Nothing Special   »   [go: up one dir, main page]

JP4977092B2 - Wireless communication system - Google Patents

Wireless communication system Download PDF

Info

Publication number
JP4977092B2
JP4977092B2 JP2008158247A JP2008158247A JP4977092B2 JP 4977092 B2 JP4977092 B2 JP 4977092B2 JP 2008158247 A JP2008158247 A JP 2008158247A JP 2008158247 A JP2008158247 A JP 2008158247A JP 4977092 B2 JP4977092 B2 JP 4977092B2
Authority
JP
Japan
Prior art keywords
wireless communication
transmission
communication device
unit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008158247A
Other languages
Japanese (ja)
Other versions
JP2009303156A (en
Inventor
真由子 上野
修司 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008158247A priority Critical patent/JP4977092B2/en
Publication of JP2009303156A publication Critical patent/JP2009303156A/en
Application granted granted Critical
Publication of JP4977092B2 publication Critical patent/JP4977092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は、周波数ホッピング方式を用いて無線通信を行う無線通信システムに関するものである。   The present invention relates to a wireless communication system that performs wireless communication using a frequency hopping method.

近年、近距離無線通信では、パソコンやAV機器間において、映像や音の高品質な通信や大量のデータのやりとりが実現できるとして、ワイヤレスUSBが注目されている。このワイヤレスUSBには、無線通信方式として、WiMedia Allianceが推進するUWB(Ultra Wideband)方式が採用されている。UWBは低消費電力でありながら、現在普及しているIEEE802.11a/b/gをはるかに上回る高速通信が可能であることから、オフィスでの効率化、生活の利便性向上のために、様々な機器に搭載されていくことが期待されている。
図6乃至8は、UWB方式における周波数帯域の使用方式を示す図である。
UWBでは図6のように、3.1〜10.6GHz帯域を、1バンド528MHz帯域で14バンドに分割し、低域のバンドからバンド#1、バンド#2と番号が付けられている。また、3バンドずつをグループ化して#1から#5までのチャネルと呼ぶ。さらにチャネル#1で通信を行う場合には、ホッピング・パターンによって、図7のように1つのバンドのみで通信を行ったり、図8のように3つのバンドを用いて通信を行ったりすることができる。ホッピング・パターンが3つのバンドを用いる時には、1バンド528MHz帯域のバンドを3つ用いるため、1584MHzと非常に広帯域を用いて通信を行うことになる。
このようにUWBは非常に広い周波数帯域を用いて通信を行う。しかし、アンテナやフィルタ、バラン、RFチップ(LNA(Low Noise Amplifier)やMixerなど)などの部品の周波数特性を広帯域にわたって平坦に設計することは非常に難しい。そのため通信に用いる帯域の周波数特性が平坦であることの方が珍しい。
In recent years, in short-range wireless communication, wireless USB has attracted attention because it can realize high-quality communication of video and sound and exchange of a large amount of data between personal computers and AV devices. This wireless USB employs a UWB (Ultra Wideband) system promoted by WiMedia Alliance as a wireless communication system. UWB has low power consumption, and can communicate at a speed much higher than the currently popular IEEE802.11a / b / g. It is expected to be installed in various devices.
6 to 8 are diagrams showing frequency band usage methods in the UWB method.
In UWB, as shown in FIG. 6, the 3.1 to 10.6 GHz band is divided into 14 bands by 1 band of 528 MHz band, and numbers are assigned as band # 1 and band # 2 from the lower band. Three bands are grouped and called channels # 1 to # 5. Further, when communication is performed on channel # 1, depending on the hopping pattern, communication may be performed using only one band as shown in FIG. 7, or communication may be performed using three bands as shown in FIG. it can. When the hopping pattern uses three bands, communication is performed using a very wide band of 1584 MHz because three bands of one 528 MHz band are used.
Thus, UWB communicates using a very wide frequency band. However, it is very difficult to design the frequency characteristics of components such as antennas, filters, baluns, RF chips (such as LNA (Low Noise Amplifier) and Mixer) flat over a wide band. For this reason, it is rare that the frequency characteristics of the band used for communication are flat.

図9は、チャネル#1の周波数特性の一例を示す図である。バンド#2と比較して、バンド#1では2dB電力の減衰が少なく、逆にバンド#3では2.2dB多く電力が減衰する。このように平坦でない周波数特性を持つ帯域で周波数ホッピングを行う時には、AGC(Auto Gain Control)処理が常に問題となる。UWBではパケット同期信号として21シンボル与えられているが、この間にAGCだけでなくパケットの検出やシンボル位置同期の確立等を行わなければならない。
さらに1シンボルが312.5nsecと短いため、AGCに使用できる時間が非常に短い。そのため、3つのバンドそれぞれでAGC処理を行うことは、困難である。そこで一般的には、3つのバンドのシンボルを平均することでゲインを決定する。とは言え、3つのバンドの平均でAGC処理を行ってしまうと、図9のように周波数特性が平坦でない時に問題がおこる。
つまり図9において3つのバンドの平均でAGC処理を行い、ゲインを設定したとすると、バンド#2ではほぼ適切なゲイン設定ができエラーなく受信できるが、バンド#3ではより減衰されるため、受信した信号波形の振幅が小さくなる。UWBではその帯域幅の広さからADCのサンプリング周波数が高くなり、高分解能のADCを使用することは一般的に難しく、分解能の低いADCを用いることが多いため、振幅が小さくなるとすぐに、量子化誤差の影響を受け、エラーが起こりやすくなる。
バンド#1ではさらに深刻で信号波形が十分に減衰されないため、ADCで波形がクリップし、歪んでしまうため、よりエラーが起こりやすくなり、スループットが低下するという問題がおこる。
FIG. 9 is a diagram illustrating an example of frequency characteristics of channel # 1. Compared to band # 2, band # 1 has less attenuation of 2 dB power, whereas band # 3 attenuates power by 2.2 dB more. When performing frequency hopping in such a band having non-flat frequency characteristics, AGC (Auto Gain Control) processing is always a problem. In UWB, 21 symbols are provided as a packet synchronization signal. During this period, not only AGC but also packet detection and symbol position synchronization must be established.
Furthermore, since one symbol is as short as 312.5 nsec, the time available for AGC is very short. Therefore, it is difficult to perform AGC processing in each of the three bands. In general, therefore, the gain is determined by averaging the symbols of the three bands. However, if AGC processing is performed with an average of three bands, a problem occurs when the frequency characteristics are not flat as shown in FIG.
In other words, in FIG. 9, if the AGC process is performed with the average of three bands and the gain is set, the band # 2 can be set with an almost appropriate gain and can be received without error, but the band # 3 is further attenuated, so the reception The amplitude of the signal waveform is reduced. In UWB, the sampling frequency of ADC becomes high due to its wide bandwidth, and it is generally difficult to use a high resolution ADC, and a low resolution ADC is often used. The error is likely to occur due to the influence of the conversion error.
In band # 1, the signal waveform is further severe and the signal waveform is not sufficiently attenuated, so that the waveform is clipped and distorted by the ADC, so that an error is more likely to occur and the throughput is reduced.

かかる問題を解決するために、特許文献1に開示されている技術では、あらかじめ測定されたノイズレベルを用いて送信電力を制御している。この技術を用いることで、それぞれのバンドにおけるSNR(SN比)は一定となるが、送信電力がノイズによって異なるため、当然受信した信号波形の振幅がそれぞれのバンドで異なってしまう。
そのため、バンドごとにAGC処理を行うことが必須となるが、前述したとおり処理が困難なため、適切なゲインを設定できず、量子化誤差や歪みによってエラーが起こりやすくなり、スループットが低下するという問題があった。
また、特許文献2に開示されている技術では、ホッピング周波数に応じた空間伝播損失特性に応じて送信電力を制御している。しかし、この技術では送信機の各バンドにおける周波数特性の補正やある程度の空間伝播損失は補正されるが、受信機の周波数特性が全く予測つかないために、やはり適切なゲインを設定できず、量子化誤差や歪みによってエラーが起こりやすくなり、スループットが低下するという問題があった。
特開2005−198094公報 特開2005−269202公報
In order to solve this problem, in the technique disclosed in Patent Document 1, transmission power is controlled using a noise level measured in advance. By using this technique, the SNR (S / N ratio) in each band becomes constant, but the transmission power differs depending on the noise, so naturally the amplitude of the received signal waveform differs in each band.
Therefore, it is indispensable to perform AGC processing for each band. However, since the processing is difficult as described above, an appropriate gain cannot be set, and an error is likely to occur due to quantization error or distortion, resulting in a decrease in throughput. There was a problem.
In the technique disclosed in Patent Document 2, the transmission power is controlled according to the spatial propagation loss characteristic corresponding to the hopping frequency. However, this technique corrects the frequency characteristics in each band of the transmitter and corrects a certain amount of spatial propagation loss. However, since the frequency characteristics of the receiver cannot be predicted at all, an appropriate gain cannot be set, and quantum There is a problem that errors are likely to occur due to conversion errors and distortions, and throughput is reduced.
Japanese Patent Laid-Open No. 2005-198094 JP 2005-269202 A

本発明はかかる課題に鑑み、周波数ホッピング方式を用いる広帯域無線通信システムにおいて、あらかじめ測定された無線通信装置の各バンドにおける電力減衰量により送信電力を制御し、各バンド間による周波数特性を平坦にすることで、AGC処理を複雑にすることなく、かつスループットが低下することを防ぐことができる無線通信システムを提供することを目的とする。   In view of the above problems, the present invention controls transmission power based on power attenuation in each band of a wireless communication apparatus measured in advance in a broadband wireless communication system using a frequency hopping method, and flattens frequency characteristics between the bands. Accordingly, an object of the present invention is to provide a wireless communication system that can prevent the AGC process from being complicated and the throughput from being lowered.

かかる課題を解決するために、請求項1に記載の発明は、複数の周波数帯域を用いて、受信側の第1の無線通信装置と送信側の第2の無線通信装置との間でデータの送受信を行う周波数ホッピング方式を用いる無線通信システムであって、前記第1の無線通信装置は、複数の周波数帯域で構成された高周波無線信号を前記第2の無線通信装置から受信する受信側アンテナ部と、受信した前記高周波無線信号の周波数変換処理を行う受信側RF部と、複数の周波数帯域の各々について、前記受信側アンテナ部への入力から前記受信側RF部からの出力までの電力減衰量を予め測定して記憶した第1の記憶手段と、を備え、前記第2の無線通信装置との接続動作を行う時に、前記第1の記憶手段に記憶した前記電力減衰量を前記第2の無線通信装置に送信し、前記第2の無線通信装置は、前記第1の無線通信装置に送信するための信号を複数の周波数帯域で構成された高周波無線信号に変換処理を行う送信側RF部と、変換された前記高周波無線信号を前記第1の無線通信装置に送信する送信側アンテナ部と、前記第1の無線通信装置から送信された前記電力減衰量に基づいて前記送信側アンテナ部からの送信電力を制御する送信電力制御手段と、を備えたことを特徴とする。   In order to solve such a problem, the invention according to claim 1 uses a plurality of frequency bands to transfer data between the first wireless communication device on the reception side and the second wireless communication device on the transmission side. A radio communication system using a frequency hopping method for transmitting and receiving, wherein the first radio communication device receives a high frequency radio signal composed of a plurality of frequency bands from the second radio communication device. A receiving-side RF unit that performs frequency conversion processing of the received high-frequency radio signal, and a power attenuation amount from an input to the receiving-side antenna unit to an output from the receiving-side RF unit for each of a plurality of frequency bands First storage means for measuring and storing in advance, and when performing a connection operation with the second wireless communication apparatus, the power attenuation amount stored in the first storage means Wireless communication equipment And the second wireless communication device converts the signal for transmission to the first wireless communication device into a high-frequency wireless signal composed of a plurality of frequency bands, and a conversion side RF unit A transmission-side antenna unit that transmits the high-frequency radio signal that has been transmitted to the first wireless communication device, and transmission power from the transmission-side antenna unit based on the power attenuation amount transmitted from the first wireless communication device Transmission power control means for controlling the transmission.

また、請求項2に記載の発明は、前記第2の無線通信装置は、複数の周波数帯域の各々について、前記送信側RF部への入力から前記送信側アンテナ部からの出力までの電力減衰量を予め測定して記憶した第2の記憶手段を備え、前記送信電力制御手段は、前記第1の無線通信装置から送信された電力減衰量及び前記第2の記憶手段に記憶した前記電力減衰量に基づいて、前記送信側アンテナ部からの送信電力を制御する請求項1に記載の無線通信システムを特徴とする。
また、請求項3に記載の発明は、前記接続動作においては、データの送受信とは異なる通信経路を用いる請求項1又は2に記載の無線通信システムを特徴とする。
In the invention according to claim 2, the second wireless communication apparatus is configured such that, for each of a plurality of frequency bands, power attenuation from input to the transmission-side RF unit to output from the transmission-side antenna unit. Second storage means for measuring and storing the power in advance, wherein the transmission power control means transmits the power attenuation amount transmitted from the first wireless communication apparatus and the power attenuation amount stored in the second storage means. The wireless communication system according to claim 1, wherein transmission power from the transmission side antenna unit is controlled based on the transmission side antenna unit.
The invention according to claim 3 is characterized by the wireless communication system according to claim 1 or 2 using a communication path different from data transmission / reception in the connection operation.

本発明によれば、周波数ホッピング方式を用いる広帯域無線通信システムにおいて、あらかじめ測定された無線通信装置の各バンドにおける電力減衰量により送信電力を制御し、各バンド間による周波数特性を平坦にすることで、AGC処理を複雑にすることなく、かつスループットが低下するのを防ぐことができる無線通信システムを提供することができる。   According to the present invention, in a broadband wireless communication system using a frequency hopping method, transmission power is controlled by a power attenuation amount in each band of a wireless communication apparatus measured in advance, and frequency characteristics between the bands are flattened. Thus, it is possible to provide a wireless communication system capable of preventing the throughput from decreasing without complicating the AGC process.

以下、本発明の好適な実施形態につき説明する。
図1は、本発明の無線通信装置を適用した典型的な通信システムの構成図である。
例えば、受信側としての第1の無線通信装置を内蔵したプリンタA、送信側としての第2の無線通信装置を内蔵したパソコン(Personal Computer)Bから構成されており、両者は、例えばワイヤレスUSBによって無線通信を行うものとする。
図2は、本発明の無線通信システムの詳細な構成例を示す図であり、(a)は第1の無線通信装置の構成を示す図、(b)は第2の無線通信装置の構成を示す図である。
なお、ここでは、本発明に関する機能部のみを示しており、受信や送信に関するその他の機能部については省略してある。
図2(a)において、第1の無線通信装置は、第2の無線通信装置と複数の周波数帯域で構成される高周波無線信号を送受信する受信用アンテナ1及び送信用アンテナ2、周波数変換処理を行ったRF信号を送信用アンテナ2に送信し、かつ受信用アンテナ1からのRF信号を受信して周波数変換処理を行うRF部(受信側RF部)3、RF部3からの信号をデジタル変換するADC(Analog Digital Converter)部4、変換された受信データを復調する復調部6と送信データを変調する変調部7からなるベースバンド部5、接続動作制御、また送信電力制御部9による送信電力制御を行うプロトコル制御部8、送信データをアナログ信号に変換するDAC(Digital Analog Converter)部10、ROM(第1の記憶装置)11によって構成される。
なお送信電力制御部9はプロトコル制御部8だけでなくベースバンド部5にあっても良い。またアンテナ1、2は、送受信で共用しても良い。
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 is a configuration diagram of a typical communication system to which a wireless communication apparatus of the present invention is applied.
For example, it is composed of a printer A incorporating a first wireless communication device as a reception side and a personal computer B incorporating a second wireless communication device as a transmission side. Assume wireless communication.
FIG. 2 is a diagram illustrating a detailed configuration example of the wireless communication system of the present invention, where (a) is a diagram illustrating a configuration of the first wireless communication device, and (b) is a configuration of the second wireless communication device. FIG.
Here, only functional units related to the present invention are shown, and other functional units related to reception and transmission are omitted.
In FIG. 2A, the first wireless communication apparatus performs reception and transmission antennas 1 and 2 for performing frequency conversion processing for transmitting and receiving high-frequency wireless signals composed of a plurality of frequency bands with the second wireless communication apparatus. The RF unit (reception side RF unit) 3 that performs the frequency conversion processing by transmitting the RF signal performed to the transmitting antenna 2 and receiving the RF signal from the receiving antenna 1 and digitally converting the signal from the RF unit 3 ADC (Analog Digital Converter) unit 4, baseband unit 5 including demodulation unit 6 that demodulates the converted received data and modulation unit 7 that modulates transmission data, connection operation control, and transmission power by transmission power control unit 9 The protocol control unit 8 performs control, the DAC (Digital Analog Converter) unit 10 converts transmission data into an analog signal, and the ROM (first storage device) 11.
The transmission power control unit 9 may be provided not only in the protocol control unit 8 but also in the baseband unit 5. The antennas 1 and 2 may be shared for transmission and reception.

図2(b)において、第2の無線通信装置は、第1の無線通信装置と複数の周波数で構成される高周波無線信号を送受信する受信用アンテナ21及び送信用アンテナ22、周波数変換処理を行ったRF信号を送信用アンテナ22に送信し、かつ受信用アンテナ21からのRF信号を受信して周波数変換処理を行うRF部(受信側RF部)23、RF部23からの信号をデジタル変換するADC(Analog Digital Converter)部24、変換された受信データを復調する復調部26と送信データを変調する変調部27からなるベースバンド部25、接続動作制御、また送信電力制御部29による送信電力制御を行うプロトコル制御部28、送信データをアナログ信号に変換するDAC(Digital Analog Converter)部30によって構成される。
送信電力制御部29はプロトコル制御部28だけでなくベースバンド部25にあっても良い。またアンテナ21、22は、送受信で共用しても良い。
製造テスト時など通信を行う前に、信号発生機といった計測装置を用い、図2のRXチェーン部(アンテナ入力からRF部出力まで)における周波数帯域ごと(バンドごと)の電力減衰量を測定しておく。このとき単一トーン信号を用いて測定しても、UWB信号を用いて測定しても良い。測定した電力減衰量はROM11に記憶させておく。
図3は、各チャネルにおいて最も低域のバンドを基準とした時の電力減衰量を表で示した図である。
3つのバンドを用いた通信では、1つのバンドのみを用いた通信よりも10LOG10(3)dB送信電力を大きく送信できることから、基準値よりも10LOG10(3)dB以上送信電力が大きくならないようにリミッタをかけても良い。また、ROMに記憶させる電力減衰量は、図3のように相対値であっても、絶対値であってもかまわない。
In FIG. 2B, the second wireless communication device performs a frequency conversion process with the reception antenna 21 and the transmission antenna 22 that transmit and receive high-frequency wireless signals composed of a plurality of frequencies with the first wireless communication device. The RF unit (reception side RF unit) 23 that transmits the received RF signal to the transmitting antenna 22 and receives the RF signal from the receiving antenna 21 and performs frequency conversion processing, and digitally converts the signal from the RF unit 23 An ADC (Analog Digital Converter) unit 24, a baseband unit 25 including a demodulation unit 26 that demodulates converted reception data and a modulation unit 27 that modulates transmission data, connection operation control, and transmission power control by a transmission power control unit 29 A protocol control unit 28 for performing transmission and a DAC (Digital Analog Converter) unit 30 for converting transmission data into an analog signal.
The transmission power control unit 29 may be provided not only in the protocol control unit 28 but also in the baseband unit 25. The antennas 21 and 22 may be shared for transmission and reception.
Before performing communication such as during a manufacturing test, use a measuring device such as a signal generator to measure the power attenuation for each frequency band (for each band) in the RX chain part (from antenna input to RF part output) in FIG. deep. At this time, measurement may be performed using a single tone signal or using a UWB signal. The measured power attenuation amount is stored in the ROM 11.
FIG. 3 is a table showing the amount of power attenuation when the lowest band in each channel is used as a reference.
Since communication using three bands can transmit 10 LOG10 (3) dB transmission power larger than communication using only one band, the limiter does not increase the transmission power by more than 10 LOG10 (3) dB than the reference value. It is okay to spend. Further, the power attenuation amount stored in the ROM may be a relative value or an absolute value as shown in FIG.

図4は、本発明の無線通信システムにおける接続手順の一部を示した図である。
図4に示すように、第1の無線通信装置(プリンタA)と第2の無線通信装置(パソコンB)間でUSB無線通信を行う場合、識別、認証、許可の接続動作を行ったあとで暗号化のされたデータ通信が行われるが、識別、認証の後に、第1の無線通信装置で測定され、ROM11に記憶されていたRXチェーン部における電力減衰量を第2の無線通信装置に伝送している。
その後、第2の無線通信装置では、接続動作中に受信した第1の無線通信装置における電力減衰量により、各バンドにおける送信電力を制御しながら、データの送信を行う。例えば、図3の電力減衰量を用いてチャネル#1で送信を行う場合、バンド#2はバンド#1よりも2dB電力が減衰されるので、バンド#2を送信する時にはバンド#1よりも2dB送信電力を大きくする。
このように、あらかじめ測定された電力減衰量を用いて送信電力を制御することで、受信機で生じる周波数特性のバンド間の違いを補正し、周波数特性を平坦にすることができる。また、一般的には接続性確保のため最低のデータ・レートで送信される接続動作中に電力減衰量を送信機に送るため、各バンド間の周波数特性の違いによる影響を最小限に抑えることができ、かつデータ送信中にスループットが低下することを防ぐことができる。
なお、図4の例において、電力減衰量は、識別、認証後に伝送されているが、もちろん接続動作のどの手順で伝送しても良い。また、電力減衰量の送信は特に手順として持たなくても、認証や許可のフレームの最後に付加してもかまわない。この接続手順は一般的には接続性確保のため最低のデータ・レートで行われる。そのため各バンド間の周波数の違いによる影響に強く、エラーが起こりにくい。
FIG. 4 is a diagram showing a part of a connection procedure in the wireless communication system of the present invention.
As shown in FIG. 4, when USB wireless communication is performed between the first wireless communication device (printer A) and the second wireless communication device (PC B), after connection operation of identification, authentication, and permission is performed. Encrypted data communication is performed, but after identification and authentication, the power attenuation in the RX chain unit measured by the first wireless communication device and stored in the ROM 11 is transmitted to the second wireless communication device. is doing.
Thereafter, the second wireless communication apparatus transmits data while controlling the transmission power in each band based on the power attenuation amount in the first wireless communication apparatus received during the connection operation. For example, when transmission is performed on channel # 1 using the power attenuation amount of FIG. 3, band # 2 is attenuated by 2 dB more than band # 1, so when transmitting band # 2, it is 2 dB more than band # 1. Increase transmission power.
In this way, by controlling the transmission power using the power attenuation measured in advance, it is possible to correct the difference between the bands of the frequency characteristics generated in the receiver and flatten the frequency characteristics. In addition, in order to ensure connectivity, power attenuation is generally sent to the transmitter during connection operations that are transmitted at the lowest data rate, so the effects of differences in frequency characteristics between bands are minimized. And a reduction in throughput during data transmission can be prevented.
In the example of FIG. 4, the power attenuation amount is transmitted after identification and authentication, but may be transmitted by any procedure of connection operation. The transmission of the power attenuation amount may be added to the end of the authentication or permission frame, even if it is not a special procedure. This connection procedure is generally performed at the lowest data rate to ensure connectivity. Therefore, it is strong against the influence of the frequency difference between the bands, and an error hardly occurs.

次に、本発明の無線通信システムの別の実施形態を説明する。
図5は本実施形態における第2の無線通信装置の構成例を示す図である。
図5に示すように、第2の無線通信装置は、図2(a)の構成に加えて、ROM(第2の記憶装置)31を備えている。
製造テスト時など通信を行う前に、信号発生機といった計測装置を用い、図5におけるTXチェーン部(RF部入力からアンテナ出力まで)の電力減衰量を測定しておき、第1の無線通信装置におけるRXチェーン部の電力減衰量と同様にROM41に記憶させておく。図4のように接続動作中に受信した第1の無線通信装置における電力減衰量に加えて、さらにROM41に記憶させてあった第2の無線通信装置のTXチェーンにおける電力減衰量に基づいて、送信電力制御部29により各バンドにおける送信電力を制御しながら、データの送信を行う。
このように、第1の無線通信装置(受信側)で生じる周波数特性のバンド間の違いに加え、第2の無線通信装置(送信側)で生じる周波数特性のバンド間の違いも補正することで、周波数特性を平坦にすることができるため、よりスループットが低下することを防ぐことができる。
Next, another embodiment of the wireless communication system of the present invention will be described.
FIG. 5 is a diagram illustrating a configuration example of the second wireless communication apparatus in the present embodiment.
As shown in FIG. 5, the second wireless communication apparatus includes a ROM (second storage device) 31 in addition to the configuration of FIG.
Before performing communication such as during a manufacturing test, a first radio communication device is measured by measuring the power attenuation amount of the TX chain unit (from the RF unit input to the antenna output) in FIG. 5 using a measuring device such as a signal generator. Is stored in the ROM 41 in the same manner as the power attenuation amount of the RX chain portion. Based on the power attenuation amount in the TX chain of the second wireless communication device stored in the ROM 41 in addition to the power attenuation amount in the first wireless communication device received during the connection operation as shown in FIG. Data is transmitted while the transmission power control unit 29 controls the transmission power in each band.
In this way, in addition to the difference between the frequency characteristic bands generated in the first wireless communication device (reception side), the difference between the frequency characteristic bands generated in the second wireless communication device (transmission side) is also corrected. Since the frequency characteristic can be flattened, it is possible to prevent the throughput from further decreasing.

ところで、ワイヤレスUSBでは、接続を確立するためには、コネクション・コンテキスト(CC)と呼ばれる情報をホストとデバイスで共有しなければならない。そのため接続するためには、CCをあらかじめホストからデバイスに転送する必要がある。この転送方式のうち、最もセキュリティが高い方式は、CCの転送をUWB無線通信を用いず、USBケーブルなどを用いて行う。すなわち図4の手順の前に行うCC転送の時に、第1の無線通信装置で測定され、ROM11に記憶されていたRXチェーン部における電力減衰量を第2の無線通信装置にUSBケーブルで送信する。その後の接続動作やデータ送信は、前述したように電力減衰量により各バンドにおける送信電力を制御しながら行う。
このように、接続動作にケーブルといった、通常のデータ送信と異なる通信経路を用いることで、接続動作中に各バンド間の周波数特性の違いによるエラーが起こることを防ぐことができ、接続動作中に送信した電力減衰量により、データ送信中もスループットが低下することを防ぐことができる。
By the way, in wireless USB, in order to establish a connection, information called a connection context (CC) must be shared between the host and the device. Therefore, in order to connect, it is necessary to transfer the CC from the host to the device in advance. Among these transfer methods, the method with the highest security performs CC transfer using a USB cable or the like without using UWB wireless communication. That is, at the time of CC transfer performed before the procedure of FIG. 4, the power attenuation amount in the RX chain unit measured by the first wireless communication device and stored in the ROM 11 is transmitted to the second wireless communication device via the USB cable. . The subsequent connection operation and data transmission are performed while controlling the transmission power in each band by the power attenuation amount as described above.
In this way, by using a communication path that is different from normal data transmission, such as a cable, for connection operation, it is possible to prevent errors due to differences in frequency characteristics between bands during connection operation. The transmitted power attenuation can prevent the throughput from decreasing even during data transmission.

本発明の無線通装置を適用した典型的な通信システムの構成図。The block diagram of the typical communication system to which the wireless communication apparatus of this invention is applied. 本発明の無線通信システムの詳細な構成例を示す図。The figure which shows the detailed structural example of the radio | wireless communications system of this invention. 各チャネルにおいて最も低域のバンドを基準とした時の電力減衰量を表で示した図。The figure which showed the amount of power attenuation | damping when using the lowest band in each channel as a table | surface. 本発明の無線通信システムにおける接続手順の一部を示した図。The figure which showed a part of connection procedure in the radio | wireless communications system of this invention. 本実施形態における第2の無線通信装置の構成例を示す図。The figure which shows the structural example of the 2nd radio | wireless communication apparatus in this embodiment. UWBにおける周波数帯域の使用方式(その1)を示す図。The figure which shows the usage method (the 1) of the frequency band in UWB. UWBにおける周波数帯域の使用方式(その2)を示す図。The figure which shows the usage method (the 2) of the frequency band in UWB. UWBにおける周波数帯域の使用方式(その3)を示す図The figure which shows the usage method (the 3) of the frequency band in UWB チャネル#1の周波数特性の一例を示す図。The figure which shows an example of the frequency characteristic of channel # 1.

符号の説明Explanation of symbols

1、21 受信用アンテナ部、22 送信用アンテナ、3、23 RF部、4、23 ADC部、5、25 ベースバンド部、6、26 復調部、7、27変調部、8、28 プロトコル制御部、9、29 送信電力制御部、10、30 DAC部、31 ROM   1,21 Reception antenna unit, 22 Transmitting antenna, 3, 23 RF unit, 4, 23 ADC unit, 5, 25 Baseband unit, 6, 26 Demodulation unit, 7, 27 modulation unit, 8, 28 Protocol control unit 9, 29 Transmission power control unit, 10, 30 DAC unit, 31 ROM

Claims (3)

複数の周波数帯域を用いて、受信側の第1の無線通信装置と送信側の第2の無線通信装置との間でデータの送受信を行う周波数ホッピング方式を用いる無線通信システムであって、
前記第1の無線通信装置は、
複数の周波数帯域で構成された高周波無線信号を前記第2の無線通信装置から受信する受信側アンテナ部と、
受信した前記高周波無線信号の周波数変換処理を行う受信側RF部と、
複数の周波数帯域の各々について、前記受信側アンテナ部への入力から、前記受信側RF部からの出力までの電力減衰量を予め測定して記憶した第1の記憶手段と、を備え、
前記第2の無線通信装置との接続動作を行う時に、前記第1の記憶手段に記憶した前記電力減衰量を前記第2の無線通信装置に送信し、
前記第2の無線通信装置は、
前記第1の無線通信装置に送信するための信号を複数の周波数帯域で構成された高周波無線信号に変換処理を行う送信側RF部と、
変換された前記高周波無線信号を前記第1の無線通信装置に送信する送信側アンテナ部と、
前記第1の無線通信装置から送信された前記電力減衰量に基づいて前記送信側アンテナ部からの送信電力を制御する送信電力制御手段と、
を備えたことを特徴とする無線通信システム。
A wireless communication system that uses a frequency hopping method that transmits and receives data between a first wireless communication device on a reception side and a second wireless communication device on a transmission side using a plurality of frequency bands,
The first wireless communication device is:
A receiving-side antenna unit that receives a high-frequency wireless signal composed of a plurality of frequency bands from the second wireless communication device;
A receiving-side RF unit that performs frequency conversion processing of the received high-frequency radio signal;
For each of a plurality of frequency bands, the first storage means for measuring and storing in advance power attenuation from the input to the reception side antenna unit to the output from the reception side RF unit,
When performing a connection operation with the second wireless communication device, the power attenuation amount stored in the first storage unit is transmitted to the second wireless communication device,
The second wireless communication device is:
A transmission-side RF unit that converts a signal to be transmitted to the first wireless communication device into a high-frequency wireless signal composed of a plurality of frequency bands;
A transmitting-side antenna unit that transmits the converted high-frequency radio signal to the first radio communication device;
Transmission power control means for controlling transmission power from the transmission-side antenna unit based on the power attenuation amount transmitted from the first wireless communication device;
A wireless communication system comprising:
前記第2の無線通信装置は、
複数の周波数帯域の各々について、前記送信側RF部への入力から前記送信側アンテナ部からの出力までの電力減衰量を予め測定して記憶した第2の記憶手段を備え、
前記送信電力制御手段は、前記第1の無線通信装置から送信された電力減衰量及び前記第2の記憶手段に記憶した前記電力減衰量に基づいて、前記送信側アンテナ部からの送信電力を制御することを特徴とする請求項1に記載の無線通信システム。
The second wireless communication device is:
For each of a plurality of frequency bands, a second storage means for measuring and storing in advance power attenuation from the input to the transmission-side RF unit to the output from the transmission-side antenna unit is provided,
The transmission power control unit controls transmission power from the transmission side antenna unit based on the power attenuation amount transmitted from the first wireless communication apparatus and the power attenuation amount stored in the second storage unit. The wireless communication system according to claim 1, wherein:
前記接続動作においては、データの送受信とは異なる通信経路を用いることを特徴とする請求項1又は2に記載の無線通信システム。   3. The wireless communication system according to claim 1, wherein a communication path different from data transmission / reception is used in the connection operation.
JP2008158247A 2008-06-17 2008-06-17 Wireless communication system Active JP4977092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008158247A JP4977092B2 (en) 2008-06-17 2008-06-17 Wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008158247A JP4977092B2 (en) 2008-06-17 2008-06-17 Wireless communication system

Publications (2)

Publication Number Publication Date
JP2009303156A JP2009303156A (en) 2009-12-24
JP4977092B2 true JP4977092B2 (en) 2012-07-18

Family

ID=41549541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158247A Active JP4977092B2 (en) 2008-06-17 2008-06-17 Wireless communication system

Country Status (1)

Country Link
JP (1) JP4977092B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065609A (en) * 1996-08-23 1998-03-06 Sony Corp Communication method, base station and terminal equipment
JPH11186941A (en) * 1997-12-19 1999-07-09 Fujitsu General Ltd Spread spectrum radio communication system
JP2007005974A (en) * 2005-06-22 2007-01-11 Fujitsu Ltd Wireless communication apparatus and phase variation correction method

Also Published As

Publication number Publication date
JP2009303156A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US7372890B2 (en) Methods and systems for detecting and mitigating interference for a wireless device
US8457559B2 (en) Techniques to improve the radio co-existence of wireless signals
US7450533B2 (en) Wireless transmitting device and wireless receiving device
US20050220208A1 (en) Wireless transmitting device and wireless receiving device
US7411935B2 (en) Selecting the data rate of a wireless network link according to a measure of error vector magnitude
US7415074B2 (en) MIMO transmission and reception methods and devices
US8301208B2 (en) Receiver and receiving method of the receiver
US20070091988A1 (en) Systems for communicating using multiple frequency bands in a wireless network
KR20080045013A (en) Wireless lan and usb bridging apparatus for connecting communication between wireless local area network and wireless usb network
KR20070058686A (en) Phase combining diversity
US9107170B2 (en) Electronic apparatus and power adjustment method thereof
JP2005537727A (en) Method and apparatus for receiving a differential ultra-wideband signal
US20190013923A1 (en) Wireless communication device and control method
KR20100067294A (en) Apparatus for transmitting/receiving rf signal in a wireless communication system
KR101156283B1 (en) Radio communication apparatus
WO2008015512A2 (en) Scalable wlan wireless communications device and radio for wpan and wran operation
US9667301B1 (en) Transceiver for heterogeneous WLAN
JP4977092B2 (en) Wireless communication system
JP2005278052A (en) Control method of radio communication apparatus, and radio communication apparatus
US7885350B1 (en) System and method for non-interfering signaling and reception of overlapping single carrier transmissions over delay spread channels
JP5005297B2 (en) Wireless LAN device
CN112770300B (en) Wireless communication device
US8934577B1 (en) Bias current control for a radio frequency unit of a wireless network interface
US20080032651A1 (en) Relay For Multi-Carrier Wireless Communications System
Franco-Martínez et al. Solving Self-Interference Issues in a Full-Duplex Radio Transceiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4977092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3