JP5163879B2 - Diamond coated tool with excellent fracture resistance and wear resistance - Google Patents
Diamond coated tool with excellent fracture resistance and wear resistance Download PDFInfo
- Publication number
- JP5163879B2 JP5163879B2 JP2008099358A JP2008099358A JP5163879B2 JP 5163879 B2 JP5163879 B2 JP 5163879B2 JP 2008099358 A JP2008099358 A JP 2008099358A JP 2008099358 A JP2008099358 A JP 2008099358A JP 5163879 B2 JP5163879 B2 JP 5163879B2
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- film
- diamond film
- plane
- inclination angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910003460 diamond Inorganic materials 0.000 title claims description 239
- 239000010432 diamond Substances 0.000 title claims description 239
- 238000009826 distribution Methods 0.000 claims description 70
- 239000013078 crystal Substances 0.000 claims description 60
- 239000000470 constituent Substances 0.000 claims description 46
- 239000000758 substrate Substances 0.000 claims description 44
- 125000004429 atom Chemical group 0.000 claims description 35
- 238000000576 coating method Methods 0.000 claims description 24
- 239000011248 coating agent Substances 0.000 claims description 23
- 238000005259 measurement Methods 0.000 claims description 19
- 238000010894 electron beam technology Methods 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000011195 cermet Substances 0.000 claims description 4
- 239000011295 pitch Substances 0.000 claims description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 description 61
- 230000000052 comparative effect Effects 0.000 description 39
- 239000002585 base Substances 0.000 description 25
- 239000010410 layer Substances 0.000 description 24
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 229910000838 Al alloy Inorganic materials 0.000 description 14
- 239000012495 reaction gas Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 229920000049 Carbon (fiber) Polymers 0.000 description 9
- 239000004917 carbon fiber Substances 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 238000005553 drilling Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000000805 composite resin Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000004050 hot filament vapor deposition Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- -1 and in particular Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
- Drilling Tools (AREA)
Description
この発明は、炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体にダイヤモンド皮膜を被覆したダイヤモンド被覆工具に関し、特に、金属材料よりも比強度、比剛性の高いCFRP(Carbon Fiber Reinforced Plastics。炭素繊維強化プラスチック)あるいは溶着性の高いAl合金等の高速切削に際し、長期の使用に亘って、シャープな切刃が維持されるとともにバリ発生が少なく、すぐれた耐欠損性とすぐれた耐摩耗性を発揮するダイヤモンド被覆工具に関するものである。 The present invention relates to a diamond-coated tool in which a diamond coating is coated on a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and in particular, CFRP (Carbon Fiber Reinforced Plastics) having higher specific strength and specific rigidity than metal materials. When cutting at high speed (such as carbon fiber reinforced plastic) or highly weldable Al alloys, the sharp cutting edge is maintained and the occurrence of burrs is reduced over a long period of use, with excellent fracture resistance and excellent wear resistance. The present invention relates to a diamond-coated tool that exhibits high performance.
従来、炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットなどの工具基体に、ダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られており、
例えば、工具基体表面に、ダイヤモンドの結晶成長の起点となる核付着工程およびダイヤモンドを結晶成長させる結晶成長工程とを繰り返し行うことにより、結晶粒径が微細なダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られており、この被覆工具を用いたAl合金の切削加工で、すぐれた面精度を得られることが知られている。
Conventionally, a diamond coated tool in which a diamond coating is coated on a tool substrate such as a tungsten carbide group (WC group) cemented carbide or a titanium carbonitride group (TiCN group) cermet is known.
For example, a diamond-coated tool is known in which a diamond coating with a fine crystal grain size is coated on the surface of a tool substrate by repeatedly performing a nucleus deposition process that is the starting point of diamond crystal growth and a crystal growth process that causes diamond crystal growth. It is known that excellent surface accuracy can be obtained by cutting Al alloy using this coated tool.
また、ダイヤモンド皮膜を、ラマン分光分析によるダイヤモンドのピーク強度I1に対する非ダイヤモンド炭素のピーク強度I2の強度比I2/I1が0.7以下の層と、I2/I1が0.9以上の層とを交互に積層したダイヤモンド被覆工具も知られており、この被覆工具をAl合金の切削加工に用いた場合、靭性、耐欠損性、耐摩耗性にすぐれることも知られている。
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って、切削条件はますます高速化している。上記の従来被覆工具は、これを通常条件での切削加工に用いた場合には特段の問題は生じないが、これを、一般の金属材料に比して、比強度、比剛性にすぐれるCFRPの高速切削に用いた場合には、CFRPは炭素繊維とエポキシ系樹脂の複合材であるため工具摩耗が激しいばかりか欠損が生じやすく、工具寿命が短命であるという問題点があった。
また、従来被覆工具を、軟質で溶着性の高いAl合金等の高速切削に用いた場合には、切削時の高熱発生により、溶着性の高い被削材(Al合金)の切粉が、工具切刃へ溶着することにより、シャープな切刃を維持することが困難であるばかりか、欠損が生じやすくなるという問題点があった。
この結果、CFRP、Al合金等の高速切削加工に用いた場合、ダイヤモンド被覆工具の寿命は短いばかりか、さらに、被削材のバリ発生のために仕上げ面精度が粗くなり、寸法精度も劣るという問題点があった。
In recent years, the FA of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting conditions are increasingly accelerated. The above-mentioned conventional coated tool does not cause any special problems when used for cutting under normal conditions. However, this is a CFRP that is superior in specific strength and specific rigidity as compared with general metal materials. When used for high-speed cutting, CFRP is a composite material of carbon fiber and epoxy resin, so that there is a problem that not only the tool wear is severe, but also the chipping tends to occur and the tool life is short-lived.
In addition, when the conventional coated tool is used for high-speed cutting of soft and highly weldable Al alloy, etc., chips of highly weldable work material (Al alloy) are generated due to high heat generation during cutting. By welding to the cutting edge, it is not only difficult to maintain a sharp cutting edge, but also there is a problem that defects tend to occur.
As a result, when used for high-speed cutting of CFRP, Al alloy, etc., not only the life of the diamond-coated tool is short, but also the finished surface accuracy becomes rough due to the occurrence of burrs on the work material, and the dimensional accuracy is also inferior. There was a problem.
そこで、本発明者等は、上述のような観点から、特に難削材であるCFRPあるいは溶着性の高いAl合金等の高速切削加工で、シャープな切刃を維持しつつ、バリの発生を抑制し、長期の使用に亘って、すぐれた耐欠損性と耐摩耗性を備えたダイヤモンド被覆工具を開発すべく鋭意研究を行った結果、以下の知見を得た。 In view of the above, the present inventors have suppressed the generation of burrs while maintaining a sharp cutting edge in high-speed cutting such as CFRP, which is a difficult-to-cut material, or a highly weldable Al alloy. However, as a result of earnest research to develop a diamond-coated tool having excellent fracture resistance and wear resistance over a long period of use, the following knowledge was obtained.
図1には、請求項1に係る本発明のダイヤモンド被覆工具の側断面の概略図を示すが、図1において、工具基体1の表面に、例えば、マイクロ波プラズマCVD法、熱フィラメントCVD法、アークプラズマCVD法等のダイヤモンド気相合成法によって、膜厚0.8〜5μmの配向ダイヤモンド皮膜2を形成し、ついで、該配向ダイヤモンド皮膜2の上面に、膜厚0.05〜0.5μmの無配向ダイヤモンド皮膜4を蒸着形成し、少なくとも3層以上の積層構造を構成するようにダイヤモンド皮膜を被覆し、さらに、上記配向ダイヤモンド皮膜が、電界放出型走査電子顕微鏡を用いて測定・作成した結晶面の傾斜角度数分布グラフにおいて、(110)面または(111)面が該傾斜角度数分布グラフの0〜10度の傾斜角区分で50%以上の度数を占める配向ダイヤモンド皮膜で構成されている場合には、このダイヤモンド被覆工具は、シャープな切刃を維持しつつ、バリの発生が少なく、長期の使用に亘って、すぐれた耐欠損性と耐摩耗性を備えること。 FIG. 1 shows a schematic side sectional view of the diamond-coated tool of the present invention according to claim 1. In FIG. 1, for example, a microwave plasma CVD method, a hot filament CVD method, An oriented diamond film 2 having a film thickness of 0.8 to 5 μm is formed by a diamond vapor phase synthesis method such as an arc plasma CVD method, and then a film thickness of 0.05 to 0.5 μm is formed on the upper surface of the oriented diamond film 2. A non-oriented diamond film 4 is formed by vapor deposition, and the diamond film is coated so as to form a laminated structure of at least three layers. Further, the oriented diamond film is measured and created using a field emission scanning electron microscope. In the slope angle distribution graph of the surface, the (110) plane or the (111) plane is 50% or more in the slope angle section of 0 to 10 degrees of the slope angle distribution graph. When the diamond-coated tool is composed of an oriented diamond film that occupies the same frequency, the diamond-coated tool maintains a sharp cutting edge, has few burrs, and has excellent fracture resistance over a long period of use. Provide wear resistance.
また、図2には、請求項2に係る本発明のダイヤモンド被覆工具の側断面の概略図を示すが、図2において、工具基体1の表面に、例えば、マイクロ波プラズマCVD法、熱フィラメントCVD法、アークプラズマCVD法等のダイヤモンド気相合成法によって、配向ダイヤモンド皮膜2と無配向ダイヤモンド皮膜4の積層構造を構成すると同時に、上記配向ダイヤモンド皮膜2のうちの少なくとも一つの層を、膜厚0.8〜5μmのΣ3対応粒界比率の高いダイヤモンド皮膜(以下、高Σ3ダイヤモンド皮膜という)3で構成したものであり、このダイヤモンド被覆工具は、高Σ3ダイヤモンド皮膜の備えるより一段とすぐれた高温強度によって、シャープな切刃を維持しつつ、バリの発生が少なく、長期の使用に亘って、さらに一段とすぐれた耐欠損性と耐摩耗性を備えること。 FIG. 2 shows a schematic side sectional view of the diamond-coated tool according to the second aspect of the present invention. In FIG. 2, the surface of the tool base 1 is subjected to, for example, a microwave plasma CVD method or a hot filament CVD. A laminated structure of the oriented diamond film 2 and the non-oriented diamond film 4 is formed by a diamond vapor phase synthesis method such as the arc plasma CVD method, and at least one layer of the oriented diamond film 2 is formed with a film thickness of 0. .8-5μm diamond film with a high Σ3-compatible grain boundary ratio (hereinafter referred to as “high Σ3 diamond film”) 3. This diamond-coated tool has a higher temperature strength than that of a high Σ3 diamond film. While maintaining a sharp cutting edge, there are few burrs, and even more quickly over long-term use Providing the fracture resistance and wear resistance.
この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面にダイヤモンド皮膜が被覆されたダイヤモンド被覆工具において、
上記ダイヤモンド皮膜は、一層膜厚0.8〜5μmの配向ダイヤモンド皮膜と一層膜厚0.05〜0.5μmの無配向ダイヤモンド皮膜との少なくとも3層以上の積層構造からなり、さらに、前記配向ダイヤモンド皮膜は、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、(110)面または(111)面の少なくともいずれかの面について、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すダイヤモンド皮膜であることを特徴とするダイヤモンド被覆工具。
(2) 前記(1)記載のダイヤモンド被覆工具において、
上記配向ダイヤモンド皮膜のうちの少なくとも一つの層は、電界放出型走査電子顕微鏡を用い、基体表面に対して垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点に炭素からなる構成原子が存在するダイヤモンド構造の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(Nはダイヤモンド構造の結晶構造上、2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が40%以上である構成原子共有格子点分布グラフを示す高Σ3ダイヤモンド皮膜であることを特徴とする前記(1)記載のダイヤモンド被覆工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) In a diamond-coated tool in which a diamond coating is coated on the surface of a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The diamond film has a laminated structure of at least three layers of an oriented diamond film with a thickness of 0.8 to 5 μm and a non-oriented diamond film with a thickness of 0.05 to 0.5 μm. The film uses a field emission scanning electron microscope, irradiates an electron beam to each crystal grain existing in the measurement range of the film cross-section polished surface perpendicular to the substrate surface, and the normal to the substrate surface, The inclination angle formed by the normal lines of the (110) plane and the (111) plane, which are the crystal planes of the crystal grains, is measured, and the measurement inclination angle within the range of 0 to 45 degrees is set to 0. When it is divided into 25-degree pitches and represented by an inclination angle number distribution graph obtained by counting the frequencies existing in each division, at least one of the (110) plane and the (111) plane is 0. -10 degrees The number of inclination angles in which the highest peak is present in the inclination angle section within the range of 0, and the total of the frequencies existing in the range of 0 to 10
(2) In the diamond-coated tool according to (1),
At least one layer of the above-mentioned oriented diamond film is irradiated with an electron beam on each crystal grain existing within the measurement range of the polished cross section of the film perpendicular to the substrate surface using a field emission scanning electron microscope. The inclination angle formed by the normal lines of the (110) plane and (111) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the substrate surface. In this case, the crystal grains are carbon atoms at lattice points. Each of the constituent atoms between the crystal grains at the interface between the adjacent crystal grains based on the measured tilt angle. The distribution of lattice points that share one constituent atom (constituent atom shared lattice point) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is the crystal structure of the diamond structure, An even number of 2 or more ) When an existing constituent atom shared lattice point form is represented by ΣN + 1, the constituent atom shared lattice point distribution indicating the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value of N is 28 due to frequency) In the graph, the Σ3 is a high Σ3 diamond film showing a constituent atomic shared lattice distribution graph in which the highest peak exists in Σ3 and the distribution ratio of the Σ3 to the entire ΣN + 1 is 40% or more (1 ) Diamond coated tool as described. "
It has the characteristics.
つぎに、この発明のダイヤモンド被覆工具の被覆層について、詳細に説明する。 Next, the coating layer of the diamond-coated tool of the present invention will be described in detail.
請求項1に係る本発明の配向ダイヤモンド皮膜は、例えば、
通常の熱フィラメント法による化学蒸着装置を用い、
(110)面配向皮膜は、
フィラメント温度 2200〜2400℃、
フィラメント−基板間隔 10〜30mm、
基板温度 750〜900℃、
反応圧力 1.33〜13.3kPa、
反応ガス CH4:0.5〜3vol%,H2:残、
(111)面配向皮膜は、
フィラメント温度 2400〜2600℃、
フィラメント−基板間隔 10〜30mm、
基板温度 900〜1050℃、
反応圧力 1.33〜13.3kPa、
反応ガス CH4:2〜6vol%,H2:残、
という条件の化学蒸着で、一層膜厚が0.8〜5μmになるように蒸着形成するが、一層膜厚が0.8μm未満では、所定の耐摩耗性を確保することができず、一方、5μmを超える一層膜厚となった場合には、ダイヤモンド結晶粒が粗大化し、耐欠損性が低下するようになることから、配向ダイヤモンド皮膜の一層膜厚は0.8〜5μmとする必要がある。
配向ダイヤモンド皮膜は、無配向ダイヤモンド皮膜と比べて、高硬度で耐熱温度が高いというすぐれた特性を備える。
The oriented diamond film of the present invention according to claim 1 is, for example,
Using chemical vapor deposition equipment by the usual hot filament method,
The (110) plane oriented film is
Filament temperature 2200-2400 ° C
Filament-substrate spacing 10-30mm,
Substrate temperature 750-900 ° C,
Reaction pressure 1.33-13.3 kPa,
Reaction gas CH 4: 0.5~3vol%, H 2 : remainder,
The (111) plane oriented film is
Filament temperature 2400-2600 ° C
Filament-substrate spacing 10-30mm,
Substrate temperature 900-1050 ° C,
Reaction pressure 1.33-13.3 kPa,
Reaction gas CH 4: 2~6vol%, H 2 : remainder,
In the chemical vapor deposition under the condition, vapor deposition is performed so that the film thickness becomes 0.8 to 5 μm. However, when the film thickness is less than 0.8 μm, the predetermined wear resistance cannot be ensured, When the film thickness exceeds 5 μm, the diamond crystal grains become coarse and the fracture resistance decreases, so the layer thickness of the oriented diamond film needs to be 0.8 to 5 μm. .
An oriented diamond film has excellent properties of high hardness and high heat resistance compared to a non-oriented diamond film.
また、無配向ダイヤモンド皮膜は、例えば、
フィラメント温度 1900〜2200℃、
フィラメント−基板間隔 10〜30mm、
基板温度 700〜850℃、
反応圧力 0.67〜6.7kPa、
反応ガス CH4:3〜8vol%,H2:残、
という条件の化学蒸着で、一層膜厚が0.05〜0.5μmになるように蒸着形成する。この無配向ダイヤモンド皮膜は、配向ダイヤモンド皮膜の結晶粒の成長を遮断し、結晶粒の粗大化を抑制する作用を有するとともに、配向ダイヤモンド皮膜の再核生成と配向成長を促進する作用を有する。ただ、無配向ダイヤモンド皮膜の一層膜厚が0.05μm未満の場合には、十分な結晶粒粗大化抑制作用を期待できず、一方、一層膜厚が0.5μmを超えると、配向ダイヤモンドの核生成密度が低下することから、無配向ダイヤモンド皮膜の一層膜厚は0.05〜0.5μmとする。
Non-oriented diamond film is, for example,
Filament temperature 1900-2200 ° C,
Filament-substrate spacing 10-30mm,
Substrate temperature 700-850 ° C,
Reaction pressure 0.67 to 6.7 kPa,
Reaction gas CH 4: 3~8vol%, H 2 : remainder,
The vapor deposition is carried out so that the film thickness is 0.05 to 0.5 μm. This non-oriented diamond film has an action of blocking the growth of crystal grains of the oriented diamond film and suppressing the coarsening of the crystal grains, and an action of promoting renucleation and orientation growth of the oriented diamond film. However, when the single-layer film thickness of the non-oriented diamond film is less than 0.05 μm, it is not possible to expect a sufficient effect of suppressing grain coarsening, whereas when the single-layer film thickness exceeds 0.5 μm, the core of the oriented diamond Since the generation density decreases, the single layer thickness of the non-oriented diamond film is set to 0.05 to 0.5 μm.
上記配向ダイヤモンド皮膜と無配向ダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成したところ、配向ダイヤモンド皮膜では、(110)面または(111)面の少なくともいずれかの面について、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すのに対して、無配向ダイヤモンド皮膜では、(110)面、(111)面のいずれの面についても、0〜10度の範囲内の傾斜角区分に最高ピークは存在せず、かつに、前記0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の40%未満という小さな割合を占めるに過ぎなかった。
そして、上記(110)面、(111)面への配向を示す配向ダイヤモンド皮膜は、無配向ダイヤモンド皮膜に比して、すぐれた高硬度と高耐熱温度を相兼ね備えている。
With respect to the oriented diamond film and the non-oriented diamond film, a field emission scanning electron microscope is used to irradiate the individual crystal grains existing within the measurement range of the coated cross-section polished surface perpendicular to the substrate surface with the substrate. The inclination angle formed by the normal lines of the (110) plane and the (111) plane, which are the crystal planes of the crystal grains, is measured with respect to the surface normal line, and is within a range of 0 to 45 degrees out of the measurement inclination angles. In the oriented diamond film, when the measured inclination angle is divided into pitches of 0.25 degrees, and the inclination angle number distribution graph is formed by summing up the frequencies existing in each division, the (110) plane or With respect to at least one of the (111) planes, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is the inclination angle number. distribution In contrast to a graph showing an inclination angle distribution occupying 50% or more of the entire frequency in the rough, the non-oriented diamond film is 0 to 10 degrees in any of the (110) plane and (111) plane. The highest peak does not exist in the inclination angle range within the range of 0, and the sum of the frequencies existing in the range of 0 to 10 degrees has a small ratio of less than 40% of the entire frequency in the inclination angle frequency distribution graph. It only occupied.
The oriented diamond film showing the orientation to the (110) plane and the (111) plane has both excellent high hardness and high heat resistance temperature compared with the non-oriented diamond film.
請求項1に係る本発明では、上記の配向ダイヤモンド皮膜と無配向ダイヤモンド皮膜を、少なくとも3層以上積層することにより、ダイヤモンド被覆工具の耐欠損性、耐摩耗性のより一層の向上を図った。
即ち、配向ダイヤモンド皮膜と無配向ダイヤモンド皮膜との少なくとも3層以上の積層構造として構成されているために、ダイヤモンド結晶粒の粗大化が防止されるとともに、(110)面、(111)面への配向度が高まる。その結果、交互積層構造で厚膜化しても、配向ダイヤモンド皮膜は依然としてすぐれた高硬度と高耐熱温度を備えることから、被覆層全体の厚膜化(例えば、全体層厚は10〜30μm)を図ることができるとともに、すぐれた耐欠損性、耐摩耗性を長期の使用に亘って発揮することができる。
In the present invention according to claim 1, the fracture resistance and wear resistance of the diamond-coated tool are further improved by laminating at least three layers of the above-mentioned oriented diamond film and non-oriented diamond film.
That is, since it is configured as a laminated structure of at least three layers of an oriented diamond film and a non-oriented diamond film, the coarsening of diamond crystal grains is prevented, and the (110) plane and (111) plane are prevented. The degree of orientation increases. As a result, even if the film thickness is increased in an alternating laminated structure, the oriented diamond film still has excellent high hardness and high heat resistance temperature, so that the entire coating layer is increased in thickness (for example, the total layer thickness is 10 to 30 μm). In addition to being able to achieve this, it is possible to exhibit excellent chipping resistance and wear resistance over a long period of use.
また、請求項2に係る高Σ3ダイヤモンド皮膜は、例えば、
フィラメント温度 2300〜2500℃、
フィラメント−基板間隔 5〜20mm、
基板温度 800〜950℃、
反応圧力 0.67〜6.7kPa、
反応ガス CH4:1〜4vol%,N2:0.3〜3.0vol%,H2:残、
という条件の化学蒸着で、一層膜厚0.8〜5μmに蒸着形成することができる。
つまり、前記(110)面配向皮膜あるいは(111)面配向皮膜を成膜する条件の範囲内で、かつ、反応ガス中に微量のN2ガス成分を含有させた条件下で化学蒸着することによって形成することができる。
高Σ3ダイヤモンド皮膜は、配向ダイヤモンド皮膜の場合と同様に、無配向ダイヤモンド皮膜に比して、すぐれた高硬度を備え、さらに、より一段とすぐれた高強度を備えている。
また、高Σ3ダイヤモンド皮膜の一層膜厚が、0.8〜5μmの範囲を外れると、耐摩耗性、耐欠損性が低下することは、前記の配向ダイヤモンド皮膜の場合と同様である。
The high Σ3 diamond film according to claim 2 is, for example,
Filament temperature 2300-2500 ° C,
Filament-substrate spacing 5-20mm,
Substrate temperature 800-950 ° C,
Reaction pressure 0.67 to 6.7 kPa,
Reaction gas CH 4: 1~4vol%, N 2 : 0.3~3.0vol%, H 2: remainder,
With a chemical vapor deposition under the above conditions, a single layer can be formed with a film thickness of 0.8 to 5 μm.
That is, by chemical vapor deposition under the condition where the (110) plane oriented film or the (111) plane oriented film is formed and a reaction gas contains a small amount of N 2 gas component. Can be formed.
As in the case of the oriented diamond film, the high Σ3 diamond film has a higher hardness and a higher strength than the non-oriented diamond film.
In addition, when the single-layer film thickness of the high Σ3 diamond film is out of the range of 0.8 to 5 μm, the wear resistance and fracture resistance are reduced as in the case of the oriented diamond film.
配向ダイヤモンド皮膜と無配向ダイヤモンド皮膜との積層構造において、配向ダイヤモンド皮膜の少なくとも一つの層を上記の高Σ3ダイヤモンド皮膜で構成すると、高Σ3ダイヤモンド皮膜の結晶粒の粗大化が、無配向ダイヤモンド皮膜によって防止されるとともに、高Σ3ダイヤモンド皮膜が一段とすぐれた高温強度を備えるために、ダイヤモンド被覆を厚膜化した場合であっても、欠損が発生する恐れはなく、その結果、長期の使用に亘ってより一段とすぐれた耐欠損性、耐摩耗性を発揮することができる。 In a laminated structure of an oriented diamond film and a non-oriented diamond film, when at least one layer of the oriented diamond film is composed of the above high Σ3 diamond film, the coarsening of the crystal grains of the high Σ3 diamond film is caused by the non-oriented diamond film. In addition to being prevented, the high Σ3 diamond coating has a higher high-temperature strength, so even if the diamond coating is thickened, there is no risk of defects, resulting in long-term use. It can exhibit even better fracture resistance and wear resistance.
上記高Σ3ダイヤモンド皮膜および無配向ダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対して垂直な切断断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点に炭素からなる構成原子が存在するダイヤモンド構造の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(Nはダイヤモンド結晶構造上、2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成したところ、高Σ3ダイヤモンド皮膜ではΣ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が40%以上である構成原子共有格子点分布グラフを示すのに対して、無配向ダイヤモンド皮膜では、Σ3に最高ピークは存在せず、しかも、Σ3のΣN+1全体に占める分布割合は10%以下という小さな値であった。
そして、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が40%以上である構成原子共有格子点分布グラフを示す上記高Σ3ダイヤモンド皮膜は、無配向ダイヤモンド皮膜に比して、すぐれた高硬度、さらに、一段とすぐれた高強度を兼ね備えるものである。
With respect to the high Σ3 diamond film and the non-oriented diamond film, a field emission scanning electron microscope is used to irradiate the individual crystal grains existing within the measurement range of the cut cross-section polished surface perpendicular to the substrate surface with an electron beam, The inclination angle formed by the normal lines of the (110) plane and (111) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the substrate surface. Each of the constituent atoms is 1 between the crystal grains at the interface between the crystal grains adjacent to each other on the basis of the measurement tilt angle obtained as a result. The distribution of lattice points that share two constituent atoms (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is two or more on the diamond crystal structure) Even number When the existing constituent atomic shared lattice point form is expressed by ΣN + 1, the constituent atomic shared lattice points indicating the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency) When the distribution graph was created, the high Σ3 diamond film shows a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio of the Σ3 in the entire ΣN + 1 is 40% or more, In the non-oriented diamond film, the highest peak did not exist in Σ3, and the distribution ratio of Σ3 in the entire ΣN + 1 was a small value of 10% or less.
The high Σ3 diamond film showing a constituent atom shared lattice point distribution graph in which Σ3 has the highest peak and the distribution ratio of the Σ3 to the entire ΣN + 1 is 40% or more is higher than that of the non-oriented diamond film. It combines excellent high hardness and even higher strength.
この発明のダイヤモンド被覆工具は、配向ダイヤモンド皮膜(あるいは、その一部を高Σ3ダイヤモンド皮膜で置き換えたもの)が無配向ダイヤモンド皮膜との積層構造を構成していることにより、ダイヤモンド結晶粒の粗大化が防止され、その結果、厚膜化を行った場合でも、配向ダイヤモンド皮膜あるいは高Σ3ダイヤモンド皮膜の備えるすぐれた特性(硬度、強度)の劣化が生じることはない。
したがって、CFRP、Al合金等の高速切削加工に用いた場合にも、シャープな切刃を維持したまま、バリの発生もなく、すぐれた耐欠損性および耐摩耗性を長期の使用に亘って発揮するものである。
The diamond-coated tool of the present invention has a coarsened diamond crystal grain because the oriented diamond film (or a part of which is replaced with a high Σ3 diamond film) forms a laminated structure with the non-oriented diamond film. As a result, even when the film thickness is increased, the excellent characteristics (hardness and strength) of the oriented diamond film or the high Σ3 diamond film do not deteriorate.
Therefore, even when used for high-speed cutting of CFRP, Al alloy, etc., while maintaining a sharp cutting edge, it does not generate burrs and exhibits excellent fracture resistance and wear resistance over a long period of use. To do.
つぎに、この発明のダイヤモンド被覆工具を実施例により具体的に説明する。
なお、実施例1、3は、請求項1に係る発明の実施例、また、実施例2、4は、請求項2に係る発明の実施例である。
Next, the diamond-coated tool of the present invention will be specifically described with reference to examples.
Examples 1 and 3 are examples of the invention according to claim 1, and Examples 2 and 4 are examples of the invention according to claim 2.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の2枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powder was prepared, each of these raw material powders was blended in the blending composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, a tool bar forming round bar sintered body having a diameter of 13 mm is formed, and further, the above-mentioned round bar sintered body is subjected to grinding, so that the cutting blade portion diameter × length is 10 mm × 22 mm, and Tool bases (end mills) C-1 to C-8 made of a WC-based cemented carbide having a two-blade square shape with a twist angle of 30 degrees were produced.
ついで、これらの工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した後、酸溶液によるエッチングおよび/またはアルカリ溶液によるエッチング処理を行い、さらに、ダイヤモンド粉末スラリー液を用いて超音波洗浄器で超音波処理を行なった後、
(a1)まず、
フィラメント温度 2300℃、
フィラメント−基板間隔 15mm、
基板温度 850℃、
反応圧力 2.0kPa、
反応ガス CH4:1.5vol%,H2:残、
という条件で蒸着し、工具基体の表面に、表2に示される一層目標膜厚の(110)面配向ダイヤモンド皮膜を形成し、
(b1)ついで、上記配向ダイヤモンド皮膜の表面に、
フィラメント温度 2000℃、
フィラメント−基板間隔 15mm、
基板温度 800℃、
反応圧力 2.66kPa、
反応ガス CH4:4.5vol%,H2:残、
という条件で、表2に示される一層目標膜厚の無配向ダイヤモンド皮膜を形成し、
(c1)上記(a1)、(b1)を所要回数繰り返し、所望積層数、所望目標層厚のダイヤモンド皮膜を被覆して本発明ダイヤモンド被覆工具としての本発明ダイヤモンド被覆エンドミル(以下、本発明エンドミルという)1〜4をそれぞれ製造した。
Next, the surfaces of these tool bases (end mills) C-1 to C-4 are ultrasonically cleaned in acetone and dried, and then etching with an acid solution and / or etching with an alkali solution is performed. After performing ultrasonic treatment with an ultrasonic cleaner using the slurry liquid,
(A1) First,
Filament temperature 2300 ° C
Filament-substrate spacing 15mm,
Substrate temperature 850 ° C
Reaction pressure 2.0 kPa,
Reaction gas CH 4: 1.5vol%, H 2 : remainder,
(110) oriented diamond film having a target film thickness shown in Table 2 is formed on the surface of the tool base.
(B1) Then, on the surface of the oriented diamond film,
Filament temperature 2000 ° C
Filament-substrate spacing 15mm,
Substrate temperature 800 ° C
Reaction pressure 2.66 kPa,
Reaction gas CH 4: 4.5vol%, H 2 : remainder,
Under the conditions, a non-oriented diamond film having a target film thickness shown in Table 2 is formed.
(C1) The above-mentioned (a1) and (b1) are repeated as many times as necessary, and the diamond coating end mill (hereinafter referred to as the present invention end mill) is used as the diamond coated tool of the present invention by coating a diamond film having a desired number of layers and a desired target layer thickness. ) 1-4 were produced respectively.
また、上記工具基体(エンドミル)C−5〜C−8の表面に上記と同様のコーティング前処理を行なった後、
(d1)まず、
フィラメント温度 2500℃、
フィラメント−基板間隔 15mm、
基板温度 950℃、
反応圧力 2.0kPa、
反応ガス CH4:4.0vol%,H2:残、
という条件で蒸着し、工具基体の表面に、表2に示される一層目標膜厚の(111)面配向ダイヤモンド皮膜を形成し、
(e1)ついで、上記配向ダイヤモンド皮膜の表面に、
フィラメント温度 2000℃、
フィラメント−基板間隔 15mm、
基板温度 800℃、
反応圧力 2.66kPa、
反応ガス CH4:4.5vol%,H2:残、
という条件で、表2に示される一層目標膜厚の無配向ダイヤモンド皮膜を形成し、
(f1)上記(d1)、(e1)を所要回数繰り返し、所望積層数、所望目標層厚のダイヤモンド皮膜を被覆して本発明ダイヤモンド被覆工具としての本発明ダイヤモンド被覆エンドミル(以下、本発明エンドミルという)5〜8をそれぞれ製造した。
Moreover, after performing the same coating pretreatment as the above on the surface of the tool base (end mill) C-5 to C-8,
(D1) First,
Filament temperature 2500 ° C,
Filament-substrate spacing 15mm,
Substrate temperature 950 ° C
Reaction pressure 2.0 kPa,
Reaction gas CH 4 : 4.0 vol%, H 2 : remaining,
Vapor deposition was performed, and a (111) plane oriented diamond film having a target film thickness shown in Table 2 was formed on the surface of the tool base.
(E1) Next, on the surface of the oriented diamond film,
Filament temperature 2000 ° C
Filament-substrate spacing 15mm,
Substrate temperature 800 ° C
Reaction pressure 2.66 kPa,
Reaction gas CH 4: 4.5vol%, H 2 : remainder,
Under the conditions, a non-oriented diamond film having a target film thickness shown in Table 2 is formed.
(F1) The above-mentioned (d1) and (e1) are repeated as many times as necessary, and the diamond coating end mill (hereinafter referred to as the present invention end mill) is used as the diamond coated tool of the present invention by coating a diamond film having a desired number of layers and a desired target layer thickness. ) 5-8 were produced.
比較の目的で、上記の工具基体(エンドミル)C−1〜C−4の表面に上記と同様のコーティング前処理を施した状態で、上記実施例1の(a1)と同一の条件で、上記工具基体(エンドミル)の表面に、表3に示される目標膜厚の配向ダイヤモンド皮膜のみを蒸着形成することにより、比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆エンドミル(以下、比較エンドミルという)1〜4をそれぞれ製造した。 For the purpose of comparison, the surface of the tool base (end mill) C-1 to C-4 was subjected to the same coating pretreatment as above, under the same conditions as (a1) of Example 1 above. Comparative diamond-coated end mills (hereinafter referred to as comparative end mills) 1 to 4 as comparative diamond-coated tools are formed by depositing only an oriented diamond film having a target film thickness shown in Table 3 on the surface of a tool base (end mill). Each was manufactured.
また、さらに比較の目的で、上記の工具基体(エンドミル)C−5〜C−8の表面に上記と同様のコーティング前処理を施した状態で、上記実施例1の(b1)と同一の条件で、上記工具基体(エンドミル)の表面に、表3に示される目標膜厚の無配向ダイヤモンド皮膜のみを蒸着形成することにより、比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆エンドミル(以下、比較エンドミルという)5〜8をそれぞれ製造した。 Further, for the purpose of comparison, the same conditions as in (b1) of Example 1 above were applied to the surfaces of the tool bases (end mills) C-5 to C-8 in the same manner as described above. Then, a comparative diamond-coated end mill (hereinafter referred to as a comparative end mill) as a comparative diamond-coated tool is formed by vapor-depositing only the non-oriented diamond film having the target film thickness shown in Table 3 on the surface of the tool base (end mill). 5 to 8 were produced.
つぎに、上記本発明エンドミル1〜8および上記比較エンドミル1〜8の配向ダイヤモンド皮膜および無配向ダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した。 Next, with respect to the oriented diamond film and the non-oriented diamond film of the present invention end mills 1 to 8 and the comparative end mills 1 to 8, using a field emission scanning electron microscope, the measurement range of the film cross-section polished surface perpendicular to the substrate surface is measured. Irradiate each individual crystal grain with an electron beam, and measure the tilt angle formed by the normal lines of the (110) plane and (111) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the substrate surface In addition, the measured inclination angle within the range of 0 to 45 degrees out of the measured inclination angles is divided into pitches of 0.25 degrees, and the inclination angle number distribution is obtained by counting the frequencies existing in each section. Created a graph.
図3に、一例として、本発明エンドミル1の配向ダイヤモンド皮膜の(110)面についての傾斜角度数分布グラフを示すが、本発明エンドミル1〜8および比較エンドミル1〜4の配向ダイヤモンド皮膜の(110)面の傾斜角度数分布グラフは、いずれもほぼ同様な傾斜角度数分布グラフを示し、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めていた。
図4には、一例として、本発明エンドミル5の配向ダイヤモンド皮膜の(111)面についての傾斜角度数分布グラフを示すが、本発明エンドミル1〜8および比較エンドミル1〜4の配向ダイヤモンド皮膜の(111)面の傾斜角度数分布グラフは、いずれもほぼ同様な傾斜角度数分布グラフを示し、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占めた。
図5には、一例として、比較エンドミル6の無配向ダイヤモンド皮膜の(110)面についての傾斜角度数分布グラフを示すが、本発明エンドミル1〜8および比較エンドミル5〜8の配向ダイヤモンド皮膜の(110)面の傾斜角度数分布グラフは、いずれもほぼ同様な傾斜角度数分布グラフを示した。即ち、0〜10度の範囲内の傾斜角区分には特段のピークが存在せず、0〜10度の範囲内に存在する度数の合計も、傾斜角度数分布グラフにおける度数全体の40%以下にすぎない小さな値であった。
図6には、一例として、比較エンドミル8の無配向ダイヤモンド皮膜の(111)面についての傾斜角度数分布グラフを示すが、本発明エンドミル1〜8および比較エンドミル5〜8の配向ダイヤモンド皮膜の(111)面の傾斜角度数分布グラフは、いずれもほぼ同様な傾斜角度数分布グラフを示した。即ち、0〜10度の範囲内の傾斜角区分には特段のピークが存在せず、0〜10度の範囲内に存在する度数の合計も、傾斜角度数分布グラフにおける度数全体の40%以下にすぎない小さな値であった。
As an example, FIG. 3 shows an inclination angle number distribution graph with respect to the (110) plane of the oriented diamond film of the present invention end mill 1, and (110) of the oriented diamond film of the present invention end mills 1-8 and comparative end mills 1-4. ) Surface inclination angle number distribution graphs show almost the same inclination angle number distribution graphs, and the highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and within the range of 0 to 10 degrees. The total of the frequencies existing in occupies 50% or more of the entire frequencies in the inclination angle frequency distribution graph.
FIG. 4 shows, as an example, an inclination angle number distribution graph with respect to the (111) plane of the oriented diamond film of the present invention end mill 5, and the oriented diamond films of the present invention end mills 1 to 8 and comparative end mills 1 to 4 ( The 111) plane inclination angle number distribution graphs show almost the same inclination angle number distribution graphs. The highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the range of 0 to 10 degrees. The total of the frequencies existing in the occupancy accounted for 50% or more of the total frequencies in the inclination angle frequency distribution graph.
FIG. 5 shows, as an example, an inclination angle number distribution graph with respect to the (110) plane of the non-oriented diamond film of the comparative end mill 6, and the oriented diamond films of the present invention end mills 1 to 8 and comparative end mills 5 to 8 ( 110) surface inclination angle number distribution graphs showed almost the same inclination angle number distribution graphs. That is, there is no special peak in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is 40% or less of the entire degrees in the inclination angle distribution graph. It was only a small value.
FIG. 6 shows, as an example, an inclination angle number distribution graph for the (111) plane of the non-oriented diamond film of the comparative end mill 8, and the oriented diamond films of the present invention end mills 1 to 8 and comparative end mills 5 to 8 ( The inclination angle number distribution graph of the (111) plane is almost the same inclination angle number distribution graph. That is, there is no special peak in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is 40% or less of the entire degrees in the inclination angle distribution graph. It was only a small value.
表2、表3に、本発明エンドミル1〜8および上記比較エンドミル1〜8の配向ダイヤモンド皮膜および無配向ダイヤモンドダイヤモンド皮膜について測定された最高ピークが存在する傾斜角区分、0〜10度の範囲内に存在する度数割合等を示す。 Tables 2 and 3 show the tilt angle sections where the highest peaks measured for the oriented diamond films and the non-oriented diamond diamond films of the present invention end mills 1 to 8 and the comparative end mills 1 to 8 are in the range of 0 to 10 degrees. The frequency ratio etc. present in
また、本発明エンドミル1〜8および比較エンドミル1〜4の配向ダイヤモンド皮膜について、平均ダイヤモンド粒径を測定したところ、比較エンドミル1〜4の配向ダイヤモンド皮膜では、平均ダイヤモンド粒径は2.0〜5.0μmであり、一方、本発明エンドミル1〜8の配向ダイヤモンド皮膜では、平均ダイヤモンド粒径は0.2〜1.5μmであることから、本発明の配向ダイヤモンド皮膜では、ダイヤモンド結晶粒の粗大化が充分抑制されていることがわかる。 Further, when the average diamond particle size was measured for the oriented diamond films of the present invention end mills 1 to 8 and comparative end mills 1 to 4, the average diamond particle diameter of the oriented diamond films of comparative end mills 1 to 4 was 2.0 to 5. On the other hand, in the oriented diamond film of the end mills 1 to 8 of the present invention, the average diamond particle diameter is 0.2 to 1.5 μm. Therefore, in the oriented diamond film of the present invention, the diamond crystal grains are coarsened. It can be seen that is sufficiently suppressed.
つぎに、上記本発明エンドミル1〜8および上記比較エンドミル1〜8のうち、
本発明エンドミル1、2、5、6および比較エンドミル1、2、5、6については、
被削材−平面寸法:100mm×250mm、厚さ:5mmの、炭素繊維と熱硬化型エポキシ系樹脂が直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 250 m/min.、
切断加工:(5 mm)、
テーブル送り: 1600 mm/分、
エアーブロー、
の条件(切削条件A)での上記CFRPの乾式高速切断加工試験、
本発明エンドミル3、4、7、8および比較エンドミル3、4、7、8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、JIS・ADC12の板材、
切削速度: 400 m/min.、
溝深さ(切り込み):径方向(ae)2.5mm,軸方向(ap)8mm、
テーブル送り: 1300 mm/分、
エアーブロー、
の条件(切削条件B)での上記Al合金の乾式高速側面切削加工試験、
をそれぞれ行い、いずれの切削加工試験でも切刃部に欠損が発生するまでの切削溝長、あるいは、被削材にバリが発生するまでの切削溝長を測定した。
これらの測定結果を表4にそれぞれ示した。
Next, of the present invention end mills 1-8 and the comparative end mills 1-8,
For the present invention end mills 1, 2, 5, 6 and comparative end mills 1, 2, 5, 6
Workpiece material-planar dimensions: 100 mm × 250 mm, thickness: 5 mm, carbon fiber reinforced resin composite material (CFRP) plate material having an orthogonal laminated structure of carbon fiber and thermosetting epoxy resin,
Cutting speed: 250 m / min. ,
Cutting process: (5 mm),
Table feed: 1600 mm / min,
Air blow,
The above-mentioned CFRP dry high-speed cutting test under the above conditions (cutting condition A),
For the present invention end mills 3, 4, 7, 8 and comparative end mills 3, 4, 7, 8
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm, JIS / ADC12 plate material,
Cutting speed: 400 m / min. ,
Groove depth (cut): radial direction (ae) 2.5 mm, axial direction (ap) 8 mm,
Table feed: 1300 mm / min,
Air blow,
Dry high-speed side cutting test of the above Al alloy under the following conditions (cutting condition B),
In each cutting test, the cutting groove length until the cutting edge portion was damaged or the cutting groove length until the burr was generated in the work material was measured.
These measurement results are shown in Table 4, respectively.
次に、実施例1で使用したのと同じ工具基体(エンドミル)C−1〜C−8の表面に実施例1と同様のコーティング前処理を施した状態で、
(a1)まず、
フィラメント温度 2300℃、
フィラメント−基板間隔 15mm、
基板温度 850℃、
反応圧力 2.0kPa、
反応ガス CH4:1.5vol%,H2:残、
という条件で蒸着し、工具基体の表面に、表5に示される一層目標膜厚の(110)面配向ダイヤモンド皮膜を形成し、
(b2)ついで、上記(110)面配向ダイヤモンド皮膜の表面に、
フィラメント温度 2100℃、
フィラメント−基板間隔 15mm、
基板温度 800℃、
反応圧力 2.66kPa、
反応ガス CH4:5.0vol%,H2:残、
という条件で、表5に示される一層目標膜厚の無配向ダイヤモンド皮膜を形成し、上記(a1)および(b2)の工程を繰り返し行なうことにより、所望積層数のダイヤモンド皮膜を被覆するにあたり、
上記(a1)により形成される(110)面配向ダイヤモンド皮膜のうちの少なくとも一つの層については、
(a2)
フィラメント温度 2400℃、
フィラメント−基板間隔 15mm、
基板温度 850℃、
反応圧力 2.0kPa、
反応ガス CH4:2.0vol%,N2:1.0vol%,H2:残、
という条件に変更して、表5に示される積層数、一層目標膜厚の高Σ3ダイヤモンド皮膜を蒸着形成することにより、
(c2)工具基体の表面に、(110)面配向ダイヤモンド皮膜および無配向ダイヤモンド皮膜の繰り返し積層および少なくとも一層の高Σ3ダイヤモンド皮膜からなる、所望積層数、所望目標層厚の、本発明ダイヤモンド被覆工具としての本発明ダイヤモンド被覆エンドミル(以下、本発明エンドミルという)11〜18をそれぞれ製造した。
Next, in the state where the same coating pretreatment as in Example 1 was performed on the surface of the same tool base (end mill) C-1 to C-8 used in Example 1,
(A1) First,
Filament temperature 2300 ° C
Filament-substrate spacing 15mm,
Substrate temperature 850 ° C
Reaction pressure 2.0 kPa,
Reaction gas CH 4: 1.5vol%, H 2 : remainder,
Vapor deposition was performed, and a (110) plane oriented diamond film having a target film thickness shown in Table 5 was formed on the surface of the tool base,
(B2) Next, on the surface of the (110) plane-oriented diamond film,
Filament temperature 2100 ° C,
Filament-substrate spacing 15mm,
Substrate temperature 800 ° C
Reaction pressure 2.66 kPa,
Reaction gas CH 4: 5.0vol%, H 2 : remainder,
Under the conditions, a non-oriented diamond film having a target film thickness shown in Table 5 is formed, and the above steps (a1) and (b2) are repeated to coat a diamond film having a desired number of layers.
For at least one of the (110) plane oriented diamond films formed by (a1) above,
(A2)
Filament temperature 2400 ° C,
Filament-substrate spacing 15mm,
Substrate temperature 850 ° C
Reaction pressure 2.0 kPa,
Reaction gas CH 4: 2.0vol%, N 2 : 1.0vol%, H 2: remainder,
By changing the conditions to the number of layers shown in Table 5 and forming a high Σ3 diamond film with a target film thickness by vapor deposition,
(C2) The diamond-coated tool of the present invention having a desired number of laminations and a desired target layer thickness, comprising a repeated lamination of (110) face-oriented diamond coating and non-oriented diamond coating and at least one high Σ3 diamond coating on the surface of the tool substrate The present invention diamond-coated end mill (hereinafter referred to as the present invention end mill) 11 to 18 was produced.
つぎに、本発明エンドミル11〜18の高Σ3ダイヤモンド皮膜および前記比較エンドミル1〜8の配向ダイヤモンド皮膜および無配向ダイヤモンドダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な切断断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、構成原子であるC原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(Nは面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した。 Next, with respect to the high Σ3 diamond film of the end mills 11 to 18 of the present invention and the oriented diamond film and the non-oriented diamond diamond film of the comparative end mills 1 to 8, a section cut perpendicular to the substrate surface using a field emission scanning electron microscope. The crystal grains existing within the measurement range of the polished surface are irradiated with electron beams, and the normal lines of the (110) plane and the (111) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the substrate surface Is measured, and based on the measurement inclination angle obtained as a result, each of C atoms as constituent atoms forms one constituent atom between the crystal grains at the interface between adjacent crystal grains. The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is two or more on the crystal structure of the face-centered cubic crystal) When the constituent atomic shared lattice point form that is present is expressed as ΣN + 1, the constituent atomic sharing that indicates the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency) A grid point distribution graph was created.
図7に、一例として、本発明エンドミル14の高Σ3ダイヤモンド皮膜の構成原子共有格子点分布グラフを示すが、本発明エンドミル11〜18のいずれもΣ3に最高ピークが存在し、かつΣ3のΣN+1全体に占める分布割合が40%以上である構成原子共有格子点分布グラフを示している。
これに対して、比較エンドミル1〜8の配向ダイヤモンド皮膜および無配向ダイヤモンドダイヤモンド皮膜の構成原子共有格子点分布グラフでは、Σ3に最高ピークが存在するものの、Σ3のΣN+1全体に占める分布割合は40%未満の小さな値であった。
図8には、一例として、比較エンドミル8の無配向ダイヤモンド皮膜の構成原子共有格子点分布グラフを示すが、比較エンドミル1〜8の配向ダイヤモンド皮膜および無配向ダイヤモンドダイヤモンド皮膜の構成原子共有格子点分布グラフは、いずれもほぼ同様な傾向を示した。
FIG. 7 shows, as an example, a constituent atomic shared lattice point distribution graph of the high Σ3 diamond film of the end mill 14 of the present invention. In any of the end mills 11 to 18 of the present invention, the highest peak exists in Σ3, and the entire ΣN + 1 of Σ3 5 shows a constituent atom shared lattice point distribution graph with a distribution ratio of 40% or more.
On the other hand, in the constituent atomic shared lattice point distribution graphs of the oriented diamond films and the non-oriented diamond diamond films of the comparative end mills 1 to 8, the highest peak exists in Σ3, but the distribution ratio of Σ3 in the entire ΣN + 1 is 40%. Small value less than.
FIG. 8 shows, as an example, a constituent atomic shared lattice point distribution graph of the non-oriented diamond film of the comparative end mill 8. The constituent atomic shared lattice point distributions of the oriented diamond film and the non-oriented diamond diamond film of the comparative end mills 1 to 8 are shown. The graphs showed almost the same trend.
表5に、本発明エンドミル11〜18の高Σ3ダイヤモンド皮膜について測定されたΣ3のΣN+1全体に占める分布割合を示す。なお、参考のため、表3には、比較エンドミル1〜8の配向ダイヤモンド皮膜あるいは無配向ダイヤモンドダイヤモンド皮膜について測定したΣ3のΣN+1全体に占める分布割合を示す。 Table 5 shows the distribution ratio of Σ3 in the total ΣN + 1 measured for the high Σ3 diamond coatings of the end mills 11 to 18 of the present invention. For reference, Table 3 shows the distribution ratio of Σ3 in the total ΣN + 1 measured for the oriented diamond films or non-oriented diamond diamond films of comparative end mills 1-8.
また、本発明エンドミル11〜18の高Σ3ダイヤモンド皮膜について、平均ダイヤモンド粒径を測定したところ、表5に示すように、平均ダイヤモンド粒径は0.2〜1.5μmであって、本発明の高Σ3ダイヤモンド皮膜では、ダイヤモンド結晶粒の粗大化が充分抑制されていることがわかる。 Further, when the average diamond particle size of the high Σ3 diamond film of the present invention end mills 11 to 18 was measured, as shown in Table 5, the average diamond particle size was 0.2 to 1.5 μm. It can be seen that in the high Σ3 diamond film, the coarsening of the diamond crystal grains is sufficiently suppressed.
つぎに、上記本発明エンドミル11〜18のうち、
本発明エンドミル11、12、15、16について、
被削材−平面寸法:100mm×250mm、厚さ:8mmの、炭素繊維と熱硬化型エポキシ系樹脂が直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 230 m/min.、
切断加工:(5 mm)、
テーブル送り: 1500 mm/分、
エアーブロー、
の条件(切削条件C)での上記CFRPの乾式高速切断加工試験、
本発明エンドミル13、14、17、18については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、JIS・ADC12の板材、
切削速度: 450 m/min.、
溝深さ(切り込み):径方向(ae)2.0mm,軸方向(ap)8mm、
テーブル送り: 1500 mm/分、
の条件(切削条件D)での上記Al合金の乾式高速側面切削加工試験、
をそれぞれ行い、いずれの切削加工試験でも切刃部に欠損が発生するまでの切削溝長、あるいは、被削材にバリが発生するまでの切削溝長を測定した。
これらの測定結果を表5にそれぞれ示した。
Next, of the present invention end mills 11-18,
About the present invention end mills 11, 12, 15, 16
Work material-planar dimensions: 100 mm × 250 mm, thickness: 8 mm, carbon fiber reinforced resin composite material (CFRP) plate material with carbon fiber and thermosetting epoxy resin having an orthogonal laminated structure,
Cutting speed: 230 m / min. ,
Cutting process: (5 mm),
Table feed: 1500 mm / min,
Air blow,
The above-mentioned CFRP dry high-speed cutting test under the above conditions (cutting conditions C),
About the present invention end mills 13, 14, 17, 18
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm, JIS / ADC12 plate material,
Cutting speed: 450 m / min. ,
Groove depth (cut): radial direction (ae) 2.0 mm, axial direction (ap) 8 mm,
Table feed: 1500 mm / min,
Dry high-speed side cutting test of the above Al alloy under the following conditions (cutting condition D),
In each cutting test, the cutting groove length until the cutting edge portion was damaged or the cutting groove length until the burr was generated in the work material was measured.
These measurement results are shown in Table 5, respectively.
上記の実施例1で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが10mm×22mmの寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。 Using the round bar sintered body with a diameter of 13 mm manufactured in Example 1 above, from this round bar sintered body, the diameter x length of the groove forming part is 10 mm x 22 mm by grinding, Also, tool bases (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were manufactured.
ついで、これらの工具基体(ドリル)D−1〜D−4の切刃に、ホーニングを施し、上記実施例1と同様のコーティング前処理を施した後、上記実施例1の(a1)〜(c1)と同一の条件で、工具基体(ドリル)D−1〜D−4の表面に、表6に示される積層数、目標層厚の配向ダイヤモンドおよび無配向ダイヤモンドからなるダイヤモンド皮膜を被覆して本発明ダイヤモンド被覆工具としての本発明ダイヤモンド被覆ドリル(以下、本発明ドリルという)1〜4をそれぞれ製造した。 Next, honing is applied to the cutting edges of these tool bases (drills) D-1 to D-4, and the same coating pretreatment as that in Example 1 is performed. Under the same conditions as in c1), the surface of the tool base (drill) D-1 to D-4 is coated with a diamond film made of oriented diamond and non-oriented diamond with the number of layers and target layer thickness shown in Table 6. The present diamond coated drills (hereinafter referred to as the present drill) 1 to 4 as the diamond coated tool of the present invention were produced.
また、上記工具基体(ドリル)D−5〜D−8の切刃に、ホーニングを施し、上記実施例1と同様のコーティング前処理を施した後、上記実施例1の(d1)〜(f1)と同一の条件で、工具基体(ドリル)D−5〜D−8の表面に、表6に示される積層数、目標層厚の配向ダイヤモンドおよび無配向ダイヤモンドからなるダイヤモンド皮膜を被覆して本発明ダイヤモンド被覆工具としての本発明ダイヤモンド被覆ドリル(以下、本発明ドリルという)5〜8をそれぞれ製造した。 In addition, honing is performed on the cutting edges of the tool bases (drills) D-5 to D-8, and the same coating pretreatment as that of the first embodiment is performed, and then (d1) to (f1) of the first embodiment. The surface of the tool base (drill) D-5 to D-8 is coated with a diamond film made of oriented diamond and non-oriented diamond with the target number of layers and the target layer thickness shown in Table 6. Inventive diamond-coated drills (hereinafter referred to as the present invention drills) 5 to 8 as inventive diamond-coated tools were produced, respectively.
比較の目的で、上記の工具基体(ドリル)D−1、D−2、D−5、D−6の表面に、ホーニングを施し、上記実施例1と同様のコーティング前処理を施した後、上記実施例1の(a1)と同一の条件で、上記工具基体(ドリル)の表面に、表7に示される目標膜厚の配向ダイヤモンド皮膜のみを蒸着形成することにより、比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆ドリル(以下、比較ドリル)1、2、5、6をそれぞれ製造した。 For the purpose of comparison, honing was performed on the surface of the tool base (drill) D-1, D-2, D-5, D-6, and the same coating pretreatment as in Example 1 was performed. By forming only the oriented diamond film having the target film thickness shown in Table 7 on the surface of the tool base (drill) under the same conditions as in (a1) of Example 1 above, a comparative diamond-coated tool was obtained. Comparative diamond-coated drills (hereinafter referred to as comparative drills) 1, 2, 5, and 6 were produced.
また、さらに比較の目的で、上記の工具基体(ドリル)D−3、D−4、D−7、D−8の表面に上記実施例1と同様のコーティング前処理を施した状態で、上記実施例1の(b1)と同一の条件で、上記工具基体(ドリル)の表面に、表7に示される目標膜厚の無配向ダイヤモンド皮膜のみを蒸着形成することにより、比較ダイヤモンド被覆工具としての比較ダイヤモンド被覆ドリル(以下、比較ドリルという)3、4、7、8をそれぞれ製造した。 Further, for the purpose of comparison, the surface of the tool base (drill) D-3, D-4, D-7, D-8 was subjected to the same coating pretreatment as in Example 1, By forming only the non-oriented diamond film having the target film thickness shown in Table 7 on the surface of the tool base (drill) under the same conditions as in (b1) of Example 1, a comparative diamond-coated tool was obtained. Comparative diamond-coated drills (hereinafter referred to as comparative drills) 3, 4, 7, and 8 were produced.
つぎに、上記本発明ドリル1〜8および比較ドリル1〜8のうち、
本発明ドリル1〜4および比較ドリル1〜4については、
被削材−平面寸法:100mm×250mm、厚さ:8mmの、炭素繊維と熱硬化型エポキシ系樹脂が直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 200 m/min.、
送り: 0.06 mm/rev、
貫通穴:(8 mm)、
エアーブロー、
の条件(切削条件E)での上記CFRPの乾式高速穴あけ切削加工試験、
本発明ドリル5〜8および比較ドリル5〜8については、
被削材−平面寸法:100mm×250mm、厚さ:15mmの、JIS・ADC12の板材
切削速度: 220 m/min.、
送り: 0.08 mm/rev、
貫通穴:(15 mm)、
エアーブロー、
の条件(切削条件F)での上記Al合金の乾式高速穴あけ切削加工試験、
をそれぞれ行い、いずれの乾式高速穴あけ切削加工試験でも、切屑つまりにより切削不能になるまでの穴あけ加工数を測定した。
この測定結果を表8にそれぞれ示した。
Next, among the above-mentioned drills 1-8 and comparative drills 1-8,
About this invention drills 1-4 and comparative drills 1-4,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 8 mm, carbon fiber reinforced resin composite material (CFRP) plate material with carbon fiber and thermosetting epoxy resin having an orthogonal laminated structure,
Cutting speed: 200 m / min. ,
Feed: 0.06 mm / rev,
Through hole: (8 mm),
Air blow,
The above-mentioned CFRP dry high speed drilling cutting test under the above conditions (cutting condition E),
About this invention drill 5-8 and comparative drills 5-8,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 15mm, JIS / ADC12 Plate Material
Cutting speed: 220 m / min. ,
Feed: 0.08 mm / rev,
Through hole: (15 mm),
Air blow,
Dry high-speed drilling test of the above Al alloy under the above conditions (cutting condition F),
In each dry high-speed drilling test, the number of drilling processes until cutting was impossible due to chips or clogging was measured.
The measurement results are shown in Table 8, respectively.
次に、実施例3で使用したのと同じ工具基体(ドリル)D−1〜D−8の表面に実施例1と同様のコーティング前処理を施した状態で、上記実施例2の(a1)、(a2)、(b2)、(c2)と同一の条件で、工具基体(ドリル)D−1〜D−8の表面に、表9に示される積層数、目標層厚の配向ダイヤモンド、高Σ3ダイヤモンドおよび無配向ダイヤモンドからなるダイヤモンド皮膜を被覆して、本発明ダイヤモンド被覆工具としての本発明ダイヤモンド被覆ドリル(以下、本発明ドリルという)11〜18をそれぞれ製造した。 Next, in the state where the same coating pretreatment as in Example 1 was applied to the surfaces of the same tool bases (drills) D-1 to D-8 used in Example 3, (a1) in Example 2 above. , (A2), (b2), and (c2), on the surface of the tool base (drill) D-1 to D-8, the number of layers shown in Table 9 and the oriented diamond of the target layer thickness, The diamond coating consisting of Σ3 diamond and non-oriented diamond was coated to produce diamond-coated drills 11 to 18 of the present invention (hereinafter referred to as drills of the present invention) as diamond-coated tools of the present invention.
つぎに、本発明ドリル11〜18の高Σ3ダイヤモンド皮膜および前記比較ドリル1〜8の配向ダイヤモンド皮膜および無配向ダイヤモンドダイヤモンド皮膜について、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な切断断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、構成原子であるC原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(Nは面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した。 Next, with respect to the high Σ3 diamond film of the drills 11 to 18 of the present invention and the oriented diamond film and the non-oriented diamond diamond film of the comparative drills 1 to 8, a section cut perpendicular to the substrate surface using a field emission scanning electron microscope. The crystal grains existing within the measurement range of the polished surface are irradiated with electron beams, and the normal lines of the (110) plane and the (111) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the substrate surface Is measured, and based on the measurement inclination angle obtained as a result, each of C atoms as constituent atoms forms one constituent atom between the crystal grains at the interface between adjacent crystal grains. The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is an even number of 2 or more in the crystal structure of the face-centered cubic crystal) When In the case where the existing constituent atom shared lattice point form is represented by ΣN + 1, each constituent ΣN + 1 indicates the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value of N is 28 due to the frequency) A distribution graph was created.
表9に、本発明ドリル11〜18の高Σ3ダイヤモンド皮膜について測定されたΣ3のΣN+1全体に占める分布割合を示す。なお、参考のため、表7に、比較ドリル1〜8の配向ダイヤモンド皮膜、無配向ダイヤモンドダイヤモンド皮膜について測定したΣ3のΣN+1全体に占める分布割合を示す。 Table 9 shows the distribution ratio of Σ3 in the total ΣN + 1 measured for the high Σ3 diamond film of the drills 11 to 18 of the present invention. For reference, Table 7 shows the distribution ratio of Σ3 to the entire ΣN + 1 measured for the oriented diamond films and non-oriented diamond diamond films of Comparative Drills 1-8.
本発明ドリル11〜18の高Σ3ダイヤモンド皮膜について、平均ダイヤモンド粒径を測定したところ、平均ダイヤモンド粒径は0.2〜1.5μmであって、本発明の高Σ3ダイヤモンド皮膜では、ダイヤモンド結晶粒の粗大化が充分抑制されていることがわかる。 With respect to the high Σ3 diamond film of the drills 11 to 18 of the present invention, when the average diamond particle diameter was measured, the average diamond particle diameter was 0.2 to 1.5 μm. In the high Σ3 diamond film of the present invention, the diamond crystal grains It can be seen that the coarsening of is sufficiently suppressed.
つぎに、上記本発明ドリル11〜18のうち、
本発明ドリル11〜14について、
被削材−平面寸法:100mm×250mm、厚さ:8mmの、炭素繊維と熱硬化型エポキシ系樹脂が直交積層構造を持つ炭素繊維強化樹脂複合材(CFRP)の板材、
切削速度: 180 m/min.、
送り: 0.07 mm/rev、
貫通穴:(8 mm)、
の条件(切削条件G)での上記CFRPの乾式高速穴あけ切削加工試験、
本発明ドリル15〜18については、
被削材−平面寸法:100mm×250mm、厚さ:15mmの、JIS・ADC12の板材
切削速度: 200 m/min.、
送り: 0.10 mm/rev、
貫通穴:(15 mm)、
の条件(切削条件H)での上記Al合金の乾式高速穴あけ切削加工試験、
をそれぞれ行い、いずれの乾式高速穴あけ切削加工試験でも、切屑つまりにより切削不能になるまでの穴あけ加工数を測定した。
この測定結果を表9にそれぞれ示した。
Next, among the drills 11 to 18 of the present invention,
About this invention drill 11-14,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 8 mm, carbon fiber reinforced resin composite material (CFRP) plate material with carbon fiber and thermosetting epoxy resin having an orthogonal laminated structure,
Cutting speed: 180 m / min. ,
Feed: 0.07 mm / rev,
Through hole: (8 mm),
CFRP dry high-speed drilling test under the above conditions (cutting condition G),
About this invention drill 15-18,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 15mm, JIS / ADC12 Plate Material
Cutting speed: 200 m / min. ,
Feed: 0.10 mm / rev,
Through hole: (15 mm),
Dry high speed drilling test of the above Al alloy under the above conditions (cutting condition H),
In each dry high-speed drilling test, the number of drilling processes until cutting was impossible due to chips or clogging was measured.
The measurement results are shown in Table 9, respectively.
表2〜9に示される結果から、本発明ダイヤモンド被覆工具としての本発明エンドミル1〜8、11〜18および本発明ドリル1〜8、11〜18は、配向ダイヤモンド皮膜あるいは高Σ3ダイヤモンド皮膜がすぐれた高硬度、高強度を備えるとともに、無配向ダイヤモンド皮膜を介して積層構造を構成していることによって、配向ダイヤモンドあるいは高Σ3ダイヤモンドダイヤモンドの結晶粒の粗大化が防止されるため、厚膜化が可能であり、その結果、金属材料よりも比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の高速切削に際し、長期の使用に亘って、シャープな切刃が維持されるとともにバリ発生が少なく、すぐれた耐欠損性とすぐれた耐摩耗性を発揮するのに対して、配向ダイヤモンド皮膜のみ、あるいは、無配向ダイヤモンド皮膜ダイヤモンド皮膜のみを被覆した比較エンドミル1〜8、また、比較ドリル1〜8においては、強度が劣りまた厚膜化ができないため、切刃の劣化、バリの発生等が生じるとともに、欠損の発生、耐摩耗性の劣化により工具寿命が短命なものであった。 From the results shown in Tables 2 to 9, the present end mills 1 to 8, 11 to 18 and the present drills 1 to 8 and 11 to 18 as the diamond coated tool of the present invention are excellent in oriented diamond film or high Σ3 diamond film. High hardness, high strength, and a laminated structure with a non-oriented diamond film prevents the coarsening of crystal grains of oriented diamond or high Σ3 diamond diamond. As a result, when cutting at high speeds such as CFRP with higher specific strength and specific rigidity than metal materials or Al alloy with high weldability, a sharp cutting edge is maintained and burrs are generated over a long period of use. It has few fractures and excellent fracture resistance and excellent wear resistance, while it has only an oriented diamond film or no In the comparative end mills 1 to 8 and the comparative drills 1 to 8 coated only with the oriented diamond film and the diamond film, the strength is inferior and the film cannot be thickened. The tool life was short due to the occurrence of wear and deterioration of wear resistance.
上述のように、この発明のダイヤモンド被覆工具は、通常条件での切削加工は勿論のこと、金属材料よりも比強度、比剛性の高いCFRPあるいは溶着性の高いAl合金等の高速切削においても、切刃の劣化、バリの発生を防止し、長期の使用に亘って、すぐれた耐欠損性と耐摩耗性を発揮するものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the diamond-coated tool of the present invention can be used not only for cutting under normal conditions but also for high-speed cutting such as CFRP having a higher specific strength and specific rigidity than a metal material or Al alloy having a high weldability. Prevents the deterioration of the cutting edge and the generation of burrs, and exhibits excellent chipping resistance and wear resistance over a long period of use. It can cope with energy saving and cost reduction sufficiently satisfactorily.
Claims (2)
上記ダイヤモンド皮膜は、一層膜厚0.8〜5μmの配向ダイヤモンド皮膜と一層膜厚0.05〜0.5μmの無配向ダイヤモンド皮膜との少なくとも3層以上の積層構造からなり、さらに、前記配向ダイヤモンド皮膜は、電界放出型走査電子顕微鏡を用い、基体表面に対し垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、(110)面または(111)面の少なくともいずれかの面について、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50%以上の割合を占める傾斜角度数分布グラフを示すダイヤモンド皮膜であることを特徴とするダイヤモンド被覆工具。 In a diamond coated tool in which a diamond coating is coated on the surface of a tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
The diamond film has a laminated structure of at least three layers of an oriented diamond film with a thickness of 0.8 to 5 μm and a non-oriented diamond film with a thickness of 0.05 to 0.5 μm. The film uses a field emission scanning electron microscope, irradiates an electron beam to each crystal grain existing in the measurement range of the film cross-section polished surface perpendicular to the substrate surface, and the normal to the substrate surface, The inclination angle formed by the normal lines of the (110) plane and the (111) plane, which are the crystal planes of the crystal grains, is measured, and the measurement inclination angle within the range of 0 to 45 degrees is set to 0. When it is divided into 25-degree pitches and represented by an inclination angle number distribution graph obtained by counting the frequencies existing in each division, at least one of the (110) plane and the (111) plane is 0. -10 degrees The number of inclination angles in which the highest peak is present in the inclination angle section within the range of 0, and the total of the frequencies existing in the range of 0 to 10 degrees occupies 50% or more of the entire frequency in the inclination angle distribution graph A diamond-coated tool characterized by being a diamond film showing a distribution graph.
上記配向ダイヤモンド皮膜のうちの少なくとも一つの層は、電界放出型走査電子顕微鏡を用い、基体表面に対して垂直な皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記基体表面の法線に対して、前記結晶粒の結晶面である(110)面および(111)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点に炭素からなる構成原子が存在するダイヤモンド構造の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(Nはダイヤモンド構造の結晶構造上、2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が40%以上である構成原子共有格子点分布グラフを示す高Σ3ダイヤモンド皮膜であることを特徴とする請求項1記載のダイヤモンド被覆工具。 The diamond-coated tool according to claim 1,
At least one layer of the above-mentioned oriented diamond film is irradiated with an electron beam on each crystal grain existing within the measurement range of the polished cross section of the film perpendicular to the substrate surface using a field emission scanning electron microscope. The inclination angle formed by the normal lines of the (110) plane and (111) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the substrate surface. In this case, the crystal grains are carbon atoms at lattice points. Each of the constituent atoms between the crystal grains at the interface between the adjacent crystal grains based on the measured tilt angle. The distribution of lattice points that share one constituent atom (constituent atom shared lattice point) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is the crystal structure of the diamond structure, An even number of 2 or more ) When an existing constituent atom shared lattice point form is represented by ΣN + 1, the constituent atom shared lattice point distribution indicating the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit value of N is 28 due to frequency) 2. The high Σ3 diamond film showing a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio of the Σ3 to the entire ΣN + 1 is 40% or more. The diamond-coated tool described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008099358A JP5163879B2 (en) | 2008-04-07 | 2008-04-07 | Diamond coated tool with excellent fracture resistance and wear resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008099358A JP5163879B2 (en) | 2008-04-07 | 2008-04-07 | Diamond coated tool with excellent fracture resistance and wear resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009248249A JP2009248249A (en) | 2009-10-29 |
JP5163879B2 true JP5163879B2 (en) | 2013-03-13 |
Family
ID=41309415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008099358A Active JP5163879B2 (en) | 2008-04-07 | 2008-04-07 | Diamond coated tool with excellent fracture resistance and wear resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5163879B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5402543B2 (en) * | 2009-11-09 | 2014-01-29 | 三菱マテリアル株式会社 | Diamond-coated tool with excellent fracture and wear resistance |
JP5499650B2 (en) * | 2009-11-16 | 2014-05-21 | 三菱マテリアル株式会社 | Diamond-coated tools with excellent peeling and wear resistance |
JP5499751B2 (en) * | 2010-02-16 | 2014-05-21 | 三菱マテリアル株式会社 | Diamond-coated tools with excellent fracture resistance |
JP5590330B2 (en) * | 2011-02-07 | 2014-09-17 | 三菱マテリアル株式会社 | Diamond coated cutting tool |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2603257B2 (en) * | 1987-06-05 | 1997-04-23 | 株式会社神戸製鋼所 | Diamond multilayer thin film |
JP2949863B2 (en) * | 1991-01-21 | 1999-09-20 | 住友電気工業株式会社 | High toughness polycrystalline diamond and method for producing the same |
JP3416967B2 (en) * | 1992-12-10 | 2003-06-16 | 日本精工株式会社 | Artificial diamond coating film and method of forming the same |
JPH07315989A (en) * | 1994-04-01 | 1995-12-05 | Ngk Spark Plug Co Ltd | Production of diamond coated member |
CA2202225C (en) * | 1996-05-16 | 2000-12-26 | James M. Olson | Synthetic diamond wear component and method |
JP2006130578A (en) * | 2004-11-02 | 2006-05-25 | Nachi Fujikoshi Corp | Diamond coating tool |
-
2008
- 2008-04-07 JP JP2008099358A patent/JP5163879B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009248249A (en) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6024981B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5499650B2 (en) | Diamond-coated tools with excellent peeling and wear resistance | |
JP5866650B2 (en) | Surface coated cutting tool | |
JP5935479B2 (en) | Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting | |
JP2008188734A (en) | Surface coated cutting tool with hard coating layer exercising superior chipping resistance | |
JP2008100320A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP2009056540A (en) | Surface-coated cutting tool, of which hard coating layer achieves excellent chipping resistance | |
JP5488873B2 (en) | Diamond coated tool with excellent fracture resistance and wear resistance | |
JP2009006426A (en) | Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting | |
JP2017154200A (en) | Surface-coated cutting tool | |
JP5163879B2 (en) | Diamond coated tool with excellent fracture resistance and wear resistance | |
JP2009090395A (en) | Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting | |
JP5292900B2 (en) | Diamond coated tool with excellent fracture resistance and wear resistance | |
JP2011104721A (en) | Diamond coating tool showing excellent anti-defective property and abrasion resistance | |
JP2011104722A (en) | Diamond coating tool excellent in chipping resistance and fusion-bond resistance | |
JP5287407B2 (en) | Diamond coated tool with excellent wear resistance in heavy cutting | |
JP5187572B2 (en) | Diamond coated cemented carbide cutting tool | |
JP2009056561A (en) | Surface-coated cutting tool | |
JP2011131347A (en) | Diamond-coated cemented carbide cutting tool | |
JP5287408B2 (en) | Diamond coated tool with excellent surface finish accuracy | |
JP5246597B2 (en) | Diamond coated tools | |
JP5569740B2 (en) | Surface coated cutting tool with excellent chipping resistance | |
JP5682217B2 (en) | Surface coated drill with excellent wear resistance and chip evacuation | |
JP5163878B2 (en) | Diamond coated tool with excellent fracture resistance and wear resistance | |
JP4936211B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5163879 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |