JP4953462B2 - Water tank adjustment system - Google Patents
Water tank adjustment system Download PDFInfo
- Publication number
- JP4953462B2 JP4953462B2 JP2008149321A JP2008149321A JP4953462B2 JP 4953462 B2 JP4953462 B2 JP 4953462B2 JP 2008149321 A JP2008149321 A JP 2008149321A JP 2008149321 A JP2008149321 A JP 2008149321A JP 4953462 B2 JP4953462 B2 JP 4953462B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- water temperature
- target
- temperature
- heating means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Farming Of Fish And Shellfish (AREA)
Description
本発明は、熱帯魚などの観賞魚を飼育する水槽の水質調整システムに関する。 The present invention relates to a water quality adjustment system for an aquarium for breeding ornamental fish such as tropical fish.
従来の水槽における水温調節装置は、ペルチエ素子のフィンを水槽の水に浸漬したペルチエ素子と、水槽の水温を検知する水温センサーと、ペルチエ素子を制御する極性切換器とを備える(例えば、特許文献1参照)。そして、検知水温が、低温設定値以下の時にペルチエ素子のフィンを加熱して、高温設定値以上の時にペルチエ素子のフィンを冷却して、水槽の水温を調節するように構成されている。 A conventional water temperature control device in a water tank includes a Peltier element in which fins of a Peltier element are immersed in water in the water tank, a water temperature sensor that detects the water temperature of the water tank, and a polarity switch that controls the Peltier element (for example, Patent Documents). 1). When the detected water temperature is equal to or lower than the low temperature set value, the Peltier element fins are heated, and when the detected water temperature is equal to or higher than the high temperature set value, the Peltier element fins are cooled to adjust the water temperature of the water tank.
しかし、ペルチエ素子のフィンを一定温度で加熱するのみでは、水温が目標温度まで上昇するのに時間がかかるので、観賞魚に悪影響を及ぼす。また、時間短縮のために高温で加熱するように設定すれば、水温が目標温度に近接している場合、目標温度を超えてしまうことがある(オーバーヒート)。観賞魚等は水温に対して敏感であるから、目標温度を越えたり急激に加熱すると、寿命短縮等の多大な悪影響を及ぼす。 However, if the fins of the Peltier element are only heated at a constant temperature, it takes time for the water temperature to rise to the target temperature, which adversely affects the aquarium fish. Moreover, if it sets so that it may heat at high temperature in order to shorten time, when water temperature is close to target temperature, it may exceed target temperature (overheating). Ornamental fish and the like are sensitive to water temperature, so if they exceed the target temperature or are heated rapidly, they have a great adverse effect such as shortening the life.
さらに、観賞魚は水質に対して非常に敏感であるから、所定期間ごとに水槽の水を入れ換えたりして水質を調整する必要がある。従来の技術では、単に水温を目標温度に調整するのみで、水質の改善については考慮されておらず、水温と水質とを同時に調整して改善する水槽は存在しなかった。
そこで、本発明が解決しようとする課題は、短時間で目標温度を越えることなく、水槽の水を滑らかに加熱すると共に、同時に水質を好適に調整可能な水槽の水質調整システムを提供することである。 Therefore, the problem to be solved by the present invention is to provide a water tank water quality adjustment system that can smoothly heat the water in the water tank without exceeding the target temperature in a short time, and at the same time, can suitably adjust the water quality. is there.
本発明に係る水槽の水質調整システムは、
水槽の現状水温を検出する水温センサーと、
水槽の水を加熱する加熱手段と、
加熱手段を制御する制御手段とを備え、
制御手段は、
水槽の目標水温を設定する目標水温設定部と、
現状水温と目標水温との偏差を算出する偏差算出部と、
現状水温に基づいて単位時間当たりの水温変化量を算出する変化量算出部と、
所定のファジー推論を設定するファジー推論設定部と、
偏差及び変化量をファジー推論に適用して結論を算出する結論算出部とを備え、
加熱手段は、
目標水温以上の水温の給水用水を有する給水タンクと、
給水用水を水槽へ給水する給水手段と、
給水する給水用水と同量の水を水槽から排水する排水手段とを備え、
制御手段は、結論に基づいて、現状水温が目標水温になるように、加熱手段における給水手段及び排水手段をファジー制御し、
加熱手段は、第1加熱手段と第2加熱手段とを備え、目標水温は、第1目標水温と第1目標水温より高い第2目標水温とを有し、制御手段は、現状水温が第1目標水温になるまで、第1加熱手段で一定熱量で加熱し、その後、第2目標水温になるまで、第2加熱手段をファジー制御する。
A water quality adjustment system for an aquarium according to the present invention,
A water temperature sensor that detects the current water temperature of the tank,
Heating means for heating the water in the aquarium;
Control means for controlling the heating means,
The control means
A target water temperature setting unit for setting the target water temperature of the tank,
A deviation calculator for calculating a deviation between the current water temperature and the target water temperature;
A change amount calculation unit that calculates a change amount of the water temperature per unit time based on the current water temperature;
A fuzzy inference setting unit for setting a predetermined fuzzy inference;
A conclusion calculating unit that calculates the conclusion by applying the deviation and the change amount to the fuzzy inference,
The heating means
A water supply tank having water for supplying water at a temperature equal to or higher than a target water temperature;
Water supply means for supplying water to the water tank;
A drainage means for draining the same amount of water as the water used for water supply from the water tank,
Based on the conclusion, the control means fuzzy-controls the water supply means and the drainage means in the heating means so that the current water temperature becomes the target water temperature ,
The heating means includes a first heating means and a second heating means, the target water temperature has a first target water temperature and a second target water temperature higher than the first target water temperature, and the control means has a current water temperature of the first water temperature. Until the target water temperature is reached, the first heating means is heated with a constant amount of heat, and then the second heating means is fuzzy controlled until the second target water temperature is reached.
好ましくは、制御手段は、現状水温に拘らず、所定期間ごとに給水手段及び排水手段を駆動する。 Preferably, the control means drives the water supply means and the drainage means every predetermined period regardless of the current water temperature.
上記の通り、本発明に係る水槽の水質調整システムは、ファジー推論を用いて、目標水温になるように加熱手段を制御するようにしたので、現状水温が目標水温より離れている間は大きく加熱し、現状水温が目標水温に近づくにつれて小さく加熱できる。 As described above, the water quality adjustment system of the aquarium according to the present invention uses fuzzy reasoning to control the heating means so as to reach the target water temperature, so that the current water temperature is greatly heated while being away from the target water temperature. However, as the current water temperature approaches the target water temperature, it can be heated smaller.
これにより、短時間且つ目標温度を越えることなく(オーバーヒートせずに)、水槽の水を滑らかに昇温できる。さらに、水温を目標温度の近い状態に保ち、観賞魚における水温の影響を最小限に抑えることができる。 Thereby, it is possible to smoothly raise the temperature of the water in the water tank for a short time and without exceeding the target temperature (without overheating). Furthermore, the water temperature can be kept close to the target temperature, and the influence of the water temperature on the ornamental fish can be minimized.
さらに、加熱手段は、給水用水を水槽へ給水する給水手段と、給水する給水用水と同量の水を水槽から排水する排水手段とを備える。給水用水を観賞魚に適した水質にすることによって、目標温度に加熱すると共に、好適な水を水槽に給水して、汚れた水を排水できるので、水槽の水を好適な水質に調整できる。 Furthermore, the heating means includes water supply means for supplying water to the water tank, and drainage means for discharging the same amount of water as the water to be supplied from the water tank. By making the water supply water suitable for the ornamental fish, the water can be heated to the target temperature, and suitable water can be supplied to the aquarium and dirty water can be drained, so that the water in the aquarium can be adjusted to a suitable water quality.
以下、添付図面に基づいて、本発明に係る水槽の水質調整システムについて説明する。 Hereinafter, based on an accompanying drawing, the water quality adjustment system of the aquarium concerning the present invention is explained.
[構成説明]
図1及び図2に基づいて、水槽の水質調整システムの構成を説明する。
図1は、水質調整システムを示す全体構成図である。水槽1は、熱帯魚等を飼育するための水10を有する。水温センサー3は、サーミスタ等からなり、水槽1の水10の現状水温(t)を検出する。
[Description of configuration]
Based on FIG.1 and FIG.2, the structure of the water quality adjustment system of an aquarium is demonstrated.
FIG. 1 is an overall configuration diagram showing a water quality adjustment system. The aquarium 1 has
第1加熱手段4は、給水ポンプ40、給水タンク41及び給水管42を備える。給水タンク41は、給水用水43を有する。給水ポンプ40は、給水管42を介して、給水タンク41の給水用水43を水槽1に供給する。そして、給水用水43は、観賞魚にとって好適な水質(pH値など)で綺麗な水になっている。
The first heating means 4 includes a
給水用加熱手段8は、電熱式ヒーター等からなり、給水タンクの給水用水43を加熱する。給水用水温センサー7は、給水タンク41の給水用水43の温度を検出する。
The water supply heating means 8 comprises an electric heater or the like, and heats the
さらに、第1加熱手段4は、排水ポンプ50、排水タンク51及び排水管52を備える。そして、排水ポンプ50は、排水管52を介して、水槽1の水10を排水タンク51に排出する。
Further, the first heating means 4 includes a
第2加熱手段6は、電熱式ヒーターからなり、水槽1の水10を加熱する。
制御手段2は、水温センサー3からの現状水温(t)の信号に基づいて、第1加熱手段4(給水ポンプ40及び排水ポンプ50)及び第2加熱手段6を制御する。
The 2nd heating means 6 consists of an electrothermal heater, and heats the
The
さらに、制御手段2は、給水用水温センサー7からの水温の信号に基づいて、給水用加熱手段8を制御する。これにより、給水用水43は、後述する第2目標水温(t2)より高い水温(st)に維持される。
Further, the control means 2 controls the water supply heating means 8 based on a water temperature signal from the water supply
図2は、制御手段を示すブロック図である。制御手段2は、第1目標水温設定部21及び第2目標水温設定部22を有する。第1目標水温設定部21は、第1目標水温(t1)を設定する。第2目標水温設定部22は、第1目標水温よりも高温の第2目標水温(t2)を設定する(t1<t2)。なお、第1目標水温(t1)及び第2目標水温(t2)は、任意に設定可能である。
FIG. 2 is a block diagram showing the control means. The
制御手段2は、偏差算出部20を有する。偏差算出部20は、[i]水温検出部3から現状水温(t)、[ii]第1目標水温設定部21から第1目標水温(t1)、[iii]第2目標水温設定部22から第2目標水温(t2)が、それぞれ入力される。偏差算出部20は、第1目標水温と現状水温との偏差(δt1=t1−t)、第2目標水温と現状水温との偏差(δt2=t2−t)を演算する。
The
制御手段2は、偏差算出部20の演算結果に基づいて、第1加熱手段4を制御する。制御手段2は、第1目標水温と現状水温との偏差がゼロ(δt1=0)になるまで(即ち、現状水温(t)が第1目標水温(t1)になるまで)、第1加熱手段4で一定の熱量(q1)を与える。
The
制御手段2は、変化量算出部23を備える。変化量算出部23は、水温検出部3からの現状水温(t)に基づいて、単位時間当たりの現状水温の変化量(δt)を算出する。なお、単位時間は任意に設定可能である。
The
制御手段2は、ファジー推論設定部24を備える。ファジー推論設定部24は、所定のファジー推論(f)を設定する。ファジー推論(f)は、所定のメンバーシップ関数及びファジールールを適用する。なお、ファジー推論(f)は任意に設定可能である。
The
制御手段2は、結論算出部25を備える。結論算出部25は、[i]偏差算出部20から偏差(δt2)、[ii]変化量算出部23から変化量(δt)、[iii]ファジー推論設定部24からファジー推論(f)が、それぞれ入力される。結論算出部25は、偏差(δt2)及び変化量(δt)をファジー推論(f)に適用して、結論(v)を算出する。
The
制御手段2は、結論算出部25からの結論(v)に基づいて、第2加熱手段6を制御する。制御手段2は、第2目標水温と現状水温との偏差がゼロ(δt2=0)になるまで(即ち、現状水温(t)が第2目標水温(t2)になるまで)、第2加熱手段6で所定の熱量(q2)を与える。なお、後述する通り、所定熱量(q2)は、結論(v)に基づいてファジー制御される。
The
[動作説明]
次に、図3〜図5に基づいて、水槽の水質調整システムの動作を説明する。
図3は、水質調整システムの動作手順を示すフローチャートである。
[Description of operation]
Next, based on FIGS. 3-5, operation | movement of the water quality adjustment system of an aquarium is demonstrated.
FIG. 3 is a flowchart showing an operation procedure of the water quality adjustment system.
先ず、水温センサー3に基づいて、水槽1の水10における現状水温(t)を検出する(ステップS1)。そして、偏差算出部20に基づいて、現状水温(t)と第1目標水温(t1)との偏差(δt1)、現状水温(t)と第2目標水温(t2)との偏差(δt2)を算出する(ステップS2)。
First, based on the
なお、上記の通り、第2目標水温(t2)が第1目標水温(t1)より高く設定される(t2>t1)。即ち、第2目標水温(t2)が、最終的な目標水温であって、観賞魚の飼育等に最適な水温である。そして、第1目標水温(t1)は、最適水温(第2目標水温t2)よりも非常に低いので、この水温(t1)までは急速に昇温する必要がある。 As described above, the second target water temperature (t2) is set higher than the first target water temperature (t1) (t2> t1). That is, the second target water temperature (t2) is the final target water temperature and is the optimal water temperature for breeding ornamental fish. Since the first target water temperature (t1) is much lower than the optimum water temperature (second target water temperature t2), it is necessary to rapidly increase the temperature to this water temperature (t1).
偏差算出部20は、偏差(δt2)に基づいて、現状水温(t)が第2目標水温(t2)より低い(t<t2)か否かを判断する(ステップS3)。現状水温(t)が第2目標水温(t2)より高い(t>t2)場合、上記ステップ1に戻る。現状水温(t)が第2目標水温(t2)より低い(t<t2)場合、次のステップS4を行う。
Based on the deviation (δt2), the
偏差算出部20は、偏差(δt1)に基づいて、現状水温(t)が第1目標水温(t1)より低い(t<t1)か否かを判断する(ステップS4)。現状水温(t)が第1目標水温(t1)より高い(t>t1)場合、後述のステップS6を行う。現状水温(t)が第1目標水温(t1)より低い(t<t1)場合、次のステップS5を行う。
The
第1加熱手段4は、一定の熱量(q1)で水槽1の水10を加熱する(ステップS5)。そして、上記ステップ1に戻り、現状水温(t)を検出しながら、現状水温(t)が第1目標水温(t1)になるまで(δt1=0)、第1加熱手段4で加熱する。一定熱量(q1)は、水10が素早く昇温されるように、比較的高く設定されている。
The 1st heating means 4 heats the
上記のように、第1加熱手段4は、給水ポンプ40を用いて、高温の給水用水43を水槽1に供給する。さらに、第1加熱手段4は、排水ポンプ50を用いて、水槽1に供給される給水用水43と同量の水槽1の水10を排水タンク51に排水する。これにより、水10を素早く昇温すると共に、水槽1から水10が溢れ出ない。
As described above, the
そして、現状水温(t)が、第1目標水温(t1)より高くて第2目標水温(t2)より低い(t1<t<t2)場合、変化量算出部23が、現状水温(t)に基づいて、単位時間(例えば1分)当たりの水温変化量(δt)を算出する(ステップS6)。
When the current water temperature (t) is higher than the first target water temperature (t1) and lower than the second target water temperature (t2) (t1 <t <t2), the change
そして、結論算出部25が、偏差(δt2)及び変化量(δt)を所定のファジー推論(f)に適用して結論(v)を演算する(ステップS7)。図4及び図5に基づいて、結論(v)の算出方法について説明する。
Then, the
図4(a)は、前件部(A)のメンバーシップ関数を示し、図4(b)は、前件部(B)のメンバーシップ関数を示す。
図4(a)の通り、偏差(δt2)から前件部(A)の「度合い」を数値化する。例えば、偏差(δt2)=4.5℃のとき、前件部(A)は、「0.75×L」及び「0.25×M」を得る。そして、図4(b)の通り、変化量(δt)から前件部(B)の「度合い」を数値化する。例えば、変化量(δt)=0.5℃のとき、前件部(B)は、「0.75×S」及び「0.25×M」を得る。
4A shows the membership function of the antecedent part (A), and FIG. 4B shows the membership function of the antecedent part (B).
As shown in FIG. 4A, the “degree” of the antecedent part (A) is quantified from the deviation (δt2). For example, when the deviation (δt2) = 4.5 ° C., the antecedent part (A) obtains “0.75 × L” and “0.25 × M”. Then, as shown in FIG. 4B, the “degree” of the antecedent part (B) is quantified from the change amount (δt). For example, when the change amount (δt) = 0.5 ° C., the antecedent part (B) obtains “0.75 × S” and “0.25 × M”.
図5は、ファジールールを示す図である。図5に示すファジールールに基づいて、前件部(A)・(B)から後件部(C)を選択する。例えば、前件部(A)が「S」かつ前件部(B)が「S」ならば後件部(C)は「0」、前件部(A)が「M」かつ前件部(B)が「S」ならば後件部(C)は「1.0」、・・・前件部(A)が「L」かつ前件部(B)が[L]ならば後件部(C)は「2.0」となる。 FIG. 5 is a diagram showing fuzzy rules. Based on the fuzzy rules shown in FIG. 5, the consequent part (C) is selected from the antecedent parts (A) and (B). For example, if the antecedent part (A) is “S” and the antecedent part (B) is “S”, the consequent part (C) is “0”, the antecedent part (A) is “M” and the antecedent part. If (B) is “S”, the consequent part (C) is “1.0”,... The antecedent part (A) is “L” and the antecedent part (B) is [L]. The part (C) is “2.0”.
そして、前件部(A)・(B)及び後件部(C)に基づいて、結論(v)を算出する。例えば、
・前件部(A)=「0.75L」及び「0.25M」
・前件部(B)=「0.75S」及び「0.25M」
のとき、次のように結論(v)を算出する。
Then, a conclusion (v) is calculated based on the antecedent part (A) / (B) and the consequent part (C). For example,
-Antecedent part (A) = "0.75L" and "0.25M"
-Antecedent part (B) = "0.75S" and "0.25M"
At the time, the conclusion (v) is calculated as follows.
前件部(A)と前件部(B)のそれぞれの「度合い」から全ての組み合わせを選択し、それぞれの選択における「最小係数」に後件部(C)を掛ける。例えば、
前件部(A)、 前件部(B) → 「最小係数」×後件部(C)
・「0.75L」、「0.75S」 → 0.75×2.0 =1.50
・「0.75L」、「0.25M」 → 0.25×2.0 =0.50
・「0.25M」、「0.75S」 → 0.25×1.0 =0.25
・「0.25M」、「0.25M」 → 0.25×1.0 =0.25
となる。
All combinations are selected from the “degrees” of the antecedent part (A) and the antecedent part (B), and the “minimum coefficient” in each selection is multiplied by the consequent part (C). For example,
Antecedent part (A), antecedent part (B) → "Minimum coefficient" x consequent part (C)
・ "0.75L", "0.75S"-> 0.75 * 2.0 = 1.50
・ "0.75L", "0.25M" → 0.25 x 2.0 = 0.50
・ “0.25M”, “0.75S” → 0.25 × 1.0 = 0.25
・ “0.25M”, “0.25M” → 0.25 × 1.0 = 0.25
It becomes.
そして、それぞれを加えて結論(v)を算出する。従って、この場合、
・結論(v)=1.6(=1.5+0.5+0.25+0.25)
となる。そして、結論(v)を所定関数(例えば、比例関数)に適用して、第2加熱手段6による熱量(q2)を決定する。
Then, the conclusion (v) is calculated by adding each. So in this case,
Conclusion (v) = 1.6 (= 1.5 + 0.5 + 0.25 + 0.25)
It becomes. Then, the conclusion (v) is applied to a predetermined function (for example, a proportional function), and the amount of heat (q2) by the second heating means 6 is determined.
[他の実施形態]
上記実施形態では、第1目標水温(t1)及び第2目標水温(t2)を設定しているが、第2目標水温(t2)だけでもよい。そして、ファジー推論を用いて、加熱手段で加熱する。また、第1加熱手段は、高温を給水する方式であればよく、ポンプ等を用いずに、開閉ゲート等を通じて上方のタンクから給水し、下方のタンクに排水してもよい。さらに、第1加熱手段4は、循環式であってもよく、水槽1から排水した水をフィルター等で濾過して加熱して、また水槽1へ給水してもよい。
[Other Embodiments]
In the above embodiment, the first target water temperature (t1) and the second target water temperature (t2) are set, but only the second target water temperature (t2) may be used. And it heats with a heating means using fuzzy reasoning. Moreover, the 1st heating means should just be a system which supplies high temperature, and it may supply water from an upper tank through an opening-and-closing gate etc., without using a pump etc., and may drain it to a lower tank. Further, the first heating means 4 may be a circulation type, and may heat the water drained from the water tank 1 by filtering it with a filter or the like and supply water to the water tank 1.
また、水槽の現状水温(t)が目標水温(t2)より高温であっても、所定期間(例えば2〜3日)ごとに、第1加熱手段4を駆動してもよい。給水タンク41の水43を観賞魚に好適な水質にしておき、所定期間ごとに、水槽1に好適な水43を給水して、汚れた水10を排水することにより、常時、水槽1の水10を好適な水質に調整できる。その時は、給水用加熱手段8で、給水タンク41の給水用水43の水温を目標水温(t2)とするのが好ましい。
Moreover, even if the current water temperature (t) of the water tank is higher than the target water temperature (t2), the first heating means 4 may be driven every predetermined period (for example, 2 to 3 days). The
このように、水質調整システムは、ファジー推論を用いて、第2目標水温(t2)になるまで加熱手段の熱量(q2)を制御するので、現状水温(t)が第2目標水温(t2)より離れている間は大きく加熱し、現状水温(t)が第2目標水温(t2)に近づくにつれて小さく加熱する。これにより、短時間且つ設定温度を越えることなく(オーバーヒートせずに)、水槽1の水10を滑らかに昇温できる。従って、水温変化で観賞魚に与える悪影響を最小限に抑えることができる。
Thus, since the water quality adjustment system controls the amount of heat (q2) of the heating means using the fuzzy inference until the second target water temperature (t2) is reached, the current water temperature (t) is the second target water temperature (t2). It heats up greatly while being farther away, and heats up smaller as the current water temperature (t) approaches the second target water temperature (t2). Thereby, it is possible to smoothly raise the temperature of the
加熱手段4は、給水用水43を水槽1へ給水する給水手段と、給水する給水用水43と同量の水を水槽から排水する排水手段とを備える。給水用水43を観賞魚に好適な水質にすることにより、目標温度に加熱すると共に、好適な水を水槽に給水して、汚れた水を排水して、水槽の水を好適な水質に調整できる。
The heating means 4 includes water supply means for supplying the
1 水槽
10 水槽の水
3 水温センサー
4 第1加熱手段
6 第2加熱手段
2 制御手段
20 偏差算出部
23 変化量算出部
24 ファジー推論設定部
25 結論算出部
40 給水ポンプ
41 給水タンク
42 給水管
50 排水ポンプ
51 排水タンク
52 排水管
t 現状水温
δt 水温変化量
t1 第1目標水温
t2 第2目標水温
δt1 現状水温と第1目標水温との偏差
δt2 現状水温と第2目標水温との偏差
f ファジー推論
v 結論
DESCRIPTION OF SYMBOLS 1
Claims (2)
前記水槽の水を加熱する加熱手段と、
前記加熱手段を制御する制御手段とを備え、
前記制御手段は、
前記水槽の目標水温を設定する目標水温設定部と、
前記現状水温と前記目標水温との偏差を算出する偏差算出部と、
前記現状水温に基づいて単位時間当たりの水温変化量を算出する変化量算出部と、
所定のファジー推論を設定するファジー推論設定部と、
前記偏差及び前記変化量を前記ファジー推論に適用して結論を算出する結論算出部とを備え、
前記加熱手段は、
前記目標水温以上の水温の給水用水を有する給水タンクと、
前記給水用水を前記水槽へ給水する給水手段と、
給水する前記給水用水と同量の水を前記水槽から排水する排水手段とを備え、
前記制御手段は、前記結論に基づいて、前記現状水温が前記目標水温になるように、前記加熱手段における前記給水手段及び前記排水手段をファジー制御し、
前記加熱手段は、第1加熱手段と第2加熱手段とを備え、
前記第1加熱手段は、前記給水タンク、前記給水手段及び前記排水手段を備え、
前記第2加熱手段は、電熱式ヒーターからなり、
前記目標水温は、第1目標水温と前記第1目標水温より高い第2目標水温とを有し、
前記制御手段は、前記現状水温が前記第1目標水温になるまで、前記第1加熱手段で一定熱量で加熱し、その後、前記第2目標水温になるまで、前記第2加熱手段を前記ファジー制御することを特徴とする水槽の水質調整システム。 A water temperature sensor that detects the current water temperature of the tank,
Heating means for heating the water in the water tank;
Control means for controlling the heating means,
The control means includes
A target water temperature setting unit for setting a target water temperature of the water tank;
A deviation calculating unit for calculating a deviation between the current water temperature and the target water temperature;
A change amount calculation unit for calculating a water temperature change amount per unit time based on the current water temperature;
A fuzzy inference setting unit for setting a predetermined fuzzy inference;
A conclusion calculating unit that calculates the conclusion by applying the deviation and the amount of change to the fuzzy inference;
The heating means includes
A water supply tank having water for supplying water at a temperature equal to or higher than the target water temperature;
Water supply means for supplying water to the water tank;
A drainage means for draining the same amount of water as the water for water supply from the water tank,
The control means, based on the conclusion, fuzzy-controls the water supply means and the drainage means in the heating means so that the current water temperature becomes the target water temperature ,
The heating means includes a first heating means and a second heating means,
The first heating means includes the water supply tank, the water supply means, and the drainage means,
The second heating means is an electric heater,
The target water temperature has a first target water temperature and a second target water temperature higher than the first target water temperature,
The control means heats the second heating means with the fuzzy control until the current water temperature reaches the first target water temperature with a constant amount of heat by the first heating means, and then until the second target water temperature is reached. A water quality adjustment system for an aquarium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008149321A JP4953462B2 (en) | 2008-06-06 | 2008-06-06 | Water tank adjustment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008149321A JP4953462B2 (en) | 2008-06-06 | 2008-06-06 | Water tank adjustment system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009291140A JP2009291140A (en) | 2009-12-17 |
JP4953462B2 true JP4953462B2 (en) | 2012-06-13 |
Family
ID=41539938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008149321A Expired - Fee Related JP4953462B2 (en) | 2008-06-06 | 2008-06-06 | Water tank adjustment system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4953462B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012029627A (en) * | 2010-07-30 | 2012-02-16 | Kyoei Aqua Tec Kk | Water temperature control device for water tank |
CN105475211A (en) * | 2015-12-30 | 2016-04-13 | 桂林市逸仙中学 | Intelligent fish tank with remote control function |
CN106386653A (en) * | 2016-11-14 | 2017-02-15 | 苏心喜 | Aquarium heating device and system and intelligent terminal |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5732693Y2 (en) * | 1979-01-12 | 1982-07-19 | ||
JPS6236664U (en) * | 1985-08-19 | 1987-03-04 | ||
JPH04353339A (en) * | 1991-05-30 | 1992-12-08 | Matsushita Electric Ind Co Ltd | Bath tub device |
JP2929257B2 (en) * | 1993-08-28 | 1999-08-03 | 和弘 中野 | Remote environment measurement and control system for water level, water temperature, etc. in waterways |
JPH08131020A (en) * | 1994-11-09 | 1996-05-28 | Meihou Kk | Thermostat, aquarium for admiration and method for keeping temperature in aquarium |
JPH11196708A (en) * | 1998-01-20 | 1999-07-27 | Hitachi Metals Ltd | Water treating system for raising ear shell |
-
2008
- 2008-06-06 JP JP2008149321A patent/JP4953462B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009291140A (en) | 2009-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101831804B1 (en) | Boiler for heating and hot-water supply and the control method thereof | |
CN104833106A (en) | Control method and device of electric water heater and electric water heater | |
KR101952299B1 (en) | System and Method for producing clear ice | |
JP2008276439A (en) | Temperature control device | |
CN105352192A (en) | Electric water heater and control method thereof | |
JP4953462B2 (en) | Water tank adjustment system | |
CN107003013B (en) | Heater control method of water heating pad and water heating pad suitable for heater control method | |
US20180163993A1 (en) | Water heater appliance and a method for operating the same | |
JP6895170B2 (en) | Feedforward control type hot water supply system and hot water supply method | |
JP6686524B2 (en) | Filter | |
JP4197089B2 (en) | Water heater | |
JP2016003578A (en) | Engine cooling device | |
JP6395577B2 (en) | Hot water supply device for bath | |
KR20170056121A (en) | Intelligent Temperature Control System and a Temperature Control Method for the Hot Water Boiler | |
JP5664459B2 (en) | Hot water storage water heater | |
RU2699836C1 (en) | Heating or cooling system control method | |
CN111566412B (en) | Method for regulating a circulation pump, circulation pump and heating system | |
CN113367588A (en) | Low-temperature amplitude control method and device for air fryer, storage medium and air fryer | |
JP2003150204A (en) | Pid controller | |
JP6920839B2 (en) | Hot water supply system | |
JP2007327667A (en) | Hot water storage type water heater | |
RU2776880C2 (en) | Method for regulation of circulation pump, circulation pump, as well as heating system | |
JP2005315505A (en) | Electric water heater with reheating function, and method of controlling temperature of water in bathtub | |
JP4527647B2 (en) | Hot water storage water heater | |
JP3644276B2 (en) | Heating control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120307 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120312 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150323 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |