Nothing Special   »   [go: up one dir, main page]

JP4994692B2 - Method for producing tertiary amine - Google Patents

Method for producing tertiary amine Download PDF

Info

Publication number
JP4994692B2
JP4994692B2 JP2006103907A JP2006103907A JP4994692B2 JP 4994692 B2 JP4994692 B2 JP 4994692B2 JP 2006103907 A JP2006103907 A JP 2006103907A JP 2006103907 A JP2006103907 A JP 2006103907A JP 4994692 B2 JP4994692 B2 JP 4994692B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
reactor
film
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006103907A
Other languages
Japanese (ja)
Other versions
JP2006312624A (en
Inventor
徹 西村
敦史 廣田
祥志 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006103907A priority Critical patent/JP4994692B2/en
Publication of JP2006312624A publication Critical patent/JP2006312624A/en
Application granted granted Critical
Publication of JP4994692B2 publication Critical patent/JP4994692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、フィルム型触媒を用いて、アルコールと1級又は2級アミンとを原料として、対応する3級アミンを高収率で効率的に製造する方法に関する。   The present invention relates to a method for efficiently producing a corresponding tertiary amine in high yield using a film-type catalyst and using alcohol and a primary or secondary amine as raw materials.

工業的な反応の多くは、固体触媒スラリーを用いて混合槽型反応器で行なわれる。反応性ガス、例えば水素あるいはアンモニア等を、触媒の存在下で液体と接触させる事により反応を行なわせる。反応が終了すると、一般的には触媒を濾過により除去して、反応生成物を回収する。   Many industrial reactions are carried out in mixing tank reactors using solid catalyst slurries. The reaction is performed by bringing a reactive gas such as hydrogen or ammonia into contact with the liquid in the presence of a catalyst. When the reaction is complete, the catalyst is generally removed by filtration and the reaction product is recovered.

しかしながら、スラリー化された触媒は、安全性、廃棄物の増加、操作性、生産性などの問題を生じる。例えば、触媒は自然発火性のものが多く、粉末及びスラリー触媒のハンドリングには注意を要し、また反応生成物を回収する為には濾過等によって触媒を除去する必要があり、設備及び運転が複雑になるという問題がある。   However, the slurryed catalyst causes problems such as safety, increased waste, operability, and productivity. For example, many catalysts are pyrophoric, and care must be taken when handling powder and slurry catalysts, and in order to recover the reaction products, the catalyst must be removed by filtration, etc. There is a problem of complexity.

攪拌やガスバブリングなどによる混合操作を必要とせず、触媒の濾過分離も不要なプロセスとして、固定床方式が挙げられる。固定床方式で用いられる触媒の形態としては、従来からペレット状、ヌードル状、あるいはタブレット状といった成形触媒が良く知られている。触媒活性をもつ粉末状の物質を上記形態に圧縮又は押出し等の方法により成形加工する事で、その中に無数の細孔を有する構造となり、触媒形態と高い表面積とを両立させたものである。例えば特許文献1に開示されている。   As a process that does not require a mixing operation such as stirring or gas bubbling and does not require filtration and separation of the catalyst, a fixed bed system can be mentioned. As the form of the catalyst used in the fixed bed system, conventionally formed catalysts such as pellets, noodles or tablets are well known. By forming a powdery substance having catalytic activity into the above form by a method such as compression or extrusion, it has a structure with innumerable pores in it, and both a catalyst form and a high surface area are achieved. . For example, it is disclosed in Patent Document 1.

このような反応方式によれば、触媒の取り扱いや廃棄物等の問題を解決できるが、適用が可能でない反応も多い。例えば吸発熱を伴う反応において、温度制御に問題があり、また、反応器内での液体−気体の不均一な分配のため、反応率が不十分であったり、局所的な濃度勾配により副反応が多い場合があった。   According to such a reaction system, problems such as catalyst handling and waste can be solved, but there are many reactions that are not applicable. For example, in reactions involving endothermic heat generation, there are problems with temperature control, and due to non-uniform distribution of liquid-gas in the reactor, the reaction rate is insufficient, or side reactions due to local concentration gradients. There were many cases.

3級アミノ化の反応で特許文献1記載の成形触媒を用いて高い反応率で生成物を得ようとすると、望ましくない副生物が少なからず生じる。副生物としては、原料であるアルコールの副反応により生じるワックスやアルドール縮合体の他に、1級又は2級アミンが不均化して生じたアンモニアや1級又は2級アミンから副生する3級アミンが挙げられる。これら副生物を抑えて高選択的に実施するための技術の改良が種々行われてきたが、この反応を簡易なプロセスによって高選択的に実施することは、これまで困難であった。   If a product is obtained at a high reaction rate using the shaped catalyst described in Patent Document 1 in the tertiary amination reaction, there are some undesirable by-products. As a by-product, in addition to wax or aldol condensate generated by side reaction of alcohol as a raw material, ammonia generated by disproportionation of primary or secondary amine, or tertiary produced as a by-product from primary or secondary amine Examples include amines. Various improvements have been made in the technology for carrying out highly selective operation while suppressing these by-products, but it has been difficult to carry out this reaction with high selectivity by a simple process.

特許文献2には、モノリスの表面上に触媒金属を付着させた反応器が開示されており、この反応器では、ガスと液との間の水素化反応において、反応器の圧力降下が小さく、ガス及び液体の速度を大きくできるので、物質移動が従来型の固定床充填反応器よりも促進されるといった利点が、指摘されている。しかしながら、窒素原子を含む化合物の反応を意図されてはいるものの、水素化するような単純な機構による反応の場合しか明示されていない。またこれ以外に開示されている例についても、主に水素化反応等の限られた用途になっており、アルコールと1級又は2級アミンとを原料として対応する3級アミンを製造するような、極めて複雑な機構を持つ反応に適用して、収率を高めるという例は、これまで全くなかった。   Patent Document 2 discloses a reactor in which a catalytic metal is deposited on the surface of a monolith. In this reactor, in the hydrogenation reaction between a gas and a liquid, the pressure drop of the reactor is small, An advantage has been pointed out that mass transfer is facilitated over conventional fixed bed packed reactors because the velocity of gas and liquid can be increased. However, although the reaction of a compound containing a nitrogen atom is intended, it is only shown in the case of a reaction by a simple mechanism such as hydrogenation. In addition, the examples disclosed elsewhere are mainly limited to hydrogenation reactions and the like, and the corresponding tertiary amine is produced using alcohol and primary or secondary amine as raw materials. There has never been an example of increasing the yield by applying it to a reaction having a very complicated mechanism.

特許文献3には、液とガスをタンクから液ガス混合物としてモノリス触媒反応器へ供給して、出口から取り出した反応生成物をタンクに循環させる、気−液反応方法が示されている。また反応原料や反応物の昇温及び冷却を触媒から分離して行なえるために、副生物の生成と触媒の失活を最小限にできる等の利点が示されている。しかし反応の種類については、有機化合物の水素化あるいは酸化といった広い範囲のものを想定しているが、実施例は亜硫酸ナトリウム水溶液を使った酸素の物質移動速度の測定のみであり、その他の反応は具体的に示されていない。また時間当たりの循環回数に関する記載はない。
特開平6−211754号公報 特開2003−176255号公報 特開2002−35569号公報
Patent Document 3 discloses a gas-liquid reaction method in which a liquid and a gas are supplied from a tank as a liquid gas mixture to a monolith catalytic reactor, and a reaction product taken out from an outlet is circulated to the tank. In addition, since the temperature and cooling of the reaction raw materials and reactants can be separated from the catalyst, there are advantages such as minimization of by-product formation and catalyst deactivation. However, the reaction type is assumed to be a wide range such as hydrogenation or oxidation of organic compounds, but the examples are only measuring the mass transfer rate of oxygen using an aqueous sodium sulfite solution. It is not specifically shown. There is no description about the number of circulations per hour.
JP-A-6-21754 JP 2003-176255 A JP 2002-35569 A

本発明の課題は、フィルム型触媒を用いて、アルコールと1級又は2級アミンとを原料として、対応する3級アミンを製造するに際して、3級アミンを高収率で効率的に製造する方法を提供することにある。   An object of the present invention is a method for efficiently producing a tertiary amine in a high yield when producing a corresponding tertiary amine using a film-type catalyst and using an alcohol and a primary or secondary amine as raw materials. Is to provide.

本発明は、アルコールと1級又は2級アミンとから3級アミンを製造する方法であって、槽(以下緩衝槽という)に付帯した外部循環ライン中にフィルム型触媒を装填した反応器を設置し、該反応器に、反応液を3回/Hr以上循環させて反応を行なう、3級アミンの製造方法を提供する。   The present invention is a method for producing a tertiary amine from an alcohol and a primary or secondary amine, and a reactor loaded with a film-type catalyst is installed in an external circulation line attached to a tank (hereinafter referred to as a buffer tank). And a method for producing a tertiary amine, wherein the reaction is conducted by circulating the reaction solution 3 times / Hr or more in the reactor.

本発明の製造方法によれば、触媒の分離操作を必要としない簡易なプロセスにより、目的とする3級アミンを高収率で効率的に得ることができる。   According to the production method of the present invention, a target tertiary amine can be efficiently obtained in a high yield by a simple process that does not require a catalyst separation operation.

本発明の3級アミンの製造法に用いられる原料のアルコールとしては、直鎖状又は分岐鎖状の、炭素数8〜36の飽和又は不飽和の脂肪族アルコールが挙げられる。具体的には、オクチルアルコール、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、ベヘニルアルコール、オレイルアルコール等や、これらの混合アルコール等、またチーグラー法によって得られるチーグラーアルコールや、オキソ法によって得られるオキソアルコール及びゲルべアルコール等が例示される。   Examples of the starting alcohol used in the method for producing a tertiary amine of the present invention include linear or branched, saturated or unsaturated aliphatic alcohols having 8 to 36 carbon atoms. Specifically, octyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, behenyl alcohol, oleyl alcohol, etc., mixed alcohols thereof, Ziegler alcohol obtained by Ziegler method, oxo alcohol and gel bean obtained by oxo method Alcohol etc. are illustrated.

また、本発明の3級アミンの製造法に用いられる原料の1級又は2級アミンとしては、脂肪族1級又は2級アミンが挙げられ、例えばメチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、ドデシルアミン、ジドデシルアミン等が例示される。   In addition, examples of the primary or secondary amine used in the method for producing the tertiary amine of the present invention include aliphatic primary or secondary amines, such as methylamine, dimethylamine, ethylamine, diethylamine, and dodecylamine. , Didodecylamine and the like.

これら原料となるアルコールと1級又は2級アミンから得られる、対応する3級アミンは、1級又は2級アミンの窒素原子に結合する水素原子が、アルコール由来のアルキル及び/又はアルケニル基で置換されたものである。例えばラウリルアルコールとジメチルアミンから得られる、対応する3級アミンは、N−ドデシル−N,N−ジメチルアミンであり、ジメチルアミンが不均化して生じたメチルアミン及びアンモニアが反応して副生する3級アミンのN,N−ジドデシル−N−メチルアミン及びN,N,N−トリドデシルアミンと区別される。   In the corresponding tertiary amine obtained from the alcohol as the raw material and the primary or secondary amine, the hydrogen atom bonded to the nitrogen atom of the primary or secondary amine is substituted with an alkyl and / or alkenyl group derived from the alcohol. It has been done. For example, the corresponding tertiary amine obtained from lauryl alcohol and dimethylamine is N-dodecyl-N, N-dimethylamine, which is produced as a by-product by the reaction of methylamine and ammonia produced by disproportionation of dimethylamine. Differentiated from the tertiary amines N, N-didodecyl-N-methylamine and N, N, N-tridodecylamine.

本発明に用いられるフィルム型触媒とは、従来型の数mm程度の大きさを持つ不規則充填物タイプとは異なり、厚さ500μm以下の薄いフィルム状の形態の触媒を指す。反応物及び生成物が触媒体内部を移動する過程は拡散支配であり、その距離を500μm以下まで短くする事で、触媒体外部との間での物質移動を促進し、触媒体内部まで有効に活用できると共に、触媒体内部での中間反応物の過反応を抑制する事ができる。特に100μm以下の厚さである事が、触媒質量当りの反応活性が顕著に高くなって好ましく、50μm以下である事がより好ましい。厚さの下限は、触媒層の強度確保及び強度面の耐久性を得るために、0.01μm以上が好ましく、1μm以上がより好ましい。   The film-type catalyst used in the present invention refers to a catalyst in the form of a thin film having a thickness of 500 μm or less, unlike the irregular packing type having a size of about several mm of the conventional type. The process in which the reactants and products move inside the catalyst body is diffusion-dominated. By shortening the distance to 500 μm or less, the mass transfer between the outside of the catalyst body is promoted and the inside of the catalyst body is effectively achieved. In addition to being able to be utilized, it is possible to suppress overreaction of intermediate reactants inside the catalyst body. In particular, a thickness of 100 μm or less is preferable because the reaction activity per catalyst mass is remarkably increased, and a thickness of 50 μm or less is more preferable. The lower limit of the thickness is preferably 0.01 μm or more, and more preferably 1 μm or more in order to ensure the strength of the catalyst layer and obtain durability of the strength.

フィルム型触媒の構造としては、反応器形状に応じて種々の形態のものが挙げられる。例えば、管内壁面上に形成された触媒コーティング層や、管内を複数の軸方向流通路に間仕切る薄板状に成形した触媒等が挙げられ、管状の流通式反応器に好適に用いることができる。また、槽内部に設置された開放型フィン状平板の表面に形成された触媒コーティング層等でもよく、槽型反応器の場合に好適に用いることができる。いずれの場合においても、触媒体に対する反応物の供給と触媒体からの生成物の回収が容易に起こり得る構造をとることが好ましい。また反応物の供給及び生成物の回収が起こる触媒体表面をできるだけ広く設ける事が、反応を効率よく進行させる上で望ましい。上記要件を達成するために、内径数mm〜数十mmの管を束ねた集合体や、セル密度が1平方インチ当り数十〜数百セルのハニカム構造体に対して、その内壁面上にフィルム型触媒を設けたもの等が、好適に用いられる。   The structure of the film type catalyst includes various forms depending on the reactor shape. For example, a catalyst coating layer formed on the inner wall surface of the pipe, a catalyst formed into a thin plate shape partitioning the inside of the pipe into a plurality of axial flow passages, and the like can be cited, and can be suitably used for a tubular flow reactor. Moreover, the catalyst coating layer etc. which were formed in the surface of the open type fin-shaped flat plate installed in the inside of a tank may be sufficient, and can be used suitably in the case of a tank type reactor. In any case, it is preferable to adopt a structure in which the supply of the reactant to the catalyst body and the recovery of the product from the catalyst body can easily occur. In addition, it is desirable that the surface of the catalyst body where the supply of the reactants and the recovery of the products occur as wide as possible to advance the reaction efficiently. In order to achieve the above requirements, on an inner wall surface of a bundle of tubes having an inner diameter of several mm to several tens of mm or a honeycomb structure having a cell density of several tens to several hundred cells per square inch Those provided with a film-type catalyst are preferably used.

フィルム型触媒を上記種々の構造にするためには、例えば触媒活物質そのものを成形してハニカム状の構造体とする方法があるが、薄い触媒層と高い機械的強度を両立する観点からは、フィルム型触媒を支持体表面に固定化する事が好ましい。フィルム型触媒支持体が金属箔であることが好ましい。例えば上述のように、金属その他剛性を有する管状、平板状あるいはハニカム状等の支持体表面に、触媒活物質を含むコーティング層を形成してフィルム型触媒とする方法が挙げられる。この時のコーティング方法としては、従来公知の方法を用いる事ができ、例えばスパッタ等の物理蒸着法、化学蒸着法、溶液系からの含浸法の他に、バインダを使ったブレード、スプレイ、ディップ、スピン、グラビア、ダイコーティング等、各種塗工法が挙げられる。   In order to make the film-type catalyst into the various structures described above, for example, there is a method of forming the catalyst active material itself into a honeycomb structure, but from the viewpoint of achieving both a thin catalyst layer and high mechanical strength, It is preferable to fix the film type catalyst on the surface of the support. The film type catalyst support is preferably a metal foil. For example, as described above, a method of forming a film-type catalyst by forming a coating layer containing a catalyst active material on the surface of a metal or other support having a rigid tubular shape, a flat plate shape, or a honeycomb shape can be given. As a coating method at this time, a conventionally known method can be used. For example, in addition to a physical vapor deposition method such as sputtering, a chemical vapor deposition method, an impregnation method from a solution system, a blade using a binder, a spray, a dip, Various coating methods such as spin, gravure, die coating and the like can be mentioned.

フィルム型触媒を構成する活物質としては、特に限定されるものではなく、公知のものを利用する事ができるが、一般に銅系の金属等を好適に用いることができ、銅を含有するものが更に好ましい。例えばCu単独あるいはこれにCr、Co、Ni、Fe、Mn等の遷移金属元素を加えた2成分の金属を含むものが挙げられ、CuとNiを含有するものが好ましく用いられる。更に3成分以上の金属を含むものも好ましく用いられる。またこれらをさらにシリカ、アルミナ、チタニア、ゼオライト等の担体に担持させたもの等も用いられる。   The active material constituting the film-type catalyst is not particularly limited, and known materials can be used, but generally copper-based metals can be preferably used, and those containing copper can be used. Further preferred. For example, Cu alone or a material containing a two-component metal obtained by adding a transition metal element such as Cr, Co, Ni, Fe, or Mn to this can be used, and a material containing Cu and Ni is preferably used. Further, those containing a metal having three or more components are also preferably used. Further, those in which these are further supported on a carrier such as silica, alumina, titania, zeolite or the like can be used.

フィルム型触媒の内部には、それ単独では活物質として作用しないが、活物質を固定化してフィルム型の触媒体を形成するためのバインダを含有していてもよい。バインダとしては、活物質同士または支持体表面への結着性の他に、反応環境に耐え、なおかつ反応系に悪影響しないような、耐薬品性や耐熱性等の性質を有する高分子あるいは無機化合物が挙げられる。例えば、カルボキシメチルセルロースやヒドロキシエチルセルロース等のセルロース系樹脂、ポリ四フッ化エチレンやポリフッ化ビニリデン等のフッ素系樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリビニルアルコール、ポリイミド樹脂、ポリイミドアミド樹脂等の高分子化合物、あるいはシリカ、アルミナ等の無機化合物ゾル等が挙げられる。   The film type catalyst does not act as an active material by itself, but may contain a binder for immobilizing the active material to form a film type catalyst body. As the binder, in addition to the binding properties between the active materials or the support surface, a polymer or an inorganic compound having properties such as chemical resistance and heat resistance that can withstand the reaction environment and does not adversely affect the reaction system Is mentioned. For example, cellulose resins such as carboxymethyl cellulose and hydroxyethyl cellulose, fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, urethane resins, epoxy resins, polyester resins, phenol resins, melamine resins, silicone resins, polyvinyl alcohol, polyimides Examples thereof include high molecular compounds such as resins and polyimide amide resins, and inorganic compound sols such as silica and alumina.

フィルム型触媒の内部構造は、触媒体を構成する活物質の種類や触媒体の作製方法等に大きく依存するが、緻密な連続相を形成していてもよいし、多孔質であってもよい。例えば、スパッタ法や化学蒸着法等により支持体表面上に形成した薄膜である場合は緻密な連続相とする事ができ、粉末状の活物質を使って湿式あるいは乾式の塗工等の方法により支持体表面上に形成した場合は多孔質とする事が可能である。   The internal structure of the film-type catalyst largely depends on the type of active material constituting the catalyst body, the production method of the catalyst body, etc., but may form a dense continuous phase or may be porous. . For example, in the case of a thin film formed on the support surface by sputtering or chemical vapor deposition, it can be made into a dense continuous phase, and it can be made by a wet or dry coating method using a powdered active material. When it is formed on the surface of the support, it can be made porous.

本発明においては、上記のようなフィルム型触媒を装填した反応器を用い、この反応器を、緩衝槽に付帯した外部循環ライン中に設置し、この反応器に、反応液を3回/Hr以上循環させて、アルコールと1級又は2級アミンとの反応を行なう。   In the present invention, a reactor loaded with the film type catalyst as described above is used, and this reactor is installed in an external circulation line attached to the buffer tank, and the reaction solution is supplied to the reactor three times / hr. The reaction is carried out between the alcohol and the primary or secondary amine by circulating as described above.

本発明において、緩衝槽とは、反応に必要な原料、及び/又は反応によって生じた生成物を収容する容器であり、反応器から出てくる生成物、及び/又は未反応原料を、緩衝槽の中で必要に応じてガス成分と液成分とに気液分離し、ガス成分を系外に抜き出すこともできる。緩衝槽は通常用いられる槽ならば特に限定されないが、触媒を装填していないことが好ましい。緩衝槽は原料や反応物を加熱、冷却するためにジャケットや内部コイルを有していても良い。また液を均一にするために攪拌機を有していても良く、逆に反応液の押出し流れ性を高めるために緩衝槽内に仕切り板を設けた無攪拌の構造でも良い。   In the present invention, the buffer tank is a container for storing raw materials necessary for the reaction and / or products generated by the reaction, and the products coming out of the reactor and / or unreacted raw materials are stored in the buffer tank. If necessary, the gas component can be separated into a gas component and a liquid component, and the gas component can be extracted out of the system. The buffer tank is not particularly limited as long as it is a commonly used tank, but is preferably not loaded with a catalyst. The buffer tank may have a jacket and an internal coil for heating and cooling the raw materials and reactants. Moreover, in order to make a liquid uniform, you may have a stirrer and conversely, in order to improve the extrusion flow property of a reaction liquid, the structure of the non-stirring which provided the partition plate in the buffer tank may be sufficient.

本発明の方法は、緩衝槽を設けない反応槽の中にフィルム型触媒を装填する場合に比較して、反応槽の大改造を必要とせず、フィルム型触媒の交換等のメンテナンスも容易である。また外部循環ラインがすでに設置されている既存の反応設備の場合、外部循環ラインへのフィルム型触媒を装填した反応器の設置は更に容易になる。   The method of the present invention does not require major modification of the reaction tank, and maintenance such as replacement of the film catalyst is easy as compared with the case where the film-type catalyst is loaded in a reaction tank not provided with a buffer tank. . Further, in the case of an existing reaction facility in which an external circulation line is already installed, the installation of a reactor loaded with a film-type catalyst in the external circulation line is further facilitated.

フィルム型触媒を装填した反応器の形式は、従来公知のものを含めて種々のものを採用する事ができる。例えば管型反応器の内部にフィルム型触媒を円筒状に丸めたり、短冊状に加工して装填しても良い。またシェル&チューブ熱交換器タイプのチューブ内、又はシェル部にフィルム型触媒を装填しても良い。この場合にはフィルム型触媒を装填していないチューブ側又はシェル側に熱媒体を流し、反応部分の温度を制御することができる。流通式管型反応器の場合、管内部のフィルム型触媒に反応物を供給しながら生成物を連続的に回収する方式によって、循環供給して連続式で反応を進行させる事ができる。   Various types of reactors including those conventionally known can be adopted as the type of reactor loaded with a film-type catalyst. For example, a film-type catalyst may be rounded into a cylindrical shape or processed into a strip shape and loaded into a tubular reactor. Further, a film-type catalyst may be loaded in a shell and tube heat exchanger type tube or in a shell portion. In this case, the temperature of the reaction part can be controlled by flowing a heat medium to the tube side or the shell side not loaded with the film type catalyst. In the case of a flow-through tubular reactor, the reaction can proceed continuously by circulating supply by a method of continuously recovering the product while supplying the reactant to the film-type catalyst inside the tube.

本発明に用いられる反応装置の一例を図1に示す。図1において、1はフィルム型触媒を装填した管型反応器、2が緩衝槽、3が外部循環用ポンプ、4が外部循環用導管、5が充填塔用導管、6が充填塔である。   An example of the reaction apparatus used in the present invention is shown in FIG. In FIG. 1, 1 is a tubular reactor loaded with a film-type catalyst, 2 is a buffer tank, 3 is an external circulation pump, 4 is an external circulation conduit, 5 is a packed tower conduit, and 6 is a packed tower.

管型反応器1は、直立円管型固定床反応器で、内部にフィルム型触媒が装填され、外部からの加熱によってその温度を制御できる。緩衝槽2は、液状の反応物、及び/又は生成物の混合物の貯槽であり、ポンプ3によって反応器1との間でこれらを循環させる。導管4を通じて反応器1の下端から反応物、及び/又は生成物の混合物と、ガス状の1級又は2級アミン及び水素ガスを連続的に供給し、上端から未反応物、及び/又は生成物の混合物と水素ガスを連続的に回収して、緩衝槽2に導入する。導管5を通して未反応のガス状1級又は2級アミン、及び水分を連続的に排出する。導管5から排出される成分中には、上記の他にアルコール、及び/又は生成3級アミンの蒸気又はミスト状成分等が含まれることがあり、充填塔6内で凝縮液化させて緩衝槽2に戻し、残りのガス成分を系外に排出する。反応系内はほぼ常圧に保たれる。   The tubular reactor 1 is an upright circular tube type fixed bed reactor, in which a film type catalyst is loaded, and its temperature can be controlled by heating from the outside. The buffer tank 2 is a storage tank for a mixture of liquid reactants and / or products, and these are circulated with the reactor 1 by a pump 3. A mixture of reactants and / or products and gaseous primary or secondary amine and hydrogen gas are continuously fed from the lower end of the reactor 1 through the conduit 4 and unreacted and / or produced from the upper end. A mixture of substances and hydrogen gas are continuously collected and introduced into the buffer tank 2. Unreacted gaseous primary or secondary amine and water are continuously discharged through the conduit 5. In addition to the above, the component discharged from the conduit 5 may contain alcohol, and / or vapor or mist-like component of the generated tertiary amine, and the like. The remaining gas components are discharged out of the system. The reaction system is maintained at almost normal pressure.

反応液の反応器1への供給方法は、図1に示すようなアップフロー方式でも良く、逆にダウンフロー方式でも良い。反応器は通常行なわれているように、ジャケットや内部に設置した熱交換用配管により、温度コントロールすることが好ましい。   The method of supplying the reaction liquid to the reactor 1 may be an upflow system as shown in FIG. 1, or conversely a downflow system. As usual, the reactor is preferably temperature-controlled by a jacket or a heat exchange pipe installed inside.

本発明におけるアルコールと1級又は2級アミンとの反応では、反応液の1時間当たりの外部循環回数は副反応を抑制する観点から、3回/Hr以上であり、4回/Hr以上が好ましく、5回/Hr以上がより好ましい。外部循環回数の上限は循環に要すエネルギー低減の観点から、200回/Hr以下が好ましく、100回/Hr以下がより好ましい。   In the reaction between the alcohol and the primary or secondary amine in the present invention, the number of external circulations per hour of the reaction solution is 3 times / Hr or more, preferably 4 times / Hr or more from the viewpoint of suppressing side reactions. 5 times / hr or more is more preferable. The upper limit of the number of external circulations is preferably 200 times / Hr or less, and more preferably 100 times / Hr or less, from the viewpoint of reducing energy required for circulation.

反応液の1時間当たりの外部循環回数は、原料仕込み量と図1中の外部循環用ポンプ3の循環量でコントロールすることができる。また1時間当たりの外部循環回数は、例えば反応初期に多くし、反応終期に少なくするなど反応時間によって変化させても良い。   The number of external circulations per hour of the reaction liquid can be controlled by the amount of raw material charged and the circulation amount of the external circulation pump 3 in FIG. Further, the number of external circulations per hour may be changed depending on the reaction time, for example, increasing at the beginning of the reaction and decreasing at the end of the reaction.

本発明におけるアルコールと1級又は2級アミンとの反応条件は、反応物、生成物及び触媒の種類により異なる。反応物は気相に存在してもよいし、液相でもよい。反応系に気相が存在する場合、水素、窒素及び/又は希ガス雰囲気下で反応させる事が、触媒の活性を保つ上で好ましい。気液2相の反応系において、アルコールと1級又は2級アミンとがそれぞれ異なる相に存在する場合、液中へのガスバブリング等によって相間での物質移動を促進する事が望ましい。またフィルム型触媒によって径数mm以下程度の細い流通路が形成された反応場に、気液混相で反応物を供給する事により、上記物質移動促進効果を得る事もできる。   The reaction conditions between the alcohol and the primary or secondary amine in the present invention vary depending on the type of reactant, product and catalyst. The reactant may be present in the gas phase or in the liquid phase. When a gas phase is present in the reaction system, it is preferable to carry out the reaction in an atmosphere of hydrogen, nitrogen and / or a rare gas in order to maintain the activity of the catalyst. In a gas-liquid two-phase reaction system, when alcohol and primary or secondary amine are present in different phases, it is desirable to promote mass transfer between the phases by gas bubbling into the liquid. In addition, the above-described mass transfer promotion effect can be obtained by supplying the reactant in a gas-liquid mixed phase to a reaction field in which a narrow flow passage having a diameter of several mm or less is formed by a film type catalyst.

系内の圧力は常圧を超えて著しく高くならないことが望ましい。反応温度は触媒の種類により異なるが、150〜300℃の温度で反応させる事が好ましい。また反応の過程で副生する水分を反応系外に排出する事で、反応の進行を促進し、触媒の活性を保つ事ができる。   It is desirable that the pressure in the system does not increase significantly beyond normal pressure. The reaction temperature varies depending on the type of catalyst, but it is preferable to carry out the reaction at a temperature of 150 to 300 ° C. Further, by discharging the water produced as a by-product in the course of the reaction to the outside of the reaction system, the progress of the reaction can be promoted and the activity of the catalyst can be maintained.

本発明の方法によれば、特別な混合操作や触媒の分離操作を必要としない簡易なプロセスにより、アルコールと1級又は2級アミンとを原料として目的とする3級アミンを高収率で効率的に製造することができる。   According to the method of the present invention, a target tertiary amine can be efficiently produced in high yield using alcohol and a primary or secondary amine as raw materials by a simple process that does not require any special mixing operation or catalyst separation operation. Can be manufactured automatically.

次の実施例は本発明の実施について述べる。実施例は本発明の例示について述べるものであり、本発明を限定するためではない。   The following examples describe the practice of the present invention. The examples are illustrative of the invention and are not intended to limit the invention.

製造例1:フィルム型触媒Aの製造
フェノール樹脂をバインダとして粉末状触媒を固定化した、フィルム型触媒Aを以下のように調製した。
Production Example 1: Production of film-type catalyst A A film-type catalyst A in which a powdery catalyst was immobilized using a phenol resin as a binder was prepared as follows.

容量1Lのフラスコに合成ゼオライトを仕込み、次いで硝酸銅と硝酸ニッケル及び塩化ルテニウムを各金属原子のモル比でCu:Ni:Ru=4:1:0.01となるように水に溶かしたものを入れ、撹拌しながら昇温した。90℃で10質量%炭酸ナトリウム水溶液をpH9〜10にコントロールしながら徐々に滴下した。1時間の熟成後、沈殿物を濾過・水洗後80℃で10時間乾燥し、600℃で3時間焼成して粉末状触媒を得た。得られた粉末状触媒における金属酸化物の割合は50質量%、合成ゼオライトの割合は50質量%であった。   A synthetic zeolite is charged into a 1 L flask, and then copper nitrate, nickel nitrate and ruthenium chloride are dissolved in water so that the molar ratio of each metal atom is Cu: Ni: Ru = 4: 1: 0.01. The temperature was increased while stirring. A 10% by mass aqueous sodium carbonate solution was gradually added dropwise at 90 ° C. while controlling the pH at 9-10. After aging for 1 hour, the precipitate was filtered, washed with water, dried at 80 ° C. for 10 hours, and calcined at 600 ° C. for 3 hours to obtain a powdered catalyst. The ratio of the metal oxide in the obtained powder catalyst was 50% by mass, and the ratio of the synthetic zeolite was 50% by mass.

上記粉末状触媒100質量部に、バインダとしてフェノール樹脂(住友ベークライト製PR−9480、不揮発分58%)を加え、フェノール樹脂の不揮発分が47.7質量部になるようにした。さらに溶剤として2−ブタノンを加え、固形分(粉末状触媒及びフェノール樹脂の不揮発分)の割合が55%となるようにした。これをディスパにて10分間予備混合した後、バスケットミル(浅田鉄工製SS−3、1.4mm径のチタニアビーズ800mL、1900gを充填)にて1500rpmで70分間混合分散処理して塗料化した。銅箔(厚さ40μm、6.5cm×410cm×1枚)を支持体とし、上記塗料をバーコータにより両面に塗工後、150℃で30秒間乾燥した。乾燥したもののうちの半分を波板状に折り曲げ加工し、残りの平板状のものと重ねて捲回した後、150℃で90分間硬化処理して、フィルム型触媒を上記銅箔の両面に固定化した。得られたフィルム型触媒について、その銅箔を除いた片面当りの厚さ及び銅箔を除いた全質量は、それぞれ表1に示す通りであった。   A phenol resin (PR-9480 manufactured by Sumitomo Bakelite, 58% non-volatile content) was added as a binder to 100 parts by mass of the powdered catalyst so that the non-volatile content of the phenol resin was 47.7 parts by mass. Further, 2-butanone was added as a solvent so that the ratio of the solid content (non-volatile content of the powdered catalyst and the phenol resin) was 55%. This was premixed for 10 minutes in a dispa, and then mixed and dispersed at 1500 rpm for 70 minutes in a basket mill (SS-3 manufactured by Asada Tekko, filled with 1.4 mm diameter titania beads 800 mL, 1900 g) to form a paint. A copper foil (thickness 40 μm, 6.5 cm × 410 cm × 1 sheet) was used as a support, and the paint was applied on both sides with a bar coater and then dried at 150 ° C. for 30 seconds. Half of the dried material is bent into a corrugated plate, wound over the remaining flat plate, wound, and then cured at 150 ° C. for 90 minutes to fix the film-type catalyst on both sides of the copper foil. Turned into. About the obtained film type catalyst, the thickness per one side except the copper foil and the total mass except the copper foil were as shown in Table 1, respectively.

製造例2:フィルム型触媒Bの製造
フェノール樹脂をバインダとして粉末状触媒を固定化した、フィルム型触媒Bを以下のように調製した。
Production Example 2: Production of film-type catalyst B A film-type catalyst B in which a powdery catalyst was immobilized using a phenol resin as a binder was prepared as follows.

製造例1に準じて製造した粉末状触媒100質量部に、バインダとしてフェノール樹脂(住友ベークライト製PR−9480、不揮発分58%)を加え、フェノール樹脂の不揮発分が47.7質量部になるようにした。さらに溶剤として4−メチル−2−ペンタノンを加え、固形分(粉末状触媒及びフェノール樹脂の不揮発分)の割合が55%となるようにした。これをディスパにて10分間予備混合した後、バスケットミル(浅田鉄工製SS−3、1.4mm径のチタニアビーズ800mL、1900gを充填)にて1500rpmで70分間混合分散処理して塗料化した。銅箔(厚さ40μm、0.3m×36m)を支持体とし、上記塗料をグラビアコータにより両面に塗工後、150℃で30秒間乾燥した。乾燥したものを27cm×429cm×16枚に裁断し、うち半数を波板状に折り曲げ加工し、残りの平板状のものと交互に重ねて、図1の直立円管型固定床反応器1で用いる円筒状ホルダーに装填した後、150℃で90分間硬化処理して、フィルム型触媒を上記銅箔の両面に固定化した。得られたフィルム型触媒について、その銅箔を除いた片面当りの厚さ及び銅箔を除いた全質量は、それぞれ表1に示す通りであった。   A phenol resin (PR-9480 manufactured by Sumitomo Bakelite, 58% nonvolatile content) is added as a binder to 100 parts by mass of the powdered catalyst produced according to Production Example 1 so that the nonvolatile content of the phenol resin is 47.7 parts by mass. I made it. Furthermore, 4-methyl-2-pentanone was added as a solvent so that the ratio of the solid content (non-volatile content of the powdered catalyst and the phenol resin) was 55%. This was premixed for 10 minutes in a dispa, and then mixed and dispersed at 1500 rpm for 70 minutes in a basket mill (SS-3 manufactured by Asada Tekko, filled with 1.4 mm diameter titania beads 800 mL, 1900 g) to form a paint. A copper foil (thickness 40 μm, 0.3 m × 36 m) was used as a support, and the paint was applied on both sides with a gravure coater and then dried at 150 ° C. for 30 seconds. The dried one is cut into 27 cm × 429 cm × 16 sheets, half of which is bent into a corrugated plate shape, and alternately stacked with the remaining flat plate shape. In the upright circular tube type fixed bed reactor 1 of FIG. After loading the cylindrical holder to be used, the film-type catalyst was fixed on both sides of the copper foil by curing at 150 ° C. for 90 minutes. About the obtained film type catalyst, the thickness per one side except the copper foil and the total mass except the copper foil were as shown in Table 1, respectively.

製造例3:フィルム型触媒Cの製造
フェノール樹脂をバインダとして粉末状触媒を固定化した、フィルム型触媒Cを以下のように調製した。
Production Example 3: Production of Film Type Catalyst C A film type catalyst C in which a powdered catalyst was immobilized using a phenol resin as a binder was prepared as follows.

製造例1に準じて製造した粉末状触媒100質量部に、バインダとしてフェノール樹脂(住友ベークライト製PR−9480、不揮発分58%)を加え、フェノール樹脂の不揮発分が33.3質量部になるようにした。さらに溶剤として4−メチル−2−ペンタノンを加え、固形分(粉末状触媒及びフェノール樹脂の不揮発分)の割合が55%となるようにした。これをディスパにて10分間予備混合した後、バスケットミル(浅田鉄工製SS−3、1.4mm径のチタニアビーズ800mL、1900gを充填)にて1500rpmで70分間混合分散処理して塗料化した。銅箔(厚さ40μm、6.5cm×420cm×1枚)を支持体とし、上記塗料をバーコータにより両面に塗工後、150℃で30秒間乾燥した。乾燥したもののうちの半分を波板状に折り曲げ加工し、残りの平板状のものと重ねて捲回した後、150℃で90分間硬化処理して、フィルム型触媒を上記銅箔の両面に固定化した。得られたフィルム型触媒について、その銅箔を除いた片面当りの厚さ及び銅箔を除いた全質量は、それぞれ表1に示す通りであった。   A phenol resin (PR-9480 manufactured by Sumitomo Bakelite, 58% nonvolatile content) is added as a binder to 100 parts by mass of the powdered catalyst produced according to Production Example 1, so that the nonvolatile content of the phenol resin is 33.3 parts by mass. I made it. Furthermore, 4-methyl-2-pentanone was added as a solvent so that the ratio of the solid content (non-volatile content of the powdered catalyst and the phenol resin) was 55%. This was premixed for 10 minutes in a dispa, and then mixed and dispersed at 1500 rpm for 70 minutes in a basket mill (SS-3 manufactured by Asada Tekko, filled with 1.4 mm diameter titania beads 800 mL, 1900 g) to form a paint. A copper foil (thickness 40 μm, 6.5 cm × 420 cm × 1 sheet) was used as a support, and the paint was applied on both sides with a bar coater and then dried at 150 ° C. for 30 seconds. Half of the dried material is bent into a corrugated plate, wound over the remaining flat plate, wound, and then cured at 150 ° C. for 90 minutes to fix the film-type catalyst on both sides of the copper foil. Turned into. About the obtained film type catalyst, the thickness per one side except the copper foil and the total mass except the copper foil were as shown in Table 1, respectively.

以下の実施例1〜4では、図1に示す循環固定床型反応装置を用いて、ラウリルアルコールとジメチルアミンとを原料としてN−ドデシル−N,N−ジメチルアミン(以下DM体と記載する)を製造した。なお以下の%は特に断りのないものは質量%を現す。   In the following Examples 1 to 4, N-dodecyl-N, N-dimethylamine (hereinafter referred to as DM form) using lauryl alcohol and dimethylamine as raw materials, using the circulating fixed bed reactor shown in FIG. Manufactured. In addition, the following% shows the mass% unless there is particular notice.

実施例1
製造例1で得たフィルム型触媒Aを、内径29.5mmの反応器1の内部に装填した。フィルム型触媒の装填された部分の体積は0.27Lで、反応器1の軸方向に連通した、断面積0.1cm2程度の複数の流路がフィルム型触媒によって形成された。ラウリルアルコール(花王(株)製カルコール20)1.0kgを緩衝槽2に仕込み、水素ガスを標準状態体積換算で20L/Hrの流量で供給しながら、緩衝槽2と反応器1との間での液循環を5.1回/Hrで行った。なお液循環回数は、原料アルコールの仕込み容量:V(L)と外部循環流量:Q(L/Hr)とから下記の式(1)で求める事ができる。
Example 1
The film type catalyst A obtained in Production Example 1 was loaded into the reactor 1 having an inner diameter of 29.5 mm. The volume of the portion loaded with the film-type catalyst was 0.27 L, and a plurality of channels having a cross-sectional area of about 0.1 cm 2 that were communicated in the axial direction of the reactor 1 were formed by the film-type catalyst. While charging 1.0 kg of lauryl alcohol (Calcoal 20 manufactured by Kao Corporation) into the buffer tank 2 and supplying hydrogen gas at a flow rate of 20 L / Hr in terms of standard state volume, between the buffer tank 2 and the reactor 1 Was circulated 5.1 times / hr. The number of times of liquid circulation can be obtained by the following formula (1) from the charged capacity of raw material alcohol: V (L) and the external circulation flow rate: Q (L / Hr).

液循環回数(回/Hr)=Q/V (1)
実施例1では原料アルコール1.0kgを220℃における密度0.683(g/cm3)で換算してV=1.46(L)を求め、これとQ=7.5(L/Hr)から、上記式(1)を用いて下記のように求めた。
Number of times of liquid circulation (times / Hr) = Q / V (1)
In Example 1, 1.0 kg of raw material alcohol was converted to a density of 0.683 (g / cm 3 ) at 220 ° C. to obtain V = 1.46 (L), and this and Q = 7.5 (L / Hr) From the above, the following formula (1) was used.

液循環回数=7.5/1.46=5.1(回/Hr)
反応器1内部の温度を220℃まで昇温した後、ジメチルアミンの供給によって220℃にて反応を開始した。ジメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で79g/Hrであった。反応開始から5.9時間後にジメチルアミンの供給を停止し、緩衝槽2及び反応器1内部の液全量を抜き出した。ガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のラウリルアルコールは1%、生成したDM体は89.7%、副生3級アミンであるN,N−ジドデシル−N−メチルアミン(以下M2体と記載する)は7.8%であった。N,N,N−トリドデシルアミンは検出されなかった。
Number of times of liquid circulation = 7.5 / 1.46 = 5.1 (times / Hr)
After raising the temperature inside the reactor 1 to 220 ° C., the reaction was started at 220 ° C. by supplying dimethylamine. The amount of dimethylamine supplied was adjusted according to the progress of the reaction, and the average reaction time was 79 g / Hr. After 5.9 hours from the start of the reaction, the supply of dimethylamine was stopped, and the entire liquid in the buffer tank 2 and the reactor 1 was extracted. As a result of analysis with a gas chromatograph and quantification by an area percentage method, 1% of unreacted lauryl alcohol, 89.7% of the produced DM form, N, N-didodecyl-N which is a by-product tertiary amine -Methylamine (hereinafter referred to as M2 form) was 7.8%. N, N, N-tridodecylamine was not detected.

実施例2
緩衝槽2と反応器1との間での液循環を3.4回/Hrで行った以外は実施例1と同様の操作により、反応器1内部の温度を220℃まで昇温した後、ジメチルアミンの供給によって反応を開始した。ジメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で86g/Hrであった。反応開始から6.2時間後にジメチルアミンの供給を停止し、緩衝槽2及び反応器1内部の液全量を抜き出した。実施例1と同様にガスクロマトグラフにより分析した結果、未反応のラウリルアルコールは1%、生成したDM体は87.4%、副生3級アミンであるM2体が9.5%であった。
Example 2
After raising the temperature inside the reactor 1 to 220 ° C. by the same operation as in Example 1 except that the liquid circulation between the buffer tank 2 and the reactor 1 was performed 3.4 times / Hr, The reaction was started by feeding dimethylamine. The amount of dimethylamine supplied was adjusted according to the progress of the reaction, and the average reaction time was 86 g / Hr. After 6.2 hours from the start of the reaction, the supply of dimethylamine was stopped, and the total amount of liquid in the buffer tank 2 and the reactor 1 was extracted. As a result of gas chromatographic analysis in the same manner as in Example 1, 1% of unreacted lauryl alcohol, 87.4% of the produced DM form, and 9.5% of M2 form of by-product tertiary amine were obtained.

実施例3
製造例2で得たフィルム型触媒Bを、内径101mmの反応器1の内部に装填した。フィルム型触媒の装填された部分の体積は17.4Lで、反応器1の軸方向に連通した、断面積0.1cm2程度の複数の流路がフィルム型触媒によって形成された。ラウリルアルコール(花王(株)製カルコール20)46.1kgを緩衝槽2に仕込み、水素ガスを標準状態体積換算で922L/Hrの流量で供給しながら、緩衝槽2と反応器1との間での液循環を10.2回/Hrで行った。反応器1内部の温度を220℃まで昇温した後、ジメチルアミンの供給によって220℃にて反応を開始した。ジメチルアミン供給量は反応の進行に合わせて調整した。反応開始から3.8時間後にジメチルアミンの供給を停止し、緩衝槽2及び反応器1内部の液全量を抜き出した。ガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のラウリルアルコールは1%、生成したDM体は90.4%、副生3級アミンであるM2体は7.4%であった。N,N,N−トリドデシルアミンは検出されなかった。
Example 3
The film type catalyst B obtained in Production Example 2 was loaded into the reactor 1 having an inner diameter of 101 mm. The volume of the portion loaded with the film-type catalyst was 17.4 L, and a plurality of flow paths having a cross-sectional area of about 0.1 cm 2 connected in the axial direction of the reactor 1 were formed by the film-type catalyst. While charging 46.1 kg of lauryl alcohol (Calcoal 20 manufactured by Kao Corporation) into the buffer tank 2 and supplying hydrogen gas at a flow rate of 922 L / Hr in terms of standard state volume, between the buffer tank 2 and the reactor 1 Was circulated at 10.2 times / hr. After raising the temperature inside the reactor 1 to 220 ° C., the reaction was started at 220 ° C. by supplying dimethylamine. The amount of dimethylamine supplied was adjusted according to the progress of the reaction. After 3.8 hours from the start of the reaction, the supply of dimethylamine was stopped, and the entire liquid in the buffer tank 2 and the reactor 1 was extracted. As a result of analysis by gas chromatograph and quantification by area percentage method, 1% of unreacted lauryl alcohol, 90.4% of produced DM form, and 7.4% of M2 form of by-product tertiary amine. Met. N, N, N-tridodecylamine was not detected.

実施例4
緩衝槽2と反応器1との間での液循環を3.4回/Hrで行った以外は実施例3と同様の操作により、反応器1内部の温度を220℃まで昇温した後、ジメチルアミンの供給によって反応を開始した。ジメチルアミン供給量は反応の進行に合わせて調整した。反応開始から3.8時間後にジメチルアミンの供給を停止し、緩衝槽2及び反応器1内部の液全量を抜き出した。実施例3と同様にガスクロマトグラフにより分析した結果、未反応のラウリルアルコールは1%、生成したDM体は89.9%、副生3級アミンであるM2体が8.2%であった。
Example 4
After raising the temperature inside the reactor 1 to 220 ° C. by the same operation as in Example 3 except that the liquid circulation between the buffer tank 2 and the reactor 1 was performed 3.4 times / Hr, The reaction was started by feeding dimethylamine. The amount of dimethylamine supplied was adjusted according to the progress of the reaction. After 3.8 hours from the start of the reaction, the supply of dimethylamine was stopped, and the entire liquid in the buffer tank 2 and the reactor 1 was extracted. As a result of analysis by gas chromatograph in the same manner as in Example 3, the unreacted lauryl alcohol was 1%, the produced DM form was 89.9%, and the by-product tertiary amine M2 form was 8.2%.

以下の実施例5では、図1に示す循環固定床型反応装置を用いて、n−デシルアルコールとモノメチルアミンとを原料としてN,N−ジデシル−N−メチルアミン(以下M2体と記載する)を製造した。なお以下の%は特に断りのないものは質量%を現す。   In Example 5 below, N, N-didecyl-N-methylamine (hereinafter referred to as M2 form) using n-decyl alcohol and monomethylamine as raw materials, using the circulating fixed bed reactor shown in FIG. Manufactured. In addition, the following% shows the mass% unless there is particular notice.

実施例5
製造例3で得たフィルム型触媒Cを、内径29.5mmの反応器1の内部に装填した。フィルム型触媒の装填された部分の体積は0.27Lで、反応器1の軸方向に連通した、断面積0.1cm2程度の複数の流路がフィルム型触媒によって形成された。n−デシルアルコール(花王(株)製カルコール10)0.6kgを緩衝槽2に仕込み、水素ガスを標準状態体積換算で12L/Hrの流量で供給しながら、緩衝槽2と反応器1との間での液循環を8.8回/Hrで行った。
Example 5
The film type catalyst C obtained in Production Example 3 was loaded into the reactor 1 having an inner diameter of 29.5 mm. The volume of the portion loaded with the film-type catalyst was 0.27 L, and a plurality of channels having a cross-sectional area of about 0.1 cm 2 that were communicated in the axial direction of the reactor 1 were formed by the film-type catalyst. While charging 0.6 kg of n-decyl alcohol (Kalco Co., Ltd. Calcoal 10) into the buffer tank 2 and supplying hydrogen gas at a flow rate of 12 L / Hr in terms of standard state volume, the buffer tank 2 and the reactor 1 The liquid circulation between them was performed at 8.8 times / Hr.

反応器1内部の温度を180℃まで昇温した後、モノメチルアミンの供給によって185℃にて反応を開始した。モノメチルアミン供給量は反応の進行に合わせて調整し、反応時間平均で18g/Hrであった。反応開始から4.5時間後にモノメチルアミンの供給を停止し、緩衝槽2及び反応器1内部の液全量を抜き出した。ガスクロマトグラフにて分析を行い、面積百分率法にて定量した結果、未反応のn−デシルアルコールは0.3%、生成したM2体は93.6%、副生3級アミンであるN−デシル−N,N−ジメチルアミン(以下DM体と記載する)は0.7%、N,N,N−トリデシルアミン(以下T体と記載する)は1.2%であった。   After raising the temperature inside the reactor 1 to 180 ° C., the reaction was started at 185 ° C. by supplying monomethylamine. The supply amount of monomethylamine was adjusted according to the progress of the reaction, and the average reaction time was 18 g / Hr. After 4.5 hours from the start of the reaction, the supply of monomethylamine was stopped, and the entire liquid in the buffer tank 2 and the reactor 1 was extracted. As a result of analysis by gas chromatograph and quantification by area percentage method, 0.3% of unreacted n-decyl alcohol, 93.6% of produced M2 form, N-decyl which is a by-product tertiary amine -N, N-dimethylamine (hereinafter referred to as DM form) was 0.7%, and N, N, N-tridecylamine (hereinafter referred to as T form) was 1.2%.

Figure 0004994692
Figure 0004994692

本発明に用いられる反応装置の一例を示す略示図である。1 is a schematic view showing an example of a reaction apparatus used in the present invention.

符号の説明Explanation of symbols

1 フィルム型触媒を装填した管型反応器
2 緩衝槽
3 外部循環用ポンプ
4 外部循環用導管
5 充填塔用導管
6 充填塔
1 Tube reactor loaded with film type catalyst 2 Buffer tank 3 External circulation pump 4 External circulation conduit 5 Packing tower conduit 6 Packing tower

Claims (5)

アルコールと1級又は2級アミンとから3級アミンを製造する方法であって、槽に付帯した外部循環ライン中にフィルム型触媒を装填した反応器を設置し、該反応器に、反応液を下記式(1)から求められる液循環回数が回/Hr以上になるように循環させて反応を行う、3級アミンの製造方法。
液循環回数(回/Hr)=Q/V (1)
V(L):原料アルコールの仕込み容量
Q(L/Hr):外部循環ラインにおける循環流量
A method for producing a tertiary amine from an alcohol and a primary or secondary amine, wherein a reactor loaded with a film-type catalyst is installed in an external circulation line attached to a tank, and the reaction solution is placed in the reactor. A method for producing a tertiary amine, in which the reaction is carried out by circulating the liquid so that the number of times of liquid circulation obtained from the following formula (1) is 5 times / Hr or more.
Number of times of liquid circulation (times / Hr) = Q / V (1)
V (L): Raw alcohol charge capacity Q (L / Hr): Circulation flow rate in external circulation line
フィルム型触媒が、支持体表面に固定化され、その触媒の厚みが0.01〜500μmである、請求項1記載の3級アミンの製造方法。   The method for producing a tertiary amine according to claim 1, wherein the film-type catalyst is immobilized on the surface of the support, and the thickness of the catalyst is 0.01 to 500 µm. 反応器が流通式管型反応器である、請求項1又は2記載の3級アミンの製造方法。   The method for producing a tertiary amine according to claim 1 or 2, wherein the reactor is a flow-through tubular reactor. アルコールが、直鎖状又は分岐鎖状の、炭素数8〜36の飽和又は不飽和の脂肪族アルコールである、請求項1〜3いずれか1項に記載の3級アミンの製造方法。   The method for producing a tertiary amine according to any one of claims 1 to 3, wherein the alcohol is a linear or branched, saturated or unsaturated aliphatic alcohol having 8 to 36 carbon atoms. 1級又は2級アミンが脂肪族1級又は2級アミンである、請求項1〜4いずれか1項に記載の3級アミンの製造方法。   The manufacturing method of the tertiary amine of any one of Claims 1-4 whose primary or secondary amine is an aliphatic primary or secondary amine.
JP2006103907A 2005-04-07 2006-04-05 Method for producing tertiary amine Active JP4994692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103907A JP4994692B2 (en) 2005-04-07 2006-04-05 Method for producing tertiary amine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005110499 2005-04-07
JP2005110499 2005-04-07
JP2006103907A JP4994692B2 (en) 2005-04-07 2006-04-05 Method for producing tertiary amine

Publications (2)

Publication Number Publication Date
JP2006312624A JP2006312624A (en) 2006-11-16
JP4994692B2 true JP4994692B2 (en) 2012-08-08

Family

ID=37534262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103907A Active JP4994692B2 (en) 2005-04-07 2006-04-05 Method for producing tertiary amine

Country Status (1)

Country Link
JP (1) JP4994692B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086022B2 (en) * 2006-10-06 2012-11-28 花王株式会社 Film catalyst
JP5086023B2 (en) * 2006-10-06 2012-11-28 花王株式会社 Method for producing film catalyst
JP4938125B2 (en) * 2009-12-22 2012-05-23 花王株式会社 Method for producing tertiary amine
CN112619588B (en) * 2020-12-02 2022-03-29 辽宁圣德华星化工有限公司 Tertiary amine production device and production method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3539266A1 (en) * 1985-11-06 1987-05-07 Basf Ag METHOD FOR PRODUCING TRIALKYLAMINE
JPS6413060A (en) * 1987-03-05 1989-01-17 Ethyl Corp Manufacture of amine from alcohol
US6762324B2 (en) * 2002-05-01 2004-07-13 Air Products And Chemicals, Inc. Metal modified Pd/Ni catalysts
JP4354341B2 (en) * 2004-06-11 2009-10-28 花王株式会社 Reactor
JP4549802B2 (en) * 2004-10-08 2010-09-22 花王株式会社 Film catalyst and method for producing film catalyst
JP4429887B2 (en) * 2004-12-09 2010-03-10 花王株式会社 Method for producing tertiary amine

Also Published As

Publication number Publication date
JP2006312624A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP5234726B2 (en) Production method of tertiary amine
JP2007197396A (en) Method for producing tertiary amine
JP4545687B2 (en) Method for producing tertiary amine
US7235701B2 (en) Process for producing aldehyde
JP4354341B2 (en) Reactor
US9061964B2 (en) Method for producing tertiary amine
WO2006109848A1 (en) Process for production of tertiary amines
JP4994692B2 (en) Method for producing tertiary amine
JP4975409B2 (en) Method for producing tertiary amine
JP4938125B2 (en) Method for producing tertiary amine
WO2014097873A1 (en) Aldehyde production method
JP5806609B2 (en) Method for producing tertiary amine
JP2014009167A (en) Process for producing aldehyde
JP5090567B2 (en) Method for producing tertiary amine
JP4879585B2 (en) Production method of tertiary amine
JP6637235B2 (en) Method for producing aldehyde

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4994692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250