JP4968210B2 - Polarization-independent optical isolator - Google Patents
Polarization-independent optical isolator Download PDFInfo
- Publication number
- JP4968210B2 JP4968210B2 JP2008210584A JP2008210584A JP4968210B2 JP 4968210 B2 JP4968210 B2 JP 4968210B2 JP 2008210584 A JP2008210584 A JP 2008210584A JP 2008210584 A JP2008210584 A JP 2008210584A JP 4968210 B2 JP4968210 B2 JP 4968210B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal plate
- single crystal
- light
- wedge
- sapphire single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
本発明は、磁性ガーネット単結晶から成るファラデー回転子と2枚の楔形複屈折結晶板を用いた偏波無依存型光アイソレータに係り、特に、磁性ガーネット単結晶の光吸収に起因した温度上昇に伴う特性の劣化や破損が防止される偏波無依存型光アイソレータの改良に関するものである。 The present invention relates to a polarization-independent optical isolator using a Faraday rotator made of a magnetic garnet single crystal and two wedge-shaped birefringent crystal plates, and more particularly to a temperature rise caused by light absorption of the magnetic garnet single crystal. The present invention relates to an improvement of a polarization-independent optical isolator in which the accompanying deterioration and damage of characteristics are prevented.
光アイソレータは、順方向への光信号を通過させ、逆方向からの光信号の通過を防ぐ機能を持つ非可逆光デバイスであり、例えば、半導体レーザを光源とする光通信システムにおいて、光信号が反射によって光源側に戻り半導体レーザの発振が不安定となることを防止するために用いられている。 An optical isolator is an irreversible optical device having a function of passing an optical signal in the forward direction and preventing the optical signal from passing in the reverse direction. For example, in an optical communication system using a semiconductor laser as a light source, It is used to prevent the oscillation of the semiconductor laser from becoming unstable due to reflection returning to the light source side.
光アイソレータは、半導体レーザモジュールに使用されるような偏波依存型光アイソレータと、光ファイバアンプの前後で用いられるような偏波無依存型光アイソレータに大きく分けられる。 Optical isolators are broadly classified into polarization-dependent optical isolators used for semiconductor laser modules and polarization-independent optical isolators used before and after optical fiber amplifiers.
偏波無依存型光アイソレータでは、通常、偏光子にルチル、YVO4、LiNbO3等の楔形の複屈折結晶板を使用し、2枚の楔形複屈折結晶板の間に、ファラデー回転子として磁性ガーネット単結晶から成る平板を配置している。ここで、ファラデー回転子は偏光を45度回転させるように結晶の厚みが調整されており、2枚の楔形複屈折結晶板は、それ等の光学軸の方位が互いに45度ずらして配置されている。尚、偏光子およびファラデー回転子から構成される光学素子部分を非相反部と呼ぶ。 In a polarization-independent optical isolator, a wedge-shaped birefringent crystal plate such as rutile, YVO 4 , or LiNbO 3 is usually used as a polarizer, and a magnetic garnet single unit is used as a Faraday rotator between two wedge-shaped birefringent crystal plates. A flat plate made of crystals is arranged. Here, the thickness of the crystal is adjusted so that the Faraday rotator rotates the polarized light by 45 degrees, and the two wedge-shaped birefringent crystal plates are arranged so that their optical axis directions are shifted from each other by 45 degrees. Yes. In addition, the optical element part comprised from a polarizer and a Faraday rotator is called a nonreciprocal part.
そして、順方向における第1の楔形複屈折結晶板への入射光は、第1の楔形複屈折結晶板によって常光と異常光に分離するが、ファラデー回転子により偏光が45度回転させられ、かつ第2の楔形複屈折結晶板の光学軸が第1の楔形複屈折結晶板と45度ずれているため、第2の楔形複屈折結晶板においても常光は常光として、異常光は異常光として入射され、それぞれ平行光として第2の楔形複屈折結晶板から出射され、レンズにより光ファイバに結合される。 The incident light on the first wedge-shaped birefringent crystal plate in the forward direction is separated into ordinary light and extraordinary light by the first wedge-shaped birefringent crystal plate, but the polarization is rotated 45 degrees by the Faraday rotator, and Since the optical axis of the second wedge-shaped birefringent crystal plate is deviated by 45 degrees from the first wedge-shaped birefringent crystal plate, ordinary light is incident as ordinary light and extraordinary light is incident as abnormal light even in the second wedge-shaped birefringent crystal plate. Then, each light is emitted from the second wedge-shaped birefringent crystal plate as parallel light, and is coupled to an optical fiber by a lens.
逆方向からの光は、第2の楔形複屈折結晶板にて常光と異常光に分離され、ファラデー回転子にて45度回転された後は、第1の楔形複屈折結晶板には常光は異常光として、異常光は常光として入射されるため、第1の楔形複屈折結晶板を出た光は平行光にはならず、光ファイバに結合されない。このようにして光アイソレータとして機能する。 The light from the opposite direction is separated into ordinary light and extraordinary light by the second wedge-shaped birefringent crystal plate, and after being rotated 45 degrees by the Faraday rotator, ordinary light is transmitted to the first wedge-shaped birefringent crystal plate. Since extraordinary light is incident as extraordinary light as extraordinary light, the light exiting the first wedge-shaped birefringent crystal plate does not become parallel light and is not coupled to the optical fiber. Thus, it functions as an optical isolator.
ところで、ファラデー回転子を構成する上記磁性ガーネット単結晶は、近赤外波長域、特に光通信で用いられる波長域(1.3μm〜1.6μm)においては優れた光学的透明性を示し、数10mW程度であれば光の吸収に起因する温度上昇も少なく、問題は殆ど無い。しかしながら、上記波長域よりも短波長域、特にYAGレーザやYAGレーザの代替として注目されているファイバレーザや光ファイバ増幅器の励起光のような1μm前後の波長域では、磁性ガーネット単結晶における光の吸収が大きくなり、数mWのレーザパワーにおいても無視できない温度上昇となる。 By the way, the magnetic garnet single crystal constituting the Faraday rotator exhibits excellent optical transparency in the near-infrared wavelength region, particularly in the wavelength region (1.3 μm to 1.6 μm) used in optical communication. If it is about 10 mW, there will be little temperature rise resulting from light absorption, and there is almost no problem. However, in the wavelength range shorter than the above wavelength range, particularly in the wavelength range of about 1 μm such as the pumping light of a fiber laser or an optical fiber amplifier, which is attracting attention as a substitute for YAG laser or YAG laser, the light in the magnetic garnet single crystal Absorption increases, resulting in a temperature rise that cannot be ignored even with a laser power of several mW.
1μm前後の波長域における光アイソレータに用いられるファラデー回転子としては、常磁性単結晶あるいは常磁性ガラスがあるが、これ等を用いるとファラデー回転子の大きさ自体が大きくなるばかりか、ファラデー回転子を磁気飽和させるためには大きな磁石が必要となり、光アイソレータも大きなものとなってしまう。 As a Faraday rotator used for an optical isolator in a wavelength region around 1 μm, there is a paramagnetic single crystal or a paramagnetic glass, but when these are used, not only the size of the Faraday rotator itself increases, but also the Faraday rotator. In order to magnetically saturate the light, a large magnet is required, and the optical isolator becomes large.
そこで、1μm帯での光アイソレータとしては、小型でありながら、高出力のレーザ光に耐えられることが要求され始めている。 Therefore, optical isolator in the 1 μm band is beginning to be required to withstand high-power laser light while being small.
ファラデー回転子に磁性ガーネット単結晶を用いつつも、高出力レーザ耐性のある光アイソレータを実現するため、磁性ガーネット単結晶の光学面にC面サファイア単結晶板を接合させ、温度上昇を抑えた偏波無依存型光アイソレータが特許文献1に開示されている。
しかし、特許文献1に記載された偏波無依存型光アイソレータにおいては、C面サファイア単結晶板が接合された磁性ガーネット単結晶(ファラデー回転子)を光アイソレータ内に組み込む際、C面サファイア単結晶板に入射する光の角度がC軸に対して1〜6度となるように上記磁性ガーネット単結晶(ファラデー回転子)を一つ一つ向きを傾けて配置する必要があるため、光アイソレータの組立てコストが増大する不都合があった。 However, in the polarization-independent optical isolator described in Patent Document 1, when a magnetic garnet single crystal (Faraday rotator) bonded with a C-plane sapphire single crystal plate is incorporated in the optical isolator, Since the magnetic garnet single crystals (Faraday rotators) need to be tilted one by one so that the angle of light incident on the crystal plate is 1 to 6 degrees with respect to the C axis, the optical isolator As a result, there is a disadvantage that the assembly cost increases.
本発明はこのような問題点に着目してなされたもので、その課題とするところは、高出力の光が入射されてもファラデー回転子の温度上昇を抑えることが可能であり、アイソレーションの低下やファラデー回転子の破損等を起こさない偏波無依存型光アイソレータを低コストで提供することにある。 The present invention has been made paying attention to such problems, and the problem is that the temperature rise of the Faraday rotator can be suppressed even when high-power light is incident, The object is to provide a polarization-independent optical isolator that does not cause a drop or damage to a Faraday rotator at a low cost.
すなわち、請求項1に係る発明は、
光路上に配置された一対の楔形複屈折結晶板と、これ等楔形複屈折結晶板間の光路上に配置された磁性ガーネット単結晶から成るファラデー回転子とを備え、かつ、上記ファラデー回転子の各光透過面にサファイア単結晶板が接合された偏波無依存型光アイソレータにおいて、
各サファイア単結晶板の光透過面が、隣に位置する楔形複屈折結晶板の非傾斜光透過面と平行でかつサファイア単結晶板のC面からオフセットされるように形成されると共に、入射側の楔形複屈折結晶板で分離された常光と異常光の光軸がなす角度の2等分線がサファイア単結晶板のC面に対して垂直であることを特徴とし、
また、請求項2に係る発明は、
光路上に配置された一対の楔形複屈折結晶板と、これ等楔形複屈折結晶板間の光路上に配置された磁性ガーネット単結晶から成るファラデー回転子とを備え、かつ、上記ファラデー回転子の各光透過面にサファイア単結晶板が接合された偏波無依存型光アイソレータにおいて、
上記サファイア単結晶板がC面サファイア単結晶板で構成され、C面サファイア単結晶板のC軸がファラデー回転子の光透過面に垂直となるように接合されると共に、入射側の楔形複屈折結晶板で分離された常光と異常光の光軸がなす角度の2等分線がC面サファイア単結晶板の光透過面に対し垂直で、かつ、楔形複屈折結晶板の非光透過面に対しC面サファイア単結晶板とファラデー回転子の各非光透過面が平行平面となるように形成されることを特徴とする。
That is, the invention according to claim 1
A pair of wedge-shaped birefringent crystal plates disposed on the optical path, and a Faraday rotator comprising a magnetic garnet single crystal disposed on the optical path between the wedge-shaped birefringent crystal plates, and the Faraday rotator In a polarization-independent optical isolator in which a sapphire single crystal plate is bonded to each light transmission surface,
The light transmission surface of each sapphire single crystal plate is formed so as to be parallel to the non-tilted light transmission surface of the adjacent wedge-shaped birefringent crystal plate and offset from the C surface of the sapphire single crystal plate. Characterized in that the bisector of the angle formed by the optical axis of ordinary light and extraordinary light separated by the wedge-shaped birefringent crystal plate is perpendicular to the C-plane of the sapphire single crystal plate,
The invention according to claim 2
A pair of wedge-shaped birefringent crystal plates disposed on the optical path, and a Faraday rotator comprising a magnetic garnet single crystal disposed on the optical path between the wedge-shaped birefringent crystal plates, and the Faraday rotator In a polarization-independent optical isolator in which a sapphire single crystal plate is bonded to each light transmission surface,
The sapphire single crystal plate is composed of a C-plane sapphire single crystal plate, which is joined so that the C-axis of the C-plane sapphire single crystal plate is perpendicular to the light transmission surface of the Faraday rotator, and the wedge-shaped birefringence on the incident side. The bisector of the angle formed by the optical axis of ordinary light and extraordinary light separated by the crystal plate is perpendicular to the light transmission surface of the C-plane sapphire single crystal plate, and on the non-light transmission surface of the wedge-shaped birefringence crystal plate On the other hand, the C-plane sapphire single crystal plate and the Faraday rotator are formed so that each non-light-transmitting surface is a parallel plane.
請求項1記載の発明に係る偏波無依存型光アイソレータによれば、
入射側の楔形複屈折結晶板で分離された常光と異常光の光軸がなす角度の2等分線が上記サファイア単結晶板のC面に対し垂直となるように形成され、これによりサファイア単結晶板のC面に対して常光と異常光がほぼ垂直に近い角度で入射することになるため、サファイア単結晶の複屈折による消光比の悪影響を最小限にすることが可能となる。また、特許文献1に記載の偏波無依存型光アイソレータのように、ファラデー回転子を1〜6度傾けて配置させる必要がなく、磁性ガーネット単結晶に接合されたサファイア単結晶板の光透過面が楔形複屈折結晶板の非傾斜光透過面と平行になるよう調整するだけで十分のため、光アイソレータの組立て作業が容易となる。
According to the polarization independent optical isolator according to the invention of claim 1,
The bisector of the angle formed by the optical axis of ordinary light and extraordinary light separated by the wedge-shaped birefringent crystal plate on the incident side is formed so as to be perpendicular to the C plane of the sapphire single crystal plate. Since ordinary light and extraordinary light are incident on the C-plane of the crystal plate at an angle that is substantially perpendicular, it is possible to minimize the adverse effect of the extinction ratio due to the birefringence of the sapphire single crystal. Further, unlike the polarization-independent optical isolator described in Patent Document 1, it is not necessary to dispose the Faraday rotator at an angle of 1 to 6 degrees, and the light transmission of the sapphire single crystal plate bonded to the magnetic garnet single crystal. Since it is sufficient to adjust the surface so that it is parallel to the non-tilted light transmitting surface of the wedge-shaped birefringent crystal plate, the assembly work of the optical isolator becomes easy.
また、請求項2記載の発明に係る偏波無依存型光アイソレータにおいても、入射側の楔形複屈折結晶板で分離された常光と異常光の光軸がなす角度の2等分線がC面サファイア単結晶板の光透過面に対し垂直に形成され、これによりサファイア単結晶板のC面に対して常光と異常光がほぼ垂直に近い角度で入射することになるため、サファイア単結晶の複屈折による消光比の悪影響を最小限にすることが可能となる。また、ファラデー回転子を1〜6度傾けて配置させる必要がなく、楔形複屈折結晶板の非光透過面に対しC面サファイア単結晶板とファラデー回転子の各非光透過面が平行平面となるように調整するだけで十分のため、光アイソレータの組立て作業が容易となる。 In the polarization-independent optical isolator according to the second aspect of the invention, the bisector of the angle formed by the optical axis of the ordinary light and the extraordinary light separated by the wedge-shaped birefringent crystal plate on the incident side is the C plane. This is formed perpendicular to the light transmission surface of the sapphire single crystal plate, so that normal light and extraordinary light are incident on the C surface of the sapphire single crystal plate at an angle nearly perpendicular to the sapphire single crystal plate. It is possible to minimize the adverse effect of the extinction ratio due to refraction. Further, it is not necessary to place the Faraday rotator at an angle of 1 to 6 degrees, and the non-light-transmitting surfaces of the wedge-shaped birefringent crystal plate are parallel to the C-plane sapphire single crystal plate and the non-light-transmitting surfaces of the Faraday rotator. Since it is sufficient to adjust so that the optical isolator can be assembled, the assembly work of the optical isolator becomes easy.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
まず、第一実施の形態に係る偏波無依存型光アイソレータは、図1に示すように、光の透過方向順に、第1の楔形複屈折結晶板1、第1のサファイア単結晶板2、磁性ガーネット単結晶(ファラデー回転子)3、第2のサファイア単結晶板4、第2の楔形複屈折結晶板5が配置されている。また、第1のサファイア単結晶板2と第2のサファイア単結晶板4の各光透過面が、隣に位置する第1の楔形複屈折結晶板1と第2の楔形複屈折結晶板5の非傾斜光透過面と平行でかつサファイア単結晶板2、4のC面(図4参照)からオフセットされるように形成され、かつ、入射側の楔形複屈折結晶板1、5で分離された常光と異常光の光軸がなす角度の2等分線がサファイア単結晶板2、4のC面に対し垂直となるように形成されている。
First, as shown in FIG. 1, the polarization-independent optical isolator according to the first embodiment includes a first wedge-shaped birefringent crystal plate 1, a first sapphire single crystal plate 2, in order of light transmission direction. A magnetic garnet single crystal (Faraday rotator) 3, a second sapphire
そして、第一実施の形態に係る偏波無依存型光アイソレータは以下のように機能する。 The polarization-independent optical isolator according to the first embodiment functions as follows.
まず、図2(A)に示すように、光ファイバ6から出射した順方向の光はレンズ8を介して平行光となり、第1の楔形複屈折結晶板1に入射する。第1の楔形複屈折結晶板1に入射した光は、常光と異常光に分離され、第1のサファイア単結晶板2に入射する。第1のサファイア単結晶板2を通過した光は、磁性ガーネット単結晶(ファラデー回転子)3によって偏光面が45度回転させられた後、第2のサファイア単結晶板4を通過し、第2の楔形複屈折結晶板5に入射する。
First, as shown in FIG. 2A, the forward light emitted from the
ここで、第一実施の形態に係る偏波無依存型光アイソレータにおいて、上記第1の楔形複屈折結晶板1によって常光と異常光に分離された光は、第2の楔形複屈折結晶板5に常光は常光として、異常光は異常光として入射されるため、第2の楔形複屈折結晶板5から出射される光は平行光となり、レンズ9により出射側の光ファイバ7へ結合させることができる。
Here, in the polarization independent optical isolator according to the first embodiment, the light separated into the ordinary light and the extraordinary light by the first wedge-shaped birefringent crystal plate 1 is the second wedge-shaped
このとき、第1の楔形複屈折結晶板1で分離された常光と異常光の光軸がなす角度の2等分線が第1のサファイア単結晶板2のC面に対して垂直になっているため、常光と異常光は第1のサファイア単結晶板2のC面に対してほぼ垂直に近く、かつ、同じ角度で入射することからサファイア単結晶板での消光比の劣化を最低限に抑えることが可能となる。 At this time, the bisector of the angle formed by the optical axes of the ordinary light and the extraordinary light separated by the first wedge-shaped birefringent crystal plate 1 is perpendicular to the C plane of the first sapphire single crystal plate 2. Therefore, since ordinary light and extraordinary light are nearly perpendicular to the C-plane of the first sapphire single crystal plate 2 and are incident at the same angle, the deterioration of the extinction ratio in the sapphire single crystal plate is minimized. It becomes possible to suppress.
また、戻ってきた逆方向の光は、図2(B)に示すようにレンズ9を通り、第2の楔形複屈折結晶板5において常光と異常光に分離し、磁性ガーネット単結晶(ファラデー回転子)3により45度回転される。そして、順方向の場合と同様に、サファイア単結晶板を光が通過する際に消光比の劣化を最低限に抑えることができ、これにより第2の楔形複屈折結晶板5における常光が、第1の楔形複屈折結晶板1で常光となったり、第2の楔形複屈折結晶板5における異常光が第1の楔形複屈折結晶板1で異常光となったりすることが抑制されるため、入射側の光ファイバ6へ入射することが防止され、高いアイソレーションが維持される。
Further, the returned light in the reverse direction passes through the lens 9 as shown in FIG. 2B, and is separated into ordinary light and extraordinary light in the second wedge-shaped
ここで、第1のサファイア単結晶板2と第2のサファイア単結晶板4が接合された上記磁性ガーネット単結晶(ファラデー回転子)3は、図3(A)〜(C)に示すような手順により作製することができる。
Here, the magnetic garnet single crystal (Faraday rotator) 3 in which the first sapphire single crystal plate 2 and the second sapphire
まず、図3(A)に示すように、サファイア単結晶から切り出されたC面がオフセットされた基板を予め用意し、磁性ガーネット単結晶と同じ大きさに切り分ける。次に、図3(B)に示すように、磁性ガーネット単結晶の両面に、C面がオフセットされた2枚のサファイア単結晶板(図4参照)をC面が互いに平行になるように接着剤にて貼り付ける。そして、この貼り合わせたものを、図3(C)に示すように所望の大きさに更に切り分けることで、光学特性の安定したファラデー回転子を製造することが可能となる。 First, as shown in FIG. 3A, a substrate having a C-plane offset from a sapphire single crystal is prepared in advance and cut into the same size as the magnetic garnet single crystal. Next, as shown in FIG. 3B, two sapphire single crystal plates (see FIG. 4) with the C plane offset are bonded to both sides of the magnetic garnet single crystal so that the C planes are parallel to each other. Paste with an agent. Further, the Faraday rotator having stable optical characteristics can be manufactured by further cutting the bonded product into a desired size as shown in FIG.
そして、製造された上記ファラデー回転子(第1のサファイア単結晶板2と第2のサファイア単結晶板4が接合された磁性ガーネット単結晶3)について、図2(A)に示すように、ファラデー回転子の光透過面が第1の楔形複屈折結晶板1と第2の楔形複屈折結晶板5の非傾斜光透過面と平行になるよう調整するだけで光アイソレータに搭載することができるため光アイソレータの組立て作業が容易となる。
As for the manufactured Faraday rotator (the magnetic garnet single crystal 3 in which the first sapphire single crystal plate 2 and the second sapphire
ここで、上記方法以外にも、両面にC面サファイア単結晶板が接合された磁性ガーネット単結晶を用意し、以下の要件を具備するように斜めに切断する(図5参照)ことで、第1の楔形複屈折板で分離された常光と異常光がC面に対してほぼ垂直に入射するように調整することができる。すなわち、C面サファイア単結晶板のC軸が磁性ガーネット単結晶(ファラデー回転子)の光透過面に垂直となるように接合し、かつ、入射側の楔形複屈折結晶板で分離された常光と異常光の光軸がなす角度の2等分線がC面サファイア単結晶板の光透過面に対し垂直で、楔形複屈折結晶板の非光透過面に対しC面サファイア単結晶板とファラデー回転子の各非光透過面が平行平面となるように斜めに切断することによっても、第一実施の形態に係る偏波無依存型光アイソレータと同様の機能を有する第二実施の形態に係る偏波無依存型光アイソレータを得ることができる。 Here, in addition to the above method, a magnetic garnet single crystal having C-plane sapphire single crystal plates bonded on both sides is prepared and cut obliquely so as to satisfy the following requirements (see FIG. 5). It is possible to adjust so that ordinary light and extraordinary light separated by one wedge-shaped birefringent plate are incident substantially perpendicular to the C-plane. That is, the C-axis of the C-plane sapphire single crystal plate is joined so that the C-axis is perpendicular to the light transmission surface of the magnetic garnet single crystal (Faraday rotator), and the ordinary light separated by the wedge-shaped birefringent crystal plate on the incident side The bisector of the angle formed by the optical axis of the extraordinary light is perpendicular to the light transmission surface of the C-plane sapphire single crystal plate and the Faraday rotation with the C-plane sapphire single crystal plate relative to the non-light transmission surface of the wedge-shaped birefringence crystal plate The polarization according to the second embodiment having the same function as that of the polarization-independent optical isolator according to the first embodiment can also be obtained by cutting each of the non-light-transmitting surfaces obliquely so as to be parallel planes. A wave-independent optical isolator can be obtained.
すなわち、第二実施の形態に係る偏波無依存型光アイソレータも以下のように機能する。 That is, the polarization-independent optical isolator according to the second embodiment also functions as follows.
まず、図6(A)に示すように、光ファイバ6から出射した順方向の光はレンズ8を介して平行光となり、第1の楔形複屈折結晶板1に入射する。第1の楔形複屈折結晶板1に入射した光は、常光と異常光に分離され、第1のC面サファイア単結晶板2に入射する。第1のC面サファイア単結晶板2を通過した光は、磁性ガーネット単結晶(ファラデー回転子)3によって偏光面が45度回転させられた後、第2のC面サファイア単結晶板4を通過し、第2の楔形複屈折結晶板5に入射する。
First, as shown in FIG. 6A, the forward light emitted from the
そして、第二実施の形態に係る偏波無依存型光アイソレータにおいも、上記第1の楔形複屈折結晶板1によって常光と異常光に分離された光は、第2の楔形複屈折結晶板5に常光は常光として、異常光は異常光として入射されるため、第2の楔形複屈折結晶板5から出射される光は平行光となり、レンズ9により出射側の光ファイバ7へ結合させることができる。
In the polarization-independent optical isolator according to the second embodiment, the light separated into the ordinary light and the extraordinary light by the first wedge-shaped birefringent crystal plate 1 is the second wedge-shaped
このとき、第1の楔形複屈折結晶板1で分離された常光と異常光の光軸がなす角度の2等分線が第1のC面サファイア単結晶板2のC面に対して垂直になっているため、常光と異常光は第1のC面サファイア単結晶板2のC面に対してほぼ垂直に近く、かつ、同じ角度で入射することからC面サファイア単結晶板での消光比の劣化を最低限に抑えることが可能となる。 At this time, the bisector of the angle formed by the optical axis of ordinary light and extraordinary light separated by the first wedge-shaped birefringent crystal plate 1 is perpendicular to the C plane of the first C-plane sapphire single crystal plate 2. Therefore, since ordinary light and extraordinary light are nearly perpendicular to the C plane of the first C-plane sapphire single crystal plate 2 and are incident at the same angle, the extinction ratio in the C-plane sapphire single crystal plate is It is possible to minimize deterioration of the battery.
また、戻ってきた逆方向の光は、図6(B)に示すようにレンズ9を通り、第2の楔形複屈折結晶板5において常光と異常光に分離し、磁性ガーネット単結晶(ファラデー回転子)3により45度回転される。そして、順方向の場合と同様に、C面サファイア単結晶板を光が通過する際に消光比の劣化を最低限に抑えることができ、これにより第2の楔形複屈折結晶板5における常光が、第1の楔形複屈折結晶板1で常光となったり、第2の楔形複屈折結晶板5における異常光が第1の楔形複屈折結晶板1で異常光となったりすることが抑制されるため、入射側の光ファイバ6へ入射することが防止され、高いアイソレーションが維持される。
The returned light in the reverse direction passes through the lens 9 as shown in FIG. 6B, and is separated into ordinary light and extraordinary light in the second wedge-shaped
そして、第二実施の形態に係る偏波無依存型光アイソレータにおいては、第1の楔形複屈折結晶板1と第2の楔形複屈折結晶板5の非光透過面に対し、C面サファイア単結晶板2、4と磁性ガーネット単結晶(ファラデー回転子)3の各非光透過面が平行平面となるように調整するだけで光アイソレータに搭載することができるため、第一実施の形態に係る偏波無依存型光アイソレータと同様に光アイソレータの組立て作業が容易となる。
In the polarization-independent optical isolator according to the second embodiment, a single C-plane sapphire is formed with respect to the non-light transmitting surfaces of the first wedge-shaped birefringent crystal plate 1 and the second wedge-shaped
尚、第一と第二実施の形態に係る偏波無依存型光アイソレータにおいては、接着剤を用いて磁性ガーネット単結晶両面にサファイア単結晶板を貼り付ける方法が採られているが、これは一例に過ぎず、真空中において基板表面を活性化させて接合する常温接合法も適用することが可能である。 In the polarization-independent optical isolator according to the first and second embodiments, a method of attaching sapphire single crystal plates to both surfaces of the magnetic garnet single crystal using an adhesive is adopted. It is only an example, and it is also possible to apply a room temperature bonding method in which the substrate surfaces are activated and bonded in a vacuum.
以下、本発明の実施例について具体的に説明する。 Examples of the present invention will be specifically described below.
ファラデー回転子を構成する磁性ガーネット単結晶は液相エピタキシャル法で育成したもので、ファラデー回転角が45度となるように研磨により厚みが調整されている。また、楔形複屈折結晶板としては、楔角が5度のルチル単結晶を用いた。ルチル単結晶はYAGレーザの波長(1.06μm)の光に対し、常光の屈折率no=2.480と異常光の屈折率ne=2.742を有する。このため、第1の楔形複屈折結晶板から第2の楔形複屈折結晶板へ進行するYAGレーザ光の光軸は、常光が8.7度程度傾き、異常光は7.4度傾いている。 The magnetic garnet single crystal constituting the Faraday rotator is grown by a liquid phase epitaxial method, and the thickness is adjusted by polishing so that the Faraday rotation angle is 45 degrees. As the wedge-shaped birefringent crystal plate, a rutile single crystal having a wedge angle of 5 degrees was used. Rutile single crystal with respect to light of a wavelength of a YAG laser (1.06 .mu.m), having a refractive index n e = 2.742 for abnormal light refractive index n o = 2.480 the ordinary. Therefore, the optical axis of the YAG laser light traveling from the first wedge-shaped birefringent crystal plate to the second wedge-shaped birefringent crystal plate is tilted by about 8.7 degrees for ordinary light and 7.4 degrees for extraordinary light. .
これより、サファイア単結晶板には、C面を8.05度オフセットさせたものを用意した。このようにオフ角を8.05度とすることで、常光および異常光は、C面に対しそれぞれ垂直から0.66度傾いて入射される。 Thus, a sapphire single crystal plate prepared by offsetting the C plane by 8.05 degrees was prepared. By setting the off angle to 8.05 degrees in this way, ordinary light and extraordinary light are incident on the C plane with an inclination of 0.66 degrees from the vertical direction.
上記サファイア単結晶板は、サファイア単結晶板のC面が互いに平行になるように、接着剤を用いて磁性ガーネット結晶両面に貼り付けた後、小片に切り分け、サファイア単結晶板付きのファラデー回転子を作製した。 The sapphire single crystal plate is attached to both sides of the magnetic garnet crystal using an adhesive so that the C faces of the sapphire single crystal plate are parallel to each other, then cut into small pieces, and a Faraday rotator with a sapphire single crystal plate Was made.
このように作製したファラデー回転子を、図1に示すように第1の楔形複屈折結晶板と第2の楔形複屈折結晶板の間に、サファイア単結晶板の光透過面が楔形複屈折結晶板の非傾斜光透過面と平行となるよう配置し、偏波無依存型光アイソレータを構成した。 As shown in FIG. 1, the Faraday rotator thus fabricated has a light-transmitting surface of a sapphire single crystal plate between the first wedge-shaped birefringent crystal plate and the second wedge-shaped birefringent crystal plate. A polarization-independent type optical isolator was constructed so as to be parallel to the non-tilted light transmission surface.
第1および第2の楔形複屈折結晶板の傾斜面は、それぞれ磁性ガーネット単結晶と対向する側ではなく反対側に位置しており、傾斜面同士が平行になるように第1および第2の楔形複屈折結晶板を配置した。尚、図1には図示されていないが、磁性ガーネット単結晶の外側(磁性ガーネット単結晶における非光透過面側)には、それぞれの結晶を保持するためのホルダ、および、磁性ガーネット単結晶を磁気的に飽和させるための磁石が配置されている。また、これ等各単結晶板の光透過面には、使用波長に対する反射防止膜が施されている。 The inclined surfaces of the first and second wedge-shaped birefringent crystal plates are located not on the side facing the magnetic garnet single crystal but on the opposite side, and the first and second inclined surfaces are parallel to each other. A wedge-shaped birefringent crystal plate was arranged. Although not shown in FIG. 1, on the outside of the magnetic garnet single crystal (on the non-light transmitting surface side of the magnetic garnet single crystal), a holder for holding each crystal and a magnetic garnet single crystal are provided. A magnet for magnetic saturation is arranged. In addition, an antireflection film for the wavelength used is applied to the light transmission surface of each single crystal plate.
そして、実施例1に係る偏波無依存型光アイソレータにYAGレーザ光を入射し、特性を評価したところ、光路内のサファイア単結晶板における消光比の劣化を最低限に抑えられることから、42dBのアイソレーションを得ることができた。 Then, when YAG laser light was incident on the polarization-independent optical isolator according to Example 1 and the characteristics were evaluated, it was possible to minimize degradation of the extinction ratio in the sapphire single crystal plate in the optical path. The isolation of was able to be obtained.
実施例1で用いた材料と同じ磁性ガーネット単結晶を用意し、その両面にC面サファイア単結晶板を接着剤により貼り付けた。 The same magnetic garnet single crystal as the material used in Example 1 was prepared, and a C-plane sapphire single crystal plate was attached to both surfaces thereof with an adhesive.
上記C面サファイア単結晶板が接合された磁性ガーネット単結晶を小片に切断する際には、図5に示すように一方の切断方向は従来と同様としたが、それと垂直な方向における切断では8.05度傾けた方向に切断した。従って、切断面の形状は、一方は長方形であるが、もう一方は平行四辺形となっている。 When the magnetic garnet single crystal to which the C-plane sapphire single crystal plate is bonded is cut into small pieces, one cutting direction is the same as the conventional one as shown in FIG. . Cut in a direction inclined by 05 degrees. Accordingly, one of the cut surfaces is rectangular, while the other is a parallelogram.
このようにして得られた小片(磁性ガーネット単結晶両面にC面サファイア単結晶板が接合されたファラデー回転子)を図6(A)に示すように配置したところ、実施例1と同様の特性が得られた。 The small pieces thus obtained (Faraday rotator in which a C-plane sapphire single crystal plate was bonded to both surfaces of a magnetic garnet single crystal) were placed as shown in FIG. 6A, and the same characteristics as in Example 1 were obtained. was gotten.
本発明に係る偏波無依存型光アイソレータによれば、高出力の光が入射されても光アイソレーション機能の低下が少ないため、光通信やレーザ加工等における高出力レーザ用光アイソレータとして広範に利用される可能性を有している。 The polarization-independent optical isolator according to the present invention has a wide range of optical isolator for high-power lasers in optical communication, laser processing, and the like because there is little degradation in the optical isolation function even when high-power light is incident. There is a possibility of being used.
1 第1の楔形複屈折結晶板
2 第1のサファイア単結晶板
3 磁性ガーネット単結晶(ファラデー回転子)
4 第2のサファイア単結晶板
5 第2の楔形複屈折結晶板
6、7 光ファイバ
8、9 レンズ
DESCRIPTION OF SYMBOLS 1 1st wedge-shaped birefringent crystal plate 2 1st sapphire single crystal plate 3 Magnetic garnet single crystal (Faraday rotator)
4 Second sapphire
Claims (2)
各サファイア単結晶板の光透過面が、隣に位置する楔形複屈折結晶板の非傾斜光透過面と平行でかつサファイア単結晶板のC面からオフセットされるように形成されると共に、入射側の楔形複屈折結晶板で分離された常光と異常光の光軸がなす角度の2等分線がサファイア単結晶板のC面に対して垂直であることを特徴とする偏波無依存型光アイソレータ。 A pair of wedge-shaped birefringent crystal plates disposed on the optical path, and a Faraday rotator comprising a magnetic garnet single crystal disposed on the optical path between the wedge-shaped birefringent crystal plates, and the Faraday rotator In a polarization-independent optical isolator in which a sapphire single crystal plate is bonded to each light transmission surface,
The light transmission surface of each sapphire single crystal plate is formed so as to be parallel to the non-tilted light transmission surface of the adjacent wedge-shaped birefringent crystal plate and offset from the C surface of the sapphire single crystal plate. Polarization-independent light characterized in that the bisector of the angle formed by the optical axis of ordinary light and extraordinary light separated by the wedge-shaped birefringent crystal plate is perpendicular to the C-plane of the sapphire single crystal plate Isolator.
上記サファイア単結晶板がC面サファイア単結晶板で構成され、C面サファイア単結晶板のC軸がファラデー回転子の光透過面に垂直となるように接合されると共に、入射側の楔形複屈折結晶板で分離された常光と異常光の光軸がなす角度の2等分線がC面サファイア単結晶板の光透過面に対し垂直で、かつ、楔形複屈折結晶板の非光透過面に対しC面サファイア単結晶板とファラデー回転子の各非光透過面が平行平面となるように形成されることを特徴とする偏波無依存型光アイソレータ。 A pair of wedge-shaped birefringent crystal plates disposed on the optical path, and a Faraday rotator comprising a magnetic garnet single crystal disposed on the optical path between the wedge-shaped birefringent crystal plates, and the Faraday rotator In a polarization-independent optical isolator in which a sapphire single crystal plate is bonded to each light transmission surface,
The sapphire single crystal plate is composed of a C-plane sapphire single crystal plate, which is joined so that the C-axis of the C-plane sapphire single crystal plate is perpendicular to the light transmission surface of the Faraday rotator, and the wedge-shaped birefringence on the incident side. The bisector of the angle formed by the optical axis of ordinary light and extraordinary light separated by the crystal plate is perpendicular to the light transmission surface of the C-plane sapphire single crystal plate, and on the non-light transmission surface of the wedge-shaped birefringence crystal plate On the other hand, a polarization-independent optical isolator characterized in that each non-light-transmitting surface of the C-plane sapphire single crystal plate and the Faraday rotator is a parallel plane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008210584A JP4968210B2 (en) | 2008-08-19 | 2008-08-19 | Polarization-independent optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008210584A JP4968210B2 (en) | 2008-08-19 | 2008-08-19 | Polarization-independent optical isolator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010048872A JP2010048872A (en) | 2010-03-04 |
JP4968210B2 true JP4968210B2 (en) | 2012-07-04 |
Family
ID=42066028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008210584A Expired - Fee Related JP4968210B2 (en) | 2008-08-19 | 2008-08-19 | Polarization-independent optical isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4968210B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5439669B2 (en) * | 2011-05-19 | 2014-03-12 | 株式会社エス・エム・エムプレシジョン | Polarization-independent optical isolator |
JP5439670B2 (en) * | 2011-06-21 | 2014-03-12 | 株式会社エス・エム・エムプレシジョン | Polarization-independent optical isolator |
JP5535150B2 (en) * | 2011-08-25 | 2014-07-02 | 株式会社エス・エム・エムプレシジョン | Polarization-independent optical isolator |
CN103576346B (en) * | 2012-07-26 | 2017-05-24 | 陈国强 | Birefringence crystal displacement compensating mechanism and optical device |
CN109597240A (en) * | 2019-01-30 | 2019-04-09 | 惠科股份有限公司 | Optical film layer and display device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6158809A (en) * | 1984-08-20 | 1986-03-26 | ゼネラル モーターズ コーポレーシヨン | Control of pyrolytic methane density for manufacturing graphite fiber |
JP2777262B2 (en) * | 1990-04-09 | 1998-07-16 | 日本電信電話株式会社 | Optical isolator device |
JPH04371911A (en) * | 1991-06-21 | 1992-12-24 | Hitachi Ltd | Optical isolator and fiber optical amplifier with added rare earth |
JPH10288754A (en) * | 1997-04-14 | 1998-10-27 | Shin Etsu Chem Co Ltd | Polarization independent optical isolator |
JPH10319346A (en) * | 1997-05-15 | 1998-12-04 | Sumitomo Electric Ind Ltd | Optical isolator |
JP2001264694A (en) * | 2000-03-15 | 2001-09-26 | Shin Etsu Chem Co Ltd | Polarized wave independent optical isolator |
JP2004029334A (en) * | 2002-06-25 | 2004-01-29 | Sumitomo Metal Mining Co Ltd | Optical isolator module |
JP2004281478A (en) * | 2003-03-13 | 2004-10-07 | Sumitomo Metal Mining Co Ltd | Semiconductor optical amplifier module |
JP2005043853A (en) * | 2003-07-07 | 2005-02-17 | Namiki Precision Jewel Co Ltd | Optical part and optical isolator provided with it |
JP4688024B2 (en) * | 2005-04-06 | 2011-05-25 | 住友金属鉱山株式会社 | Faraday rotator manufacturing method and optical isolator incorporating the rotator |
JP4696830B2 (en) * | 2005-10-12 | 2011-06-08 | 住友金属鉱山株式会社 | Polarization-independent optical isolator |
JP4797733B2 (en) * | 2006-03-23 | 2011-10-19 | 住友金属鉱山株式会社 | Polarization-independent optical isolator for high-power lasers |
JP2008134595A (en) * | 2006-10-30 | 2008-06-12 | Namiki Precision Jewel Co Ltd | Faraday rotator for short wavelength light and optical isolator provided with faraday rotator |
-
2008
- 2008-08-19 JP JP2008210584A patent/JP4968210B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010048872A (en) | 2010-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5439669B2 (en) | Polarization-independent optical isolator | |
JP5535150B2 (en) | Polarization-independent optical isolator | |
JP4968210B2 (en) | Polarization-independent optical isolator | |
JP4797733B2 (en) | Polarization-independent optical isolator for high-power lasers | |
JP4696830B2 (en) | Polarization-independent optical isolator | |
JP5439670B2 (en) | Polarization-independent optical isolator | |
CN102243339B (en) | Optical isolator | |
US20030184861A1 (en) | Optical isolator | |
JP4688024B2 (en) | Faraday rotator manufacturing method and optical isolator incorporating the rotator | |
JP2542532B2 (en) | Method for manufacturing polarization-independent optical isolator | |
JP2019012135A (en) | Optical isolator module | |
JP3570869B2 (en) | Optical isolator element and method of manufacturing the same | |
JP5343222B2 (en) | Polarization-dependent inline optical isolator | |
JPWO2004046798A1 (en) | Magneto-optical element, manufacturing method thereof, and optical isolator incorporating the magneto-optical element | |
JP2004341076A (en) | Optical isolator and laser diode module | |
JP3973975B2 (en) | Optical isolator | |
JP2007101652A (en) | Optical isolator and optical device with same | |
JP2004281478A (en) | Semiconductor optical amplifier module | |
JP6713949B2 (en) | Polarizing member and optical isolator | |
JP6226428B2 (en) | A method of manufacturing a polarization maintaining fiber with an optical isolator. | |
JP2000275580A (en) | Optical isolator | |
JP2005215328A (en) | Optical isolator | |
JP2006098493A (en) | Compound optical component and optical isolator element | |
JP2006126582A (en) | Optical isolator | |
JPH10239637A (en) | Optical isolator and optical module using the isolator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120319 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150413 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |