Nothing Special   »   [go: up one dir, main page]

JP4819399B2 - Thin battery - Google Patents

Thin battery Download PDF

Info

Publication number
JP4819399B2
JP4819399B2 JP2005154117A JP2005154117A JP4819399B2 JP 4819399 B2 JP4819399 B2 JP 4819399B2 JP 2005154117 A JP2005154117 A JP 2005154117A JP 2005154117 A JP2005154117 A JP 2005154117A JP 4819399 B2 JP4819399 B2 JP 4819399B2
Authority
JP
Japan
Prior art keywords
battery
thin
forming member
passage forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005154117A
Other languages
Japanese (ja)
Other versions
JP2006331874A (en
Inventor
猛 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
NEC Corp
Original Assignee
NEC Corp
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Fuji Jukogyo KK filed Critical NEC Corp
Priority to JP2005154117A priority Critical patent/JP4819399B2/en
Publication of JP2006331874A publication Critical patent/JP2006331874A/en
Application granted granted Critical
Publication of JP4819399B2 publication Critical patent/JP4819399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、ラミネートフィルム等からなる包装体内に電池要素が電解液と共に収容された薄型電池に関する。   The present invention relates to a thin battery in which a battery element is accommodated together with an electrolyte in a package made of a laminate film or the like.

近年、電気自動車などの駆動用電源として、薄型電池(例えばリチウムイオン二次電池)を複数集合させて構成した組電池を用いることが行われている。また、そのような組電池において、電池の充放電性能を最大限に発揮させるためには(あるいは電池の寿命を短縮させないためには)、電池(薄型電池)を冷却する必要があることが知られている。薄型電池は一般に、ラミネートフィルムからなる包装体内に、金属箔の積層体として構成された電池要素が電解液と共に収容された構造となっている。   In recent years, as a driving power source for an electric vehicle or the like, an assembled battery including a plurality of thin batteries (for example, lithium ion secondary batteries) is used. In such an assembled battery, it is known that the battery (thin battery) needs to be cooled in order to maximize the charge / discharge performance of the battery (or in order not to shorten the battery life). It has been. A thin battery generally has a structure in which a battery element configured as a laminated body of metal foil is housed together with an electrolytic solution in a package made of a laminate film.

図8、図9は、特許文献1に開示された従来の薄型電池の構成を示している。薄型電池350は、正極用金属箔(不図示)と負極用金属箔とがセパレータを介して交互に積層された電池要素302と、その電池要素302を収容するための2枚のラミネートフィル301を有している。2枚のラミネートフィルム301は、その外周部の4辺において互いに熱シールされており、そのうちの一辺から電極タブ302aが引き出されている。この薄型電池350は、ラミネートフィルム301が波形状に形成されていることを1つの特徴としており、これにより、例えば、図8の矢印A方向に薄型電池350を曲げることができるようになっている。
特開2000−173559号公報
8 and 9 show the configuration of a conventional thin battery disclosed in Patent Document 1. FIG. The thin battery 350 includes a battery element 302 in which a positive electrode metal foil (not shown) and a negative electrode metal foil are alternately laminated via separators, and two laminate films 301 for accommodating the battery elements 302. Have. The two laminated films 301 are heat-sealed with each other at the four sides of the outer peripheral portion, and the electrode tab 302a is drawn out from one side. This thin battery 350 is characterized in that the laminate film 301 is formed in a wave shape, and thus, for example, the thin battery 350 can be bent in the direction of arrow A in FIG. .
JP 2000-173559 A

このような薄型電池350を用いて組電池を構成する場合、例えば図10に示すようにして電池を積層すれば、波形状部同士の間に空隙が確保され、これを通風路370として利用することができるとも考えられる。これによれば、特別なスペーサ等を用いることなく電池同士の間に通風路が確保されるため、組電池の構成を簡素化できる点で有利である。   When an assembled battery is configured using such a thin battery 350, for example, if the batteries are stacked as shown in FIG. 10, a gap is secured between the corrugated portions, and this is used as the ventilation path 370. It is thought that it is possible. According to this, since a ventilation path is ensured between batteries, without using a special spacer etc., it is advantageous at the point which can simplify the structure of an assembled battery.

しかし、特許文献1はそもそも薄型電池350をこのようにして積層することは想定しておらず、次のような理由から、このような積層を実現することは困難であると考えられる。すなわち、図11に示すように、特許文献1の薄型電池では電池要素302とフィルム301との間には空洞部304が生じており、この部分ではフィルムが比較的変形しやくなっている。そのため、図10のようにして積層した場合、実際にはフィルムが潰れてしまうおそれもあり、この場合、通風路370は確保されないこととなる。   However, Patent Document 1 does not assume that the thin battery 350 is laminated in this way, and it is considered difficult to realize such lamination for the following reasons. That is, as shown in FIG. 11, in the thin battery of Patent Document 1, a cavity 304 is formed between the battery element 302 and the film 301, and the film is relatively easily deformed at this portion. Therefore, when laminated as shown in FIG. 10, the film may actually be crushed. In this case, the ventilation path 370 is not secured.

前述の通り、フィルム301に形成された波形状部を利用すれば、スペーサ等を利用せずとも通風路370を確保することが可能である。しかし、これを実現するためには、フィルム301が変形しないように、つまり、通風路370が良好に確保されるように、何らからの対策を講じる必要がある。ここで、例えば、空洞部304内に補強部材を配置するなどしてフィルムが変形しないようにすることもできようが、これでは、不要な部材を追加することとなり好ましくない。   As described above, if the corrugated portion formed on the film 301 is used, the ventilation path 370 can be secured without using a spacer or the like. However, in order to realize this, it is necessary to take some measures so that the film 301 is not deformed, that is, the air passage 370 is satisfactorily secured. Here, for example, a reinforcing member may be disposed in the hollow portion 304 to prevent the film from being deformed. However, this is not preferable because an unnecessary member is added.

本発明は、上記問題点に鑑みてなされたものであって、その目的は、特別な部材を追加することなくフィルムの波形状部の剛性を確保することができ、しかも放熱を良好に行うことが可能な薄型電池を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to ensure the rigidity of the corrugated portion of the film without adding a special member, and to perform heat dissipation satisfactorily. It is an object to provide a thin battery that can be used.

上記目的を達成するため本発明の薄型電池は、電気的エネルギーを貯留及び出力するように構成された電池要素が、フィルム包装体の内部に電解液と共に収容された薄型電池において、前記電池要素の断面形状が波形状に形成され、前記フィルム包装体には、前記電池要素の外周面に沿うようにして、前記電池要素の波形状と形状を同じくする波形状部が形成されていることを特徴とする。また、上記本発明に関し、フィルム包装体の内部は真空引きされた状態となっていてもよいし、また、上記電池要素の波形状(フィルムの波形状部も同じ)は、サイン波形または台形波形であってもよい。   In order to achieve the above object, a thin battery according to the present invention is a thin battery in which a battery element configured to store and output electrical energy is housed together with an electrolyte in a film package. The cross-sectional shape is formed into a wave shape, and the film packaging body is formed with a wave shape portion having the same shape as the wave shape of the battery element so as to be along the outer peripheral surface of the battery element. And Further, in the present invention, the inside of the film packaging body may be in a vacuumed state, and the waveform of the battery element (the same as the waveform of the film) is a sine waveform or a trapezoidal waveform. It may be.

上記本発明によれば、電池要素が波形断面とされており、フィルム包装体の波形状部はその電池要素の外周面(表面)に沿うようにして形成されている。すなわち、フィルムと電池要素との間に空洞部を生じることなく、フィルム包装体の波形状部が形成されているため、フィルムの波形状部の剛性が十分に確保されたものとなっている。また、フィルムと電池要素との間の空洞部が生じていないことにより、従来の構成と比較して放熱性も良好なものとなっている(この詳細については〔発明を実施するための最良の形態〕の欄内で述べる)。そして、このように波形状に構成された本発明の薄型電池によれば、組電池を構成する際に特別なスペーサ等を要することなく、電池同士の間に通風路を確保することができる。   According to the said invention, the battery element is made into the waveform cross section, and the waveform part of a film packaging body is formed so that the outer peripheral surface (surface) of the battery element may be met. That is, since the corrugated portion of the film package is formed without generating a cavity between the film and the battery element, the rigidity of the corrugated portion of the film is sufficiently ensured. In addition, since the cavity between the film and the battery element does not occur, heat dissipation is better than that of the conventional configuration (for details, see [Best Mode for Carrying Out the Invention] It will be described in the column of “form”] And according to the thin battery of this invention comprised in this way at the time of comprising an assembled battery, a ventilation path can be ensured between batteries, without requiring a special spacer.

また、本発明の他の薄型電池は、それぞれ電気的エネルギーを貯留及び出力するように構成された2つの電池要素と、該2つの電池要素同士の間に配置された通路形成部材と、前記2つの電池要素及び前記通路形成部材を収容するフィルム包装体とを有する薄型電池であって、前記通路形成部材は、前記フィルム包装体を貫通した状態に延在する冷却風通路を複数有し、前記各電池要素の断面形状は波形状に形成され、前記フィルム包装体には、前記電池要素の外周面に沿うようにして、前記電池要素の波形状と形状を同じくする波形状部が形成されている。   Another thin battery of the present invention includes two battery elements each configured to store and output electrical energy, a passage forming member disposed between the two battery elements, and the 2 A thin battery having one battery element and a film package housing the passage forming member, wherein the passage forming member has a plurality of cooling air passages extending through the film packaging body, The cross-sectional shape of each battery element is formed in a corrugated shape, and the film packaging body is formed with a corrugated portion having the same shape as the corrugated shape of the battery element, along the outer peripheral surface of the battery element. Yes.

この薄型電池は、1つのフィルム包装体の内部に2つの電池要素が配置されたものである。2つの電池要素の間には、通路形成部材が配置されており、この通路形成部材が補強部材として、あるいは、電池要素の冷却用部材として機能するようになっている。したがって、電池全体としての剛性が向上すると共に、放熱性も良好に維持される。この薄型電池においても、上記の薄型電池と同じように、電池要素が波形状とされると共にフィルム包装体には波形状部が形成されているため、上記同様、フィルムの波形状部の剛性が十分に確保され、また放熱性も良好なものとなる。   In this thin battery, two battery elements are arranged inside one film package. A passage forming member is disposed between the two battery elements, and this passage forming member functions as a reinforcing member or a cooling member for the battery element. Therefore, the rigidity of the battery as a whole is improved and the heat dissipation is also maintained well. In this thin battery as well, since the battery element has a wave shape and the film packaging body has a wave shape portion as in the above thin battery, the rigidity of the wave shape portion of the film is the same as above. Sufficiently secured and good heat dissipation.

上記本発明の他の薄型電池に関し、前記通路形成部材は、前記電池要素のそれぞれに対向する第1の面及び第2の面を有し、前記電池要素はいずれも、その一方の面が前記第1の面又は第2の面に密着した状態で配置されていることが好ましい。電池要素が通路形成部材に密着していることで、電池要素の熱が通路形成部材に良好に伝わるようになり、結果的に電池の放熱性がより向上するためである。   With respect to the other thin battery of the present invention, the passage forming member has a first surface and a second surface that face each of the battery elements, and each of the battery elements has one of the surfaces described above. It is preferable that they are arranged in close contact with the first surface or the second surface. This is because when the battery element is in close contact with the passage forming member, the heat of the battery element is transmitted to the passage forming member well, and as a result, the heat dissipation of the battery is further improved.

また、前記フィルム包装体はより具体的には、2枚のラミネートフィルムからなるものであって、前記通路形成部材の、前記冷却風通路が開口する部位の近傍は、前記2枚のラミネートフィルムによって挟み込まれているものであってもよい。また、2つの電池要素は、前記通路形成部材を間において互いに対称の構造となっていることが好ましい。また、前記各電池要素の波形状は台形波形であり、前記フィルム包装体の内部は真空引きされた状態となっているものであってもよい。また、前記各冷却風通路の延在方向が、前記電池要素の波形状における波の稜線方向に一致しているものであってもよい。   More specifically, the film package is composed of two laminated films, and the vicinity of the portion where the cooling air passage opens of the passage forming member is formed by the two laminated films. It may be sandwiched. Moreover, it is preferable that the two battery elements have a symmetrical structure with respect to the passage forming member. The wave shape of each battery element may be a trapezoidal waveform, and the inside of the film package may be evacuated. In addition, the extending direction of each cooling air passage may coincide with the ridge line direction of the wave in the wave shape of the battery element.

上述したように本発明の薄型電池によれば、電池要素が波形断面とされており、フィルムの波形状部はこの電池要素の表面に沿うように形成されているため、特別な部材を追加することなくフィルムの波形状部の剛性を確保することができる。また、フィルムと電池要素の間には空洞部が生じないことから、電池の放熱性も良好なものとなる。   As described above, according to the thin battery of the present invention, the battery element has a corrugated cross section, and the corrugated portion of the film is formed along the surface of the battery element, so a special member is added. The rigidity of the corrugated portion of the film can be ensured without any problem. In addition, since no hollow portion is formed between the film and the battery element, the heat dissipation of the battery is also good.

以下、本発明の実施の形態について図面を参照して説明する。
(第1の実施形態)
図1は、本実施形態の薄型電池の構成を示す断面図である。図1に示すように、薄型電池50は、基本的には従来の構成同様、フィルム包装体を構成するフィルム24A、24B(以下、単にフィルム24とも言う)と、フィルム包装体内に電解液(不図示)と共に収容される電池要素22とを有しており、フィルム24同士を熱シールした封止部26からは内部の電池要素22に電気的に接続された電極タブ25が引き出されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view showing the configuration of the thin battery of this embodiment. As shown in FIG. 1, the thin battery 50 basically has a film 24A, 24B (hereinafter also simply referred to as a film 24) constituting a film package and an electrolyte solution (non-conductive) in the film package, as in the conventional structure. The electrode tab 25 electrically connected to the internal battery element 22 is drawn out from the sealing part 26 which heat-sealed the films 24 with each other.

電池要素22は、正極板23a及び負極板23bがセパレータ(不図示)を介して交互に積層されものであり、本実施形態においてはサイン波形の断面形状に形成されている。電池要素22の厚さは例えば数mm〜十mm程度である。正極板23a及び負極板23bそれぞれの材質は、従来一般に用いられるものであれば特に限定されるものではない。   The battery element 22 is formed by alternately stacking positive plates 23a and negative plates 23b via separators (not shown). In the present embodiment, the battery elements 22 are formed in a sine waveform cross-sectional shape. The thickness of the battery element 22 is, for example, about several mm to 10 mm. The material of each of the positive electrode plate 23a and the negative electrode plate 23b is not particularly limited as long as it is generally used.

一例として、正極板23aは、金属酸化物などの正極活物資に、カーボンブラックなどの導電材と、ポリ四化フッ化エチレンの水性ディスパージョンなどの接着剤とを、重合比で例えば100:3:10の割合で混合したものを、正極側集電体としての金属箔(例えばアルミニウム箔)の両面に塗着、乾燥させ、圧延したのちに所定の大きさに切断したものである。負極板23bは、例えば、正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、スチレンブタジエンゴム樹脂粉末の水性ディスパージョンを例えば固形分比100:5で混合し、この混合物を、負極側集電体としての金属箔(例えばニッケル箔又は銅箔)の両面に塗着、乾燥させ、圧延したのちに所定の大きさに切断したものである。   As an example, the positive electrode plate 23a includes a positive electrode active material such as a metal oxide, a conductive material such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene in a polymerization ratio of, for example, 100: 3. : A mixture mixed at a ratio of 10 is applied to both surfaces of a metal foil (for example, an aluminum foil) as a positive electrode side current collector, dried, rolled, and then cut into a predetermined size. For example, the negative electrode plate 23b is prepared by mixing an aqueous dispersion of styrene butadiene rubber resin powder in a solid content ratio of, for example, 100: 5 to a negative electrode active material that absorbs and releases lithium ions of the positive electrode active material, and this mixture is mixed with the negative electrode side. The metal foil (for example, nickel foil or copper foil) as a current collector is coated on both sides, dried, rolled, and then cut into a predetermined size.

このような正極板23a及び負極板23bをセパレータを介して交互に重ね、これをプレス加工することで、波形状をなす電池要素22が得られる。電池要素22を包装する際、真空引きを行いながら2枚のフィルム24A、24B同士を熱シールすることが好ましい。これにより、フィルム包装体の内部が真空状態(大気圧より低い気圧状態をいう)となり、各フィルム24A、24Bの内側面が電池要素22の外周面に密着して沿うこととなる。   Such positive electrode plates 23a and negative electrode plates 23b are alternately stacked via separators and pressed to obtain a battery element 22 having a wave shape. When packaging the battery element 22, it is preferable to heat-seal the two films 24A and 24B while evacuating. Thereby, the inside of a film packaging body will be in a vacuum state (it says the atmospheric pressure state lower than atmospheric pressure), and the inner surface of each film 24A, 24B will closely_contact | adhere to the outer peripheral surface of the battery element 22.

なお、フィルム24A、24Bに対しては、例えばプレス加工等により予め波形状が付与されていてもよい。フィルムが比較的軟らかい場合、真空引きを行った際にフィルムが電池要素の外形に沿って密着するため、こうした事前のプレス加工は不要である。   It should be noted that the films 24A and 24B may be preliminarily provided with a wave shape by, for example, pressing. When the film is relatively soft, such pre-pressing is not necessary because the film adheres along the outer shape of the battery element when evacuation is performed.

図2は、薄型電池50を重ね合せて組電池を構成した例を示している。2つの薄型電池50を、互いのフィルム24B同士が対向するように上下を反転させて重ねることで、波形状部の谷部同士の間に通風路70が形成されることとなる。本実施形態の構成によれば電池同士の間に特別のスペーサ等を介在させなくとも通風路70が形成されるという利点があるが、もっとも、必要に応じてスペーサ等を用いることも可能である。   FIG. 2 shows an example in which an assembled battery is configured by superimposing thin batteries 50. The two thin batteries 50 are turned upside down so as to face each other so that the films 24B face each other, whereby the ventilation path 70 is formed between the trough portions of the corrugated portion. According to the configuration of the present embodiment, there is an advantage that the ventilation path 70 is formed without interposing a special spacer or the like between the batteries, but it is possible to use a spacer or the like if necessary. .

電極タブ25同士は、例えばレーザ溶接を利用して互いに接合することができる。波形状部の谷部がこのように通風路70を構成することに鑑みれば、谷部の延在方向(すなわち波の稜線)は、従来の構成と同じように例えば電池の短手方向にまっすぐとなっていることが好ましく、これにより、通風路70もまっすぐに形成されることとなる。   The electrode tabs 25 can be joined together using, for example, laser welding. In view of the fact that the trough portion of the corrugated portion constitutes the ventilation path 70 in this way, the extending direction of the trough portion (that is, the ridge line of the wave) is, for example, straight in the short direction of the battery as in the conventional configuration. Preferably, the ventilation path 70 is also formed straight.

本実施形態の薄型電池50では、電池要素22が波形断面とされており、フィルム24には、その電池要素22の外周面に沿うような波形状部が形成されている。したがって、従来の構成のようにフィルムと電池要素との間に空洞部304(図11参照)が生じることはない。このような構成によれば、フィルム24の波形状部に剛性が確保されるため、図2のようにして電池同士を重ね合せたとしてもフィルムが変形することはなく、通風路70が良好に確保されるものとなる。   In the thin battery 50 of the present embodiment, the battery element 22 has a corrugated cross section, and the film 24 is formed with a corrugated portion along the outer peripheral surface of the battery element 22. Therefore, unlike the conventional configuration, the cavity 304 (see FIG. 11) does not occur between the film and the battery element. According to such a configuration, rigidity is ensured in the corrugated portion of the film 24. Therefore, even if the batteries are overlapped as shown in FIG. 2, the film is not deformed, and the ventilation path 70 is excellent. It will be secured.

また、本実施形態のように電池要素22が波形状となっている場合、電池要素の外形形状を拡大することなく、正極板23及び負極板24の表面積を大きくすることできるため、電池の高出力化にも有利である。また、本実施形態の構成は、図11の構成のように空洞部304が生じるものではないため、放熱の観点からも有利である。すなわち図11の構成では、空洞部304があるため、通風路内に送られる冷媒(冷却風)と電池要素との間の熱交換が効率的に実施されないと考えられる。これに対し、本実施形態の構成では空洞部が生じていないため、冷媒と電池要素22との間の熱交換が良好になされるものとなる。   Further, when the battery element 22 has a wave shape as in the present embodiment, the surface area of the positive electrode plate 23 and the negative electrode plate 24 can be increased without enlarging the outer shape of the battery element. It is also advantageous for output. Further, the configuration of the present embodiment is advantageous from the viewpoint of heat dissipation because the hollow portion 304 is not generated unlike the configuration of FIG. That is, in the configuration of FIG. 11, since there is the hollow portion 304, it is considered that heat exchange between the refrigerant (cooling air) sent into the ventilation path and the battery element is not efficiently performed. On the other hand, in the configuration of the present embodiment, since no hollow portion is generated, heat exchange between the refrigerant and the battery element 22 is favorably performed.

また、本実施形態の構成では電池要素22が波形断面とされているため、例えば図8の矢印B方向の外力が加わったとしても電池の変形は最小限に抑えられる。これは、波の稜線方向に関し、電池要素の剛性が向上したことに起因するものである。   Further, in the configuration of the present embodiment, since the battery element 22 has a corrugated cross section, even if an external force in the direction of arrow B in FIG. This is due to the improved rigidity of the battery element with respect to the wave ridgeline direction.

なお、波形状部の形状(谷部の深さ、あるいは谷部同士の間隔等)は適宜変更可能である。また、波形状はサイン波形に限らず、例えば矩形波形又は台形波形が連続するようなものであってもよい。また、フィルム24A、24Bの具体的な一例としては、例えば、熱溶融性を有する樹脂層と、金属薄膜などからなる非通気層と、ナイロンなどからなる保護層とがこの順番に積層された3層構造のラミネートフィルムであってもよい。   Note that the shape of the corrugated portion (the depth of the valleys or the interval between the valleys) can be changed as appropriate. Further, the wave shape is not limited to a sine waveform, and for example, a rectangular waveform or a trapezoidal waveform may be continuous. Further, as a specific example of the films 24A and 24B, for example, a resin layer having heat melting property, a non-venting layer made of a metal thin film, and a protective layer made of nylon or the like are laminated in this order. A laminate film having a layer structure may be used.

(第2の実施形態)
電池要素の断面形状が台形波形である薄型電池の例について、図3〜図5を参照して説明する。なお、図3〜図5に示す薄型電池150では、電池要素の断面が台形波状とされていることに加え、1つのフィルム包装体内に2つの電池要素122A、122Bが配置された構成となっている。すなわち、この薄型電池150は、通路形成部材130を挟み込むようにして、2つの電池要素122A、122Bが配置されたいわゆるサンドイッチ型の構造となっている。
(Second Embodiment)
An example of a thin battery in which the cross-sectional shape of the battery element has a trapezoidal waveform will be described with reference to FIGS. In addition, in the thin battery 150 shown in FIGS. 3-5, in addition to the cross section of a battery element being trapezoid wave shape, it becomes the structure by which two battery element 122A, 122B is arrange | positioned in one film packaging body. Yes. That is, the thin battery 150 has a so-called sandwich type structure in which two battery elements 122A and 122B are arranged so as to sandwich the passage forming member 130 therebetween.

まず、このようなサンドイッチ型の構造の基本的な考え方について、図6、図7を参照して説明する。なお、図6、図7では、本実施形態の構成要素と区別するため図3〜図5とは異なる符号を付して各構成要素を示している。   First, the basic concept of such a sandwich type structure will be described with reference to FIGS. In FIG. 6 and FIG. 7, each component is shown with a reference numeral different from that in FIGS. 3 to 5 in order to distinguish it from the component of the present embodiment.

図6、図7に示す薄型電池250は、2つの電池要素222A、222Bと、それらの間に配置される偏平な通路形成部材230とを有している。1つの電池要素は例えば3.6V程度の起電力を出力するものであり、本構成ではこれが2つあるために倍の出力(7.2V程度)が得られるようになっている。   The thin battery 250 shown in FIGS. 6 and 7 has two battery elements 222A and 222B, and a flat passage forming member 230 disposed therebetween. One battery element outputs, for example, an electromotive force of about 3.6V, and in this configuration, since there are two of them, a double output (about 7.2V) can be obtained.

通路形成部材230は樹脂成形品であり、リブによって仕切られた冷却風通路232(高さ寸法が例えば1.5〜2.0mm程度)を複数有している。薄型電池の完成状態では、図7に示すように、この通路形成部材230の短手方向の両端がフィルムの封止部226に挟み込まれている。これにより、冷却風通路232はフィルムによって塞がれることなく、フィルム外包体を貫通した状態となっている。この冷却風通路232内に冷却風を送ることにより、電池要素からの熱が外部に逃がされるようになっている。   The passage forming member 230 is a resin molded product, and has a plurality of cooling air passages 232 (height dimensions are about 1.5 to 2.0 mm, for example) partitioned by ribs. In the completed state of the thin battery, as shown in FIG. 7, both ends in the short direction of the passage forming member 230 are sandwiched between the sealing portions 226 of the film. Thus, the cooling air passage 232 is in a state of penetrating the film outer package without being blocked by the film. By sending cooling air into the cooling air passage 232, heat from the battery element is released to the outside.

通路形成部材230を用いることなく、単に2つの電池要素222A、222Bを積層する構成では電池要素の内部に熱がこもりやすく、それに起因した問題も生じやすい。これに対して、図6、図7に示すサンドイッチ型の構造によれば、電池要素同士の間に冷却風通路232が確保されているため、放熱を良好に行うことができるという利点がある。また、この薄型電池では、通路形成部材230が補強部材としても機能することから、薄型電池全体としての剛性が向上するという利点もある。   In the configuration in which the two battery elements 222A and 222B are simply stacked without using the passage forming member 230, heat easily accumulates in the battery elements, and problems due to the heat tend to occur. On the other hand, according to the sandwich type structure shown in FIGS. 6 and 7, since the cooling air passage 232 is secured between the battery elements, there is an advantage that heat radiation can be performed satisfactorily. Further, in this thin battery, since the passage forming member 230 also functions as a reinforcing member, there is an advantage that the rigidity of the thin battery as a whole is improved.

再び図3を参照する。本実施形態に係る薄型電池150は、こうしたサンドイッチ型構造の利点を保ちつつ、電池要素の断面形状を波形状にしたものである。すなわち、図6の電池要素222A、222Bに代えて電池要素122A、122Bが配置されており、通路形成部材230に代えて、複数の冷却風通路132を有する通路形成部材130が配置されている。   Refer to FIG. 3 again. The thin battery 150 according to the present embodiment is obtained by corrugating the cross-sectional shape of the battery element while maintaining the advantages of such a sandwich structure. That is, battery elements 122A and 122B are arranged instead of the battery elements 222A and 222B of FIG. 6, and a passage forming member 130 having a plurality of cooling air passages 132 is arranged instead of the passage forming member 230.

各電池要素122A、122Bはいずれも同じ構成であり、その断面形状は台形の波形状となっている。各電池要素を構成する正極板123a及び負極板123bは、第1の実施形態の正極板23a及び負極板23bと同様のものを使用可能である。   Each of the battery elements 122A and 122B has the same configuration, and the cross-sectional shape thereof is a trapezoidal wave shape. The positive electrode plate 123a and the negative electrode plate 123b constituting each battery element can be the same as the positive electrode plate 23a and the negative electrode plate 23b of the first embodiment.

2つの電池要素122A、122Bは、通路形成部材130を間において互いに対称の構造となっており、一方の電池要素の山部127の反対側には、他方の電池要素の山部127が存在している。それぞれの山部127ではフィルムの表面が平坦になっており、これにより、電池同士の重ね合せが良好にできるようになっている。   The two battery elements 122A and 122B have a symmetric structure with respect to the passage forming member 130. On the opposite side of the peak part 127 of one battery element, the peak part 127 of the other battery element exists. ing. In each peak portion 127, the surface of the film is flat so that the batteries can be satisfactorily overlapped.

図4は、薄型電池150を重ね合せて組電池を構成した例を示している。2つの薄型電池150を、各電池の山部127同士が互いに接触するように重ねることで、波形状部の谷同士の間に断面六角形状の通風路170が形成される。通風路170は、冷却風通路132と同じ方向に延在しており、また、通風路170の開口と冷却風通路132の開口とはいずれも同じ方向を向いている。このような構成によれば、各通路132、170に冷却風を送り込むためのダクト(不図示)を構成しやすいという利点がある。   FIG. 4 shows an example in which an assembled battery is configured by superimposing thin batteries 150. By stacking the two thin batteries 150 so that the peak portions 127 of each battery are in contact with each other, an air passage 170 having a hexagonal cross section is formed between the valleys of the corrugated portions. The ventilation path 170 extends in the same direction as the cooling air passage 132, and the opening of the ventilation path 170 and the opening of the cooling air passage 132 both face the same direction. According to such a structure, there exists an advantage that it is easy to comprise the duct (not shown) for sending cooling air into each channel | path 132,170.

図5には、薄型電池150の側縁部の一部が拡大して示されている。図示するように、通路形成部材130は、冷却風通路132が開口する部位の近傍が2枚のフィルム124A、124Bによって挟み込まれている。この場合、各フィルムの内側面が、例えば熱シールにより通路形成部材の外周面に接合されていてもよい。あるいは、接着剤等を介在させた状態で、フィルムの内側面と通路形成部材の外周面とが接合されていてもよい。   FIG. 5 shows an enlarged part of the side edge of the thin battery 150. As shown in the drawing, the passage forming member 130 is sandwiched between two films 124A and 124B in the vicinity of a portion where the cooling air passage 132 is opened. In this case, the inner surface of each film may be joined to the outer peripheral surface of the passage forming member by heat sealing, for example. Or the inner surface of a film and the outer peripheral surface of a channel | path formation member may be joined in the state which interposed the adhesive agent etc.

以上説明した本実施形態によれば、電池要素122A、122Bが波形状とされていることによる、第1の実施形態同様の利点が得られる。また、薄型電池150は、2つの電池要素が通路形成部材を挟み込むように配置されたサンドイッチ型構造となっているため、放熱性や剛性を損なうことなく、電池要素2個分の出力が得られるようになっている。   According to the present embodiment described above, advantages similar to those of the first embodiment can be obtained because the battery elements 122A and 122B have a wave shape. Further, since the thin battery 150 has a sandwich structure in which two battery elements are arranged so as to sandwich the passage forming member, an output equivalent to two battery elements can be obtained without impairing heat dissipation and rigidity. It is like that.

なお、電池要素からの熱を良好に放熱する観点からすれば、電池要素122Aの下面と通路形成部材130の上面(第1の面)とが密着するような構成となっていることが好ましい。すなわち、電池要素の下面と通路形成部材の上面とが相補的な形状となっていることが好ましい。これは、電池要素122Bの上面と通路形成部材130の下面(第2の面)との関係においても同様である。このように、電池要素と通路形成部材とが互いに密着する構成となっていることにより、電池要素の熱が通路形成部材に良好に伝わるようになる。通路形成部材に伝わった熱は、冷却風通路132内に送られる冷媒(冷却風)との間で熱交換され外部に逃がされる。   From the viewpoint of favorably dissipating heat from the battery element, it is preferable that the lower surface of the battery element 122A and the upper surface (first surface) of the passage forming member 130 are in close contact with each other. That is, it is preferable that the lower surface of the battery element and the upper surface of the passage forming member have a complementary shape. The same applies to the relationship between the upper surface of the battery element 122B and the lower surface (second surface) of the passage forming member 130. As described above, since the battery element and the passage forming member are in close contact with each other, the heat of the battery element is favorably transmitted to the passage forming member. The heat transmitted to the passage forming member is exchanged with the refrigerant (cooling air) sent into the cooling air passage 132 and released to the outside.

なお、通路形成部材130における冷却風通路132同士の間隔は特に限定されるものではないが、各冷却風通路132は等間隔で配置されていることが好ましい。これにより、電池要素に対する冷却が均一的なものとなる。通路形成部材130は樹脂成形品に限らず、例えば絶縁性の2枚の板部材が対向配置されてなるものであってもよい。具体的な材質の一例を挙げれば、該板部材は、例えば金属等の熱良導体に電気絶縁材をコーティングしたものであってもよい。金属等の熱良導体を用いることによって、冷却風通路132内の冷媒と電池要素との間の熱交換が良好になされるものとなる。   The interval between the cooling air passages 132 in the passage forming member 130 is not particularly limited, but the cooling air passages 132 are preferably arranged at equal intervals. Thereby, the cooling with respect to a battery element becomes uniform. The passage forming member 130 is not limited to a resin molded product, and for example, two insulating plate members may be arranged to face each other. If an example of a specific material is given, this plate member may be obtained by coating an electrically insulating material on a heat good conductor such as metal. By using a good heat conductor such as a metal, heat exchange between the refrigerant in the cooling air passage 132 and the battery element can be performed satisfactorily.

以上、本発明について2つの実施形態を例に挙げて説明したが、各実施形態の構成は互いに組み合わされて使用されてもよい。例えば、第2の実施形態の構成において電池要素の波形状をサイン波形とすることも可能である。   As described above, the present invention has been described by taking two embodiments as examples. However, the configurations of the embodiments may be used in combination with each other. For example, in the configuration of the second embodiment, the waveform of the battery element can be a sine waveform.

第1の実施形態に係る薄型電池の構成を示す断面図である。It is sectional drawing which shows the structure of the thin battery which concerns on 1st Embodiment. 図1の薄型電池を重ね合せて組電池を構成した例を示す図である。It is a figure which shows the example which comprised the thin battery of FIG. 第2の実施形態に係る薄型電池の構成を示す断面図である。It is sectional drawing which shows the structure of the thin battery which concerns on 2nd Embodiment. 図3の薄型電池を重ね合せて組電池を構成した例を示す図である。It is a figure which shows the example which comprised the thin battery of FIG. 3 on which the assembled battery was comprised. 図3の薄型電池の側縁部を一部拡大して示す斜視図である。It is a perspective view which expands and partially shows the side edge part of the thin battery of FIG. 第2の実施形態に係る薄型電池の基本的な構成について説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the basic structure of the thin battery which concerns on 2nd Embodiment. 図6の薄型電池の完成状態を示す外観斜視図である。It is an external appearance perspective view which shows the completion state of the thin battery of FIG. 従来の薄型電池の構成を示す外観斜視図である。It is an external appearance perspective view which shows the structure of the conventional thin battery. 図8の薄型電池の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the thin battery of FIG. 従来の薄型電池を重ね合せて組電池を構成した例を示す図である。It is a figure which shows the example which comprised the conventional thin battery and overlapped and comprised the assembled battery. 図8の薄型電池の内部構造を示す断面図である。It is sectional drawing which shows the internal structure of the thin battery of FIG.

符号の説明Explanation of symbols

22、122A、122B 電池要素
23a、123a 正極板
23b、123b 負極板
24A、24B、124A、124B フィルム
25、125 電極タブ
26 封止部
127 山部
130 通路形成部材
132 冷却風通路
50、150 薄型電池
70、170 通風路
22, 122A, 122B Battery element 23a, 123a Positive electrode plate 23b, 123b Negative electrode plate 24A, 24B, 124A, 124B Film 25, 125 Electrode tab 26 Sealing portion 127 Mountain portion 130 Passage forming member 132 Cooling air passage 50, 150 Thin battery 70, 170 Ventilation path

Claims (6)

それぞれ電気的エネルギーを貯留及び出力するように構成された2つの電池要素と、該2つの電池要素同士の間に配置された通路形成部材と、前記2つの電池要素及び前記通路形成部材を収容するフィルム包装体とを有する薄型電池であって、
前記通路形成部材は、前記フィルム包装体を貫通した状態に延在する冷却風通路を複数有し、前記各電池要素の断面形状は波形状に形成され、前記フィルム包装体には、前記電池要素の外周面に沿うようにして、前記電池要素の波形状と形状を同じくする波形状部が形成されている薄型電池。
Two battery elements each configured to store and output electrical energy, a passage forming member disposed between the two battery elements, and the two battery elements and the passage forming member are accommodated. A thin battery having a film package,
The passage forming member has a plurality of cooling air passages extending in a state of penetrating the film packaging body, and each battery element has a corrugated cross-sectional shape. A thin battery in which a corrugated portion having the same shape as the corrugated shape of the battery element is formed along the outer peripheral surface of the battery.
前記通路形成部材は、前記電池要素のそれぞれに対向する第1の面及び第2の面を有し、前記電池要素はいずれも、その一方の面が前記第1の面又は第2の面に密着した状態で配置されている、請求項に記載の薄型電池。 The passage forming member has a first surface and a second surface facing each of the battery elements, and each of the battery elements has one surface on the first surface or the second surface. The thin battery according to claim 1 , wherein the thin battery is arranged in close contact. 前記フィルム包装体は2枚のラミネートフィルムからなるものであって、前記通路形成部材の、前記冷却風通路が開口する部位の近傍は、前記2枚のラミネートフィルムによって挟み込まれている、請求項又はに記載の薄型電池。 The film package can be comprised of two laminated films, near the site where the passage forming member, said cooling air passage is opened is sandwiched by the two laminated films, according to claim 1 Or the thin battery of 2 . 前記2つの電池要素は、前記通路形成部材を間において互いに対称の構造となっている、請求項1乃至請求項のいずれか1項に記載の薄型電池。 It said two battery elements, wherein has the structure symmetrical with each other during the passage forming member, thin battery according to any one of claims 1 to 3. 前記各電池要素の波形状は台形波形であり、前記フィルム包装体の内部は真空引きされた状態となっている、請求項1乃至請求項のいずれか1項に記載の薄型電池。 The corrugated each battery element is a trapezoidal waveform, the interior of the film package is in a state of being evacuated, thin battery according to any one of claims 1 to 4. 前記各冷却風通路の延在方向が、前記電池要素の波形状における波の稜線方向に一致している、請求項1乃至請求項のいずれか1項に記載の薄型電池。 The extending direction of the cooling air passages, the match in the ridge line direction of the wave in the battery element of the wave-shaped, thin battery according to any one of claims 1 to 5.
JP2005154117A 2005-05-26 2005-05-26 Thin battery Expired - Fee Related JP4819399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154117A JP4819399B2 (en) 2005-05-26 2005-05-26 Thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154117A JP4819399B2 (en) 2005-05-26 2005-05-26 Thin battery

Publications (2)

Publication Number Publication Date
JP2006331874A JP2006331874A (en) 2006-12-07
JP4819399B2 true JP4819399B2 (en) 2011-11-24

Family

ID=37553353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154117A Expired - Fee Related JP4819399B2 (en) 2005-05-26 2005-05-26 Thin battery

Country Status (1)

Country Link
JP (1) JP4819399B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728006B1 (en) 2014-05-22 2017-04-18 주식회사 엘지화학 Battery Case Comprising Variable Elongation Part
KR101765459B1 (en) * 2015-03-10 2017-08-07 주식회사 아모그린텍 wallet having flexible battery
KR101795543B1 (en) * 2015-09-01 2017-11-08 주식회사 아모그린텍 Bag for wireless recharge
KR101795544B1 (en) * 2015-03-10 2017-11-08 주식회사 아모그린텍 bag having battery

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240817B2 (en) * 2007-11-26 2013-07-17 Necエナジーデバイス株式会社 Lithium ion secondary battery
WO2010041161A1 (en) * 2008-10-09 2010-04-15 Nxp B.V. Energy storage system
KR20100069493A (en) 2008-12-16 2010-06-24 삼성전자주식회사 Battery and battery pack comprising the same
DE102009022678A1 (en) * 2009-05-26 2010-12-02 Li-Tec Battery Gmbh electrode winding
WO2012140709A1 (en) * 2011-04-11 2012-10-18 パナソニック株式会社 Flexible battery and manufacturing method thereof
JP5719859B2 (en) 2012-02-29 2015-05-20 株式会社半導体エネルギー研究所 Power storage device
JP5842776B2 (en) * 2012-09-28 2016-01-13 株式会社豊田自動織機 Power storage device
KR101764841B1 (en) * 2013-02-13 2017-08-04 주식회사 엘지화학 Electrode Assembly of Incline Structure and Battery Cell Employed with the Same
KR101619959B1 (en) 2013-07-31 2016-05-11 주식회사 엘지화학 Laminate Sheet With Convexo-Concave Structure
KR101654800B1 (en) * 2013-09-24 2016-09-06 주식회사 엘지화학 Secondary battery with cooling structure
TWI633693B (en) 2013-10-22 2018-08-21 半導體能源研究所股份有限公司 Secondary battery and electronic device
US20150138699A1 (en) 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Electronic device
JP6851131B2 (en) 2013-12-04 2021-03-31 株式会社半導体エネルギー研究所 Flexible secondary battery
CN105814730B (en) * 2014-01-06 2019-02-26 株式会社Lg化学 Flexible batteries unit
WO2015105304A1 (en) * 2014-01-13 2015-07-16 주식회사 엘지화학 Battery cell having improved battery safety by using inert particles
JP6699994B2 (en) 2014-05-23 2020-05-27 株式会社半導体エネルギー研究所 Secondary battery
KR20240093799A (en) 2014-05-29 2024-06-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Secondary battery and electronic device
JP6671882B2 (en) 2014-08-08 2020-03-25 株式会社半導体エネルギー研究所 Rechargeable battery
JP6667508B2 (en) * 2014-09-04 2020-03-18 アモグリーンテック カンパニー リミテッド Flexible battery, manufacturing method thereof, and auxiliary battery including flexible battery
JP2016057617A (en) 2014-09-05 2016-04-21 株式会社半導体エネルギー研究所 Electronic device
KR102475372B1 (en) * 2014-10-10 2022-12-07 주식회사 아모그린텍 electrode assembly for flexible battery and flexible battery including the same
US10185363B2 (en) 2014-11-28 2019-01-22 Semiconductor Energy Laboratory Co., Ltd. Electronic device
JP6761638B2 (en) 2015-02-04 2020-09-30 株式会社半導体エネルギー研究所 Rechargeable battery
KR102350516B1 (en) * 2015-03-24 2022-01-12 주식회사 아모그린텍 Bracelet type Flexible Battery
KR102350451B1 (en) * 2015-04-10 2022-01-12 주식회사 아모그린텍 Bracelet type Flexible Battery
KR102376184B1 (en) * 2015-04-30 2022-03-18 주식회사 아모그린텍 Molding imbedded flexible battery and manufacturing method thereof
KR102350520B1 (en) * 2015-04-30 2022-01-12 주식회사 아모그린텍 Molding imbedded flexible battery and manufacturing method thereof
KR102332442B1 (en) 2015-06-19 2021-11-29 삼성에스디아이 주식회사 Rechargeable battery module
CN114512746A (en) 2015-10-27 2022-05-17 株式会社半导体能源研究所 Battery and method for manufacturing battery
KR102001105B1 (en) * 2016-07-06 2019-07-17 주식회사 엘지화학 Secondary battert
DE102018004332B3 (en) 2018-05-24 2019-07-04 Friedrich Grimm STACKABLE ACCUMULATOR CELL WITH A SURFACE MAGNIFICATION AND ELECTRIC VEHICLE
DE102019001520B3 (en) 2019-03-04 2020-02-06 Friedrich Grimm ACCUMULATOR CELL AS A TUBE CELL AND AS A HEAT EXCHANGER, ELECTRIC VEHICLE WITH A TUBE CELL
FR3104823B1 (en) * 2019-12-17 2022-09-23 Commissariat Energie Atomique Electrochemical accumulator, in particular a metal-ion accumulator, in flexible packaging integrating one or more orifices for passage of cooling fluid, module and associated manufacturing method.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076771A (en) * 1993-06-16 1995-01-10 Yuasa Corp Film battery and manufacture thereof
JP2002063938A (en) * 2000-08-18 2002-02-28 Sony Corp Secondary battery and its manufacturing method
JP4096358B2 (en) * 2003-01-31 2008-06-04 株式会社ジーエス・ユアサコーポレーション battery
JP3730981B2 (en) * 2003-10-01 2006-01-05 Necラミリオンエナジー株式会社 Film outer battery and battery pack
JP4661124B2 (en) * 2004-08-04 2011-03-30 トヨタ自動車株式会社 Sheet material type battery, assembled battery combining sheet material type battery, and method of manufacturing sheet material type battery
JP2006172773A (en) * 2004-12-13 2006-06-29 Ngk Spark Plug Co Ltd Thin battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728006B1 (en) 2014-05-22 2017-04-18 주식회사 엘지화학 Battery Case Comprising Variable Elongation Part
KR101765459B1 (en) * 2015-03-10 2017-08-07 주식회사 아모그린텍 wallet having flexible battery
KR101795544B1 (en) * 2015-03-10 2017-11-08 주식회사 아모그린텍 bag having battery
KR101795543B1 (en) * 2015-09-01 2017-11-08 주식회사 아모그린텍 Bag for wireless recharge

Also Published As

Publication number Publication date
JP2006331874A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4819399B2 (en) Thin battery
JP5732687B2 (en) Pouch type case and battery pack including the same
US11271274B2 (en) Secondary battery
JP3972205B2 (en) Stacked battery
JP7212547B2 (en) Laminated exterior battery
JP2006156401A (en) Secondary battery
JP2009187889A (en) Battery case and battery pack
JP2006049054A (en) Sheet material battery, battery pack assembled with sheet material batteries, and manufacturing method of sheet material battery
JP2004139775A (en) Laminated battery, battery pack and vehicle
JP2010033922A (en) Layered secondary battery
JP2005038613A (en) Plate-shaped battery
JP2004356085A (en) Jelly roll type electrode assembly and secondary battery adopting this
JP2006164784A (en) Film-armored electric device
KR102540149B1 (en) Secondary Battery
JP4172328B2 (en) Battery and battery pack
JP2005228573A (en) Closed type battery
JP2000208110A (en) Thin battery
JP6560876B2 (en) Laminated battery and method of manufacturing the same
KR102669086B1 (en) Secondary battery
JP2005129393A (en) Secondary battery
JP2024003414A (en) battery
JP5093465B2 (en) Non-aqueous electrolyte secondary battery
JP6641751B2 (en) Battery module
JP2020053238A (en) Power storage element, manufacturing method for power storage element
JP7245212B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees