formula (1) is a tetravalent group derived from the tetracarboxylic dianhydride represented by the above formula (T-1).
The unit consisting of Y 1 -Z 1 and the unit consisting of Y 2 -Z 2 are trivalent groups derived from a monoaminodicarboxylic acid compound.

Figure 0005120580
Figure 0005120580

(式(T)中、Qは上記式(1)におけるのと同じ意味であり、「*」は、それぞれ、結合手であることを表す。)
上記式(T−1)で表されるテトラカルボン酸二無水物に由来する4価の基とは、該テトラカルボン酸二無水物から環を構成する2つの酸素原子を除去して得られる4価の基をいい;
モノアミノジカルボン酸化合物に由来する3価の基とは、該モノアミノジカルボン酸化合物からアミノ基と2つのカルボキシ基を除去して得られる3価の基をいう。
(In formula (T), Q has the same meaning as in formula (1) above, and “*” represents a bond, respectively.)
The tetravalent group derived from the tetracarboxylic dianhydride represented by the above formula (T-1) is obtained by removing two oxygen atoms constituting the ring from the tetracarboxylic dianhydride 4 A valent group;
The trivalent group derived from a monoaminodicarboxylic acid compound refers to a trivalent group obtained by removing an amino group and two carboxy groups from the monoaminodicarboxylic acid compound.

上記式(T−1)で表されるテトラカルボン酸二無水物としては、液晶配向剤に含有されるポリアミック酸またはそのイミド化重合体を製造するために用いられるものとして公知のテトラカルボン酸二無水物を、特に制限なく使用することができる。このようなテトラカルボン酸二無水物としては、例えば特許文献2(特開2010−97188号公報)に記載のテトラカルボン酸二無水物を挙げることができる。特に好ましいテトラカルボン酸二無水物は、1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシノルボルナン−2:3,5:6−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン、ビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物およびピロメリット酸二無水物よりなる群から選択される少なくとも1種である。 The tetracarboxylic dianhydride represented by the above formula (T-1) is a tetracarboxylic dianhydride known as one used for producing a polyamic acid contained in a liquid crystal aligning agent or an imidized polymer thereof. Anhydrides can be used without particular limitation. Examples of such tetracarboxylic dianhydrides include tetracarboxylic dianhydrides described in Patent Document 2 (Japanese Patent Laid-Open No. 2010-97188). Particularly preferred tetracarboxylic dianhydrides are 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4,5, 9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro- 8-Methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] octane-2 , 4-dione-6-spiro-3 ′-(tetrahydrofuran-2 ′, 5′-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1, 2-dicarboxylic anhydride 3,5,6-tricarboxy-2-carboxymethyl norbornane -2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2, 6] undecane -3, At least one selected from the group consisting of 5,8,10-tetraone, bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride and pyromellitic dianhydride is there.

上記モノアミノジカルボン酸化合物としては、例えばアスパラギン酸、グルタミン酸、2−アミノアジピン酸、カルボシステイン、2,3−ジカルボキシアニリン、3,4−ジカルボキシアニリン、3−アミノ−1,2−ジカルボキシナフタレン、4−アミノ−1,2−ジカルボキシナフタレン、5−アミノ−1,2−ジカルボキシナフタレン、6−アミノ−1,2−ジカルボキシナフタレン、7−アミノ−1,2−ジカルボキシナフタレン、8−アミノ−1,2−ジカルボキシナフタレン、1−アミノ−2,3−ジカルボキシナフタレン、4−アミノ−2,3−ジカルボキシナフタレン、5−アミノ−2,3−ジカルボキシナフタレン、6−アミノ−2,3−ジカルボキシナフタレン、7−アミノ−2,3−ジカルボキシナフタレン、8−アミノ−2,3−ジカルボキシナフタレンなどを挙げることができ、これらのうちから選択される少なくとも1種を使用することが好ましい。   Examples of the monoaminodicarboxylic acid compound include aspartic acid, glutamic acid, 2-aminoadipic acid, carbocysteine, 2,3-dicarboxyaniline, 3,4-dicarboxyaniline, and 3-amino-1,2-dicarboxyl. Naphthalene, 4-amino-1,2-dicarboxynaphthalene, 5-amino-1,2-dicarboxynaphthalene, 6-amino-1,2-dicarboxynaphthalene, 7-amino-1,2-dicarboxynaphthalene, 8-amino-1,2-dicarboxynaphthalene, 1-amino-2,3-dicarboxynaphthalene, 4-amino-2,3-dicarboxynaphthalene, 5-amino-2,3-dicarboxynaphthalene, 6- Amino-2,3-dicarboxynaphthalene, 7-amino-2,3-dicarboxynaphthalene, 8- Etc. can be mentioned amino-2,3-dicarboxynaphthalene, it is preferred to use at least one selected from among these.

上記式(T−1)で表されるテトラカルボン酸二無水物とモノアミノジカルボン酸化合物との反応は、これらの化合物を、好ましくは適当な溶媒中で加熱することにより、行うことができる。
この反応における両化合物の割合は、テトラカルボン酸二無水物の1モルに対するモノアミノジカルボン酸化合物の使用割合として、1.0〜4.0モルとすることが好ましく、1.5〜3.0モルとすることがより好ましく、1.8〜2.5モルとすることがさらに好ましい。
この反応において使用される溶媒としては、有機溶媒であることが好ましく、例えば非プロトン性極性溶媒、フェノールおよびその誘導体、アルコール、ケトン、エステル、エーテル、ハロゲン化炭化水素、炭化水素などを使用することができる。
The reaction of the tetracarboxylic dianhydride represented by the above formula (T-1) and the monoaminodicarboxylic acid compound can be carried out by heating these compounds, preferably in an appropriate solvent.
The ratio of both compounds in this reaction is preferably 1.0 to 4.0 moles as the use ratio of the monoaminodicarboxylic acid compound to 1 mole of tetracarboxylic dianhydride, More preferably, the molar ratio is 1.8 to 2.5 moles.
The solvent used in this reaction is preferably an organic solvent, and for example, an aprotic polar solvent, phenol and derivatives thereof, alcohol, ketone, ester, ether, halogenated hydrocarbon, hydrocarbon, etc. are used. Can do.

これら有機溶媒の具体例としては、上記非プロトン性極性溶媒として、例えばN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、γ−ブチロラクトン、テトラメチル尿素、ヘキサメチルホスホルトリアミド、ピリジン、2−ピコリン、3−ピコリン、4−ピコリンなどを;
上記フェノール誘導体として、例えばm−クレゾール、キシレノール、ハロゲン化フェノールなどを;
上記アルコールとして、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリエチレングリコール、エチレングリコールモノメチルエーテルなどを;
上記ケトンとして、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどを;
上記エステルとして、例えば乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネ−ト、エチルエトキシプロピオネ−ト、シュウ酸ジエチル、マロン酸ジエチルなどを;
Specific examples of these organic solvents include, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, γ-butyrolactone, tetramethylurea as the aprotic polar solvent. Hexamethylphosphotriamide, pyridine, 2-picoline, 3-picoline, 4-picoline and the like;
Examples of the phenol derivative include m-cresol, xylenol, halogenated phenol and the like;
Examples of the alcohol include methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, and ethylene glycol monomethyl ether;
Examples of the ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone;
Examples of the ester include ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, diethyl oxalate, and diethyl malonate;

上記エーテルとして、例えばジエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール−n−プロピルエーテル、エチレングリコール−i−プロピルエーテル、エチレングリコール−n−ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、テトラヒドロフランなどを;
上記ハロゲン化炭化水素として、例えばジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、トリクロロエタン、クロルベンゼン、o−ジクロルベンゼンなどを;
上記炭化水素として、例えばヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテルなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。
溶媒の使用割合としては、テトラカルボン酸二無水物およびモノアミノジカルボン酸化合物の合計100重量部に対して、50〜5,000重量部とすることが好ましく、100〜3,000重量部とすることがより好ましく、100〜2,000重量部とすることがさらに好ましい。
Examples of the ether include diethyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate. Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, tetrahydrofuran and the like;
Examples of the halogenated hydrocarbon include dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene, o-dichlorobenzene and the like;
Examples of the hydrocarbon include hexane, heptane, octane, benzene, toluene, xylene, isoamylpropionate, isoamylisobutyrate, diisopentyl ether, and the like, and one selected from these It is preferable to use the above.
The proportion of the solvent used is preferably 50 to 5,000 parts by weight, preferably 100 to 3,000 parts by weight, based on 100 parts by weight of the total of the tetracarboxylic dianhydride and the monoaminodicarboxylic acid compound. More preferably, it is more preferable to set it as 100-2,000 weight part.

上記テトラカルボン酸二無水物とモノアミノジカルボン酸化合物との反応は、好ましくは50〜300℃、より好ましくは80〜200℃の温度において、好ましくは0.1〜10時間、より好ましくは0.1〜20時間行われる。所望により、上記温度および反応時間の範囲内で、反応温度を段階的または連続的に上昇しながら反応を行ってもよい。   The reaction between the tetracarboxylic dianhydride and the monoaminodicarboxylic acid compound is preferably 50 to 300 ° C., more preferably 80 to 200 ° C., preferably 0.1 to 10 hours, more preferably 0.00. It is performed for 1 to 20 hours. If desired, the reaction may be carried out while raising the reaction temperature stepwise or continuously within the above temperature and reaction time range.

上記のようなテトラカルボン酸二無水物とモノアミノジカルボン酸化合物との反応により、中間体化合物であるテトラカルボン酸化合物が得られる。次いでこのテトラカルボン酸化合物を脱水閉環反応することにより、上記式(1)においてn1およびn2がそれぞれ0である化合物を得ることができる。
テトラカルボン酸化合物の脱水閉環反応は、例えば該テトラカルボン酸化合物を脱水剤と接触させる方法によることができる。この接触は、溶媒中で行ってもよく、脱水閉環触媒の共存下で行ってもよい。
上記脱水剤としては、例えば無水酢酸、無水プロピオン酸、無水トリフルオロ酢酸などの酸無水物を用いることができる。脱水剤の使用量は、テトラカルボン酸化合物1モルに対して、0.1〜100モルとすることが好ましく、2〜100モルとすることがより好ましい。
By reacting the tetracarboxylic dianhydride and the monoaminodicarboxylic acid compound as described above, a tetracarboxylic acid compound as an intermediate compound is obtained. Subsequently, a dehydrating ring-closing reaction of this tetracarboxylic acid compound can yield a compound in which n1 and n2 are each 0 in the above formula (1).
The dehydration ring-closing reaction of the tetracarboxylic acid compound can be performed, for example, by a method of bringing the tetracarboxylic acid compound into contact with a dehydrating agent. This contact may be carried out in a solvent or in the presence of a dehydration ring closure catalyst.
Examples of the dehydrating agent include acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride. The amount of the dehydrating agent used is preferably 0.1 to 100 mol, and more preferably 2 to 100 mol, per 1 mol of the tetracarboxylic acid compound.

脱水閉環反応において使用される溶媒としては、上記式(T−1)で表されるテトラカルボン酸二無水物とモノアミノジカルボン酸化合物との反応において使用される溶媒として上記に例示した溶媒を、好ましく使用することができる。
溶媒の使用割合としては、テトラカルボン酸化合物および脱水剤の合計100重量部に対して、500重量部以下とすることが好ましく、100重量部以下とすることがより好ましい。本発明の最も好ましい態様では、テトラカルボン酸化合物と脱水剤との接触に際して溶媒を使用しない。
上記脱水閉環触媒としては、例えばピリジン、コリジン、ルチジン、トリエチルアミンなどの3級アミンを用いることができる。脱水閉環触媒の使用割合としては、脱水剤の1モルに対して、500モル以下とすることが好ましく、100モル以下とすることがより好ましい。本発明の最も好ましい態様では、テトラカルボン酸化合物と脱水剤との接触に際して脱水閉環触媒を使用しない。
テトラカルボン酸化合物と脱水剤との接触は、好ましくは50〜300℃、より好ましくは80〜200℃の温度において、好ましくは0.1〜20時間、より好ましくは0.1〜10時間行われる。
以上のようにして、上記式(1)においてn1およびn2がそれぞれ0である化合物を得ることができる。
As the solvent used in the dehydration ring closure reaction, the solvents exemplified above as the solvent used in the reaction between the tetracarboxylic dianhydride represented by the above formula (T-1) and the monoaminodicarboxylic acid compound, It can be preferably used.
The use ratio of the solvent is preferably 500 parts by weight or less, and more preferably 100 parts by weight or less with respect to 100 parts by weight of the total of the tetracarboxylic acid compound and the dehydrating agent. In the most preferred embodiment of the present invention, no solvent is used for contacting the tetracarboxylic acid compound with the dehydrating agent.
Examples of the dehydration ring closure catalyst include tertiary amines such as pyridine, collidine, lutidine, and triethylamine. The use ratio of the dehydration ring closure catalyst is preferably 500 mol or less, more preferably 100 mol or less, per 1 mol of the dehydrating agent. In the most preferred embodiment of the present invention, no dehydration ring closure catalyst is used when the tetracarboxylic acid compound is contacted with the dehydrating agent.
The contact between the tetracarboxylic acid compound and the dehydrating agent is preferably performed at a temperature of 50 to 300 ° C., more preferably 80 to 200 ° C., preferably for 0.1 to 20 hours, more preferably for 0.1 to 10 hours. .
As described above, a compound in which n1 and n2 are each 0 in the above formula (1) can be obtained.

上記式(1)中のn1およびn2がそれぞれ1である場合、上記式(1)で表される化合物は、上記式(T−1)で表されるテトラカルボン酸二無水物とアミノアルコール化合物とを反応させて中間体化合物であるジヒドロキシ化合物を得た後、さらに該ジヒドロキシ化合物とトリカルボン酸一無水物のハロゲン化物とを反応させることにより、得ることができる。
この場合、上記式(1)中の上記式(T)で表されるユニットは、上記式(T−1)で表されるテトラカルボン酸二無水物に由来する4価の基であり、
およびYは、アミノアルコール化合物に由来する2価の基であり、そして
およびZは、トリカルボン酸一無水物のハロゲン化物に由来する3価の基であることとなる。上記式(T−1)で表されるテトラカルボン酸二無水物に由来する4価の基とは、該テトラカルボン酸二無水物から環を構成する2つの酸素原子を除去して得られる4価の基をいい;
アミノアルコール化合物に由来する2価の基とは、該アミノアルコール化合物からアミノ基および水酸基を除去して得られる2価の基をいい;そして
トリカルボン酸一無水物のハロゲン化物に由来する3価の基とは、該トリカルボン酸一無水物のハロゲン化物から酸無水物基(基−C(=O)−O−C(=O)−)および基−COOX(ただし、Xはハロゲン原子である。)を除去して得られる3価の基をいう。
上記式(T−1)で表されるテトラカルボン酸二無水物としては、上記式(1)中のn1およびn2がそれぞれ0である場合について上述したところと同様である。
When n1 and n2 in the formula (1) are each 1, the compound represented by the formula (1) is a tetracarboxylic dianhydride and an amino alcohol compound represented by the formula (T-1). Can be obtained by further reacting the dihydroxy compound with a halide of tricarboxylic acid monoanhydride.
In this case, the unit represented by the above formula (T) in the above formula (1) is a tetravalent group derived from the tetracarboxylic dianhydride represented by the above formula (T-1).
Y 1 and Y 2 are divalent groups derived from an amino alcohol compound, and Z 1 and Z 2 are trivalent groups derived from a halide of tricarboxylic acid monoanhydride. The tetravalent group derived from the tetracarboxylic dianhydride represented by the above formula (T-1) is obtained by removing two oxygen atoms constituting the ring from the tetracarboxylic dianhydride 4 A valent group;
The divalent group derived from an amino alcohol compound refers to a divalent group obtained by removing an amino group and a hydroxyl group from the amino alcohol compound; and a trivalent group derived from a halide of tricarboxylic acid monoanhydride. The group is a halide of the tricarboxylic acid monoanhydride to an acid anhydride group (group —C (═O) —O—C (═O) —) and group —COOX (where X is a halogen atom). ) Is a trivalent group obtained by removing.
The tetracarboxylic dianhydride represented by the above formula (T-1) is the same as described above for the case where n1 and n2 in the above formula (1) are each 0.

上記アミノアルコール化合物としては、例えばアミノメタノール、2−アミノエタノール、1−アミノ−2−プロパノール、2−アミノベンジルアルコール、3−アミノベンジルアルコール、4−アミノベンジルアルコール、2−ヒドロキシアニリン、3−ヒドロキシアニリン、4−ヒドロキシアニリンなどを挙げることができ、これらのうちから選択される少なくとも1種を使用することが好ましい。
上記トリカルボン酸一無水物のハロゲン化物としては、例えば4−ハロホルミルフタル酸無水物、プロパン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ブタン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ブタン−1,2,4−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,4−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,5−トリカルボン酸一無水物のハロゲン化物、シクロヘキサン−1,2,4−トリカルボン酸一無水物のハロゲン化物などを挙げることができ、これらのうちから選択される少なくとも1種を使用することが好ましい。上記トリカルボン酸一無水物のハロゲン化物に含まれるハロゲン原子としては、例えば塩素原子、臭素原子、ヨウ素原子などを挙げることができ、これらのうち塩素原子が好ましい。
Examples of the amino alcohol compound include aminomethanol, 2-aminoethanol, 1-amino-2-propanol, 2-aminobenzyl alcohol, 3-aminobenzyl alcohol, 4-aminobenzyl alcohol, 2-hydroxyaniline, and 3-hydroxy. Aniline, 4-hydroxyaniline, etc. can be mentioned, It is preferable to use at least 1 sort (s) selected from these.
Examples of the tricarboxylic acid monoanhydride halide include 4-haloformylphthalic anhydride, propane-1,2,3-tricarboxylic acid monoanhydride, butane-1,2,3-tricarboxylic acid monohydride. Anhydride halide, Butane-1,2,4-tricarboxylic acid monoanhydride halide, Pentane-1,2,3-tricarboxylic acid monoanhydride halide, Pentane-1,2,4-tricarboxylic acid Monoanhydride halide, pentane-1,2,5-tricarboxylic acid monoanhydride halide, cyclohexane-1,2,4-tricarboxylic acid monoanhydride halide, and the like. It is preferable to use at least one selected from Examples of the halogen atom contained in the tricarboxylic acid monoanhydride halide include a chlorine atom, a bromine atom, and an iodine atom. Of these, a chlorine atom is preferred.

上記式(T−1)で表されるテトラカルボン酸二無水物とアミノアルコール化合物との反応は、これらの化合物を、好ましくは適当な溶媒中で加熱することにより、行うことができる。
この反応における両化合物の割合は、テトラカルボン酸二無水物の1モルに対するアミノアルコール化合物の使用割合として、1〜5モルとすることが好ましく、1〜3モルとすることがより好ましい。
この反応において使用される溶媒としては、上記式(T−1)で表されるテトラカルボン酸二無水物とモノアミノジカルボン酸化合物との反応において使用される溶媒として上記に例示した溶媒を、好ましく使用することができる。
溶媒の使用割合としては、テトラカルボン酸二無水物およびアミノアルコール化合物の合計100重量部に対して、50〜5,000重量部とすることが好ましく、100〜3,000重量部とすることがより好ましく、100〜2,000重量部とすることがさらに好ましい。
上記テトラカルボン酸二無水物とアミノアルコール化合物との反応は、好ましくは、50〜300℃、より好ましくは80〜200℃の温度において、好ましくは0.1〜10時間、より好ましくは0.1〜20時間行われる。所望により、上記温度および反応時間の範囲内で、反応温度を段階的または連続的に上昇しながら反応を行ってもよい。
The reaction between the tetracarboxylic dianhydride represented by the above formula (T-1) and the amino alcohol compound can be performed by heating these compounds, preferably in an appropriate solvent.
The ratio of both compounds in this reaction is preferably 1 to 5 moles, more preferably 1 to 3 moles, as the use ratio of the amino alcohol compound to 1 mole of tetracarboxylic dianhydride.
As the solvent used in this reaction, the solvents exemplified above as the solvent used in the reaction between the tetracarboxylic dianhydride represented by the above formula (T-1) and the monoaminodicarboxylic acid compound are preferable. Can be used.
The use ratio of the solvent is preferably 50 to 5,000 parts by weight and preferably 100 to 3,000 parts by weight with respect to 100 parts by weight of the total of the tetracarboxylic dianhydride and the amino alcohol compound. More preferably, it is more preferable to set it as 100-2,000 weight part.
The reaction between the tetracarboxylic dianhydride and the aminoalcohol compound is preferably at a temperature of 50 to 300 ° C, more preferably 80 to 200 ° C, preferably 0.1 to 10 hours, more preferably 0.1. ~ 20 hours. If desired, the reaction may be carried out while raising the reaction temperature stepwise or continuously within the above temperature and reaction time range.

上記のようなテトラカルボン酸二無水物とアミノアルコール化合物との反応により、中間体化合物であるジヒドロキシ化合物が得られる。次いでこのジヒドロキシ化合物とトリカルボン酸一無水物のハロゲン化物とを反応させることにより、上記式(1)においてn1およびn2がそれぞれ1である化合物を得ることができる。この反応は、これらの化合物を、好ましくは適当な溶媒中で加熱することにより、行うことができる。
この反応における両化合物の割合は、ジヒドロキシ化合物の1モルに対するトリカルボン酸一無水物のハロゲン化物の使用割合として、2〜5モルとすることが好ましく、2〜3モルとすることが好ましい。
この反応において使用される溶媒としては、上記式(T−1)で表されるテトラカルボン酸二無水物とモノアミノジカルボン酸化合物との反応において使用される溶媒として上記に例示した溶媒を、好ましく使用することができる。
溶媒の使用割合としては、ジヒドロキシ化合物およびトリカルボン酸一無水物のハロゲン化物の合計100重量部に対して、50〜5,000重量部とすることが好ましく、100〜3,000重量部とすることがより好ましい。
上記ジヒドロキシ化合物とトリカルボン酸一無水物のハロゲン化物との反応は、好ましくは−50〜150℃、より好ましくは0〜100℃の温度において、好ましくは0.1〜30時間、より好ましくは0.1〜15時間行われる。所望により、反応温度を段階的または連続的に上昇しながら反応を行ってもよい。
以上のようにして、上記式(1)においてn1およびn2がそれぞれ1である化合物を得ることができる。
By the reaction of tetracarboxylic dianhydride and amino alcohol compound as described above, a dihydroxy compound as an intermediate compound is obtained. Next, by reacting this dihydroxy compound with a halide of tricarboxylic acid monoanhydride, a compound in which n1 and n2 are each 1 in the above formula (1) can be obtained. This reaction can be carried out by heating these compounds, preferably in a suitable solvent.
The proportion of both compounds in this reaction is preferably 2 to 5 mol, and preferably 2 to 3 mol, as the proportion of tricarboxylic monoanhydride halide used per mol of the dihydroxy compound.
As the solvent used in this reaction, the solvents exemplified above as the solvent used in the reaction between the tetracarboxylic dianhydride represented by the above formula (T-1) and the monoaminodicarboxylic acid compound are preferable. Can be used.
The use ratio of the solvent is preferably 50 to 5,000 parts by weight, preferably 100 to 3,000 parts by weight, based on 100 parts by weight of the total of the dihydroxy compound and the tricarboxylic acid monoanhydride halide. Is more preferable.
The reaction between the dihydroxy compound and the halide of tricarboxylic acid monoanhydride is preferably -50 to 150 ° C, more preferably 0 to 100 ° C, and preferably 0.1 to 30 hours, more preferably 0.00. 1 to 15 hours. If desired, the reaction may be carried out while raising the reaction temperature stepwise or continuously.
As described above, a compound in which n1 and n2 are each 1 in the above formula (1) can be obtained.

本発明の液晶配向剤は、好ましくは上記のようにして得られた上記式(1)で表される化合物を含むテトラカルボン酸二無水物とジアミンとを反応させて得られるポリアミック酸を含有する。
上記ポリアミック酸を合成するために使用されるテトラカルボン酸二無水物としては、上記式(1)で表される化合物のみを使用してもよく、あるいは上記式(1)で表される化合物とともにその他のテトラカルボン酸二無水物を併用してもよい。ここで併用することのできるその他のテトラカルボン酸二無水物としては、例えば上記式(T−1)で表されるテトラカルボン酸二無水物を挙げることができ、特に好ましくは、1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシノルボルナン−2:3,5:6−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン、ビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物およびピロメリット酸二無水物よりなる群から選択される少なくとも1種である。
本発明の液晶配向剤に含有されるポリアミック酸を合成するために使用されるテトラカルボン酸二無水物は、上記式(1)で表される化合物を、テトラカルボン酸二無水物の全部に対して、20モル%以上含むものであることが好ましく、50モル%以上含むものであることがより好ましく、特に好ましくは上記式(1)で表される化合物のみからなることである。
The liquid crystal aligning agent of the present invention preferably contains a polyamic acid obtained by reacting a tetracarboxylic dianhydride containing the compound represented by the above formula (1) obtained as described above with a diamine. .
As the tetracarboxylic dianhydride used for synthesizing the polyamic acid, only the compound represented by the above formula (1) may be used, or together with the compound represented by the above formula (1). Other tetracarboxylic dianhydrides may be used in combination. Examples of other tetracarboxylic dianhydrides that can be used in combination here include tetracarboxylic dianhydrides represented by the above formula (T-1), and particularly preferably 1, 2, 3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo -3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8-methyl-5- (tetrahydro-2,5-dioxo -3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] octane-2,4-dione-6-spiro-3 ′-(tetrahydrofuran) -2 ', 5'- ON), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 3,5,6-tricarboxy-2-carboxynorbornane- 2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2,6 ] undecane-3,5,8,10-tetraone, bicyclo [3.3. 0] At least one selected from the group consisting of octane-2,4,6,8-tetracarboxylic dianhydride and pyromellitic dianhydride.
The tetracarboxylic dianhydride used for synthesizing the polyamic acid contained in the liquid crystal aligning agent of the present invention is a compound represented by the above formula (1) with respect to all the tetracarboxylic dianhydrides. The content is preferably 20 mol% or more, more preferably 50 mol% or more, and particularly preferably only the compound represented by the above formula (1).

本発明の液晶配向剤に含有されるポリアミック酸を合成するために使用されるジアミンとしては、例えばp−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、2,2’−ジメチル−4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、ドデカノキシ−2,4−ジアミノベンゼン、オクタデカノキシ−2,4−ジアミノベンゼン、ドデカノキシ−2,5−ジアミノベンゼン、オクタデカノキシ−2,5−ジアミノベンゼン、コレスタニルオキシ−3,5−ジアミノベンゼン、コレステニルオキシ−3,5−ジアミノベンゼン、コレスタニルオキシ−2,4−ジアミノベンゼン、コレステニルオキシ−2,4−ジアミノベンゼン、3,5−ジアミノ安息香酸コレスタニル、3,5−ジアミノ安息香酸コレステニル、1,1−ビス(4−((アミノフェニル)メチル)フェニル)−4−ヘプチルシクロヘキサン、1,1−ビス(4−((アミノフェノキシ)メチル)フェニル)−4−ヘプチルシクロヘキサンなどを挙げることができるほか、特許文献2(特開2010−97188号公報)に記載のジアミンを使用することができ、これらのうちから選択される1種以上を使用することが好ましい。   Examples of the diamine used for synthesizing the polyamic acid contained in the liquid crystal aligning agent of the present invention include p-phenylenediamine, 4,4′-diaminodiphenylmethane, 2,2′-dimethyl-4,4′-. Diaminobiphenyl, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- ( 4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, dodecanoxy-2,4-diaminobenzene, octadecanoxy-2,4-diaminobenzene, dodecanoxy-2,5- Diaminobenzene, octadecanoxy-2,5-diaminobenzene, cholestanyloxy-3,5-di Minobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestenyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, 3,5-diaminobenzoic acid Cholestenyl acid, 1,1-bis (4-((aminophenyl) methyl) phenyl) -4-heptylcyclohexane, 1,1-bis (4-((aminophenoxy) methyl) phenyl) -4-heptylcyclohexane, etc. In addition, diamines described in Patent Document 2 (Japanese Patent Laid-Open No. 2010-97188) can be used, and it is preferable to use one or more selected from these.

上記ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミン化合物に含まれるアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2〜2当量となる割合が好ましく、さらに好ましくは0.3〜1.2当量となる割合である。
ポリアミック酸の合成反応は、好ましくは適当な溶媒中において、好ましくは−20〜150℃、より好ましくは0〜100℃の温度条件下において、好ましくは0.5〜24時間、より好ましくは2〜10時間行われる。ここで使用される溶媒としては、例えばN−メチル−2−ピロリドン、γ−ブチロラクトンなどを挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。
上記ポリアミック酸につき、ゲルパーミエーションクロマトグラフィー(GPC)によって測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000〜500,000であり、より好ましくは2,000〜300,000である。このMwと、GPCによって測定したポリスチレン換算の数平均分子量(Mn)との比(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。ポリアミック酸のMwおよびMw/Mnが上記の範囲にあることにより、これを含有する液晶配向剤は、組成物としての安定性と、形成される液晶配向膜の良好な液晶配向性とを両立することができることとなり、好ましい。
The ratio of the tetracarboxylic dianhydride and diamine used for the polyamic acid synthesis reaction is such that the acid anhydride group of the tetracarboxylic dianhydride is 0 with respect to 1 equivalent of the amino group contained in the diamine compound. A ratio of 2 to 2 equivalents is preferable, and a ratio of 0.3 to 1.2 equivalents is more preferable.
The polyamic acid synthesis reaction is preferably carried out in an appropriate solvent, preferably at a temperature of -20 to 150 ° C, more preferably at a temperature of 0 to 100 ° C, preferably 0.5 to 24 hours, more preferably 2 to 2. 10 hours. Examples of the solvent used here include N-methyl-2-pyrrolidone and γ-butyrolactone, and it is preferable to use one or more selected from these.
For the polyamic acid, the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. is there. The ratio (Mw / Mn) between this Mw and the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. When Mw and Mw / Mn of the polyamic acid are in the above ranges, the liquid crystal aligning agent containing the polyamic acid achieves both stability as a composition and good liquid crystal alignment of the formed liquid crystal alignment film. This is preferable.

本発明の液晶配向剤は、好ましくは上記のようにして得られたポリアミック酸を含有するが、これ以外に、本発明の効果を減殺しない限りにおいて、その他の成分を含有していてもよい。ここで使用することのできるその他の成分としては、例えばエポキシ化合物、官能性シラン化合物などを挙げることができる。上記エポキシ化合物としては、分子内にエポキシ基を2個以上有する化合物であることが好ましい。上記官能性シラン化合物としては、エポキシ基を有するシラン化合物またはそのオリゴマーであることが好ましい。
本発明の液晶配向剤は、上記のようなポリアミック酸および任意的に用いられるその他の成分を適当な溶媒に溶解した溶液状の組成物であることが好ましい。液晶配向剤に用いられる溶媒としては、例えばN−メチル−2−ピロリドン、γ−ブチロラクトン、プロピレングリコールモノメチルエーテールアセテート、アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルセロソルブ、プロピレングリコールモノメチルエーテル、エチルセロソルブ、2,3−ペンタンジオン、1,2−ジメトキシエタン、1,1−ジエトキシエタン、1,2−ジエトキシエタンなどを使用することができ、これらのうちから選択される1種以上であることができる。
液晶配向剤の固形分濃度(液晶配向剤中の溶媒以外の成分の合計重量が液晶配向剤の全重量に占める割合)は、1〜10重量%の範囲とすることが好ましい。
The liquid crystal aligning agent of the present invention preferably contains the polyamic acid obtained as described above, but may contain other components in addition to this, as long as the effects of the present invention are not diminished. Examples of other components that can be used here include an epoxy compound and a functional silane compound. The epoxy compound is preferably a compound having two or more epoxy groups in the molecule. The functional silane compound is preferably a silane compound having an epoxy group or an oligomer thereof.
The liquid crystal aligning agent of the present invention is preferably a solution composition in which the above polyamic acid and other optional components are dissolved in a suitable solvent. Examples of the solvent used for the liquid crystal aligning agent include N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monomethyl ether acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl cellosolve, propylene glycol monomethyl ether, ethyl cellosolve, 2 , 3-pentanedione, 1,2-dimethoxyethane, 1,1-diethoxyethane, 1,2-diethoxyethane, etc. can be used, and one or more selected from these can be used. it can.
The solid content concentration of the liquid crystal aligning agent (the ratio of the total weight of components other than the solvent in the liquid crystal aligning agent to the total weight of the liquid crystal aligning agent) is preferably in the range of 1 to 10 wt%.

本発明の液晶表示素子は、液晶配向膜が形成された基板の2枚を一対として、該一対の基板を液晶配向膜面が向かい合うように近接して対向配置した間隙に液晶を配置して構成される。ここで、上記一対の基板は、少なくとも一対の電極対を有する。この電極対は、
2枚の基板それぞれの面上に形成された電極からなり、基板面に対して垂直方向の電界を発生させるものであってもよく;あるいは
基板のうちの1枚の面上に形成され、基板面に対して水平方向の電界を発生させるものであってもよい。
基板上に液晶配向膜を形成するには、基板上に本発明の液晶配向剤を公知の方法によって塗布し、次いで加熱して塗膜を形成する方法によることができる。形成された塗膜に、必要に応じて公知のラビング処理を施してもよい。
The liquid crystal display element of the present invention comprises two substrates on which a liquid crystal alignment film is formed as a pair, and the liquid crystal is arranged in a gap in which the pair of substrates are arranged close to each other so that the liquid crystal alignment film faces each other. Is done. Here, the pair of substrates has at least a pair of electrodes. This electrode pair is
It may consist of electrodes formed on the surfaces of each of the two substrates and generate an electric field in a direction perpendicular to the substrate surface; It may generate an electric field in the horizontal direction with respect to the surface.
The liquid crystal alignment film can be formed on the substrate by applying the liquid crystal aligning agent of the present invention on the substrate by a known method and then heating to form a coating film. You may give a well-known rubbing process to the formed coating film as needed.

本発明の液晶配向剤に含有されるポリアミック酸は、分子内にイミド環とアミック酸ユニットとが交互に連結したユニーク且つ均一な構造を有するから、これを含有する本発明の液晶配向剤は、極めて均一な塗膜形成能を発現することができる。従って、本発明の液晶配向剤から形成された液晶配向膜は、面内均一性に優れるものである。
本発明の液晶配向剤から形成された液晶配向膜を具備する本発明の液晶表示素子は、液晶配向の均一性、電気特性、残像特性などに優れる。
Since the polyamic acid contained in the liquid crystal aligning agent of the present invention has a unique and uniform structure in which imide rings and amic acid units are alternately linked in the molecule, the liquid crystal aligning agent of the present invention containing this has the following properties: An extremely uniform coating film forming ability can be expressed. Therefore, the liquid crystal alignment film formed from the liquid crystal aligning agent of this invention is excellent in in-plane uniformity.
The liquid crystal display element of the present invention comprising a liquid crystal alignment film formed from the liquid crystal aligning agent of the present invention is excellent in liquid crystal alignment uniformity, electrical characteristics, afterimage characteristics, and the like.

<式(1)で表されるテトラカルボン酸二無水物の合成>
合成例A−1
下記スキーム1に従って化合物(A−1)を合成した。
<Synthesis of tetracarboxylic dianhydride represented by formula (1)>
Synthesis Example A-1
Compound (A-1) was synthesized according to the following scheme 1.

Figure 0005120580
Figure 0005120580

還流管を備えた2L三口フラスコに、ピロメリット酸二無水物218.12g、L−アスパラギン酸266.2gおよびピリジン1,000mLを仕込み、45℃において2時間撹拌し、次いで4時間還流下に反応を行った。反応後、減圧蒸留にて溶媒を除去して化合物(A−1a)を448g得た。
続いて、還流管を備えた1L三口フラスコに、上記で得られた化合物(A−1a)448gおよび無水酢酸700gを仕込んで混合し、還流下4時間反応を行った後、減圧蒸留にて無水酢酸を除去することにより、目的物である化合物(A−1)を400g得た。
A 2 L three-necked flask equipped with a reflux tube was charged with 218.12 g of pyromellitic dianhydride, 266.2 g of L-aspartic acid and 1,000 mL of pyridine, stirred at 45 ° C. for 2 hours, and then reacted under reflux for 4 hours. Went. After the reaction, the solvent was removed by distillation under reduced pressure to obtain 448 g of compound (A-1a).
Subsequently, 448 g of the compound (A-1a) obtained above and 700 g of acetic anhydride were charged and mixed in a 1 L three-necked flask equipped with a reflux tube, reacted for 4 hours under reflux, and then anhydrous by vacuum distillation. By removing acetic acid, 400 g of the target compound (A-1) was obtained.

合成例A−2
下記スキーム2に従って化合物(A−2)を合成した。
Synthesis Example A-2
Compound (A-2) was synthesized according to the following scheme 2.

Figure 0005120580
Figure 0005120580

還流管を備えた2L三口フラスコに、ピロメリット酸二無水物218.12g、3,4−ジカルボキシアニリン362.3gおよびジメチルホルムアミド1,000mLを仕込んで混合し、45℃において2時間撹拌し、次いで4時間還流下に反応を行った。反応後、減圧蒸留にて溶媒を除去して化合物(A−2a)を540g得た。
続いて、還流管を備えた1L三口フラスコに、上記で得られた化合物(A−2a)540gおよび無水酢酸700gを仕込んで混合し、還流下4時間反応を行った後、減圧蒸留にて無水酢酸を除去することにより、目的物である化合物(A−2)を495g得た。
A 2 L three-necked flask equipped with a reflux tube was charged with 218.12 g of pyromellitic dianhydride, 362.3 g of 3,4-dicarboxyaniline and 1,000 mL of dimethylformamide, and stirred at 45 ° C. for 2 hours. The reaction was then carried out under reflux for 4 hours. After the reaction, the solvent was removed by distillation under reduced pressure to obtain 540 g of Compound (A-2a).
Subsequently, 540 g of the compound (A-2a) obtained above and 700 g of acetic anhydride were charged and mixed in a 1 L three-necked flask equipped with a reflux tube, reacted for 4 hours under reflux, and then anhydrous by vacuum distillation. By removing acetic acid, 495 g of the target compound (A-2) was obtained.

合成例A−3
下記スキーム3に従って化合物(A−2)を合成した。
Synthesis Example A-3
Compound (A-2) was synthesized according to the following scheme 3.

Figure 0005120580
Figure 0005120580

還流管を備えた2L三口フラスコに、2,3,5−トリカルボキシシクロペンチル酢酸二無水物224.17g、2−アミノエタノール122.16gおよびジメチルホルムアミド1,000mLを仕込んで混合し、45℃において2時間撹拌し、次いで4時間還流下に反応を行った。反応後、減圧蒸留にて溶媒を除去して化合物(A−3a)を308g得た。
続いて、滴下ロートを備えた2L三口フラスコ中で、上記で得た化合物(A−3a)308gおよび400mLのテトラヒドロフラン(THF)を仕込んで溶解し、さらにトリエチルアミン400gを加えた。氷冷下においてここに、4−クロロホルミルフタル酸無水物421.14gをテトラヒドロフラン800mLに溶解した溶液を滴下ロートからゆっくりと滴下した。滴下終了後、室温にて3時間攪拌して反応を行った。反応後、反応混合物から副成生したトリエチルアミン塩酸塩をろ別し、さらに減圧蒸留によりTHFを取り除いた後、クロロホルム1,000mLを加え、溶液とした。得られた溶液を水洗し、有機層を硫酸マグネシウムで乾燥した後、クロロホルムを減圧蒸留により除去して固体状の粗生成物を得た。この粗生成物を無水酢酸から再結晶することにより、化合物(A−3)を610g得た。
A 2 L three-necked flask equipped with a reflux tube was charged with 224.17 g of 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 122.16 g of 2-aminoethanol and 1,000 mL of dimethylformamide, and mixed at 45 ° C. The mixture was stirred for 4 hours and then reacted under reflux for 4 hours. After the reaction, the solvent was removed by distillation under reduced pressure to obtain 308 g of Compound (A-3a).
Subsequently, 308 g of the compound (A-3a) obtained above and 400 mL of tetrahydrofuran (THF) were charged and dissolved in a 2 L three-necked flask equipped with a dropping funnel, and 400 g of triethylamine was further added. Under ice cooling, a solution prepared by dissolving 421.14 g of 4-chloroformylphthalic anhydride in 800 mL of tetrahydrofuran was slowly added dropwise from a dropping funnel. After completion of the dropping, the reaction was carried out by stirring at room temperature for 3 hours. After the reaction, triethylamine hydrochloride formed as a by-product from the reaction mixture was filtered off, THF was removed by distillation under reduced pressure, and 1,000 mL of chloroform was added to make a solution. The obtained solution was washed with water and the organic layer was dried over magnesium sulfate, and then chloroform was removed by distillation under reduced pressure to obtain a solid crude product. This crude product was recrystallized from acetic anhydride to obtain 610 g of Compound (A-3).

<ポリアミック酸の合成>
合成例P−1
テトラカルボン酸二無水物として上記合成例A−1で得た化合物(A−1)16.639gならびにジアミンとして4,4’−ジアミノジフェニルメタン7.842gおよび3,6−ビス(4−アミノベンゾイルオキシ)コレスタン0.519gをN−メチル−2−ピロリドン100gに溶解し、室温で6時間反応を行った。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、ポリアミック酸(P−1)を24.2g得た。
<Synthesis of polyamic acid>
Synthesis Example P-1
16.639 g of the compound (A-1) obtained in Synthesis Example A-1 as tetracarboxylic dianhydride, 7.842 g of 4,4′-diaminodiphenylmethane and 3,6-bis (4-aminobenzoyloxy) as diamine ) 0.519 g of cholestane was dissolved in 100 g of N-methyl-2-pyrrolidone and reacted at room temperature for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol and then dried under reduced pressure at 40 ° C. for 15 hours to obtain 24.2 g of polyamic acid (P-1).

合成例P−2
テトラカルボン酸二無水物として上記合成例A−2で得た化合物(A−2)17.762gならびにジアミンとして4,4’−ジアミノジフェニルメタン6.789gおよび3,6−ビス(4−アミノベンゾイルオキシ)コレスタン0.449gをN−メチル−2−ピロリドン100gに溶解し、室温で6時間反応を行った。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、ポリアミック酸(P−2)を24.6g得た。
Synthesis Example P-2
17.762 g of the compound (A-2) obtained in Synthesis Example A-2 as tetracarboxylic dianhydride, 6.789 g of 4,4′-diaminodiphenylmethane as diamine and 3,6-bis (4-aminobenzoyloxy) ) 0.449 g of cholestane was dissolved in 100 g of N-methyl-2-pyrrolidone and reacted at room temperature for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol, and then dried at 40 ° C. under reduced pressure for 15 hours to obtain 24.6 g of polyamic acid (P-2).

合成例P−3
テトラカルボン酸二無水物として上記合成例A−3で得た化合物(A−3)19.018gならびにジアミンとして4,4’−ジアミノジフェニルメタン5.611gおよび3,6−ビス(4−アミノベンゾイルオキシ)コレスタン0.371gをN−メチル−2−ピロリドン100gに溶解し、室温で6時間反応を行った。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、ポリアミック酸(P−3)を24.3g得た。
Synthesis Example P-3
19.018 g of compound (A-3) obtained in Synthesis Example A-3 as tetracarboxylic dianhydride and 5.611 g of 4,4′-diaminodiphenylmethane and 3,6-bis (4-aminobenzoyloxy) as diamine ) 0.371 g of cholestane was dissolved in 100 g of N-methyl-2-pyrrolidone and reacted at room temperature for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol, and then dried at 40 ° C. under reduced pressure for 15 hours to obtain 24.3 g of polyamic acid (P-3).

合成例P−4
テトラカルボン酸二無水物として上記合成例A−1で得た化合物(A−1)17.055gならびにジアミンとしてp−フェニレンジアミン3.597gおよび3(3,5−ジアミノベンゾイルオキシ)コレスタン4.348gをN−メチル−2−ピロリドン100gに溶解し、室温で6時間反応を行った。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、ポリアミック酸(P−4)を24.5g得た。
Synthesis example P-4
17.055 g of the compound (A-1) obtained in Synthesis Example A-1 as tetracarboxylic dianhydride and 3.597 g of p-phenylenediamine and 4.348 g of 3 (3,5-diaminobenzoyloxy) cholestane as diamine Was dissolved in 100 g of N-methyl-2-pyrrolidone and reacted at room temperature for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol and then dried under reduced pressure at 40 ° C. for 15 hours to obtain 24.5 g of polyamic acid (P-4).

比較合成例rp−1
テトラカルボン酸二無水物としてピロメリット酸二無水物12.822gならびにジアミンとして4,4’−ジアミノジフェニルメタン11.422gおよび3,6−ビス(4−アミノベンゾイルオキシ)コレスタン0.756gをN−メチル−2−ピロリドン100gに溶解し、室温で6時間反応を行った。次いで、反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、ポリアミック酸(rp−1)を24.1g得た。
Comparative Synthesis Example rp-1
12.822 g of pyromellitic dianhydride as tetracarboxylic dianhydride and 11.422 g of 4,4′-diaminodiphenylmethane and 0.756 g of 3,6-bis (4-aminobenzoyloxy) cholestane as N-methyl as diamine The product was dissolved in 100 g of 2-pyrrolidone and reacted at room temperature for 6 hours. The reaction mixture was then poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol and then dried under reduced pressure at 40 ° C. for 15 hours to obtain 24.1 g of polyamic acid (rp-1).

比較合成例rp−2
テトラカルボン酸二無水物としてピロメリット酸二無水物12.822gならびにジアミンとして4,4’−ジアミノジフェニルメタン11.422gおよび3,6−ビス(4−アミノベンゾイルオキシ)コレスタン0.756gをN−メチル−2−ピロリドン100gに溶解し、室温で6時間反応を行った。次いで、得られたポリアミック酸溶液にNMP125gを追加し、ピリジン4.65gおよび無水酢酸6gを添加して80℃において3時間、脱水閉環反応を行った。その後、得られた反応混合物を大過剰のメタノール中に注ぎ、反応生成物を沈澱させた。回収した沈殿物をメタノールで洗浄した後、減圧下40℃において15時間乾燥することにより、イミド化率50%のポリイミド(rp−2)を23.8g得た。
Comparative Synthesis Example rp-2
12.822 g of pyromellitic dianhydride as tetracarboxylic dianhydride and 11.422 g of 4,4′-diaminodiphenylmethane and 0.756 g of 3,6-bis (4-aminobenzoyloxy) cholestane as N-methyl as diamine The product was dissolved in 100 g of 2-pyrrolidone and reacted at room temperature for 6 hours. Next, 125 g of NMP was added to the obtained polyamic acid solution, 4.65 g of pyridine and 6 g of acetic anhydride were added, and dehydration ring closure reaction was performed at 80 ° C. for 3 hours. Thereafter, the obtained reaction mixture was poured into a large excess of methanol to precipitate the reaction product. The recovered precipitate was washed with methanol, and then dried at 40 ° C. under reduced pressure for 15 hours to obtain 23.8 g of polyimide (rp-2) having an imidization ratio of 50%.

<液晶配向剤の調製および評価>
実施例1
(1)液晶配向剤の調製
上記合成例P−1で得たポリアミック酸(P−1)をN−メチル−2−ピロリドン(NMP)およびブチルセロソルブ(BC)からなる混合溶媒(NMP:BC=50:50(質量比))に溶解して固形分濃度が6.5重量%の溶液とした。この溶液を十分に攪拌後、孔径0.2μmのフィルターで濾過することにより、液晶配向剤を調製した。
(2)印刷性の評価
上記で調製した液晶配向剤につき、液晶配向膜印刷機(日本写真印刷(株)製)を用いてITO膜からなる透明電極付きガラス基板の透明電極面に塗布し、80℃のホットプレート上で1分間加熱(プレベーク)して溶媒を除去した後、200℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚600Åの塗膜を形成した。この塗膜を倍率20倍の顕微鏡で観察して印刷ムラおよびピンホールの有無を調べたところ、印刷ムラおよびピンホールとも観察されず、印刷性は良好であった。
(3)塗膜の膜厚均一性の評価
上記で形成した塗膜につき、触針式膜厚計(KLAテンコール社製)を用いて基板の中央部における膜厚と基板の外側端から15mm中央に寄った位置における膜厚とをそれぞれ測定した。上記2つの位置の膜厚差が20Å以下の場合は膜厚均一性「良好」、膜厚差20Åを超えた場合を膜厚均一性「不良」として評価したところ、この塗膜の膜厚均一性は良好であった。
<Preparation and evaluation of liquid crystal aligning agent>
Example 1
(1) Preparation of liquid crystal aligning agent The polyamic acid (P-1) obtained in Synthesis Example P-1 was mixed with N-methyl-2-pyrrolidone (NMP) and butyl cellosolve (BC) (NMP: BC = 50). : 50 (mass ratio)) to obtain a solution having a solid content concentration of 6.5% by weight. After sufficiently stirring this solution, a liquid crystal aligning agent was prepared by filtering through a filter having a pore size of 0.2 μm.
(2) Evaluation of printability About the liquid crystal aligning agent prepared above, it apply | coated to the transparent electrode surface of the glass substrate with a transparent electrode which consists of an ITO film | membrane using a liquid crystal aligning film printer (Nissha Printing Co., Ltd.), After removing the solvent by heating (pre-baking) for 1 minute on an 80 ° C. hot plate, heating (post-baking) for 10 minutes on a 200 ° C. hot plate to form a coating film having an average film thickness of 600 mm. When this coating film was observed with a microscope with a magnification of 20 times to check for the presence of printing unevenness and pinholes, neither printing unevenness nor pinholes were observed, and the printability was good.
(3) Evaluation of film thickness uniformity of coating film Using the stylus film thickness meter (manufactured by KLA Tencor) for the coating film formed above, the film thickness at the center of the substrate and the center of 15 mm from the outer edge of the substrate The film thickness at the position near the film was measured. When the film thickness difference between the two positions was 20 mm or less, the film thickness uniformity was “good”, and when the film thickness difference was more than 20 mm, the film thickness uniformity was “bad”. The property was good.

(4)TN型液晶セルの製造
上記で調製した液晶配向剤を、液晶配向膜印刷機(日本写真印刷(株)製)を用いてITO膜からなる透明電極付きガラス基板の透明電極面に塗布し、80℃のホットプレート上で1分間加熱(プレベーク)して溶媒を除去した後、200℃のホットプレート上で10分間加熱(ポストベーク)して、平均膜厚600Åの塗膜を形成した。 この塗膜に対し、レーヨン布を巻き付けたロールを有するラビングマシーンにより、ロール回転数500rpm、ステージ移動速度3cm/秒、毛足押しこみ長さ0.4mmでラビング処理を行い、液晶配向能を付与した。その後、超純水中で1分間超音波洗浄を行ない、次いで100℃クリーンオーブン中で10分間乾燥することにより、液晶配向膜を有する基板を得た。
上記の操作を繰り返し、液晶配向膜を有する基板を一対(2枚)得た。
次に、上記一対の基板のうちの1枚の液晶配向膜を有する面の外縁に直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、一対の基板を液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間に、ネマチック型液晶(メルク社製、MLC−6221)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより、TN型液晶セルを製造した。
(4) Manufacture of TN type liquid crystal cell The liquid crystal aligning agent prepared above is applied to the transparent electrode surface of a glass substrate with a transparent electrode made of an ITO film using a liquid crystal alignment film printer (Nissha Printing Co., Ltd.). Then, after removing the solvent by heating (pre-baking) on an 80 ° C. hot plate for 1 minute, heating (post-baking) on a 200 ° C. hot plate for 10 minutes to form a coating film having an average film thickness of 600 mm . The coating film is rubbed with a rubbing machine having a roll wrapped with a rayon cloth at a roll rotation speed of 500 rpm, a stage moving speed of 3 cm / sec, and a hair foot indentation length of 0.4 mm to give liquid crystal alignment ability. did. Thereafter, ultrasonic cleaning was performed in ultrapure water for 1 minute, followed by drying in a 100 ° C. clean oven for 10 minutes to obtain a substrate having a liquid crystal alignment film.
The above operation was repeated to obtain a pair (two) of substrates having a liquid crystal alignment film.
Next, after applying an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm to the outer edge of the surface having one liquid crystal alignment film of the pair of substrates, the liquid crystal alignment film surfaces of the pair of substrates are relative to each other. The adhesive was cured by overlapping and pressing. Next, a nematic liquid crystal (MLC-6221, manufactured by Merck & Co., Inc.) is filled between the pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port is sealed with an acrylic photo-curing adhesive, whereby a TN type liquid crystal cell. Manufactured.

(5)液晶セルの評価
i)液晶配向性の評価
上記で製造した液晶セルにつき、クロスニコル下で電圧をオン・オフしたときの異常ドメインの有無を、顕微鏡により観察し、異常ドメインが観察されなかった場合を液晶配向性「良好」、異常ドメインが観察された場合を液晶配向性「不良」として評価したところ、この液晶セルの液晶配向性は「良好」であった。
ii)電圧保持率の評価
上記で製造した液晶表示素子に、5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率を測定した。測定装置としては(株)東陽テクニカ製VHR−1を使用した。
その結果、この液晶表示素子の電圧保持率は98.8%であった。
iii)残像特性の評価
上記で製造した液晶表示素子につき、100℃の環境温度において直流17Vの電圧を20時間印加し、直流電圧を切った直後の液晶セル内に残留した電圧(残留DC電圧)を、バックライト光を照射しながらフリッカー消去法により求めた。この液晶表示素子の残留DC電圧の値は20mVであった。
このバックライト光を照射しながらフリッカー消去法によって求めた残留DC電圧の値が100mV以下であるとき、残像特性が良好であることが経験的に明らかになっている。
(5) Evaluation of liquid crystal cell i) Evaluation of liquid crystal alignment The liquid crystal cell produced above was observed with a microscope for the presence or absence of abnormal domains when the voltage was turned on / off under crossed Nicols, and abnormal domains were observed. When it was not evaluated, the liquid crystal orientation was “good”, and when the abnormal domain was observed, the liquid crystal orientation was evaluated as “bad”. The liquid crystal orientation of this liquid crystal cell was “good”.
ii) Evaluation of voltage holding ratio After the voltage of 5 V was applied to the liquid crystal display device manufactured as described above for a duration of 60 microseconds and a span of 167 milliseconds, the voltage holding ratio after 167 milliseconds from release of application was measured. did. As a measuring apparatus, VHR-1 manufactured by Toyo Corporation was used.
As a result, the voltage holding ratio of this liquid crystal display element was 98.8%.
iii) Evaluation of afterimage characteristics For the liquid crystal display device manufactured above, a voltage of 17 V DC was applied for 20 hours at an environmental temperature of 100 ° C., and the voltage remaining in the liquid crystal cell immediately after the DC voltage was turned off (residual DC voltage) Was obtained by flicker elimination while irradiating with backlight. The value of the residual DC voltage of this liquid crystal display element was 20 mV.
It has been empirically revealed that the afterimage characteristics are good when the value of the residual DC voltage obtained by the flicker erasing method while irradiating this backlight light is 100 mV or less.

実施例2および3ならびに比較例1および2
上記実施例1において、ポリアミック酸(P−1)の代わりに上記合成例で得たポリアミック酸P−2およびP−3ならびに比較合成例で得たポリアミック酸rp−1およびrp−2をそれぞれ用いたほかは実施例1と同様にして液晶配向剤を調整し、評価した。評価結果は表1に示した。
Examples 2 and 3 and Comparative Examples 1 and 2
In Example 1, instead of the polyamic acid (P-1), the polyamic acids P-2 and P-3 obtained in the above synthesis examples and the polyamic acids rp-1 and rp-2 obtained in the comparative synthesis examples were used, respectively. The liquid crystal aligning agent was prepared and evaluated in the same manner as in Example 1 except for the above. The evaluation results are shown in Table 1.

Figure 0005120580
Figure 0005120580

実施例4
(1)液晶配向剤の調製
上記合成例P−4で得たポリアミック酸(P−4)をN−メチル−2−ピロリドン(NMP)およびブチルセロソルブ(BC)からなる混合溶媒(NMP:BC=50:50(質量比))に溶解して固形分濃度が6.5重量%の溶液とした。この溶液を十分に攪拌後、孔径0.2μmのフィルターで濾過することにより、液晶配向剤を調製した。
(2)印刷性の評価
上記で調製した液晶配向剤を用いて、上記実施例1における「(2)印刷性の評価」と同様にして塗膜を形成し、液晶配向剤の印刷性を調べたところ、倍率20倍の顕微鏡による観察で印刷ムラおよびピンホールとも観察されず、印刷性は良好であった。
(3)塗膜の膜厚均一性の評価
上記で形成した塗膜につき、上記実施例1における「(3)塗膜の膜厚均一性の評価」と同様の方法および判断基準で膜厚均一性を評価したところ、この塗膜の膜厚均一性は良好であった。
Example 4
(1) Preparation of liquid crystal aligning agent The polyamic acid (P-4) obtained in Synthesis Example P-4 was mixed with N-methyl-2-pyrrolidone (NMP) and butyl cellosolve (BC) (NMP: BC = 50). : 50 (mass ratio)) to obtain a solution having a solid content concentration of 6.5% by weight. After sufficiently stirring this solution, a liquid crystal aligning agent was prepared by filtering through a filter having a pore size of 0.2 μm.
(2) Evaluation of printability Using the liquid crystal aligning agent prepared above, a coating film was formed in the same manner as in “(2) Evaluation of printability” in Example 1, and the printability of the liquid crystal aligning agent was examined. As a result, neither printing unevenness nor pinholes were observed by observation with a microscope with a magnification of 20 times, and the printability was good.
(3) Evaluation of film thickness uniformity of coating film For the coating film formed as described above, the film thickness is uniform by the same method and criteria as in "(3) Evaluation of film thickness uniformity of coating film" in Example 1 above. The film thickness uniformity of this coating film was good.

(4)垂直型液晶セルの製造
上記で調製した液晶配向剤を、ITO膜からなる透明電極付きガラス基板(厚さ1mm)の透明電極面上に、液晶配向膜印刷機(日本写真印刷(株)製)を用いて塗布し、80℃のホットプレート上で1分間加熱(プレベーク)し、さらに200℃のホットプレート上で60分間加熱(ポストベーク)して、平均膜厚800Åの塗膜(液晶配向膜)を形成した。この操作を繰り返し、透明導電膜上に液晶配向膜を有するガラス基板を一対(2枚)得た。
次に、上記一対の基板のうちの1枚の液晶配向膜を有する面の外縁に直径5.5μmの酸化アルミニウム球入りエポキシ樹脂接着剤を塗布した後、一対の基板を液晶配向膜面が相対するように重ね合わせて圧着し、接着剤を硬化した。次いで、液晶注入口より一対の基板間に、ネマチック型液晶(メルク社製、MLC−6608)を充填した後、アクリル系光硬化接着剤で液晶注入口を封止することにより、垂直型液晶セルを製造した。
(4) Manufacture of vertical liquid crystal cell The liquid crystal aligning agent prepared above is applied to a liquid crystal alignment film printer (Nissha Printing Co., Ltd.) on the transparent electrode surface of a glass substrate with a transparent electrode (thickness 1 mm) made of ITO film. )), And heated (pre-baked) for 1 minute on a hot plate at 80 ° C. and further heated (post-baked) for 60 minutes on a hot plate at 200 ° C. Liquid crystal alignment film) was formed. This operation was repeated to obtain a pair (two) of glass substrates having a liquid crystal alignment film on the transparent conductive film.
Next, after applying an epoxy resin adhesive containing aluminum oxide spheres having a diameter of 5.5 μm to the outer edge of the surface having one liquid crystal alignment film of the pair of substrates, the liquid crystal alignment film surfaces of the pair of substrates are relative to each other. The adhesive was cured by overlapping and pressing. Next, a nematic liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) is filled between the pair of substrates from the liquid crystal injection port, and then the liquid crystal injection port is sealed with an acrylic photo-curing adhesive, whereby a vertical liquid crystal cell is obtained. Manufactured.

(5)液晶セルの評価
i)液晶配向性の評価
上記で製造した液晶セルにつき、実施例1の「i)液晶配向性の評価」と同様にして液晶配向性を評価したところ、顕微鏡観察によって異常ドメインが観察されず、液晶配向性は「良好」であった。
ii)電圧保持率の評価
上記で製造した液晶セルにつき、実施例1の「ii)電圧保持率の評価」と同様にして電圧保持率を測定したところ、電圧保持率は99.2%であった。
iii)耐熱性の評価
上記で製造した垂直配向型液晶表示素子につき、先ず5Vの電圧を60マイクロ秒の印加時間、167ミリ秒のスパンで印加した後、印加解除から167ミリ秒後の電圧保持率を測定した。このときの数値を初期電圧保持率(VHRBF)とした。
上記VHRBF測定後の液晶表示素子を100℃のオーブンに入れ、1,000時間熱ストレスを印加した。次いで該液晶表示素子を室温下に静置して室温まで冷却した後、上記初期電圧保持率の測定と同じ条件で熱ストレス印加後の電圧保持率(VHRAF)を測定した。
そして下記数式(2)により、熱ストレス印加前後の電圧保持率の変化率(△VHR)を求めた。この変化率が5%未満であった場合を耐熱性「良好」、5%以上であった場合を耐熱性「不良」として評価したところ、上記垂直型液晶セルの耐熱性は「良好」であった。
△VHR(%)=((VHRBF−VHRAF)÷VHRBF)×100 (2)
(5) Evaluation of liquid crystal cell i) Evaluation of liquid crystal alignment The liquid crystal cell manufactured above was evaluated for liquid crystal alignment in the same manner as in “i) Evaluation of liquid crystal alignment” in Example 1. No abnormal domain was observed, and the liquid crystal alignment was “good”.
ii) Evaluation of voltage holding ratio The voltage holding ratio of the liquid crystal cell produced above was measured in the same manner as in “ii) Evaluation of voltage holding ratio” in Example 1, and the voltage holding ratio was 99.2%. It was.
iii) Evaluation of heat resistance With respect to the vertical alignment type liquid crystal display device manufactured as described above, first, a voltage of 5 V is applied with an application time of 60 microseconds and a span of 167 milliseconds, and then the voltage is maintained 167 milliseconds after the application is released. The rate was measured. The numerical value at this time was defined as the initial voltage holding ratio (VHR BF ).
The liquid crystal display element after the VHR BF measurement was put in an oven at 100 ° C., and thermal stress was applied for 1,000 hours. Next, the liquid crystal display element was allowed to stand at room temperature and cooled to room temperature, and then the voltage holding ratio (VHR AF ) after application of thermal stress was measured under the same conditions as the measurement of the initial voltage holding ratio.
Then, the change rate (ΔVHR) of the voltage holding ratio before and after application of the thermal stress was obtained by the following mathematical formula (2). When the rate of change was less than 5%, the heat resistance was evaluated as “good”. When the rate of change was 5% or more was evaluated as “heat resistance”, the heat resistance of the vertical liquid crystal cell was “good”. It was.
△ VHR (%) = (( VHR BF -VHR AF) ÷ VHR BF) × 100 (2)

Claims (12)

下記式(1)で表される化合物を含むテトラカルボン酸二無水物とジアミンとを反応させて得られるポリアミック酸を含有することを特徴とする、液晶配向剤。
Figure 0005120580
(式(1)中、YおよびYは、それぞれ独立に、2価の有機基であり、
およびZは、それぞれ独立に、3価の有機基であり、
Qは4価の有機基であり、そして
n1およびn2は、それぞれ独立に、0または1である。)
A liquid crystal aligning agent comprising a polyamic acid obtained by reacting a tetracarboxylic dianhydride containing a compound represented by the following formula (1) with a diamine.
Figure 0005120580
(In formula (1), Y 1 and Y 2 are each independently a divalent organic group,
Z 1 and Z 2 are each independently a trivalent organic group,
Q is a tetravalent organic group, and n1 and n2 are each independently 0 or 1. )
上記式(1)中のn1およびn2がそれぞれ0である、請求項1に記載の液晶配向剤。   The liquid crystal aligning agent of Claim 1 whose n1 and n2 in said Formula (1) are 0, respectively. 上記式(1)中の下記式(T)で表されるユニットがテトラカルボン酸二無水物に由来する4価の基であり、そして
−ZからなるユニットおよびY−Zからなるユニットが、それぞれ独立に、モノアミノジカルボン酸化合物に由来する3価の基である、請求項2に記載の液晶配向剤。
Figure 0005120580
(式(T)中、Qは上記式(1)におけるのと同じ意味であり、「*」は、それぞれ、結合手であることを表す。)
The unit represented by the following formula (T) in the above formula (1) is a tetravalent group derived from tetracarboxylic dianhydride, and from the unit consisting of Y 1 -Z 1 and Y 2 -Z 2 The liquid crystal aligning agent according to claim 2, wherein the units are each independently a trivalent group derived from a monoaminodicarboxylic acid compound.
Figure 0005120580
(In formula (T), Q has the same meaning as in formula (1) above, and “*” represents a bond, respectively.)
上記テトラカルボン酸二無水物が、1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシノルボルナン−2:3,5:6−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン、ビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物およびピロメリット酸二無水物よりなる群から選択される1種以上であり、そして
上記モノアミノジカルボン酸化合物が、アスパラギン酸、グルタミン酸、2−アミノアジピン酸、カルボシステイン、2,3−ジカルボキシアニリン、3,4−ジカルボキシアニリン、3−アミノ−1,2−ジカルボキシナフタレン、4−アミノ−1,2−ジカルボキシナフタレン、5−アミノ−1,2−ジカルボキシナフタレン、6−アミノ−1,2−ジカルボキシナフタレン、7−アミノ−1,2−ジカルボキシナフタレン、8−アミノ−1,2−ジカルボキシナフタレン、
1−アミノ−2,3−ジカルボキシナフタレン、4−アミノ−2,3−ジカルボキシナフタレン、5−アミノ−2,3−ジカルボキシナフタレン、6−アミノ−2,3−ジカルボキシナフタレン、7−アミノ−2,3−ジカルボキシナフタレンおよび8−アミノ−2,3−ジカルボキシナフタレンよりなる群から選択される少なくとも1種である、請求項3に記載の液晶配向剤。
The tetracarboxylic dianhydride is 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4,5,9b. -Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8 -Methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] octane-2, 4-dione-6-spiro-3 ′-(tetrahydrofuran-2 ′, 5′-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2 -Dicarboxylic anhydride, 3,5 6-tricarboxy-2-carboxymethyl norbornane -2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2, 6] undecane -3,5,8, One or more selected from the group consisting of 10-tetraone, bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride and pyromellitic dianhydride, and Monoaminodicarboxylic acid compounds are aspartic acid, glutamic acid, 2-aminoadipic acid, carbocysteine, 2,3-dicarboxyaniline, 3,4-dicarboxyaniline, 3-amino-1,2-dicarboxynaphthalene, 4 -Amino-1,2-dicarboxynaphthalene, 5-amino-1,2-dicarboxynaphthalene, 6-amino-1,2-dicarboxynaphthalene, 7-amino -1,2-dicarboxynaphthalene, 8-amino-1,2-dicarboxynaphthalene,
1-amino-2,3-dicarboxynaphthalene, 4-amino-2,3-dicarboxynaphthalene, 5-amino-2,3-dicarboxynaphthalene, 6-amino-2,3-dicarboxynaphthalene, 7- The liquid crystal aligning agent of Claim 3 which is at least 1 sort (s) selected from the group which consists of amino-2,3-dicarboxynaphthalene and 8-amino-2,3-dicarboxynaphthalene.
上記式(1)で表される化合物が、下記式(T−1)で表されるテトラカルボン酸二無水物とモノアミノジカルボン酸化合物とを反応させた後、脱水閉環して得られたものである、請求項3に記載の液晶配向剤。
Figure 0005120580
(式(T−1)中、Qは上記式(1)におけるのと同じ意味である。)
A compound obtained by reacting a tetracarboxylic dianhydride represented by the following formula (T-1) with a monoaminodicarboxylic acid compound and then dehydrating and ring-closing the compound represented by the above formula (1) The liquid crystal aligning agent of Claim 3 which is.
Figure 0005120580
(In formula (T-1), Q has the same meaning as in formula (1) above.)
上記テトラカルボン酸二無水物が1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシノルボルナン−2:3,5:6−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン、ビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物およびピロメリット酸二無水物よりなる群から選択される1種以上であり、そして
上記モノアミノジカルボン酸化合物が、アスパラギン酸、グルタミン酸、2−アミノアジピン酸、カルボシステイン、2,3−ジカルボキシアニリン、3,4−ジカルボキシアニリン、3−アミノ−1,2−ジカルボキシナフタレン、4−アミノ−1,2−ジカルボキシナフタレン、5−アミノ−1,2−ジカルボキシナフタレン、6−アミノ−1,2−ジカルボキシナフタレン、7−アミノ−1,2−ジカルボキシナフタレン、8−アミノ−1,2−ジカルボキシナフタレン、
1−アミノ−2,3−ジカルボキシナフタレン、4−アミノ−2,3−ジカルボキシナフタレン、5−アミノ−2,3−ジカルボキシナフタレン、6−アミノ−2,3−ジカルボキシナフタレン、7−アミノ−2,3−ジカルボキシナフタレンおよび8−アミノ−2,3−ジカルボキシナフタレンよりなる群から選択される少なくとも1種である、請求項5に記載の液晶配向剤。
The tetracarboxylic dianhydride is 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4,5,9b- Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8- Methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] octane-2,4 -Dione-6-spiro-3 '-(tetrahydrofuran-2', 5'-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2- Dicarboxylic anhydride, 3,5,5 - tricarboxy-2-carboxymethyl norbornane -2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2, 6] undecane -3,5,8,10 -One or more selected from the group consisting of tetraone, bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride and pyromellitic dianhydride, and the above mono The aminodicarboxylic acid compound is aspartic acid, glutamic acid, 2-aminoadipic acid, carbocysteine, 2,3-dicarboxyaniline, 3,4-dicarboxyaniline, 3-amino-1,2-dicarboxynaphthalene, 4- Amino-1,2-dicarboxynaphthalene, 5-amino-1,2-dicarboxynaphthalene, 6-amino-1,2-dicarboxynaphthalene, 7-amino- 1,2-dicarboxynaphthalene, 8-amino-1,2-dicarboxynaphthalene,
1-amino-2,3-dicarboxynaphthalene, 4-amino-2,3-dicarboxynaphthalene, 5-amino-2,3-dicarboxynaphthalene, 6-amino-2,3-dicarboxynaphthalene, 7- The liquid crystal aligning agent of Claim 5 which is at least 1 sort (s) selected from the group which consists of amino-2,3-dicarboxynaphthalene and 8-amino-2,3-dicarboxynaphthalene.
上記式(1)中のn1およびn2がそれぞれ1である、請求項1に記載の液晶配向剤。   The liquid crystal aligning agent of Claim 1 whose n1 and n2 in the said Formula (1) are 1, respectively. 上記式(1)中の下記式(T)で表されるユニットが、テトラカルボン酸二無水物に由来する4価の基であり、
およびYが、それぞれ独立に、アミノアルコール化合物に由来する2価の基であり、そして
およびZが、それぞれ独立に、トリカルボン酸一無水物のハロゲン化物に由来する3価の基である、請求項7に記載の液晶配向剤。
Figure 0005120580
(式(T)中、Qは上記式(1)におけるのと同じ意味であり、「*」は、それぞれ、結合手であることを表す。)
The unit represented by the following formula (T) in the above formula (1) is a tetravalent group derived from tetracarboxylic dianhydride,
Y 1 and Y 2 are each independently a divalent group derived from an amino alcohol compound, and Z 1 and Z 2 are each independently a trivalent group derived from a halide of tricarboxylic acid monoanhydride. The liquid crystal aligning agent of Claim 7 which is group.
Figure 0005120580
(In formula (T), Q has the same meaning as in formula (1) above, and “*” represents a bond, respectively.)
上記テトラカルボン酸二無水物が1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシノルボルナン−2:3,5:6−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン、ビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物およびピロメリット酸二無水物よりなる群から選択される1種以上であり、
上記アミノアルコール化合物がアミノメタノール、2−アミノエタノール、1−アミノ−2−プロパノール、2−アミノベンジルアルコール、3−アミノベンジルアルコール、4−アミノベンジルアルコール、2−ヒドロキシアニリン、3−ヒドロキシアニリンおよび4−ヒドロキシアニリンよりなる群から選択される少なくとも1種であり、そして
上記トリカルボン酸一無水物のハロゲン化物が4−ハロホルミルフタル酸無水物、プロパン−1,2,3−トリカルボン酸一無水物のハロゲン化物、プロパン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ブタン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ブタン−1,2,4−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,4−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,5−トリカルボン酸一無水物のハロゲン化物およびシクロヘキサン−1,2,4−トリカルボン酸一無水物のハロゲン化物よりなる群から選択される少なくとも1種である、請求項8に記載の液晶配向剤。
The tetracarboxylic dianhydride is 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4,5,9b- Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8- Methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] octane-2,4 -Dione-6-spiro-3 '-(tetrahydrofuran-2', 5'-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2- Dicarboxylic anhydride, 3,5,5 - tricarboxy-2-carboxymethyl norbornane -2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2, 6] undecane -3,5,8,10 -One or more selected from the group consisting of tetraone, bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride and pyromellitic dianhydride,
The amino alcohol compound is aminomethanol, 2-aminoethanol, 1-amino-2-propanol, 2-aminobenzyl alcohol, 3-aminobenzyl alcohol, 4-aminobenzyl alcohol, 2-hydroxyaniline, 3-hydroxyaniline and 4 -At least one selected from the group consisting of hydroxyaniline, and the halide of the tricarboxylic acid monoanhydride is 4-haloformylphthalic anhydride, propane-1,2,3-tricarboxylic acid monoanhydride Halide, Halide of propane-1,2,3-tricarboxylic acid monoanhydride, Halide of butane-1,2,3-tricarboxylic acid monoanhydride, Butane-1,2,4-tricarboxylic acid monoanhydride Halides of pentane-1,2,3-tricarboxylic acid monoanhydride Halides of pentane-1,2,4-tricarboxylic acid monoanhydride, halides of pentane-1,2,5-tricarboxylic acid monoanhydride and cyclohexane-1,2,4-tricarboxylic acid monoanhydride The liquid crystal aligning agent of Claim 8 which is at least 1 sort (s) selected from the group which consists of the halide of a thing.
上記式(1)で表される化合物が、下記式(T−1)で表されるテトラカルボン酸二無水物とアミノアルコール化合物とを反応させた後、さらにトリカルボン酸一無水物のハロゲン化物と反応させて得られたものである、請求項8に記載の液晶配向剤。
Figure 0005120580
(式(T−1)中、Qは上記式(1)におけるのと同じ意味である。)
After the compound represented by the above formula (1) is reacted with a tetracarboxylic dianhydride represented by the following formula (T-1) and an amino alcohol compound, a tricarboxylic acid monoanhydride halide and The liquid crystal aligning agent of Claim 8 which is obtained by making it react.
Figure 0005120580
(In formula (T-1), Q has the same meaning as in formula (1) above.)
上記テトラカルボン酸二無水物が1,2,3,4−シクロブタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、3−オキサビシクロ[3.2.1]オクタン−2,4−ジオン−6−スピロ−3’−(テトラヒドロフラン−2’,5’−ジオン)、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、3,5,6−トリカルボキシ−2−カルボキシノルボルナン−2:3,5:6−二無水物、4,9−ジオキサトリシクロ[5.3.1.02,6]ウンデカン−3,5,8,10−テトラオン、ビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物およびピロメリット酸二無水物よりなる群から選択される1種以上であり、
上記アミノアルコール化合物がアミノメタノール、2−アミノエタノール、1−アミノ−2−プロパノール、2−アミノベンジルアルコール、3−アミノベンジルアルコール、4−アミノベンジルアルコール、2−ヒドロキシアニリン、3−ヒドロキシアニリンおよび4−ヒドロキシアニリンよりなる群から選択される少なくとも1種であり、そして
上記トリカルボン酸一無水物のハロゲン化物が4−ハロホルミルフタル酸無水物、プロパン−1,2,3−トリカルボン酸一無水物のハロゲン化物、プロパン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ブタン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ブタン−1,2,4−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,3−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,4−トリカルボン酸一無水物のハロゲン化物、ペンタン−1,2,5−トリカルボン酸一無水物のハロゲン化物およびシクロヘキサン−1,2,4−トリカルボン酸一無水物のハロゲン化物よりなる群から選択される少なくとも1種である、請求項10に記載の液晶配向剤。
The tetracarboxylic dianhydride is 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 1,3,3a, 4,5,9b- Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8- Methyl-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] furan-1,3-dione, 3-oxabicyclo [3.2.1] octane-2,4 -Dione-6-spiro-3 '-(tetrahydrofuran-2', 5'-dione), 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2- Dicarboxylic anhydride, 3,5,5 - tricarboxy-2-carboxymethyl norbornane -2: 3,5: 6-dianhydride, 4,9-dioxatricyclo [5.3.1.0 2, 6] undecane -3,5,8,10 -One or more selected from the group consisting of tetraone, bicyclo [3.3.0] octane-2,4,6,8-tetracarboxylic dianhydride and pyromellitic dianhydride,
The amino alcohol compound is aminomethanol, 2-aminoethanol, 1-amino-2-propanol, 2-aminobenzyl alcohol, 3-aminobenzyl alcohol, 4-aminobenzyl alcohol, 2-hydroxyaniline, 3-hydroxyaniline and 4 -At least one selected from the group consisting of hydroxyaniline, and the halide of the tricarboxylic acid monoanhydride is 4-haloformylphthalic anhydride, propane-1,2,3-tricarboxylic acid monoanhydride Halide, Halide of propane-1,2,3-tricarboxylic acid monoanhydride, Halide of butane-1,2,3-tricarboxylic acid monoanhydride, Butane-1,2,4-tricarboxylic acid monoanhydride Halides of pentane-1,2,3-tricarboxylic acid monoanhydride Halides of pentane-1,2,4-tricarboxylic acid monoanhydride, halides of pentane-1,2,5-tricarboxylic acid monoanhydride and cyclohexane-1,2,4-tricarboxylic acid monoanhydride The liquid crystal aligning agent of Claim 10 which is at least 1 sort (s) selected from the group which consists of a halide of a thing.
請求項1〜11のいずれか一項に記載の液晶配向剤から形成された液晶配向膜を具備することを特徴とする、液晶表示素子。   A liquid crystal display element comprising a liquid crystal alignment film formed from the liquid crystal aligning agent according to claim 1.
JP2012110903A 2012-05-14 2012-05-14 Liquid crystal alignment agent Active JP5120580B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012110903A JP5120580B1 (en) 2012-05-14 2012-05-14 Liquid crystal alignment agent
KR1020130030709A KR101866834B1 (en) 2012-05-14 2013-03-22 Liquid crystal aligning agent and liquid crystal display device
CN201310143413.0A CN103421518B (en) 2012-05-14 2013-04-23 Crystal aligning agent and liquid crystal display device
TW102116458A TWI537309B (en) 2012-05-14 2013-05-09 Liquid crystal alignment agent and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110903A JP5120580B1 (en) 2012-05-14 2012-05-14 Liquid crystal alignment agent

Publications (2)

Publication Number Publication Date
JP5120580B1 true JP5120580B1 (en) 2013-01-16
JP2013238700A JP2013238700A (en) 2013-11-28

Family

ID=47692832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110903A Active JP5120580B1 (en) 2012-05-14 2012-05-14 Liquid crystal alignment agent

Country Status (4)

Country Link
JP (1) JP5120580B1 (en)
KR (1) KR101866834B1 (en)
CN (1) CN103421518B (en)
TW (1) TWI537309B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
JP2020122127A (en) * 2019-01-31 2020-08-13 ユニチカ株式会社 Imide group-containing resin curing agent
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US12122767B2 (en) 2019-10-01 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098818B2 (en) * 2012-11-07 2017-03-22 Jsr株式会社 Liquid crystal alignment agent
JP6492509B2 (en) * 2014-07-28 2019-04-03 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP6593021B2 (en) * 2015-08-07 2019-10-23 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
CN112480093B (en) * 2020-12-01 2022-05-06 中国科学院长春应用化学研究所 Dianhydride containing amide and imide structures, and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09185064A (en) * 1995-12-28 1997-07-15 Japan Synthetic Rubber Co Ltd Imide group-containing polyamic acid and its production as well as liquid crystal orienting agent

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962278A (en) * 1970-12-11 1976-06-08 Westinghouse Electric Corporation N,n'bis(phthalic anhydride) diimides
JP3498456B2 (en) 1995-12-11 2004-02-16 Jsr株式会社 Liquid crystal display device
JP4788896B2 (en) * 2006-02-22 2011-10-05 Jsr株式会社 Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display element
JP5668904B2 (en) 2008-09-18 2015-02-12 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5633677B2 (en) * 2009-09-04 2014-12-03 Jsr株式会社 Liquid crystal alignment agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09185064A (en) * 1995-12-28 1997-07-15 Japan Synthetic Rubber Co Ltd Imide group-containing polyamic acid and its production as well as liquid crystal orienting agent

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US12024517B2 (en) 2018-05-04 2024-07-02 Incyte Corporation Salts of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
JP7178092B2 (en) 2019-01-31 2022-11-25 ユニチカ株式会社 Resin curing agent containing imide group
JP2020122127A (en) * 2019-01-31 2020-08-13 ユニチカ株式会社 Imide group-containing resin curing agent
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12122767B2 (en) 2019-10-01 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12083124B2 (en) 2019-10-14 2024-09-10 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Also Published As

Publication number Publication date
CN103421518B (en) 2016-01-20
TW201345955A (en) 2013-11-16
KR101866834B1 (en) 2018-06-12
CN103421518A (en) 2013-12-04
TWI537309B (en) 2016-06-11
KR20130127362A (en) 2013-11-22
JP2013238700A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5120580B1 (en) Liquid crystal alignment agent
KR101980637B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device, and compound and polymer used for producing the same
JP4840137B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
JP5879693B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP4466373B2 (en) Novel diaminobenzene derivative, polyimide precursor and polyimide using the same, and liquid crystal aligning agent
JP2010524041A (en) Liquid crystal aligning agent comprising 3,4-dicarboxy-1,2,3,4-tetrahydro-6-tert-butyl-1-naphthalene succinic dianhydride and a polyimide resin prepared from the dianhydride
JP5359029B2 (en) Acid dianhydride, liquid crystal alignment film, and liquid crystal display element
KR102282111B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal alignment film and liquid crystal display element
JP6315182B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP5751403B2 (en) Liquid crystal alignment agent
JP6172453B2 (en) Liquid crystal alignment agent
KR20130079141A (en) Liquid crystal aligning agent liquid crystal alignment film liquid crystal display device and polymer
JP2011170321A (en) Liquid crystal aligning agent and liquid crystal display element
WO2005052028A1 (en) Liquid crystal alignment treating agent for vertical alignment and liquid crystal display
JP2017138575A (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal element, polymer and diamine
JP5071662B2 (en) Liquid crystal aligning agent and liquid crystal display element
TWI289157B (en) Diamine compound having dendron side chain and liquid crystal aligning agent using same
JP5672762B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI798503B (en) Liquid crystal alignment composition, method of preparing liquid crystal alignment film, and liquid crystal alignment film, liquid crystal display using the same
JP6870289B2 (en) Liquid crystal alignment agent, manufacturing method of liquid crystal element, liquid crystal alignment film, liquid crystal element
JP5376165B2 (en) Liquid crystal aligning agent and liquid crystal display element
CN110191938B (en) Liquid crystal aligning agent composition, method for preparing liquid crystal alignment film using the same, and liquid crystal alignment film using the same
JP6337594B2 (en) Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
JP6962449B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
KR20130040126A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5120580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250