Nothing Special   »   [go: up one dir, main page]

JP5160102B2 - Amorphous partially deacetylated chitin salt sponge hemostatic material and method for producing the same - Google Patents

Amorphous partially deacetylated chitin salt sponge hemostatic material and method for producing the same Download PDF

Info

Publication number
JP5160102B2
JP5160102B2 JP2007034030A JP2007034030A JP5160102B2 JP 5160102 B2 JP5160102 B2 JP 5160102B2 JP 2007034030 A JP2007034030 A JP 2007034030A JP 2007034030 A JP2007034030 A JP 2007034030A JP 5160102 B2 JP5160102 B2 JP 5160102B2
Authority
JP
Japan
Prior art keywords
acid
hemostatic material
chitin
amorphous
partially deacetylated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007034030A
Other languages
Japanese (ja)
Other versions
JP2008220388A (en
Inventor
誠司 黒住
稔 福田
吉守 高森
光 高田
清一 戸倉
裕 田村
和夫 金子
睦浩 前田
秀明 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Chemical Co Ltd
Original Assignee
Koyo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Chemical Co Ltd filed Critical Koyo Chemical Co Ltd
Priority to JP2007034030A priority Critical patent/JP5160102B2/en
Publication of JP2008220388A publication Critical patent/JP2008220388A/en
Application granted granted Critical
Publication of JP5160102B2 publication Critical patent/JP5160102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明は、非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材及びその製造方法に関する。   The present invention relates to a sponge hemostatic material mainly composed of an amorphous partially deacetylated chitin salt and a method for producing the same.

キチン、キトサンは、化粧品分野、医療分野、食品分野などで広く使用され、天然の素材として、コラーゲン材料等と同様に好ましく使用されている。しかし過去の応用例は、粉末としての使用が大部分であり、成形体などの形状を利用した用途は見られなかった。この天然高分子であるキトサンは、酢酸等の酸水溶液に容易に溶解するため、湿式成形によって、フイルム、繊維、スポンジなど種々の成形体を作成することが可能である。しかし、その実用化に関しては、ほとんど成功した例が見られない。
また、キトサンは、キチンの脱アセチル化物と定義され、一般的には、脱アセチル化度70〜80%以上であり、水に不溶であるが、キチンでは溶解しない希酸溶液に溶解する特徴を持っている。
Chitin and chitosan are widely used in the cosmetics field, the medical field, the food field, and the like, and are preferably used as natural materials in the same manner as collagen materials. However, the past application examples are mostly used as powders, and no applications utilizing shapes such as molded articles have been found. Since this natural polymer, chitosan, is easily dissolved in an aqueous acid solution such as acetic acid, various molded articles such as films, fibers, and sponges can be prepared by wet molding. However, there have been almost no successful examples of its practical application.
Chitosan is defined as a deacetylated product of chitin. Generally, chitosan has a degree of deacetylation of 70 to 80% or more and is soluble in a dilute acid solution that is insoluble in water but not in chitin. have.

キチン、キトサンを医療用バンドとして使用することの試みは20年以上前から試みられ、その有機酸塩の開示もある(特許文献1)。また、キトサンをスポンジ状にする試みもされている(特許文献2)。そして、キチン又はキチン誘導体の有機酸塩の商品化の試みもおこなわれた(特許文献3)(特許文献4)(特許文献5)。しかし、いずれの製品も、止血材として有用性・安全性において完全なものはない。また、本発明者らは、キトサン自体の改良を行いその脱アセチル化度を調整し、さらに非晶質とした新規な止血材も提案した(特許文献6)(特許文献7)。さらに本出願人は、キトサンスポンジの改良製剤の提供もこころみた(特許文献8)(特許文献9)。   Attempts to use chitin and chitosan as a medical band have been made for more than 20 years, and there are also disclosures of organic acid salts thereof (Patent Document 1). Attempts have also been made to make chitosan into a sponge form (Patent Document 2). An attempt was made to commercialize an organic acid salt of chitin or a chitin derivative (Patent Document 3) (Patent Document 4) (Patent Document 5). However, none of these products are perfect in terms of usefulness and safety as hemostatic materials. The present inventors have also proposed a novel hemostatic material that improves chitosan itself, adjusts the degree of deacetylation, and makes it amorphous (Patent Document 6) (Patent Document 7). Furthermore, the present applicant has also tried to provide an improved preparation of chitosan sponge (Patent Document 8) (Patent Document 9).

上記のような多くの試みにもかかわらず、キチン誘導体をつかった止血材は、1997年の手術用止血材の製品回収という事件から、実用化製品の上市はなされていない。   In spite of many attempts as described above, a hemostatic material using a chitin derivative has not been put on the market in practical use due to the product recovery of the surgical hemostatic material in 1997.

特開昭60-142927公報Japanese Patent Laid-Open No. 60-142927 特開昭63-90507号公報JP 63-90507 A 特開平9-169654号公報JP-A-9-169654 特開2003-26578号公報JP 2003-26578 A 特表2005-503197号公報Special Table 2005-503197 特開平11-5803号公報Japanese Patent Laid-Open No. 11-5803 特開平11-276189号公報Japanese Patent Laid-Open No. 11-276189 特開2003-292501号公報JP 2003-292501 A 特開2004-256784号公報JP 2004-256784 A

本発明の課題は、スポンジ状止血材に関して、実用化が十分期待される性能を有する製造方法を開発し、コラーゲンによって調製されるスポンジ状止血材と同等以上の良質な性能のものを開発することである。   An object of the present invention is to develop a manufacturing method having performance that is expected to be put to practical use with respect to a sponge-like hemostatic material, and to develop a high-quality performance equivalent to or higher than that of a sponge-like hemostatic material prepared by collagen. It is.

本発明者らは、キチンの脱アセチル化度の最適化分析、部分アセチル化キチンとしての非晶質のものの選択、さらに塩にする有機酸の選択、さらには乾燥方法の最適化分析を行い、その結果、従来のキチン誘導体のスポンジ状止血材に比して安全性、血液吸収性、生分解性、使用における利便性においてすぐれた製剤の開発に成功し、本発明を完成した。
つまり、本発明は、
「1.脱アセチル化度が20〜65%、20℃において0.5%W/W溶液での粘度が20mPa・s〜300mPa・sの非晶質の部分脱アセチル化キチンのグルコン酸塩又はアスパラギン酸塩を主成分とするスポンジ状止血材。
2.製造時のグルコン酸又はアスパラギン酸の酸添加量を非晶質の部分脱アセチル化キチンのアミノ基の1モルに対し0.2〜1.00モルとし、シャーベット凍結方式によって調製されることを特徴とする前項1に記載の止血材。
3.最終製剤の残留酸濃度が、酢酸0〜7.0%W/W、グルコン酸又はアスパラギン酸2〜40%W/Wであり、非晶質の部分脱アセチル化キチンのアミノ基の1モルに対し総酸イオンが0.2〜1.00モルである前項1又は2に記載の止血材。
4.最終製剤の体積当り重量が、0.005〜0.035g/cmであり、吸水量が40〜120g/gである前項1〜3の何れか一に記載の止血材。
5.最終製剤が、そのポアサイズが50〜400μmであり、実質的に均質構造である前項1〜4の何れか一に記載の止血材。
6.創傷部位に貼付されたときに、創傷局所血液のpHの変化が0.05以下である前項1〜5の何れか一に記載の止血材。
7.創傷部位から、血液吸収後に断片を実質的に残すことなく容易に除去可能である前項1〜6の何れか一に記載の止血材。
8.手術器具にベトベトと吸着しない前項1〜7の何れか一に記載の止血材。
9.非晶質の部分脱アセチル化キチンの調製が、約40%W/Wの苛性ソーダ添加時の処理温度を35〜60度、処理時間を2〜5時間で行うことを特徴とする前項1〜8の何れか一に記載の止血材。
10.脱アセチル化度が20〜65%の非晶質の部分脱アセチル化キチンを懸濁させた後、グルコン酸又はアスパラギン酸を非晶質の部分脱アセチル化キチンのアミノ基の1モルに対し0.2〜1.0モルに添加し、撹拌を行い、ついで攪拌後の溶液のろ液を氷結させ、粉砕し、シャーベット状にし、これを製品トレイに充填して凍結真空乾燥・さらに2次乾燥によって調製する非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材の製造方法。
11.グルコン酸又はアスパラギン酸の添加前に、酢酸添加により非晶質の部分脱アセチル化キチンを溶解させる前項10に記載の方法。
12.2次乾燥及び/又は加熱処理を65〜85度、1〜7日間行う前項11に記載の方法。」である。
The present inventors conducted an optimization analysis of the degree of deacetylation of chitin, selection of an amorphous one as partially acetylated chitin, further selection of an organic acid to be salted, and further optimization analysis of the drying method, As a result, the present inventors have succeeded in developing a preparation superior in safety, blood absorbability, biodegradability, and convenience in use as compared with conventional chitin derivative sponge-like hemostatic materials, and completed the present invention.
In other words, the present invention
“1. Amorphous partially deacetylated chitin gluconate or aspartic acid having a degree of deacetylation of 20 to 65% and a viscosity in a 0.5% W / W solution at 20 ° C. of 20 mPa · s to 300 mPa · s. A sponge-like hemostatic material mainly composed of salt.
2. Item 1 above, wherein the acid addition amount of gluconic acid or aspartic acid at the time of production is 0.2 to 1.00 mol per 1 mol of the amino group of amorphous partially deacetylated chitin, and is prepared by a sherbet freezing method The hemostatic material described in 1.
3. Residual acid concentration of the final preparation is 0-7.0% W / W acetic acid, 2-40% W / W gluconic acid or aspartic acid, and the total amount is 1 mol of amino group of amorphous partially deacetylated chitin. 3. The hemostatic material according to item 1 or 2, wherein the acid ion is 0.2 to 1.00 mol.
4). 4. The hemostatic material according to any one of items 1 to 3 , wherein the final preparation has a weight per volume of 0.005 to 0.035 g / cm 3 and a water absorption of 40 to 120 g / g.
5. 5. The hemostatic material according to any one of items 1 to 4, wherein the final preparation has a pore size of 50 to 400 μm and a substantially homogeneous structure.
6). 6. The hemostatic material according to any one of 1 to 5 above, wherein when applied to a wound site, the change in pH of the wound local blood is 0.05 or less.
7). 7. The hemostatic material according to any one of items 1 to 6, which can be easily removed from a wound site without substantially leaving a fragment after blood absorption.
8). 8. The hemostatic material according to any one of 1 to 7 above, wherein the hemostatic material is not adsorbed to the surgical instrument.
9. The preparation of amorphous partially deacetylated chitin is carried out at a treatment temperature of 35 to 60 ° C. and a treatment time of 2 to 5 hours when caustic soda of about 40% W / W is added. The hemostatic material according to any one of the above.
10. After suspending amorphous partially deacetylated chitin having a degree of deacetylation of 20 to 65%, gluconic acid or aspartic acid is added to 0.2 mol per 1 mol of amino group of amorphous partially deacetylated chitin. Add to ~ 1.0 mol, stir, and then freeze the filtrate of the solution after stirring, crush and form into a sherbet, fill it into a product tray, and prepare it by freeze vacuum drying and further secondary drying A method for producing a sponge-like hemostatic material mainly comprising a crystalline partially deacetylated chitin salt.
11. 11. The method according to item 10 above, wherein amorphous partially deacetylated chitin is dissolved by addition of acetic acid before addition of gluconic acid or aspartic acid.
12. The method according to 11 above, wherein the secondary drying and / or heat treatment is performed at 65 to 85 ° C. for 1 to 7 days. Is.

本発明の非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材は、血液吸収性にすぐれ、ポアサイズにおいて50〜400μmに設定された実質的に均質なもので、しかも創傷局所のpH変化に影響をあたえず、止血効果にすぐれ且つ止血後には容易に完全に除去が可能であるので、従来存在しなかったレベルの生体に安全な止血材である。   The sponge-like hemostatic material mainly composed of the amorphous partially deacetylated chitin salt of the present invention has excellent blood absorbability, is substantially homogeneous with a pore size set to 50 to 400 μm, and is a wound local area. This is a hemostatic material that is safe for a living body at a level that has not existed in the past, because it has an excellent hemostatic effect and can be easily and completely removed after hemostasis.

本発明における部分脱アセチル化キチンとは、カニ、エビなど甲殻類の外骨格等に含まれるアミノ多糖類の一種であるキチン由来であり、化学構造がグルコサミンと少量のN−アセチルグルコサミンとの繰り返し構造である天然物由来の高分子である。一般には、甲殻類の外骨格等を苛性ソーダなどのアルカリで脱タンパクし、塩酸などの酸溶液で脱カルシウム処理して得られるキチンを、さらに苛性ソーダなどの高濃度アルカリ水溶液で部分脱アセチル化して得られる。水に難溶性であり、酢酸などの酸水溶液に溶解する。   The partially deacetylated chitin in the present invention is derived from chitin which is a kind of amino polysaccharide contained in the exoskeleton of crustaceans such as crabs and shrimps, and the chemical structure is a repetition of glucosamine and a small amount of N-acetylglucosamine. It is a polymer derived from a natural product that is a structure. In general, chitin obtained by deproteinizing crustacean exoskeletons with alkali such as caustic soda and decalcifying with acid solution such as hydrochloric acid is further obtained by partial deacetylation with high concentration alkaline aqueous solution such as caustic soda. It is done. It is sparingly soluble in water and dissolves in acid aqueous solutions such as acetic acid.

非晶質の部分脱アセチル化キチン(以下、非晶質キチンということもある)の製造方法は、タンパク質含量が0.1重量%以下、無機物含量が0.01重量%以下の高純度キチンを約40%W/Wアルカリ中に35〜60℃、2〜7時間で分散させ、その後冷却条件下(−10℃〜−30℃)に数時間(1〜3時間)置き、アルカリ濃度を約10%W/Wになるように水を加え、アルカリキチンドープを調製する。均一系においてアルカリ加水分解する際に、アルカリキチンドープを30℃以下で目的粘度まで熟成し、さらに中和して沈殿を生成させ、脱水、洗浄、凍結真空乾燥等を経て、キチンの脱アセチル化率(DAC度ともいう)が一般的には20〜65%程度、好ましくは25〜45%程度、より好ましくは約30〜40%となるように部分脱アセチル化され、20℃において0.5%W/W溶液粘度が20〜300mPa・s、より好ましくは30〜250mPa・s、さらに好ましくは35〜200mPa・sの非晶質の部分脱アセチル化キチンを調製する。なお、中和は、酸の添加又はアルコール類、イオン交換樹脂等で脱アルカリする。   A method for producing amorphous partially deacetylated chitin (hereinafter sometimes referred to as amorphous chitin) is about 40% W of high-purity chitin having a protein content of 0.1% by weight or less and an inorganic content of 0.01% by weight or less. / W in alkali at 35 to 60 ° C. for 2 to 7 hours, and then placed under cooling conditions (−10 ° C. to −30 ° C.) for several hours (1 to 3 hours). The alkali concentration is about 10% W / Water is added so that it becomes W, and an alkali chitin dope is prepared. During alkaline hydrolysis in a homogeneous system, the chitin dope is aged at 30 ° C or less to the desired viscosity, further neutralized to form a precipitate, dehydrated, washed, freeze-dried, etc., and deacetylated chitin Partially deacetylated so that the rate (also referred to as DAC degree) is generally about 20 to 65%, preferably about 25 to 45%, more preferably about 30 to 40%, and 0.5% W at 20 ° C. An amorphous partially deacetylated chitin having a / W solution viscosity of 20 to 300 mPa · s, more preferably 30 to 250 mPa · s, still more preferably 35 to 200 mPa · s is prepared. Neutralization is dealkalized by addition of acid or alcohol, ion exchange resin or the like.

本発明で使用する非晶質の部分脱アセチル化キチンの分子量は、一般的には、重量平均分子量(標準品にプルランを用いGPC分子量測定により算出)が5万〜400万程度のものが使用され、好ましくは10万〜300万、より好ましくは20万〜200万である。脱アセチル化率は、一般的には、20〜65%程度のものが使用され、好ましくは25〜45%程度、より好ましくは約30〜40%である。粘度は、20℃において0.5%W/W溶液粘度が20〜300mPa・s、より好ましくは30〜250mPa・s、さらに好ましくは35〜200mPa・sである。   The molecular weight of the amorphous partially deacetylated chitin used in the present invention generally has a weight average molecular weight (calculated by GPC molecular weight measurement using pullulan as a standard product) of about 50,000 to 4 million. Preferably, it is 100,000 to 3 million, more preferably 200,000 to 2 million. The deacetylation rate is generally about 20 to 65%, preferably about 25 to 45%, more preferably about 30 to 40%. The viscosity of the 0.5% W / W solution viscosity at 20 ° C. is 20 to 300 mPa · s, more preferably 30 to 250 mPa · s, and still more preferably 35 to 200 mPa · s.

非晶質の部分脱アセチル化キチンは一定の酸水溶液に溶かして塩として調製をすることができる。部分脱アセチル化キチンの酸溶液に使用する酸は、酢酸などの弱酸なら何でも使用できる。酸の濃度は 一般には0.01wt〜10.0wt%で、特に0.05〜5.0wt%が好ましく使用される。部分脱アセチル化キチンの濃度は、使用しやすい粘度のものを使用することが好ましく、一般的には0.1〜5.0wt%で、特に0.5〜3.0wt%が好ましく使用される。酸の添加量は、部分脱アセチル化キチンのアミノ基1モルに対して1.0〜105モル程度の酸を計算して使用してもよい。又、水溶液には、部分脱アセチル化キチンの他に、必要に応じて界面活性剤などの助剤を加えてもよいが、助剤の有り無しが、本発明の効果に影響するものではない。
なお、好ましくは酢酸等の弱酸で溶解された非晶質の部分脱アセチル化キチン塩の溶液は、部分脱アセチル化キチンがほぼ完全に溶解するまで撹拌する。
Amorphous partially deacetylated chitin can be prepared as a salt by dissolving it in a certain aqueous acid solution. The acid used for the acid solution of partially deacetylated chitin can be any weak acid such as acetic acid. The acid concentration is generally 0.01 to 10.0 wt%, and 0.05 to 5.0 wt% is particularly preferably used. The concentration of the partially deacetylated chitin is preferably one having a viscosity that is easy to use, generally 0.1 to 5.0 wt%, and particularly preferably 0.5 to 3.0 wt%. The amount of acid added may be calculated by using about 1.0 to 105 moles of acid per mole of amino group of partially deacetylated chitin. In addition to the partially deacetylated chitin, an auxiliary agent such as a surfactant may be added to the aqueous solution as necessary, but the presence or absence of the auxiliary agent does not affect the effect of the present invention. .
Preferably, the amorphous partially deacetylated chitin salt solution dissolved with a weak acid such as acetic acid is stirred until the partially deacetylated chitin is almost completely dissolved.

また、本発明では、上記のように酢酸等の弱酸を使用して非晶質の部分脱アセチル化キチンを溶解せずとも、水に懸濁させれば良い。
なお、酢酸等の弱酸を使用して溶解しなければ、後ほどの工程において、酢酸等の弱酸を減少させる工程が必要ない。
その後、酸としてグルコン酸又はアスパラギン酸の添加を行い非晶質の部分脱アセチル化キチンのグルコン酸塩又はアスパラギン酸塩とする。酸添加量は非晶質の部分脱アセチル化キチンのアミノ基1モルに対し酸0.2〜1.0モル、好ましくは0.3〜0.8モル、より好ましくは0.4〜0.6モルを添加する。
In the present invention, as described above, it is sufficient to suspend in amorphous water without dissolving amorphous partially deacetylated chitin using weak acid such as acetic acid.
In addition, if it does not melt | dissolve using weak acids, such as an acetic acid, the process of reducing weak acids, such as an acetic acid, in a later process is unnecessary.
Thereafter, gluconic acid or aspartic acid is added as an acid to form amorphous partially deacetylated chitin gluconate or aspartate. The acid is added in an amount of 0.2 to 1.0 mol, preferably 0.3 to 0.8 mol, more preferably 0.4 to 0.6 mol, per mol of amino group of amorphous partially deacetylated chitin.

非晶質の部分脱アセチル化キチンのグルコン酸塩又はアスパラギン酸塩(非晶質の部分脱アセチル化キチン塩ということもある)は、撹拌を十分に行い、溶解していれば攪拌後の溶液をろ過し、溶解していなければろ過を行わない。
次に、得られた液を「シャーベット凍結方式」によるシャーベット氷製造に供する。ここで、本発明の「シャーベット凍結方式」とは、従来のように急速冷凍、又は、徐々に凍結させて凍結氷を製造するのではなく、一度、凍結させた凍結氷を粉砕し、型枠に充填し、再度、凍結する事でシャーベット凍結氷が得られる。また、非晶質キチンの溶液をドライアイスと共に粉砕するとシャーベット状になり、同様に型枠に充填し、再度、凍結する事でシャーベット凍結氷が得られる。詳しい製造方法は以下の通りである。非晶質の部分脱アセチル化キチン塩の溶液の約1000gに対しドライアイスを500g〜700g程度加え、ブレンダー等で粉砕し、シャーベット状にする。シャーベット温度は-1℃〜+2℃に調整する。なお、本発明のスポンジ状止血材の製造において、上記のようなシャーベット状にすることができれば、特に凍結方法は限定されない。
Amorphous partially deacetylated chitin gluconate or aspartate (sometimes referred to as amorphous partially deacetylated chitin salt) is sufficiently stirred, and if dissolved, the solution after stirring If it is not dissolved, it is not filtered.
Next, the obtained liquid is subjected to sherbet ice production by the “sorbet freezing method”. Here, the “sherbet freezing method” of the present invention does not produce frozen ice by quick freezing or gradually freezing as in the prior art, but once frozen frozen ice is crushed, Sorbet frozen ice can be obtained by refilling and freezing again. Further, when the amorphous chitin solution is pulverized with dry ice, it becomes a sherbet shape, and is similarly filled into a mold and frozen again to obtain frozen sherbet ice. The detailed manufacturing method is as follows. About 500 g to 700 g of dry ice is added to about 1000 g of the amorphous partially deacetylated chitin salt solution, and pulverized with a blender or the like to form a sherbet. The sherbet temperature is adjusted to -1 ° C to + 2 ° C. In the production of the sponge-like hemostatic material of the present invention, the freezing method is not particularly limited as long as the sherbet shape as described above can be obtained.

酢酸を使用せずグルコン酸又はアスパラギン酸の添加だけで調製した場合には、酢酸が入っていないため、残留酢酸を減少させるための2次乾燥は、必要が無いが、強度を増加させるために2次乾燥と同様の熱による処理を行ってもよい。
本発明者らは、2次乾燥工程が、破スポンジ中のグルコン酸又はアスパラギン酸濃度にかかわらず破断強度を増加させることができることを、新規に確認している。
以降、この様に強度の増加だけの目的とする熱による処理を加熱処理と呼び、2次乾燥処理と区別する。これによって、非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材の調製が完成する。
When prepared by adding gluconic acid or aspartic acid without using acetic acid, acetic acid is not contained, so secondary drying to reduce residual acetic acid is not necessary, but to increase strength. You may perform the process by the heat similar to secondary drying.
The present inventors have newly confirmed that the secondary drying step can increase the breaking strength regardless of the concentration of gluconic acid or aspartic acid in the broken sponge.
Hereinafter, the heat treatment for the purpose of increasing the strength is referred to as heat treatment, and is distinguished from the secondary drying treatment. This completes the preparation of a sponge-like hemostatic material mainly composed of an amorphous partially deacetylated chitin salt.

本発明の非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材の製造法の凍結真空乾燥は、出来上がりのシートの厚みを想定して、トレーなどの容器に一定の深さに、非晶質の部分脱アセチル化キチン塩のシャーベット状標品を流し込み、そのまま、凍結し、引き続いて乾燥を行うのが、一般的である。   Freeze-vacuum drying of the method for producing a sponge-like hemostatic material mainly composed of an amorphous partially deacetylated chitin salt according to the present invention has a certain depth in a container such as a tray, assuming the thickness of the finished sheet. In general, an amorphous partially deacetylated chitin salt sherbet preparation is poured, frozen as it is, and then dried.

2次乾燥及び/又は加熱処理は65〜85℃、1〜7日間で行う。   The secondary drying and / or heat treatment is performed at 65 to 85 ° C. for 1 to 7 days.

本発明の方法で作成できるシートの厚みは、0.5mm〜20mm程度であるので、凍結するシャーベット状標品の厚みも、ほぼ同等の厚みになるように設定すればよい。このように作成したシャーベット状標品を、冷却雰囲気に接触して、凍結する。凍結は、水の凍結温度以下、すなわち0℃以下で、好ましくは、−20℃以下で行うことができる。   Since the thickness of the sheet that can be prepared by the method of the present invention is about 0.5 mm to 20 mm, the thickness of the frozen sherbet-like sample may be set to be substantially the same. The sherbet-like specimen prepared in this way is frozen in contact with the cooling atmosphere. Freezing can be performed at a temperature below the freezing temperature of water, that is, 0 ° C. or less, preferably −20 ° C. or less.

凍結方法は、標品を通常の空冷式凍結庫に入れる方法や、冷媒例えば、ブラインであるエタノールや塩化カルシウムの水溶液に、−20℃以下で浸漬する方法や、液体窒素、液体炭酸ガス等を吹き付ける方法も利用できる。   The freezing method includes placing the sample in a normal air-cooled freezer, immersing it in a refrigerant such as an aqueous solution of ethanol or calcium chloride, which is brine, at −20 ° C. or lower, liquid nitrogen, liquid carbon dioxide, etc. A spraying method can also be used.

凍結時間は、凍結方法や凍結温度で異なるが、一般的には、2時間から24時間程度以上で、緩徐に凍結することが好ましい。より好ましくは、3時間程度以上である。いったん凍結してしまえば凍結氷は何日でも凍結庫の中で保存可能であり、必要な時に凍結氷を次工程である凍結真空乾燥を行えば本発明のスポンジ状止血材とすることができる。   The freezing time varies depending on the freezing method and freezing temperature, but generally it is preferably about 2 to 24 hours or longer and slowly frozen. More preferably, it is about 3 hours or more. Once frozen, frozen ice can be stored in a freezer for any number of days, and when necessary, the frozen ice can be used as the sponge hemostatic material of the present invention by freeze-drying in the next step. .

凍結真空乾燥後のシートは、酢酸等の弱酸で溶解した場合には残った酸類を熱風乾燥などの2次乾燥で、除去し、酢酸を使用せずグルコン酸又はアスパラギン酸の添加だけで調製した場合には、好適にはスポンジの強度を増加させるため加熱処理を行い、最終的に本発明の非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材を得ることができる。本発明は出来上がったスポンジ状止血材の性能が従来法で得られる物よりはるかに良質なことに特色がある。すなわち、厚みが均一であるともに、吸水速度の速いこと、吸水倍率の高いこと、湿潤強度の大きいこと、生分解性が高いことの性能を同時に有する事ができるという特色がある。   The sheet after freeze-drying was prepared by removing the remaining acids by secondary drying such as hot air drying when dissolved with a weak acid such as acetic acid, and adding only gluconic acid or aspartic acid without using acetic acid. In some cases, heat treatment is preferably performed to increase the strength of the sponge, and finally a sponge-like hemostatic material mainly composed of the amorphous partially deacetylated chitin salt of the present invention can be obtained. The present invention is characterized in that the performance of the finished sponge-like hemostatic material is much better than that obtained by the conventional method. That is, there is a feature that, while the thickness is uniform, the water absorption speed is high, the water absorption magnification is high, the wet strength is high, and the biodegradability is high.

本発明によって得られる最終製剤の残留酸濃度は、酢酸0〜7.0%W/W以下、グルコン酸又はアスパラギン酸2〜40%W/Wであり、非晶質の部分脱アセチル化キチンのアミノ基の1モルに対し総酸イオンが0.2〜1.00モルである。より好ましくは、最終製剤の残留酸濃度は、酢酸約0〜6.0%W/W、グルコン酸又はアスパラギン酸約2.0〜30%W/Wであり、非晶質の部分脱アセチル化キチンのアミノ基の1モルに対し総酸イオンが0.4〜0.8モルである。   The residual acid concentration of the final preparation obtained by the present invention is 0 to 7.0% W / W or less of acetic acid, 2 to 40% W / W of gluconic acid or aspartic acid, and the amino group of amorphous partially deacetylated chitin The total acid ion is 0.2 to 1.00 mol with respect to 1 mol. More preferably, the residual acid concentration of the final formulation is about 0-6.0% W / W acetic acid, about 2.0-30% W / W gluconic acid or aspartic acid, and the amino group of amorphous partially deacetylated chitin The total acid ion is 0.4 to 0.8 mol with respect to 1 mol.

本発明によって得られる最終製剤の体積当り重量は、0.005〜0.035g/cmであり、吸水量は40〜120g/gである。より好ましくは、体積当り重量は、約0.011〜0.0017g/cmであり、吸水量は約60〜100g/gである。 The weight per volume of the final formulation obtained by the present invention is 0.005 to 0.035 g / cm 3 and the water absorption is 40 to 120 g / g. More preferably, the weight per volume is about 0.011 to 0.0017 g / cm 3 and the water absorption is about 60 to 100 g / g.

本発明によって得られる最終製剤のポアサイズは、50〜400μmであり、実質的に均質構造である。また、創傷部位に貼付されたときに、創傷局所血液のpHの変化が0.05以下である。さらに、創傷部位から、血液吸収後に断片を実質的に残すことなく容易に除去可能である。加えて、手術器具にベトベトと吸着しないという性状を備えている。   The pore size of the final formulation obtained according to the present invention is 50-400 μm and has a substantially homogeneous structure. Further, when applied to the wound site, the change in pH of the wound local blood is 0.05 or less. Furthermore, it can be easily removed from the wound site without substantially leaving fragments after blood absorption. In addition, the surgical instrument has a property of not adsorbing sticky.

本発明に用いる各濃度の測定方法は以下の通りである。なお、以下の実施例及び試験例でも使用した。   The measuring method of each concentration used in the present invention is as follows. The following examples and test examples were also used.

DAC度(表中*1)は、キトサン試料(非晶質キチン又はキトサン)を0.5%(w/w) 酢酸溶液に0.5%(w/w)になるように溶解し、指示薬としてトルイジンブルー溶液を用い、ポリビニル硫酸カリウム水溶液でコロイド滴定して乾物当たりのDAC度(脱アセチル化度)を求めたものである。   The DAC degree (* 1 in the table) is determined by dissolving a chitosan sample (amorphous chitin or chitosan) in 0.5% (w / w) acetic acid solution to 0.5% (w / w), and toluidine blue solution as an indicator Was used to determine the DAC degree (deacetylation degree) per dry matter by colloidal titration with an aqueous polyvinyl potassium sulfate solution.

粘度(表中*2)は、キトサン試料(非晶質キチン又はキトサン)を0.5%(w/w) 酢酸溶液に0.5%(w/w)になるように溶解し、室温で3時間撹拌し、さらにホモジナイザーで2分間撹拌する。この溶液を恒温槽中で20℃に保ちながらB型粘度計で回転粘度(mPa・s)を測定したものである。   Viscosity (* 2 in the table) is determined by dissolving a chitosan sample (amorphous chitin or chitosan) in 0.5% (w / w) acetic acid solution to 0.5% (w / w) and stirring at room temperature for 3 hours. Stir for 2 minutes with a homogenizer. The rotational viscosity (mPa · s) was measured with a B-type viscometer while keeping this solution at 20 ° C. in a thermostatic bath.

吸水量(表中*3)は、試料の重量(A)を測定した後、十分な純水を含む容器に試料を5分間浸漬する。次いで試料をザルに引揚げ、5分間水切りし、試料の重量(B)を測定する。吸水量は、(B−A)/Aで表す。より詳しくは、約0.4gを秤量し(A)、5分間純水中に浸漬し、ザルに引揚げ、5分間水切りし秤量し(B)、以下の式で得た。吸水量=(B−A)/A。なお、本発明の場合、吸水量は15g/g以上であり、良好なものは40倍以上である。   For the amount of water absorption (* 3 in the table), after measuring the weight (A) of the sample, the sample is immersed in a container containing sufficient pure water for 5 minutes. The sample is then drawn into a colander, drained for 5 minutes, and the weight (B) of the sample is measured. The amount of water absorption is represented by (BA) / A. More specifically, about 0.4 g was weighed (A), soaked in pure water for 5 minutes, lifted into a colander, drained for 5 minutes, weighed (B), and obtained by the following formula. Water absorption = (B−A) / A. In the case of the present invention, the amount of water absorption is 15 g / g or more, and a good one is 40 times or more.

吸水速度(表中*4)は、JIS L1907 滴下法により、純水を一滴、サンプルに滴下し、水が吸収し反射しなくなる時間を測定したものである。より詳しくは、スポンジを、水平に設置し、上方から50μlの水をマイクロピッペットなどで滴下し、水がスポンジ表面から内部に浸透していく時間、すなわち、滴下した水の表面張力によるふくらみが無くなる時間を目視で観察することで測定できる。本発明の場合5秒以下であり、良好なものは3秒以下である。   The water absorption rate (* 4 in the table) is a time measured by adding a drop of pure water to a sample using the JIS L1907 dropping method and absorbing the water so that it does not reflect. More specifically, the sponge is placed horizontally, 50 μl of water is dropped from above with a micropipette or the like, and the time during which water penetrates from the sponge surface into the inside, that is, the swelling due to the surface tension of the dropped water is observed. It can be measured by visually observing the time when it disappears. In the case of the present invention, it is 5 seconds or less, and a good one is 3 seconds or less.

吸水後の破断強度(表中*6)は、試料を50mm角にカットし、純水に十分浸漬した後、ザルに引揚げ、5分間水切りする。吸水した試料をコルクボーラーやカッターを使い、直径φ40mm、厚さ15mmにカットし、専用の容器(直径φ40mm、高さh15mm)にセットする。クリープメーター(山電製 RHEONERII)を用い、測定速度 1mm/sec、接触直径 20mm、測定歪率 99.99%、格納ピッチ 0.04secの測定条件で押し潰しによる破断強度を測定したとき、本発明の場合、0.2N以上であり、良好な物は0.25N〜200Nである。   The breaking strength after water absorption (* 6 in the table) is to cut the sample into 50mm squares, fully immerse in pure water, lift to a colander and drain for 5 minutes. Cut the water-absorbed sample to a diameter of 40 mm and a thickness of 15 mm using a cork borer and cutter, and set it in a special container (diameter of 40 mm and height of h15 mm). When measuring the breaking strength by crushing using the creep meter (Yamaden RHEONERII), measuring speed 1mm / sec, contact diameter 20mm, measuring distortion 99.99%, storage pitch 0.04sec, in the case of the present invention, It is 0.2N or more, and a favorable thing is 0.25N-200N.

スポンジ中の酸濃度(表中*7)において、グルコン酸及び酢酸の分析は、試料 0.1g程度を細かく刻み秤量し、次に純水を適当に加え、スポンジ中に存在しない酸を添加し、撹拌後、完全に溶解させる。スポンジ中に存在しない添加酸について、例えばスポンジ中にグルコン酸が含まれる場合は、酢酸 50〜200μl、スポンジ中に酢酸が含まれる場合はグルクロノ−δ−ラクトン 0.2〜0.3g、スポンジ中にグルコン酸、酢酸の両方が含まれる場合は乳酸 50〜200μlを添加する。その後、溶液100mlにメスアップする。溶液を0.45μmフィルターでろ過を行いサンプル溶液とする。マイクロシリンジを用い、サンプル溶液 10μl採取し、HPLC(島津製作所製カルボン酸分析計)に注入し、以下の条件で測定する。グルコン酸のリテンションタイムは17.1分前後、酢酸は26.1分前後であり、グルコン酸標準溶液、酢酸標準溶液及びサンプル溶液をそれぞれ測定し、標準溶液とサンプル溶液のピークの面積値の比からサンプルのグルコン酸濃度、酢酸濃度を算出する。
[分析条件]
装置:島津製作所製 カルボン酸分析計
<分離条件>
カラム :Shim-Pak SCR-102H 2本連結
移動相 :5mM p-トルエンスルホン酸水溶液
移動相流速:0.8ml/min
温度 :40℃
<検出条件>
緩衝液 :5mM p-トルエンスルホン酸水溶液 および
100μM EDTAを含む20mM Bis-tris水溶液
緩衝液流速:0.8ml/min
検出器 :CDD-6A 電気伝導度検出器
注入量 :10μl
In the acid concentration in the sponge (* 7 in the table), for analysis of gluconic acid and acetic acid, weigh about 0.1 g of sample finely, weigh appropriately, then add pure water, add acid not present in sponge, After stirring, dissolve completely. For the added acid not present in the sponge, for example, when gluconic acid is contained in the sponge, 50 to 200 μl of acetic acid, glucurono-δ-lactone 0.2 to 0.3 g when acetic acid is contained in the sponge, and gluconic acid in the sponge If both acetic acids are included, add 50-200 μl of lactic acid. Then, make up to 100 ml of solution. The solution is filtered through a 0.45 μm filter to obtain a sample solution. Using a microsyringe, collect 10 μl of the sample solution, inject it into HPLC (Carboxylic Acid Analyzer, manufactured by Shimadzu Corporation), and measure under the following conditions. The retention time of gluconic acid is around 17.1 minutes and that of acetic acid is around 26.1 minutes. The gluconic acid standard solution, the acetic acid standard solution and the sample solution are measured, and the glucone content of the sample is determined from the ratio of the peak area values of the standard solution and sample solution Acid concentration and acetic acid concentration are calculated.
[Analysis conditions]
Equipment: Carboxylic acid analyzer manufactured by Shimadzu Corporation
<Separation conditions>
Column: Two Shim-Pak SCR-102H units Mobile phase: 5 mM p-toluenesulfonic acid aqueous solution Mobile phase flow rate: 0.8 ml / min
Temperature: 40 ° C
<Detection conditions>
Buffer: 5 mM p-toluenesulfonic acid aqueous solution and
20 mM Bis-tris aqueous solution containing 100 μM EDTA Buffer flow rate: 0.8 ml / min
Detector: CDD-6A Conductivity detector Injection volume: 10μl

スポンジ中の酸濃度(表中*7)において、アスパラギン酸の分析は、試料 0.15g程度を細かく刻み秤量し、純水を約20ml加え、ホモジナイザーを用い、懸濁溶液を調製する。次に、50mMリン酸緩衝液(pH 6.9)10mlを添加し、50mlにメスアップする。溶液を0.45μmフィルターでろ過を行いサンプル溶液とし、HPLC(島津製作所製)を用い、以下の分析条件で測定する。アスパラギン酸のリテンションタイムは10.6分前後であるが、酢酸のリテンションタイムが10.8分前後と近いため、スポンジ中に酢酸とアスパラギン酸の両方が含まれる場合は、ピークが重なってしまうため補正が必要である。補正の方法は、本法で酢酸標準溶液を分析し、酢酸濃度に対するピークの面積値を求め、段落「0030」の方法で求めた酢酸濃度から本法における酢酸の面積値を計算し、次にサンプルを分析し、アスパラギン酸と酢酸の重なったピークの面積値から酢酸の面積値を差し引く。アスパラギン酸標準溶液、及びサンプル溶液をそれぞれ測定し、標準溶液のピーク面積値とサンプル溶液の補正したピーク面積値の比からサンプルのアスパラギン酸濃度を算出する。
[分析条件]
<分離条件>
カラム:Shodex KW-802.5
移動相:10mM リン酸緩衝液(pH6.9)
流速 :1.0ml/min
温度 :40℃
検出器:UV検出器 測定波長 210nm
注入量:10μl
In the acid concentration in the sponge (* 7 in the table), aspartic acid is analyzed by finely weighing about 0.15 g of sample, adding about 20 ml of pure water, and preparing a suspension using a homogenizer. Next, add 10 ml of 50 mM phosphate buffer (pH 6.9) and make up to 50 ml. The solution is filtered with a 0.45 μm filter to obtain a sample solution, which is measured using HPLC (manufactured by Shimadzu Corporation) under the following analysis conditions. The retention time of aspartic acid is around 10.6 minutes, but the retention time of acetic acid is close to around 10.8 minutes, so if both the acetic acid and aspartic acid are contained in the sponge, the peaks will overlap and correction is necessary. is there. The correction method is to analyze the acetic acid standard solution by this method, determine the peak area value relative to the acetic acid concentration, calculate the acetic acid area value in this method from the acetic acid concentration determined by the method of paragraph “0030”, and then The sample is analyzed and the area value of acetic acid is subtracted from the area value of the overlapping peak of aspartic acid and acetic acid. The aspartic acid standard solution and the sample solution are measured, and the aspartic acid concentration of the sample is calculated from the ratio of the peak area value of the standard solution to the corrected peak area value of the sample solution.
[Analysis conditions]
<Separation conditions>
Column: Shodex KW-802.5
Mobile phase: 10 mM phosphate buffer (pH 6.9)
Flow rate: 1.0ml / min
Temperature: 40 ° C
Detector: UV detector Measurement wavelength 210nm
Injection volume: 10μl

各スポンジ状止血材の酵素による分解速度測定(図6)は、Rondle-Morgan法によるGlcNの定量法を使用する。該定量法の詳細は以下の通りである。
リゾチームで酵素加水分解したサンプル(各スポンジ状止血材)溶液1.5mLをサンプル管にとり、酢酸buffer1.5mL(以下、参照)を加え、40℃、静置で10分間加熱する。次に、アセチルアセトン試薬1.0mL(以下、参照)を加え、HClでpH9.80まで落とし、沸騰水浴中で20分間加熱した後、流水で室温まで冷却する。さらに、EtOH3.0mLとエールリッヒ試薬1.0mL(以下、参照)を加え、65〜70℃で10分間加熱した後、流水で室温まで冷却する。酵素加水分解は、分光光度計(製造元:島津理化器械株式会社)を使用して、530nmにおけるVIS測定して評価する。
酢酸buffer:酢酸0.60gに純水を加え、100mLにメスアップして、0.1M酢酸溶液、酢酸ナトリウム4.1015gに純水を加え500mLにメスアップして0.1M酢酸ナトリウム溶液を得る。次に、0.1M酢酸溶液10mL、0.1M酢酸ナトリウム溶液160mLを混合してpH=5.60の酢酸bufferを調製する。pHの確認はHORIBAカスターニACT pHメーターで行う。
アセチルアセトン試薬:アセチルアセトン1mLを0.5mol/L Na2CO350mLに溶解して調製する。
エールリッヒ試薬:DMAB0.4gをEtOH15mLに溶解し、conc-HCl15mLを加えて調製する。
The determination of the rate of degradation of each sponge-like hemostatic material with an enzyme (FIG. 6) uses a GlcN quantification method by the Rondle-Morgan method. The details of the quantification method are as follows.
Transfer 1.5 mL of the sample (each sponge hemostatic material) solution hydrolyzed with lysozyme to a sample tube, add 1.5 mL of acetic acid buffer (see below), and heat at 40 ° C. for 10 minutes. Next, 1.0 mL of an acetylacetone reagent (refer to the following) is added, dropped to pH 9.80 with HCl, heated in a boiling water bath for 20 minutes, and then cooled to room temperature with running water. Furthermore, EtOH3.0mL and Ehrlich reagent 1.0mL (referred hereafter) are added, and after heating for 10 minutes at 65-70 degreeC, it cools to room temperature with running water. Enzymatic hydrolysis is evaluated by measuring VIS at 530 nm using a spectrophotometer (manufacturer: Shimadzu Rika Kikai Co., Ltd.).
Acetic acid buffer: Add pure water to 0.60 g of acetic acid, make up to 100 mL, make 0.1 M acetic acid solution, add pure water to 4.1015 g of sodium acetate and make up to 500 mL to obtain 0.1 M sodium acetate solution. Next, 10 mL of 0.1 M acetic acid solution and 160 mL of 0.1 M sodium acetate solution are mixed to prepare an acetic acid buffer having pH = 5.60. The pH is confirmed with a HORIBA Castani ACT pH meter.
Acetylacetone reagent: Prepare by dissolving 1 mL of acetylacetone in 50 mL of 0.5 mol / L Na 2 CO 3 .
Ehrlich reagent: Prepare by dissolving 0.4 g of DMAB in 15 mL of EtOH and adding 15 mL of conc-HCl.

また、本発明で得られる止血材は、スポンジの特定の密度、強度によっては柔軟性に欠けて割れやすかったり、もろい場合がある。その場合には非晶質の部分脱アセチル化キチン塩の溶液の状態でポリエチレングリコール、エチレングリコール、グリセリン、油剤などの柔軟剤を0.01〜10%W/W程度加えて同様に製造すれば最終に作成された止血材には柔軟性を持たせることができる。   Further, the hemostatic material obtained in the present invention may be fragile due to lack of flexibility depending on the specific density and strength of the sponge, or may be fragile. In that case, if it is manufactured in the same manner by adding about 0.01 to 10% W / W of a softening agent such as polyethylene glycol, ethylene glycol, glycerin or oil in the state of an amorphous partially deacetylated chitin salt, The created hemostatic material can have flexibility.

また、本発明では、非晶質の部分脱アセチル化キチン塩の溶液の時点で第3成分を入れ、最終の止血材がこれら第3成分を含んだものが容易に作成可能である。たとえば医薬品、化粧品、医薬部外品を含んだ止血材の製造が可能である。特に生理活性が他の化学成分や温度によって変性しやすい物質を止血材内に保持させることができる。   In the present invention, it is possible to easily prepare a third hemostatic material containing the third component at the time of the solution of the amorphous partially deacetylated chitin salt and the final hemostatic material. For example, it is possible to manufacture hemostatic materials including pharmaceuticals, cosmetics, and quasi drugs. In particular, a substance whose physiological activity is easily denatured by other chemical components or temperature can be retained in the hemostatic material.

また、これら薬剤を非晶質の部分脱アセチル化キチン塩のスポンジ中に混合し成型することで、薬剤に徐放性機能をもたせることが可能と考えられる。   In addition, it is considered that these drugs can be provided with a sustained release function by mixing and molding in an amorphous partially deacetylated chitin salt sponge.

実施例1
非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材の製造
以下の実施例2、各実験例で使用するスポンジ状止血材の製造を行った。製造方法は以下の通りである。
Example 1
Production of sponge hemostatic material mainly composed of amorphous partially deacetylated chitin salt The sponge hemostatic material used in the following Example 2 and each experimental example was produced. The manufacturing method is as follows.

48%NaOH 3kgに水0.6L、43メッシュの高純度キチン粉末(商品名:キチンL−PC)〔粘度 65mPa・s(NN―ジメチルアセトアミド/8%(W/W)塩化リチウム溶液に0.2%(W/W)の割合で溶解し、30℃で測定)、水分 1.8%、灰分 0.03%、DAC度 0.96%〕0.3kgを加え調製し、35〜60℃で2〜5時間分散させた。その後、氷6kgを加えて冷却条件下(−10〜−30℃)で3時間攪拌し、水6Lを加え、キチン濃度約2%(W/W)、アルカリ濃度約10%(W/W)のアルカリキチンドープを調製し、30℃でDAC度(脱アセチル化度)及び粘度を目的値になるように〔例えばDAC度30%、粘度 50mPa・s(20℃において0.5%(W/W)溶液) 〕熟成した。その後、溶液を150メッシュ ナイロンメッシュで減圧ろ過し、95%硫酸水溶液で中和した。この際に沈殿した部分脱アセチル化キチンゲルを50メッシュ ナイロンメッシュに移し、手で絞り脱水した。その後、4回湯洗して脱塩し、次いで圧搾した。次に、この脱水後の部分脱アセチル化キチンゲルを凍結真空乾燥した後、粉砕して脱アセチル化度約30%、粘度減少のない〔20℃において31mPa・s〜780mPa・s(0.5%(W/W)溶液)〕の非晶質の部分脱アセチル化キチン(非晶質キチンDAC30ともいう)を得た。
非晶質キチンDAC30(脱アセチル化度=30〜40%)〔20℃において粘度20〜100Pa・s(0.5%(W/W)溶液)〕又はコントロールとしてのキトサン(脱アセチル化度=100%)〔20℃において粘度20〜100Pa・s(0.5%(W/W)溶液)〕を用い、その1重量%を純水に加えた。その際、非晶質キチンDAC30を撹拌、分散させ、次いで、酢酸添加をおこなった。酢酸の添加量は非晶質キチンのアミノ基1モルに対し酢酸1.1モルを添加した。
48L NaOH 3kg, water 0.6L, 43 mesh high purity chitin powder (trade name: Chitin L-PC) [viscosity 65mPa · s (NN-dimethylacetamide / 8% (W / W) 0.2% in lithium chloride solution ( W / W) was dissolved and measured at 30 ° C.), 1.8% water, 0.03% ash, 0.96% DAC degree, 0.3 kg], and prepared and dispersed at 35-60 ° C. for 2-5 hours. Then, add 6kg of ice and stir for 3 hours under cooling conditions (-10 to -30 ° C), add 6L of water, chitin concentration about 2% (W / W), alkali concentration about 10% (W / W). Of alkali chitin dope and adjust the DAC degree (deacetylation degree) and viscosity to the target values at 30 ° C. [For example, DAC degree 30%, viscosity 50 mPa · s (0.5% at 20 ° C. (W / W) Solution)] Aged. Thereafter, the solution was filtered under reduced pressure with a 150 mesh nylon mesh and neutralized with 95% aqueous sulfuric acid. The partially deacetylated chitin gel precipitated at this time was transferred to a 50 mesh nylon mesh and manually dewatered. Then, it was desalted by washing with hot water four times and then squeezed. Next, the partially deacetylated chitin gel after dehydration was freeze-dried and then pulverized to give a degree of deacetylation of about 30% and no decrease in viscosity [from 31 mPa · s to 780 mPa · s (0.5% (W Amorphous partially deacetylated chitin (also referred to as amorphous chitin DAC30) was obtained.
Amorphous chitin DAC30 (Deacetylation degree = 30-40%) [Viscosity 20-100 Pa · s (0.5% (W / W) solution) at 20 ° C.]] or chitosan as control (Deacetylation degree = 100% ) [Viscosity 20-100 Pa · s at 20 ° C. (0.5% (W / W) solution)] was added to 1% by weight of pure water. At that time, amorphous chitin DAC30 was stirred and dispersed, and then acetic acid was added. Acetic acid was added in an amount of 1.1 mol of acetic acid to 1 mol of amino group of amorphous chitin.

酢酸添加量(g)は次のように計算した。なお以下で非晶質キチンとは非晶質の部分脱アセチル化キチンの意味である。
酢酸添加量(g)=非晶質キチン量(g)/非晶質キチンモノマー分子量×脱アセチル化度(%)/100×1.1×酢酸分子量(60)
The amount of acetic acid added (g) was calculated as follows. In the following, amorphous chitin means amorphous partially deacetylated chitin.
Acetic acid addition amount (g) = amorphous chitin amount (g) / amorphous chitin monomer molecular weight x degree of deacetylation (%) / 100 x 1.1 x acetic acid molecular weight (60)

非晶質キチンモノマー分子量は、次のように計算した。
非晶質キチンモノマー分子量=キトサンモノマー分子量(161)×脱アセチル化度(%)/100+キチンモノマー分子量(203)×(100−脱アセチル化度)/100
The molecular weight of the amorphous chitin monomer was calculated as follows.
Amorphous chitin monomer molecular weight = chitosan monomer molecular weight (161) × deacetylation degree (%) / 100 + chitin monomer molecular weight (203) × (100−deacetylation degree) / 100

よって、酢酸添加量(%)は次の式による。
酢酸添加量(%)=酢酸添加量(g)/溶液重量(g)×100
Therefore, the acetic acid addition amount (%) is according to the following formula.
Acetic acid addition amount (%) = acetic acid addition amount (g) / solution weight (g) x 100

添加後、溶液は完全に溶解するまで撹拌し、その後、酸(リン酸又はアスパラギン酸又はグルコン酸)添加を行った。酸添加量は非晶質キチンのアミノ基1モルに対し酸0.4〜0.8モルを添加する。計算式は以下のようになる。
酸添加量(g)=非晶質キチン量(g)/非晶質キチンモノマー分子量×脱アセチル化度(%)/100×0.4〜0.8×酸分子量
ここで酸分子量はグルコン酸が178.14、アスパラギン酸が133.1、リン酸が98である。
After the addition, the solution was stirred until completely dissolved, and then acid (phosphoric acid or aspartic acid or gluconic acid) was added. The amount of acid added is 0.4 to 0.8 mol of acid per 1 mol of amino group of amorphous chitin. The calculation formula is as follows.
Acid addition amount (g) = amorphous chitin amount (g) / amorphous chitin monomer molecular weight x degree of deacetylation (%) / 100 x 0.4 to 0.8 x acid molecular weight where the acid molecular weight is 178.14 for gluconic acid, asparagine The acid is 133.1 and phosphoric acid is 98.

酸の添加後、撹拌を1晩行い、攪拌後の溶液をろ過(ステンレスメッシュ 1480メッシュ エアー加圧式ろ過)した。ろ液をついで、シャーベット氷製造に供した。ろ過した非晶質キチン溶液の約1000gに対しドライアイスを500g〜700g程度加え、ブレンダーで粉砕し、シャーベット状にした。シャーベット温度は-1℃〜+2℃に調整した。   After the addition of the acid, stirring was performed overnight, and the solution after stirring was filtered (stainless steel mesh 1480 mesh air pressure filtration). The filtrate was then subjected to sherbet ice production. About 500 g to 700 g of dry ice was added to about 1000 g of the filtered amorphous chitin solution, and crushed with a blender to form a sherbet. The sherbet temperature was adjusted to -1 ° C to + 2 ° C.

得られたシャーベット氷をトレイに充填し、凍結させた。凍結は、-40℃の冷凍庫に入れ、1晩かけてシャーベットをしっかり緩徐に凍結させた。冷凍庫に入れておけば何日でも保存が可能である。ついで、凍結標品を凍結真空乾燥に供した。4日間の凍結真空乾燥後に、さらに2次乾燥を75℃で3日間処理し、残留酢酸を減少させた。又は、2次乾燥を低真空乾燥した。
これによって、表1に記載のサンプル番号の非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材の調製が完成した。
また、各サンプルの詳しい製造方法は以下の通りである。
The obtained sherbet ice was filled in a tray and frozen. Freezing was carried out in a freezer at −40 ° C., and the sherbet was frozen slowly and overnight. If you put it in the freezer, it can be stored for many days. Subsequently, the frozen sample was subjected to freeze vacuum drying. After 4 days of freeze-drying, further secondary drying was treated at 75 ° C. for 3 days to reduce residual acetic acid. Alternatively, the secondary drying was performed under low vacuum.
This completed the preparation of a sponge-like hemostatic material composed mainly of an amorphous partially deacetylated chitin salt having the sample numbers shown in Table 1.
Moreover, the detailed manufacturing method of each sample is as follows.

サンプルNO.S510204(表1参照)
原料に上記と同様に調製した非晶質キチン(脱アセチル化度=37.6%)〔20℃において粘度44mPa・s(0.5%(W/W)溶液)〕10g(1%(W/W)を使い純水987.04gに分散し、次いで酢酸(関東化学製 特級)1.2g(0.12%W/W)を添加した。
酢酸添加量は次の式によった。
酢酸添加量=非晶質キチン量(10g)/非晶質キチンモノマー分子量(187.2)×脱アセチル化度(37.6%)/100×酢酸分子量(60)=1.2
非晶質キチン分子量は次の式によった。
非晶質キチン分子量=キトサン分子量(161)×脱アセチル化度(37.6%)/100+キチン分子量(203)×(100−脱アセチル化度 37.6%)/100=187.2
酢酸添加された溶液を撹拌溶解し、さらにグルコノ−δ−ラクトン(関東化学製 特級) 1.7g(0.17%W/W)を添加した。グルコノ-δ-ラクトンは粉体であり水に溶解するとグルコン酸になる。
グルコン酸添加量は以下の式によった。
グルコン酸添加量=非晶質キチン量(10g)/非晶質キチンモノマー分子量(187.2)×脱アセチル化度(37.6%)/100×0.48×グルコノ-δ-ラクトン分子量(178.14)=1.7g
グルコン酸添加後、撹拌を1晩行い、ろ過(ステンレスメッシュ 1480メッシュ エアー加圧ろ過)を行い、ろ液をシャーベット氷製造に供した。非晶質キチン溶液の約1000gに対しドライアイスを500g添加し、ブレンダー(オスター社 OB-1)で粉砕し、シャーベット状にした。シャーベット温度は0℃に調整した。その後、トレイ充填し、-40℃で凍結し、冷凍庫中に3日間保存した。
Sample No. S510204 (See Table 1)
Amorphous chitin prepared as above (deacetylation degree = 37.6%) [viscosity 44mPa · s (0.5% (W / W) solution) at 20 ° C] 10g (1% (W / W)) Dispersed in 987.04 g of pure water to be used, and then 1.2 g (0.12% W / W) of acetic acid (special grade manufactured by Kanto Chemical) was added.
The amount of acetic acid added was according to the following formula.
Acetic acid addition amount = amorphous chitin amount (10 g) / amorphous chitin monomer molecular weight (187.2) x degree of deacetylation (37.6%) / 100 x acetic acid molecular weight (60) = 1.2
The amorphous chitin molecular weight was according to the following formula.
Amorphous chitin molecular weight = chitosan molecular weight (161) × degree of deacetylation (37.6%) / 100 + chitin molecular weight (203) × (100−degree of deacetylation 37.6%) / 100 = 187.2
The solution to which acetic acid had been added was dissolved by stirring, and 1.7 g (0.17% W / W) of glucono-δ-lactone (special grade manufactured by Kanto Chemical) was further added. Glucono-δ-lactone is a powder and becomes gluconic acid when dissolved in water.
The amount of gluconic acid added was according to the following formula.
Gluconic acid addition amount = Amorphous chitin amount (10 g) / Amorphous chitin monomer molecular weight (187.2) x Deacetylation degree (37.6%) / 100 x 0.48 x Glucono-δ-lactone molecular weight (178.14) = 1.7 g
After the addition of gluconic acid, the mixture was stirred overnight, filtered (stainless mesh 1480 mesh air pressure filtration), and the filtrate was subjected to sherbet ice production. 500 g of dry ice was added to about 1000 g of the amorphous chitin solution, and pulverized with a blender (Oster OB-1) to form a sherbet. The sherbet temperature was adjusted to 0 ° C. Thereafter, the tray was filled, frozen at −40 ° C., and stored in a freezer for 3 days.

サンプルNO.S604182(表1参照)
原料に上記と同様に調製した非晶質キチン(脱アセチル化度=37.7%)〔20℃において粘度77mPa・s(0.5%(W/W)溶液)〕10g(1%(W/W)を使い純水988.3gに分散し、懸濁させた。
非晶質キチン分子量は次の式によった。
非晶質キチン分子量=キトサン分子量(161)×脱アセチル化度(37.7%)/100+キチン分子量(203)×(100−脱アセチル化度 37.7%)/100=187.17
懸濁液を撹拌しながらグルコノ−δ−ラクトン(関東化学製 特級) 1.7g(0.17%W/W)を添加した。グルコノ-δ-ラクトンは粉体であり水に溶解するとグルコン酸になる。
グルコン酸添加量は以下の式によった。
グルコン酸添加量=非晶質キチン量(10g)/非晶質キチンモノマー分子量(187.17)×脱アセチル化度(37.7%)/100×0.48×グルコノ-δ-ラクトン分子量(178.14)=1.7g
グルコン酸添加後、撹拌を1晩行っても完全には溶解せず白濁していた。この白濁液をシャーベット氷製造に供した。非晶質キチン溶液の約1000gに対しドライアイスを500g添加し、ブレンダー(オスター社 OB-1)で粉砕し、シャーベット状にした。シャーベット温度は0℃に調整した。その後、トレイ充填し、-40℃で凍結し、冷凍庫中に4時間保存した。ついで、凍結真空乾燥し、さらに加熱処理を75℃で3日間(乾燥機 ダルトン製NY4型)おこない、非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材を得た。
Sample No. S604182 (See Table 1)
10 g (1% (W / W)) of amorphous chitin prepared in the same manner as above (deacetylation degree = 37.7%) [viscosity 77mPa · s (0.5% (W / W) solution) at 20 ° C] It was dispersed in 988.3 g of pure water for use and suspended.
The amorphous chitin molecular weight was according to the following formula.
Amorphous chitin molecular weight = chitosan molecular weight (161) × degree of deacetylation (37.7%) / 100 + chitin molecular weight (203) × (100−degree of deacetylation 37.7%) / 100 = 187.17
While stirring the suspension, 1.7 g (0.17% W / W) of glucono-δ-lactone (special grade manufactured by Kanto Chemical) was added. Glucono-δ-lactone is a powder and becomes gluconic acid when dissolved in water.
The amount of gluconic acid added was according to the following formula.
Gluconic acid addition amount = Amorphous chitin amount (10 g) / Amorphous chitin monomer molecular weight (187.17) x Deacetylation degree (37.7%) / 100 x 0.48 x Glucono-δ-lactone molecular weight (178.14) = 1.7 g
After addition of gluconic acid, even if stirring was performed overnight, the solution was not completely dissolved and became cloudy. This white turbid solution was subjected to sherbet ice production. 500 g of dry ice was added to about 1000 g of the amorphous chitin solution, and pulverized with a blender (Oster OB-1) to form a sherbet. The sherbet temperature was adjusted to 0 ° C. Thereafter, the tray was filled, frozen at −40 ° C., and stored in a freezer for 4 hours. Next, freeze-drying was carried out, followed by further heat treatment at 75 ° C. for 3 days (NY4 type, dryer Dalton) to obtain a sponge-like hemostatic material mainly composed of amorphous partially deacetylated chitin salt.

サンプルNO.S606135
原料に上記と同様に調製した非晶質キチン(脱アセチル化度=37.7%)〔20℃において粘度77mPa・s(0.5%(W/W)溶液)〕10g(1%(W/W)を使い純水987.1gに分散し、懸濁させた。
非晶質キチン分子量は次の式によった。
非晶質キチン分子量=キトサン分子量(161)×脱アセチル化度(37.7%)/100+キチン分子量(203)×(100−脱アセチル化度 37.7%)/100=187.17
懸濁液を撹拌しながらグルコノ−δ−ラクトン(関東化学製 特級) 2.87g(0.287%W/W)を添加した。グルコノ-δ-ラクトンは粉体であり水に溶解するとグルコン酸になる。
グルコン酸添加量は以下の式によった。
グルコン酸添加量=非晶質キチン量(10g)/非晶質キチンモノマー分子量(187.17)×脱アセチル化度(37.7%)/100×0.8×グルコノ-δ-ラクトン分子量(178.14)=2.87g
グルコン酸添加後、撹拌を1晩行い溶解させた。溶液のろ過(ステンレスメッシュ 1480メッシュ エアー加圧ろ過)を行い、ろ液をシャーベット氷製造に供した。非晶質キチン溶液の約1000gに対しドライアイスを500g添加し、ブレンダー(オスター社 OB-1)で粉砕し、シャーベット状にした。シャーベット温度は0℃に調整した。その後、トレイ充填し、-40℃で凍結し、冷凍庫中に3時間保存した。ついで、凍結真空乾燥し、さらに加熱処理を75℃で3日間(乾燥機 ダルトン製NY4型)おこない、非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材を得た。
Sample NO.S606135
10 g (1% (W / W)) of amorphous chitin prepared in the same manner as above (deacetylation degree = 37.7%) [viscosity 77mPa · s (0.5% (W / W) solution) at 20 ° C] It was dispersed in 987.1 g of pure water for use and suspended.
The amorphous chitin molecular weight was according to the following formula.
Amorphous chitin molecular weight = chitosan molecular weight (161) × degree of deacetylation (37.7%) / 100 + chitin molecular weight (203) × (100−degree of deacetylation 37.7%) / 100 = 187.17
While stirring the suspension, 2.87 g (0.287% W / W) of glucono-δ-lactone (special grade manufactured by Kanto Chemical) was added. Glucono-δ-lactone is a powder and becomes gluconic acid when dissolved in water.
The amount of gluconic acid added was according to the following formula.
Gluconic acid addition amount = Amorphous chitin amount (10 g) / Amorphous chitin monomer molecular weight (187.17) x Deacetylation degree (37.7%) / 100 x 0.8 x Glucono-δ-lactone molecular weight (178.14) = 2.87 g
After adding gluconic acid, the mixture was stirred overnight to dissolve. The solution was filtered (stainless mesh 1480 mesh air pressure filtration), and the filtrate was subjected to sherbet ice production. 500 g of dry ice was added to about 1000 g of the amorphous chitin solution, and pulverized with a blender (Oster OB-1) to form a sherbet. The sherbet temperature was adjusted to 0 ° C. Thereafter, the tray was filled, frozen at −40 ° C., and stored in a freezer for 3 hours. Next, freeze-drying was carried out, followed by further heat treatment at 75 ° C. for 3 days (NY4 type, dryer Dalton) to obtain a sponge-like hemostatic material mainly composed of amorphous partially deacetylated chitin salt.

なお、表中、キトサンと表示の欄は使用した以下に例示する各種キチン誘導体を含む。
FMは、中粘度キトサン(DAC度 100%、粘度44mPa・s:サンプルNo.S510194、No.S510195、S510203)、DAC30Mは中粘度非晶質キチン(DAC度 25%〜40%程度 粘度20〜100mPa・s:サンプルNo.S509081、No.S510191、No.S510204、No.S604182、No.S606133、No.S606134、No.S606135)、DAC30Lは低粘度非晶質キチン(DAC度 25%〜40%程度 粘度20mPa・s以下:サンプルNo.S510192、No.S510193、No.S510201)、DAC30Hは高粘度非晶質キチン(DAC度 25%〜40%程度 粘度100〜300mPa・s:サンプルNo.S601161、No.S601162)、 DAC50Lは低粘度非晶質キチン(DAC度 50%付近 粘度 20mPa・s以下:サンプルNo.S509082、No.S510062、No.S510202)、DAC30L+FH(DAC度 59%、粘度86mPa・s:サンプルNo.S510281)は低粘度非晶質キチンDAC30Lと高粘度キトサンFH(DAC度 100%、粘度215mPa・s)を13:7に混合したものである。
In the table, the column labeled “chitosan” includes various chitin derivatives exemplified below.
FM is medium viscosity chitosan (DAC degree 100%, viscosity 44mPa · s: sample No.S510194, No.S510195, S510203), DAC30M is medium viscosity amorphous chitin (DAC degree about 25% ~ 40% viscosity 20 ~ 100mPa・ S: Samples No. S509081, No. S510191, No. S510204, No. S604182, No. S606133, No. S606134, No. S606135), DAC30L is low viscosity amorphous chitin (DAC degree of about 25% to 40%) Viscosity 20 mPa · s or less: Samples No. S510192, No. S510193, No. S510201), DAC30H is a high viscosity amorphous chitin (DAC degree of about 25% to 40% Viscosity 100 to 300 mPa · s: Sample No. S601161, No DAC50L is low viscosity amorphous chitin (DAC degree around 50%, viscosity 20mPa · s or less: sample No.S509082, No.S510062, No.S510202), DAC30L + FH (DAC degree 59%, viscosity 86mPa · s: Sample No. S510281) is a mixture of low-viscosity amorphous chitin DAC30L and high-viscosity chitosan FH (DAC degree 100%, viscosity 215 mPa · s) mixed at 13: 7.

実施例2
実施例1で得られたスポンジ状止血材(サンプルNo.S510204)の構造を走査電子顕微鏡で確認した。
Example 2
The structure of the sponge-like hemostatic material (sample No. S510204) obtained in Example 1 was confirmed with a scanning electron microscope.

実施例1で得られたスポンジ状止血材(サンプルNo.S510204)の外観を図1に示した。さらに、走査電顕図を図1−2に示した。いずれも構造及びポアサイズが実質的に均一であった。なお、シャーベット氷にすることなく、中粘度キトサンFM(実験例1参照)の溶液をトレイに充填し、-40℃冷凍庫で通常凍結をし、最終凍結温度は-39℃の場合に得られた走査電顕図は図1−3に示した。図は、断面方向をカッターでスライスし観察したもので観察する場所により構造がかなり異なる(断面1:A)(断面2:B)。また、材料の最表面を観察し(C)、さらに材料を平面方向にカッターでスライスし、上層部(D)及び中層部(E)を観察したところ上層部、中層部でポアサイズが大きく異なっていた。   The appearance of the sponge-like hemostatic material (sample No. S510204) obtained in Example 1 is shown in FIG. Further, a scanning electron micrograph is shown in FIG. In all cases, the structure and the pore size were substantially uniform. In addition, without using sherbet ice, the medium viscosity chitosan FM (see Experimental Example 1) was filled in a tray and normally frozen in a -40 ° C freezer, and the final freezing temperature was -39 ° C. Scanning electron micrographs are shown in FIGS. 1-3. The figure is obtained by slicing and observing the cross-sectional direction with a cutter, and the structure varies considerably depending on the observation location (cross-section 1: A) (cross-section 2: B). In addition, when the outermost surface of the material was observed (C), the material was further sliced with a cutter in the plane direction, and the upper layer portion (D) and the middle layer portion (E) were observed, the pore size was greatly different between the upper layer portion and the middle layer portion. It was.

実験例1
非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材の分析結果
実施例1で得られた各スポンジ状止血材の物理的特性を分析、評価した。分析結果は表1に示した。
Experimental example 1
Results of analysis of sponge-like hemostatic material mainly composed of amorphous partially deacetylated chitin salt The physical characteristics of each sponge-like hemostatic material obtained in Example 1 were analyzed and evaluated. The analysis results are shown in Table 1.

DAC度 25%〜60%程度 粘度20〜200mPa・sである中粘度非晶質キチンDAC30M、DAC60M及び高粘度非晶質キチンDAC30Hが好適な製剤原料であることが確認された。さらに酸としては、グルコン酸が最適であり、アスパラギン酸(Asp)も使用可能である。
なお、表中、太枠は動物実験で成績がよい検体である。
It was confirmed that medium-viscosity amorphous chitin DAC30M, DAC60M and high-viscosity amorphous chitin DAC30H having a DAC degree of about 25% to 60% and a viscosity of 20 to 200 mPa · s are suitable preparation raw materials. Furthermore, gluconic acid is most suitable as the acid, and aspartic acid (Asp) can also be used.
In the table, the thick frame is a sample with good results in animal experiments.

実験例2
動物実験結果
実施例1で得られた各スポンジ状止血材を動物実験に使用した。分析結果は以下表2に示した。なお、動物実験結果の6回試行でのまとめである。
Experimental example 2
Animal Experiment Results Each sponge-like hemostatic material obtained in Example 1 was used for animal experiments. The analysis results are shown in Table 2 below. In addition, it is a summary of 6 trials of animal experiment results.

表中、キトサンと表示の欄は使用した以下に例示する各種キチン誘導体を含む。FMは、中粘度キトサン(DAC度 100%、粘度44mPa・s)、DAC30Mは中粘度非晶質キチン(DAC度 38.0%、粘度46mPa・s)、DAC50Lは低粘度非晶質キチン(DAC度 53.0%、粘度 8mPa・s)である。動物実験の×は「悪い」、△は「良くも悪くもない」、○は「良好」、◎は「非常に良好」の意味である。
この結果、DAC30M、即ち中粘度非晶質キチン(DAC度 30%〜40%程度 粘度20〜100mPa・s)が好適な製剤原料であることが確認された。さらに酸としては、グルコン酸が最適であり、アスパラギン酸(Asp)も使用可能である。
In the table, the column labeled chitosan includes the various chitin derivatives exemplified below. FM is medium viscosity chitosan (DAC degree 100%, viscosity 44mPa · s), DAC30M is medium viscosity amorphous chitin (DAC degree 38.0%, viscosity 46mPa · s), DAC50L is low viscosity amorphous chitin (DAC degree 53.0) %, Viscosity 8 mPa · s). In animal experiments, x means “bad”, Δ means “not good or bad”, ○ means “good”, and ◎ means “very good”.
As a result, it was confirmed that DAC30M, that is, medium-viscosity amorphous chitin (DAC degree of 30% to 40%, viscosity of 20 to 100 mPa · s) is a suitable drug substance. Furthermore, gluconic acid is most suitable as the acid, and aspartic acid (Asp) can also be used.

実験例3
実施例1で得られた各スポンジ状止血材で調製した止血材をウサギ大腿骨頸部骨髄から出血する骨髄血に浸漬し、血液吸収性を評価した。
シャーベット凍結方式で作成した止血材の血液吸収性は急速に向上した。シャーベット凍結方式で試作したサンプルのうちDAC30M Asp塩、DAC50L Asp塩の性能を比較したところ、DAC30M Asp塩は血液吸収性が良好であった(図2)。一方、DAC50L Asp塩は血液吸収性がDAC30M Asp塩より悪く、一定時間経過後、検体は収縮しボロボロ状態に分断されてしまった。この結果、DAC30M、DAC60M即ち中粘度非晶質キチン(DAC度 30%〜60%程度 粘度20〜100mPa・s)が好適な製剤原料であることが確認された。
Experimental example 3
The hemostatic material prepared with each sponge-like hemostatic material obtained in Example 1 was immersed in bone marrow blood that bleeds from the rabbit femoral neck bone marrow, and blood absorbability was evaluated.
The blood absorbability of the hemostatic material prepared by the sherbet freezing method improved rapidly. When the performances of DAC30M Asp salt and DAC50L Asp salt were compared among the samples prepared by the sherbet freezing method, DAC30M Asp salt showed good blood absorbability (FIG. 2). On the other hand, the DAC50L Asp salt was worse in blood absorption than the DAC30M Asp salt, and after a certain period of time, the specimen contracted and was broken into a tattered state. As a result, it was confirmed that DAC30M and DAC60M, that is, medium-viscosity amorphous chitin (DAC degree of about 30% to 60%, viscosity of about 20 to 100 mPa · s) is a suitable drug substance.

実験例4
本発明の止血材のウサギ脊椎静脈叢からの微小出血に対する効果について検討した。In vitroでの血液吸収性試験において良好なものを止血実験の検体に供した。即ち、DAC30M Asp塩、DAC30M リン酸塩、FMリン酸塩、DAC30Mグルコン酸塩(酢酸残留と酢酸フリーの2種類)、DA60Mグルコン酸塩である。酸の量はアミノ基1モルに対し0.4〜0.8モルにした。DAC30Mでは酸の添加量は少ないが、FMはアミノ基が多いので当然、添加する酸の量も多くした。本発明の止血材のポアサイズは50〜400μmであり、従来のアルミ板を挟み急速凍結する方式よりポアサイズが大きく均質になったので、血液吸収性、ハンドリングはかなり向上し、すべての検体で止血効果が得られ、止血材として使えるレベルに達した。ハンドリングは、DAC30Mグルコン酸塩(酢酸フリー)>DAC30Mグルコン酸塩(酢酸残留)>DAC30Mリン酸塩>FMリン酸塩>DAC30M Asp塩の順で好適であった(表2)。FMリン酸塩はpHが大きく低下し、多少ハンドリングが悪い。グルコン酸塩は血液に含浸させたときのpHの低下がほとんどなく、多少のゲル化がみられ、良好な物性である。また、仮にグルコン酸が生体吸収されるとしても生体に悪影響が少ないことが予測されること及び止血効果も明確なため止血材として非常に有用な素材と考えられた。なお、ハンドリングとは、止血材としての取り扱い易さを意味し、スポンジ止血材が遊離する酸により溶解し、手術器具にベトベトと吸着し取り扱いが困難になる場合があり、この困難度により判定するものである。
なお、図3〜5は、本発明止血材による、具体的な止血処理における状態を示す。図3は止血材の創傷部位への貼付状態、図4は創傷部位での止血完成状態、図5は止血材の回収したものである。
Experimental Example 4
The effect of the hemostatic material of the present invention on microhemorrhage from the rabbit vertebral venous plexus was examined. An in vitro blood absorbability test was used as a specimen for hemostasis experiments. That is, DAC30M Asp salt, DAC30M phosphate, FM phosphate, DAC30M gluconate (acetic acid residual and acetic acid free) and DA60M gluconate. The amount of acid was 0.4 to 0.8 mole per mole of amino group. In DAC30M, the amount of acid added is small, but since FM has many amino groups, naturally the amount of acid added was increased. The pore size of the hemostatic material of the present invention is 50 to 400 μm, and since the pore size is larger and more homogeneous than the conventional method of rapid freezing with an aluminum plate in between, blood absorption and handling are significantly improved, and hemostatic effect is achieved in all specimens Was obtained and reached a level that can be used as a hemostatic material. Handling was preferable in the order of DAC30M gluconate (acetic acid free)> DAC30M gluconate (acetic acid residue)> DAC30M phosphate> FM phosphate> DAC30M Asp salt (Table 2). FM phosphate has a very low pH and is somewhat difficult to handle. Gluconate has almost no decrease in pH when impregnated in blood, has some gelation, and has good physical properties. In addition, even if gluconic acid is absorbed into the living body, it is predicted that there is little adverse effect on the living body, and since the hemostatic effect is clear, it is considered to be a very useful material as a hemostatic material. In addition, handling means the ease of handling as a hemostatic material, and the sponge hemostatic material is dissolved by the liberated acid, and it may be difficult to handle by adsorbing sticky to the surgical instrument. Is.
In addition, FIGS. 3-5 shows the state in the specific hemostatic process by the hemostatic material of this invention. FIG. 3 shows a state where the hemostatic material is applied to the wound site, FIG. 4 shows a completed state of hemostasis at the wound site, and FIG. 5 shows a recovery of the hemostatic material.

実験例5
本発明の止血材の生体分解速度について検討した。止血材は、使用後に生体内に埋没するものが大部分である為、止血材としての役割が終わればできるだけ早く吸収されて消失することが好ましい。
よって、本発明の止血材が、人体の創傷面で認められるリゾチームで速やかに分解されるかを確認した。実験方法及び実験結果は、以下の通りである。
Experimental Example 5
The biodegradation rate of the hemostatic material of the present invention was examined. Since most hemostatic materials are buried in the living body after use, it is preferably absorbed and disappeared as soon as possible after the role as the hemostatic material is finished.
Therefore, it was confirmed whether the hemostatic material of the present invention was rapidly decomposed with lysozyme found on the wound surface of the human body. The experimental method and experimental results are as follows.

1.試薬
各止血材のサンプルとして、実施例1で得られたDAC30(非晶質キチン:脱アセチル化度約30%)及びFM-80、FH-80(販売元:甲陽ケミカル(株))を使用した。また、生体内酵素として、リゾチーム(卵白由来、最適pH5.0〜6.0、販売元:和光純薬)を使用した。
2.各止血材のスポンジの調製法
上記DAC、FH及びFMを以下の方法でスポンジ状に調製した。
従来の急速冷凍
FMキトサンを0.75%酢酸に溶解させ、これを伝導板に挟み、エタノール冷媒中で急冷凍結乾燥し、酢酸を除去するために熱乾燥をした(図6:FM-A-Q)。
FHキトサンを0.75%酢酸に溶解させ、これを伝導板に挟み、エタノール冷媒中で急冷凍結乾燥し、酢酸を除去するために熱乾燥をした(図6:FH-A-Q)。
本発明の「シャーベット凍結方式」
FMキトサンを0.4%酢酸に溶解させ、次に0.365%リン酸を加えた。そして、このキトサン配合液をドライアイスと共にブレンダーで粉砕し、トレイに充填後、冷凍庫で徐々に凍結させ、凍結真空乾燥し、酢酸を除去するために2次乾燥をした(図6:FM-P-G)。
DAC30を0.125%酢酸に溶解させ、次に0.094%リン酸を加えた。そして、このキトサン配合液をドライアイスと共にブレンダーで粉砕し、トレイに充填後、冷凍庫で徐々に凍結させ、凍結真空乾燥し、酢酸を除去するために2次乾燥をした(図6:DAC30-P-G)。
DAC30を0.125%酢酸に溶解させ,、次に0.171%グルコン酸を加えた。そして、このキトサン配合液をドライアイスと共にブレンダーで粉砕し、トレイに充填後、冷凍庫で徐々に凍結させ、凍結真空乾燥し、酢酸を除去するために2次乾燥をした(図6:DAC30-G-G)。
3.各止血材での分解測定
各止血材(FM-A-Q,FH-A-Q,FM-P-G,DAC30-P-G,DAC30-G-G)10mgに、リゾチーム2mgを含む0.1M酢酸buffer(pH5.60)100mlを加えた。この溶液を37℃に保ちながら恒温振とう器で加水分解した。各時間での酵素分解は、分光光度計を使用して、下記に示すRondle-Morgan法によって評価した。
Rondle-Morgan法によるGlcNの定量
リゾチームで酵素加水分解したサンプル溶液1.5mLをサンプル管にとり、酢酸buffer1.5mLを加え、40℃、静置で10分間加熱した。続いて、アセチルアセトン試薬1.0mLを加え、HClでpH9.80まで落とし、沸騰水浴中で20分間加熱した後、流水で室温まで冷却した。EtOH3.0mLとエールリッヒ試薬1.0mLを加え、65〜70℃で10分間加熱した後、流水で室温まで冷却した。酵素加水分解は分光光度計を使用して、530nmにおけるVIS測定して評価した。
1. Reagents DAC30 (amorphous chitin: deacetylation degree of about 30%), FM-80, and FH-80 (distributor: Koyo Chemical Co., Ltd.) obtained in Example 1 are used as samples of each hemostatic material. did. In addition, lysozyme (derived from egg white, optimum pH 5.0 to 6.0, sold by Wako Pure Chemical Industries) was used as an in vivo enzyme.
2. Preparation method of sponge of each hemostatic material The above DAC, FH and FM were prepared in a sponge form by the following method.
Conventional quick freezing
FM chitosan was dissolved in 0.75% acetic acid, sandwiched between conductive plates, quenched and freeze-dried in an ethanol refrigerant, and heat-dried to remove acetic acid (FIG. 6: FM-AQ).
FH chitosan was dissolved in 0.75% acetic acid, sandwiched between conductive plates, quenched and freeze-dried in ethanol refrigerant, and heat-dried to remove acetic acid (FIG. 6: FH-AQ).
"Sherbet freezing method" of the present invention
FM chitosan was dissolved in 0.4% acetic acid and then 0.365% phosphoric acid was added. Then, this chitosan compounded liquid was pulverized with a blender together with dry ice, filled into a tray, gradually frozen in a freezer, freeze-dried under vacuum, and secondary dried to remove acetic acid (FIG. 6: FM-PG). ).
DAC30 was dissolved in 0.125% acetic acid and then 0.094% phosphoric acid was added. Then, this chitosan compounded liquid was pulverized with a blender together with dry ice, filled into a tray, gradually frozen in a freezer, freeze-vacuum dried, and secondarily dried to remove acetic acid (FIG. 6: DAC30-PG). ).
DAC30 was dissolved in 0.125% acetic acid, then 0.171% gluconic acid was added. This chitosan compounded solution was pulverized with a blender together with dry ice, filled into a tray, gradually frozen in a freezer, freeze-dried, and dried to remove acetic acid (FIG. 6: DAC30-GG). ).
3. Decomposition measurement with each hemostatic material Add 100 ml of 0.1M acetic acid buffer (pH5.60) containing 2 mg of lysozyme to 10 mg of each hemostatic material (FM-AQ, FH-AQ, FM-PG, DAC30-PG, DAC30-GG) It was. This solution was hydrolyzed with a constant temperature shaker while maintaining at 37 ° C. Enzymatic degradation at each time was evaluated by the Rondle-Morgan method shown below using a spectrophotometer.
Determination of GlcN by Rondle-Morgan method 1.5 mL of a sample solution hydrolyzed with lysozyme was placed in a sample tube, 1.5 mL of acetic acid buffer was added, and the mixture was heated at 40 ° C. for 10 minutes. Subsequently, 1.0 mL of an acetylacetone reagent was added, the pH was lowered to 9.80 with HCl, the mixture was heated in a boiling water bath for 20 minutes, and then cooled to room temperature with running water. After adding EtOH 3.0mL and Ehrlich's reagent 1.0mL and heating at 65-70 degreeC for 10 minute (s), it cooled to room temperature with running water. Enzymatic hydrolysis was evaluated by measuring VIS at 530 nm using a spectrophotometer.

各止血材のリゾチームによる分解速度の結果
本発明の止血材であるDAC30は、FM及びFHと比較して、分解性が高かった(図6)。これにより、本発明の止血材は、従来の止血材よりも生体分解性が優れていることが確認された。
Results of degradation rate of each hemostatic material by lysozyme DAC30, which is the hemostatic material of the present invention, was more degradable than FM and FH (FIG. 6). Thereby, it was confirmed that the hemostatic material of the present invention is more biodegradable than the conventional hemostatic material.

本発明の止血材The hemostatic material of the present invention 走査電顕図Scanning electron microscope 中粘度キトサンFMの走査電顕図Scanning electron micrograph of medium viscosity chitosan FM 止血材の血液吸収性試験結果Blood absorption test results of hemostatic material 止血材の創傷部位への貼付状態Application of hemostatic material to wound site 創傷部位での止血完成状態Completion of hemostasis at the wound site 回収した止血材Collected hemostatic material 本発明の止血材の生体分解結果Results of biodegradation of the hemostatic material of the present invention

Claims (9)

脱アセチル化度が20〜65%、20℃において0.5%W/W溶液での粘度が20mPa・s〜200mPa・sの非晶質の部分脱アセチル化キチンのグルコン酸塩又はアスパラギン酸塩を主成分とするスポンジ状止血材。 Mainly gluconate or aspartate of amorphous partially deacetylated chitin with a degree of deacetylation of 20-65% and viscosity at 20 ° C in 0.5% W / W solution of 20mPa · s to 200mPa · s Sponge hemostatic material as an ingredient. 製造時のグルコン酸又はアスパラギン酸の酸添加量を非晶質の部分脱アセチル化キチンのアミノ基の1モルに対し0.2〜1.00モルとし、凍結させた凍結氷を粉砕し、型枠に充填し、再度、凍結することによって調製されることを特徴とする請求項1に記載の止血材。 The amount of gluconic acid or aspartic acid added during production is 0.2 to 1.00 mol per mol of the amino group of amorphous partially deacetylated chitin, and the frozen ice is crushed and filled into a mold. The hemostatic material according to claim 1, which is prepared by freezing again . 最終製剤の残留酸濃度が、酢酸0〜7.0%W/W、グルコン酸又はアスパラギン酸2〜40%W/Wであり、非晶質の部分脱アセチル化キチンのアミノ基の1モルに対し総酸イオンが0.2〜1.00モルである請求項1又は2に記載の止血材。 Residual acid concentration of the final preparation is 0-7.0% W / W acetic acid, 2-40% W / W gluconic acid or aspartic acid, and the total amount is 1 mol of amino group of amorphous partially deacetylated chitin. The hemostatic material according to claim 1 or 2, wherein the acid ion is 0.2 to 1.00 mol. 最終製剤の体積当り重量が、0.005〜0.035g/cm3 である請求項1〜3の何れか一に記載の止血材。 The hemostatic material according to any one of claims 1 to 3 , wherein the final preparation has a weight per volume of 0.005 to 0.035 g / cm 3 . 最終製剤が、そのポアサイズが50〜400μmであり、実質的に均質構造である請求項1〜4の何れか一に記載の止血材。 The hemostatic material according to any one of claims 1 to 4, wherein the final preparation has a pore size of 50 to 400 µm and a substantially homogeneous structure. 非晶質の部分脱アセチル化キチンの調製が、約40%W/Wの苛性ソーダ添加時の処理温度を35〜60度、処理時間を2〜5時間で行うことを特徴とする請求項1〜5の何れか一に記載の止血材。 The preparation of amorphous partially deacetylated chitin is carried out at a treatment temperature of 35 to 60 degrees and a treatment time of 2 to 5 hours when caustic soda of about 40% W / W is added. The hemostatic material according to any one of 5. 脱アセチル化度が20〜65%の非晶質の部分脱アセチル化キチンを懸濁させた後、グルコン酸又はアスパラギン酸を非晶質の部分脱アセチル化キチンのアミノ基の1モルに対し0.2〜1.0モルに添加し、撹拌を行い、ついで攪拌後の溶液のろ液を氷結させ、粉砕し、シャーベット状にし、これを製品トレイに充填して凍結真空乾燥・さらに2次乾燥によって調製する非晶質の部分脱アセチル化キチン塩を主成分とするスポンジ状止血材の製造方法。 After suspending amorphous partially deacetylated chitin having a degree of deacetylation of 20 to 65%, gluconic acid or aspartic acid is added to 0.2 mol per 1 mol of amino group of amorphous partially deacetylated chitin. Add to ~ 1.0 mol, stir, and then freeze the filtrate of the solution after stirring, crush and form into a sherbet, fill it into a product tray, and prepare it by freeze vacuum drying and further secondary drying A method for producing a sponge-like hemostatic material mainly comprising a crystalline partially deacetylated chitin salt. グルコン酸又はアスパラギン酸の添加前に、酢酸添加により非晶質の部分脱アセチル化キチンを溶解させる請求項7に記載の方法。 The method according to claim 7, wherein amorphous partially deacetylated chitin is dissolved by addition of acetic acid before addition of gluconic acid or aspartic acid. 2次乾燥及び/又は加熱処理を65〜85度、1〜7日間行う請求項8に記載の方法。 The method according to claim 8, wherein the secondary drying and / or heat treatment is performed at 65 to 85 degrees for 1 to 7 days.
JP2007034030A 2006-02-14 2007-02-14 Amorphous partially deacetylated chitin salt sponge hemostatic material and method for producing the same Active JP5160102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034030A JP5160102B2 (en) 2006-02-14 2007-02-14 Amorphous partially deacetylated chitin salt sponge hemostatic material and method for producing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2006036893 2006-02-14
JP2006036893 2006-02-14
JP2006316372 2006-11-22
JP2006316372 2006-11-22
JP2007032776 2007-02-13
JP2007032776 2007-02-13
JP2007034030A JP5160102B2 (en) 2006-02-14 2007-02-14 Amorphous partially deacetylated chitin salt sponge hemostatic material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008220388A JP2008220388A (en) 2008-09-25
JP5160102B2 true JP5160102B2 (en) 2013-03-13

Family

ID=39839705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034030A Active JP5160102B2 (en) 2006-02-14 2007-02-14 Amorphous partially deacetylated chitin salt sponge hemostatic material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5160102B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020055786A1 (en) * 1994-08-16 2002-05-09 Anthony Atala Reconstruction of urological structures with polymeric matrices
CA2771365A1 (en) 2009-09-01 2011-03-10 Medovent Gmbh Chitosan tissue dressing
EP2512535A1 (en) * 2009-12-16 2012-10-24 Baxter International Inc Hemostatic sponge
WO2011099087A1 (en) * 2010-02-15 2011-08-18 甲陽ケミカル株式会社 Chitin-derived sponge hemostatic material and method for producing same
WO2012105685A1 (en) * 2011-02-04 2012-08-09 国立大学法人九州大学 Hydrogel produced from chitosan derivative
TWI740312B (en) * 2019-12-18 2021-09-21 國立臺灣海洋大學 Chitin aqueous solution and its obtaining method
CN111423527A (en) * 2020-06-02 2020-07-17 中国海洋大学 Method for preparing chitin by removing ash content of shrimp heads

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142927A (en) * 1983-12-28 1985-07-29 Lion Corp Medical band
JPH0751603B2 (en) * 1986-10-03 1995-06-05 ユニチカ株式会社 Chitosan sponge
JPH09169654A (en) * 1995-12-22 1997-06-30 Unitika Ltd Hemostatic agent
JP2990248B2 (en) * 1997-06-18 1999-12-13 鳥取県 Method for producing amorphous water-soluble partially deacetylated chitin
JPH11276189A (en) * 1998-03-30 1999-10-12 Tottori Prefecture Production of oligosaccharide with enzyme using amorphous water-soluble partially deacetylated chitin as substrate
JP4737805B2 (en) * 2000-07-27 2011-08-03 京セラ株式会社 Hemostatic material
KR100953465B1 (en) * 2001-06-14 2010-04-16 프로비던스 헬스 시스템-오레곤 Wound dressing and method for controlling severe, life-threatening bleeding
JP4955156B2 (en) * 2001-06-25 2012-06-20 ユニチカ株式会社 Hemostatic material
JP4875804B2 (en) * 2001-07-06 2012-02-15 ユニチカ株式会社 Hemostatic material
JP2003292501A (en) * 2002-04-01 2003-10-15 Koyo Chemical Kk Chitosan sponge and method for producing the same
JP4224775B2 (en) * 2003-02-26 2009-02-18 甲陽ケミカル株式会社 Good quality chitosan sponge sheet
JP2007001963A (en) * 2005-06-21 2007-01-11 Koji Kibune Method for producing chitosan sponge having high water absorption property
CA2614750A1 (en) * 2005-07-13 2007-01-18 Hemcon, Inc. Hemostatic compositions, assemblies, systems, and methods employing particulate hemostatic agents formed from hydrophilic polymer foam such as chitosan
JP2007197649A (en) * 2006-01-26 2007-08-09 Omikenshi Co Ltd Sponge comprised of polysaccharide material

Also Published As

Publication number Publication date
JP2008220388A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5160102B2 (en) Amorphous partially deacetylated chitin salt sponge hemostatic material and method for producing the same
Tan et al. Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose
CN108853569B (en) Covalent cross-linked hyaluronic acid aerogel, hydrogel thereof and preparation method
Ngwabebhoh et al. Preparation and characterization of injectable self-antibacterial gelatin/carrageenan/bacterial cellulose hydrogel scaffolds for wound healing application
JP7288108B2 (en) Method for producing chitosan with low endotoxin
CN107320762B (en) Collagen/bacterial cellulose composite membrane dressing and preparation method thereof
JP6226950B2 (en) Method for producing low endotoxin chitosan
JP7339378B2 (en) Method for producing chitosan with low endotoxin
CN105713106A (en) Double-crosslinked sodium alginate hydrogel and preparation method and application thereof
CN106421902B (en) Rapid-gelation silk fibroin solution and preparation method thereof
Kim et al. Preparation of in situ injectable chitosan/gelatin hydrogel using an acid-tolerant tyrosinase
JP5588465B2 (en) Chitin-derived sponge hemostatic material and method for producing the same
JP2007001963A (en) Method for producing chitosan sponge having high water absorption property
CN107029281A (en) A kind of preparation method of Absorbable hemostatic material
US20180215892A1 (en) Process for preparing biocompatible and biodegradable porous three-dimensional polymer matrices and uses thereof
CN107057108B (en) Chitosan material with controllable structure and performance and preparation method thereof
JP2007296066A (en) Hemostatic material and manufacturing method thereof
JP4224775B2 (en) Good quality chitosan sponge sheet
KR100523701B1 (en) The Method of Preparation of Porous Gel Sponge Using Hyaluronan and Anhydrides
JPH11322807A (en) Production of crosslinked hyaluronic acid sponge
Sampaio et al. Biodegradable chitosan scaffolds: effect of genipin crosslinking
JP2007002203A (en) Method for producing chitosan sponge with little residual acetic acid
CN116102769B (en) Carboxymethyl chitin hemostatic sponge material, preparation method and application
JP2024015468A (en) Chitosan-derived sponge, chitosan-derived sheet and manufacturing method thereof
RU2762729C1 (en) Porous polymer material based on ion polysaccharide and its production method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Ref document number: 5160102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250