JP4807523B2 - Sheet-like soft magnetic material and method for producing the same - Google Patents
Sheet-like soft magnetic material and method for producing the same Download PDFInfo
- Publication number
- JP4807523B2 JP4807523B2 JP2007274123A JP2007274123A JP4807523B2 JP 4807523 B2 JP4807523 B2 JP 4807523B2 JP 2007274123 A JP2007274123 A JP 2007274123A JP 2007274123 A JP2007274123 A JP 2007274123A JP 4807523 B2 JP4807523 B2 JP 4807523B2
- Authority
- JP
- Japan
- Prior art keywords
- soft magnetic
- sheet
- magnetic material
- epoxy resin
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000696 magnetic material Substances 0.000 title claims description 95
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 229920000647 polyepoxide Polymers 0.000 claims description 96
- 239000006247 magnetic powder Substances 0.000 claims description 86
- 239000003822 epoxy resin Substances 0.000 claims description 84
- 239000000203 mixture Substances 0.000 claims description 49
- 229920000800 acrylic rubber Polymers 0.000 claims description 44
- 229920000058 polyacrylate Polymers 0.000 claims description 44
- 239000003795 chemical substances by application Substances 0.000 claims description 40
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 claims description 26
- 239000000843 powder Substances 0.000 claims description 26
- 239000002904 solvent Substances 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 9
- 229910002796 Si–Al Inorganic materials 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 5
- 239000002245 particle Substances 0.000 description 59
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 45
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 45
- 230000008859 change Effects 0.000 description 35
- 230000035699 permeability Effects 0.000 description 31
- 238000001035 drying Methods 0.000 description 28
- 238000012360 testing method Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 16
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 238000000576 coating method Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 10
- 238000010030 laminating Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910001004 magnetic alloy Inorganic materials 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229910008458 Si—Cr Inorganic materials 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000011354 acetal resin Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- 229910017758 Cu-Si Inorganic materials 0.000 description 1
- 229910017931 Cu—Si Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229910008423 Si—B Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- WCCJDBZJUYKDBF-UHFFFAOYSA-N copper silicon Chemical compound [Si].[Cu] WCCJDBZJUYKDBF-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 150000007965 phenolic acids Chemical class 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、磁気特性に優れ、厚み変化が小さいという特性を有するシート状軟磁性材料及びその製造方法に関する。 The present invention relates to a sheet-like soft magnetic material having excellent magnetic properties and small thickness change and a method for producing the same.
様々な電子機器に使用されている軟磁性シートの製造は、一般に混練圧延法により行われている。この方法では、扁平軟磁性粉末とゴムと塩素化ポリエチレンなどの結合剤とを所定の割合でニーダーで混練し、得られた混練物をカレンダーロールなどの装置で所定厚みに圧延し、更に必要に応じて結合剤を加熱架橋させることにより単層の軟磁性シートを得ている。この方法は、高密度に軟磁性粉末を充填でき、圧延により軟磁性粉末を面内方向に配向でき、シート厚の調整が容易であるという利点を有する。 The manufacture of soft magnetic sheets used in various electronic devices is generally performed by a kneading and rolling method. In this method, flat soft magnetic powder, rubber, and a binder such as chlorinated polyethylene are kneaded at a predetermined ratio with a kneader, and the obtained kneaded product is rolled to a predetermined thickness with an apparatus such as a calender roll, and further required. Accordingly, the binder is heated and crosslinked to obtain a single-layer soft magnetic sheet. This method has the advantage that the soft magnetic powder can be filled at a high density, the soft magnetic powder can be oriented in the in-plane direction by rolling, and the sheet thickness can be easily adjusted.
しかし、混練圧延法の場合、混練時に軟磁性粉末に歪みが生ずるために、軟磁性粉末自体の磁気特性が低下し、軟磁性シートの透磁率を大きくすることができないという問題がある。また、高温あるいは高温高湿環境下においてシート厚が厚くなる方向に変化し、透磁率が低下するという問題があった。 However, in the case of the kneading and rolling method, since the soft magnetic powder is distorted during kneading, there is a problem that the magnetic properties of the soft magnetic powder itself are lowered and the magnetic permeability of the soft magnetic sheet cannot be increased. Further, there has been a problem that the magnetic permeability is lowered by changing the sheet thickness in a high temperature or high temperature and high humidity environment.
そこで、混練圧延法に代えて、軟磁性粉末に歪みが生じにくい塗布法により軟磁性シートを製造することが行われるようになっている(特許文献1)。この方法では、扁平軟磁性粉末とゴムと樹脂と溶剤とからなる軟磁性シート形成用液状組成物を、剥離基材上に塗布し、乾燥することにより、高温あるいは高温高湿環境下でもシート厚変化が小さい軟磁性シートを得ている。 Therefore, instead of the kneading and rolling method, a soft magnetic sheet is manufactured by a coating method in which the soft magnetic powder is less likely to be distorted (Patent Document 1). In this method, a liquid composition for forming a soft magnetic sheet consisting of flat soft magnetic powder, rubber, resin and solvent is applied onto a release substrate and dried, so that the sheet thickness can be increased even in a high temperature or high temperature and high humidity environment. A soft magnetic sheet with little change is obtained.
しかしながら、塗布法は、シート厚が比較的薄い軟磁性シートを作成する場合に適しているが、比較的厚い軟磁性シートを製造するには適していない。これは、厚く塗布すると塗布厚ムラが生じやすく、乾燥も困難となるからである。このため、本発明者らは、軟磁性シート形成用液状組成物に硬化性樹脂とその硬化剤とを配合し、塗布法で硬化性の薄い軟磁性シートを作成し、その複数枚を硬化させながら圧縮することで積層型のシート状軟磁性材料を製造することを試みた。しかし、塗布法で作成された薄い軟磁性シートを積層して作成された積層型軟磁性シートは、個々の薄い軟磁性シートのシート厚変化は小さいものの、混練圧延法で製造された比較的厚い単層の軟磁性シートと同様に、高温あるいは高温高湿環境下においてシート厚が厚くなる方向に変化し、透磁率が低下するという問題があった。 However, the coating method is suitable for producing a soft magnetic sheet having a relatively thin sheet thickness, but is not suitable for producing a relatively thick soft magnetic sheet. This is because when the coating is thick, uneven coating thickness tends to occur and drying becomes difficult. For this reason, the present inventors blended a curable resin and its curing agent with a liquid composition for soft magnetic sheet formation, created a thin curable soft magnetic sheet by a coating method, and cured a plurality of the sheets. An attempt was made to produce a laminated sheet-like soft magnetic material by compressing while compressing. However, the laminated soft magnetic sheet produced by laminating thin soft magnetic sheets produced by the coating method is relatively thick manufactured by the kneading rolling method, although the change in the thickness of each thin soft magnetic sheet is small. Similar to the single-layer soft magnetic sheet, there is a problem in that the sheet thickness increases in a high temperature or high temperature and high humidity environment, and the magnetic permeability decreases.
本発明は、以上説明した従来技術の問題点を解決しようとするものであり、シート状軟磁性材料に対し、塗布法で作成した複数の薄い硬化性の軟磁性シートを積層して作成した場合であっても、高温あるいは高温高湿環境下でもシート厚変化が抑制され且つ透磁率の変動も小さくなるような構成を付与することを目的とする。 The present invention is intended to solve the above-described problems of the prior art, and is formed by laminating a plurality of thin curable soft magnetic sheets prepared by a coating method on a sheet-like soft magnetic material. However, it is an object to provide a configuration in which a change in sheet thickness is suppressed even in a high-temperature or high-temperature and high-humidity environment, and variation in magnetic permeability is reduced.
この目的を達成した本願発明は、少なくとも扁平軟磁性粉末と、アクリルゴムと、エポキシ樹脂と、エポキシ樹脂用硬化剤と、溶剤とを混合してなる軟磁性組成物から形成されたシート状軟磁性材料であって、
該扁平軟磁性粉末が該シート状軟磁性材料の面内方向に配列しており、
アクリルゴムがグリシジル基を有しており、
アクリルゴムとエポキシ樹脂とエポキシ樹脂用硬化剤との合計量に対する扁平軟磁性粉末の重量比が3.7〜5.8である
ことを特徴とするシート状軟磁性材料である。
The present invention which has achieved this object is a sheet-like soft magnetic material formed from a soft magnetic composition comprising at least a flat soft magnetic powder, an acrylic rubber, an epoxy resin, a curing agent for epoxy resin, and a solvent. Material,
The flat soft magnetic powder is arranged in an in-plane direction of the sheet-like soft magnetic material;
Acrylic rubber has glycidyl groups,
The sheet-like soft magnetic material is characterized in that the weight ratio of the flat soft magnetic powder to the total amount of the acrylic rubber, the epoxy resin, and the epoxy resin curing agent is 3.7 to 5.8.
ここで、本願発明のシート状軟磁性材料の好ましい態様は、扁平軟磁性粉末としてFe−Si−Cr−Ni合金粉末および/またはFe−Si−Al合金粉末を使用する態様である。また、別の好ましい態様は、エポキシ樹脂用硬化剤として潜在性を示す硬化剤を使用する態様である。更に別の好ましい態様は、シート状軟磁性材料が圧延履歴のない態様や、引張強度が20Mpa以上50MPa以下の態様、あるいは入射角60度での光沢度が20%以上50%以下の態様である。 Here, the preferable aspect of the sheet-like soft magnetic material of this invention is an aspect which uses Fe-Si-Cr-Ni alloy powder and / or Fe-Si-Al alloy powder as flat soft magnetic powder. Moreover, another preferable aspect is an aspect which uses the hardening | curing agent which shows latency as a hardening | curing agent for epoxy resins. Still another preferred embodiment is an embodiment in which the sheet-like soft magnetic material has no rolling history, an embodiment in which the tensile strength is 20 Mpa or more and 50 MPa or less, or an embodiment in which the glossiness at an incident angle of 60 degrees is 20% or more and 50% or less. .
また、本発明は、少なくとも扁平軟磁性粉末と、グリシジル基を有するアクリルゴムと、エポキシ樹脂と、エポキシ樹脂用硬化剤と、溶剤とを混合してなる軟磁性組成物を、硬化反応が実質的に進行しない温度で剥離基材上に塗布し乾燥して硬化性軟磁性シートを作成し、この硬化性軟磁性シートを2枚以上積層して積層物を取得し、硬化反応が生ずる温度で積層物を圧延しないように圧縮することを特徴とするシート状軟磁性材料の製造方法を提供する。 Further, the present invention provides a soft magnetic composition obtained by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a curing agent for an epoxy resin, and a solvent. Is applied onto a release substrate at a temperature that does not proceed to, and then dried to create a curable soft magnetic sheet. Two or more curable soft magnetic sheets are laminated to obtain a laminate, and laminated at a temperature at which a curing reaction occurs. Provided is a method for producing a sheet-like soft magnetic material, wherein the product is compressed so as not to be rolled.
本発明のシート状軟磁性材料は、扁平軟磁性粉末とグリシジル基を有するアクリルゴムとエポキシ樹脂とエポキシ樹脂用硬化剤と溶剤とからなる軟磁性組成物から形成されている。ここで、グリシジル基を有するアクリルゴムは、エポキシ樹脂に反応するので、シート状軟磁性材料を構成する分子の凝集力をいっそう高めることができる。また、バインダーとして使用するアクリルゴムとエポキシ樹脂は、耐熱性と耐湿性にも優れている。従って、本発明のシート状軟磁性材料は、高温高湿環境下で長期間に亘り、良好な寸法安定性を実現することができる。また、扁平軟磁性粉末がシート状軟磁性材料の面内方向に配列しているので、磁気特性が良好となる。 The sheet-like soft magnetic material of the present invention is formed from a soft magnetic composition comprising flat soft magnetic powder, acrylic rubber having a glycidyl group, an epoxy resin, a curing agent for epoxy resin, and a solvent. Here, since the acrylic rubber having a glycidyl group reacts with the epoxy resin, the cohesive force of molecules constituting the sheet-like soft magnetic material can be further increased. Moreover, the acrylic rubber and epoxy resin used as a binder are excellent also in heat resistance and moisture resistance. Therefore, the sheet-like soft magnetic material of the present invention can realize good dimensional stability over a long period of time in a high temperature and high humidity environment. Moreover, since the flat soft magnetic powder is arranged in the in-plane direction of the sheet-like soft magnetic material, the magnetic characteristics are improved.
本発明のシート状軟磁性材料は、少なくとも扁平軟磁性粉末と、アクリルゴムと、エポキシ樹脂と、エポキシ樹脂用硬化剤と、溶剤とを混合してなる軟磁性組成物から形成されたものである。 The sheet-like soft magnetic material of the present invention is formed from a soft magnetic composition formed by mixing at least flat soft magnetic powder, acrylic rubber, an epoxy resin, an epoxy resin curing agent, and a solvent. .
本発明においては、軟磁性粉末として扁平なもの(扁平軟磁性粉末)を使用する。扁平軟磁性粉末を2次元の面内方向に配列させることにより、高い透磁率と大きな比重とを実現することができる。 In the present invention, a flat soft magnetic powder (flat soft magnetic powder) is used. By arranging the flat soft magnetic powder in a two-dimensional in-plane direction, a high magnetic permeability and a large specific gravity can be realized.
扁平軟磁性粉末の原材料としては、任意の軟磁性合金を用いることができ、例えば、磁性ステンレス(Fe−Cr−Al−Si合金)、センダスト(Fe−Si−A1合金)、パーマロイ(Fe−Ni合金)、ケイ素銅(Fe−Cu−Si合金)、Fe−Si合金、Fe−Si―B(−Cu−Nb)合金、Fe−Si−Cr−Ni合金、Fe−Si−Cr合金、Fe−Si−Al−Ni−Cr合金、フェライト等が挙げられる。これらの中でも、磁気特性の点からFe−Si−Al合金又はFe−Si−Cr−Ni合金を好ましく使用できる。 As a raw material of the flat soft magnetic powder, any soft magnetic alloy can be used, for example, magnetic stainless steel (Fe—Cr—Al—Si alloy), sendust (Fe—Si—A1 alloy), permalloy (Fe—Ni). Alloy), silicon copper (Fe—Cu—Si alloy), Fe—Si alloy, Fe—Si—B (—Cu—Nb) alloy, Fe—Si—Cr—Ni alloy, Fe—Si—Cr alloy, Fe— Si-Al-Ni-Cr alloy, ferrite, etc. are mentioned. Among these, Fe-Si-Al alloys or Fe-Si-Cr-Ni alloys can be preferably used from the viewpoint of magnetic properties.
これらの軟磁性合金に関し、RFID通信用に用いる場合には、複素比透磁率の実数部(透磁率)μ′の数値が比較的大きく、複素比透磁率の虚数部(磁気損失)μ″の数値が比較的小さいものを使用することが好ましい。これにより、RFID通信用のアンテナコイルから放出される磁界が金属体で渦電流損失に変換されることが防止され、通信性能が改善される。 When these soft magnetic alloys are used for RFID communication, the real part (permeability) μ ′ of the complex relative permeability is relatively large, and the imaginary part (magnetic loss) μ ″ of the complex relative permeability is It is preferable to use one having a relatively small numerical value, whereby the magnetic field emitted from the antenna coil for RFID communication is prevented from being converted into eddy current loss by the metal body, and communication performance is improved.
また、扁平軟磁性合金としては、渦電流損失の低減を目的にμ″の値を小さくするために、比較的抵抗が大きいものを使用することが好ましい。この場合、軟磁性合金の組成を変えることで抵抗を大きくすることができる。例えば、Fe−Si−Cr系合金やFe−Si−Al系合金の場合、Siの割合を9〜15重量%とすることが好ましい。 In addition, it is preferable to use a flat soft magnetic alloy having a relatively large resistance in order to reduce the value of μ ″ for the purpose of reducing eddy current loss. In this case, the composition of the soft magnetic alloy is changed. For example, in the case of an Fe—Si—Cr alloy or Fe—Si—Al alloy, the Si content is preferably 9 to 15% by weight.
扁平軟磁性粉末としては、扁平な形状の軟磁性粉末を用いるが、好ましくは平均粒子径が3.5〜100μm、平均厚さが0.3〜3.0μm、より好ましくは平均粒子径が10〜100μm、平均厚さが0.5〜2.5μmである。従って、扁平率(扁平度)を好ましくは8〜80、より好ましくは15〜65に設定する。ここで、扁平率は、50%粒径(D50)の数値(μm)に後述する比表面積の数値(cm2/g)を乗じて算出される数値である。なお、扁平軟磁性粉末の大きさを揃えるためには、必要に応じて、ふるい等を使用して分級すればよい。また、軟磁性材料の透磁率を大きくするためには、扁平軟磁性粉末の粒子サイズを大きくし、粒子同士の間隔を小さくし、且つ扁平な軟磁性粉末のアスペクト比を高めて軟磁性粉末における反磁界の影響を小さくすることが有効である。 As the flat soft magnetic powder, a soft magnetic powder having a flat shape is used. Preferably, the average particle diameter is 3.5 to 100 μm, the average thickness is 0.3 to 3.0 μm, and more preferably the average particle diameter is 10. ˜100 μm, average thickness is 0.5˜2.5 μm. Therefore, the flatness (flatness) is preferably set to 8 to 80, more preferably 15 to 65. Here, the flatness ratio is a numerical value calculated by multiplying a numerical value (μm) of 50% particle size (D50) by a numerical value (cm 2 / g) of a specific surface area described later. In addition, what is necessary is just to classify | classify using a sieve etc. as needed in order to arrange the magnitude | size of a flat soft magnetic powder. Further, in order to increase the magnetic permeability of the soft magnetic material, to increase the particle size of the flat soft magnetic powder, and reduce the distance between the particles, the soft magnetic powder to enhance and flat aspect ratio of the soft magnetic powder it is effective to reduce the influence of the anti-magnetic field.
扁平軟磁性粉末のタップ密度(JIS K−5101)と比表面積(BET法)とは互いに反比例する関係にあるが、比表面積が大きくなりすぎるとμ′の値だけでなく、大きくしたくないμ″の値も大きくなりすぎる傾向があり、逆に小さすぎるとμ′の値が小さくなりすぎる傾向がある。また、タップ密度が小さすぎると溶剤を多量に使用しても軟磁性粉末の塗工組成物が塗布しにくくなり、大きすぎるとμ′が小さくなる傾向がある。従って、それらの数値範囲を好ましい範囲に設定する。具体的にはタップ密度を好ましくは0.55〜1.45g/ml、より好ましくは0.65〜1.40g/mlに設定し、一方、比表面積を好ましくは0.40〜1.20m2/g、より好ましくは0.65〜1.00m2/gに設定する。 The tap density (JIS K-5101) and the specific surface area (BET method) of the flat soft magnetic powder are in inverse proportion to each other. However, if the specific surface area becomes too large, not only the value of μ ′ but also the μ The value of ″ also tends to be too large. Conversely, if it is too small, the value of μ ′ tends to be too small. If the tap density is too small, the coating of soft magnetic powder is possible even if a large amount of solvent is used. The composition is difficult to apply, and if it is too large, μ ′ tends to decrease.Therefore, the numerical range thereof is set to a preferable range, specifically, the tap density is preferably 0.55 to 1.45 g /. ml, more preferably 0.65 to 1.40 g / ml, while the specific surface area is preferably 0.40 to 1.20 m 2 / g, more preferably 0.65 to 1.00 m 2 / g. Set.
また、扁平軟磁性粉末として、例えばシランカップリング剤等のカップリング剤を用いてカップリング処理した軟磁性粉末を用いるようにしてもよい。カップリング処理した軟磁性粉末を用いることによって、扁平軟磁性粉末とバインダーとの界面の補強効果を高め、比重や耐食性を向上させることができる。カップリング剤としては、例えば、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン等を用いることができる。なお、このカップリング処理は、予め軟磁性粉末に対して施しておいてもよいし、扁平軟磁性粉末とバインダー樹脂とを混合する際に同時に混合し、その結果カップリング処理が行われるようにしてもよい。 Further, as the flat soft magnetic powder, for example, a soft magnetic powder that has been coupled with a coupling agent such as a silane coupling agent may be used. By using the soft magnetic powder subjected to the coupling treatment, the reinforcing effect of the interface between the flat soft magnetic powder and the binder can be enhanced, and the specific gravity and corrosion resistance can be improved. As the coupling agent, for example, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane and the like can be used. This coupling process may be performed on the soft magnetic powder in advance, or when the flat soft magnetic powder and the binder resin are mixed, the coupling process is performed as a result. May be.
軟磁性組成物における扁平軟磁性粉末の使用量は、少なすぎると意図した磁気特性が得られず、多すぎると相対的にバインダー樹脂量が少なくなり、成形性が低下するので、好ましくは、溶剤を除いた軟磁性組成物中の70〜90重量%、より好ましくは80〜85重量%である。 If the amount of the flat soft magnetic powder used in the soft magnetic composition is too small, the intended magnetic properties cannot be obtained. If the amount is too large, the amount of the binder resin is relatively small and the moldability is decreased. Is 70 to 90% by weight, more preferably 80 to 85% by weight in the soft magnetic composition excluding.
軟磁性組成物は、シート状磁性材料に良好な柔軟性及び耐熱性を付与するために、ゴム成分としてアクリルゴムを使用する。このアクリルゴムは、エポキシ樹脂との反応性を向上させるために必ず1以上のグリシジル基を有する。また、アクリルゴムには、更にヒドロキシ基が存在することが好ましい。薄い軟磁性シートを複数枚積層する際の密着性を向上させることができる。このようなアクリルゴムの数平均分子量は50000〜300000が好ましく、重量平均分子量は10万〜45万が好ましい。また、ガラス転移温度は−10〜15℃が好ましい。溶融粘度は1500〜15000mPa・s(25℃)が好ましい。水酸基価は6〜10mgKOH/gが好ましい。このようなアクリルゴムの具体例としては、EA-AN、BA-EA-AN、BA-MMA、BA-AN等が挙げられる。 The soft magnetic composition uses acrylic rubber as a rubber component in order to impart good flexibility and heat resistance to the sheet-like magnetic material. The acrylic rubber always has one or more glycidyl groups in order to improve the reactivity with the epoxy resin. The acrylic rubber preferably further has a hydroxy group. Adhesion at the time of laminating a plurality of thin soft magnetic sheets can be improved. The number average molecular weight of such an acrylic rubber is preferably 50,000 to 300,000, and the weight average molecular weight is preferably 100,000 to 450,000. The glass transition temperature is preferably −10 to 15 ° C. The melt viscosity is preferably 1500 to 15000 mPa · s (25 ° C.). The hydroxyl value is preferably 6 to 10 mgKOH / g. Specific examples of such acrylic rubber include EA-AN, BA-EA-AN, BA-MMA, BA-AN and the like.
軟磁性組成物におけるアクリルゴムの使用量は、少なすぎると柔軟性が悪くなり、多すぎるとゴム弾性が大きくなり、圧縮性が悪くなる(熱加工性低下)ので、好ましくは、溶剤を除いた軟磁性組成物中の9〜16重量%、より好ましくは12〜14重量%である。 If the amount of acrylic rubber used in the soft magnetic composition is too small, the flexibility becomes poor, and if it is too large, the elasticity of the rubber increases and the compressibility deteriorates (decrease in heat processability). It is 9 to 16% by weight in the soft magnetic composition, more preferably 12 to 14% by weight.
軟磁性組成物は、シート状軟磁性材料に良好な加熱加工性及び寸法安定性を付与するために、エポキシ樹脂を使用する。エポキシ樹脂としては、従来より軟磁性シートにおいて用いられているエポキシ樹脂を使用することができる。具体例としては、フェノールノボラック、テトラグリシジルフェノール、O-クレゾールノボラック、テトラグリシジルアミン、ビスフェノールA、ビスAグリシジルエーテル、ビスフェノールF等が挙げられる。これらのエポキシ樹脂のエポキシ当量は、好ましくは180〜220g/eqである。 The soft magnetic composition uses an epoxy resin in order to impart good heat processability and dimensional stability to the sheet-like soft magnetic material. As an epoxy resin, the epoxy resin conventionally used in the soft magnetic sheet can be used. Specific examples include phenol novolak, tetraglycidyl phenol, O-cresol novolak, tetraglycidyl amine, bisphenol A, bis A glycidyl ether, bisphenol F, and the like. The epoxy equivalent of these epoxy resins is preferably 180 to 220 g / eq.
軟磁性組成物におけるエポキシ樹脂の使用量は、少なすぎると十分な熱加工性が得られず、多すぎると柔軟性が損なわれるので、好ましくは、溶剤を除いた軟磁性組成物中の1.0〜6.0重量%、より好ましくは1.5〜4.0重量%である。 If the amount of the epoxy resin used in the soft magnetic composition is too small, sufficient heat processability cannot be obtained, and if it is too large, flexibility is impaired. It is 0 to 6.0% by weight, more preferably 1.5 to 4.0% by weight.
また、軟磁性組成物は、エポキシ樹脂を硬化させるためにエポキシ樹脂用硬化剤を使用する。エポキシ樹脂用硬化剤としては、従来より軟磁性シートにおいて用いられているエポキシ樹脂用硬化剤を使用することができる。具体例としては、アミン類、イミダゾール、ポリアミド、フェノール酸無水物等が挙げられる。これらは潜在性であることが好ましい。 The soft magnetic composition uses an epoxy resin curing agent to cure the epoxy resin. As the curing agent for epoxy resin, a curing agent for epoxy resin that has been conventionally used in soft magnetic sheets can be used. Specific examples include amines, imidazole, polyamide, phenolic acid anhydride and the like. These are preferably latent.
軟磁性組成物におけるエポキシ樹脂用硬化剤の使用量は、少なすぎると製品の信頼性が低下し(保存特性低下)、多すぎると塗料のライフ低下、塗布シートのライフ低下、コストアップを招くので、好ましくはエポキシ樹脂100重量部に対し3〜100重量部、より好ましくは10〜40重量部である。 If the amount of the curing agent for the epoxy resin in the soft magnetic composition is too small, the reliability of the product is lowered (decrease in storage characteristics). The amount is preferably 3 to 100 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of the epoxy resin.
溶剤としては、通常の汎用溶媒を使用することができ、例えば、エタノール、n-プロパノール、イソプロピルアルコール(IPA)、n-ブチルアルコール等のアルコール類、酢酸エチル、酢酸n-ブチル等のエステル類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン等のケトン類、テトラヒドロフラン(THF)等のエーテル類、エチルセロソルブ、n−ブチルセロソルブ、セロソルブアセテート等のセロソルブ類、トルエン、キシレン、ベンゼン等の芳香族系炭化水素類などの汎用溶媒を使用することができる。その使用量は、軟磁性組成物の組成の種類や塗布法等に応じて適宜選択することができる。 As the solvent, a general general-purpose solvent can be used. For example, alcohols such as ethanol, n-propanol, isopropyl alcohol (IPA) and n-butyl alcohol, esters such as ethyl acetate and n-butyl acetate, Acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), ketones such as cyclohexanone, ethers such as tetrahydrofuran (THF), ethyl cellosolve, n-butyl cellosolve, cellosolves such as cellosolve acetate, toluene, xylene, benzene, etc. General-purpose solvents such as aromatic hydrocarbons can be used. The amount used can be appropriately selected according to the type of composition of the soft magnetic composition, the coating method, and the like.
また、前述のアクリルゴムとエポキシ樹脂とエポキシ樹脂用硬化剤との合計量に対する扁平軟磁性粉末の重量比は3.7〜5.8、好ましくは4.0〜5.3である。3.7未満であると、μ′が十分に大きくならず、5.8を超えるとバインダー成分不足による塗布面に厚さのばらつきが生じ、熱加工性が悪化し、また、塗布時にすじが入るからである。また、エポキシ樹脂の量に対してアクリルゴムの量を相対的に多くするとシート状軟磁性材料が軟らかくなり、エポキシ樹脂の量を相対的に多くした場合には逆に硬くなる。従って、エポキシ樹脂をアクリルゴムに対し相対的に多く使用すると高信頼性のシート状軟磁性材料を得ることができる。 The weight ratio of the flat soft magnetic powder to the total amount of the acrylic rubber, the epoxy resin, and the epoxy resin curing agent is 3.7 to 5.8, preferably 4.0 to 5.3. If it is less than 3.7, μ ′ will not be sufficiently large, and if it exceeds 5.8, thickness variation will occur on the coated surface due to insufficient binder components, thermal workability will deteriorate, and streaks will occur during coating. Because it enters. Further, when the amount of acrylic rubber is relatively increased with respect to the amount of epoxy resin, the sheet-like soft magnetic material becomes soft, and when the amount of epoxy resin is relatively increased, it becomes hard. Accordingly, when a relatively large amount of epoxy resin is used relative to acrylic rubber, a highly reliable sheet-like soft magnetic material can be obtained.
なお、軟磁性組成物の調製は、前述の成分を常法により均一に混合することにより行うことができる。 The soft magnetic composition can be prepared by uniformly mixing the above-described components by a conventional method.
また、本発明のシート状軟磁性材料においては、扁平軟磁性粉末がシート状軟磁性材料の面内方向に配列している。これにより、磁気特性を改善し、比重を大きくすることができる。面内方向に配列させることは、前述の軟磁性組成物からシート状軟磁性材料を作成する際に、軟磁性組成物を剥離基材上へ塗布して得られた硬化性軟磁性シート(2層以上積層した場合も含む)を圧縮することで達成できる。この場合、圧縮するけれども、二次元方向に延びないようにする、即ち、圧延しないようにする。具体的には、平面方向における線伸び率が1%を超えないようにする。1%を超える圧延をしてしまうと、厚さにばらつきが生じ、μ′や比重にもばらつきが生じ、また、しわやひび割れなどの形状不良、軟磁性粉末の充填不足、配向不良等が生じ、そのためμ′が大きくならなくなってしまうからである。 Further, in the sheet-like soft magnetic material of the present invention, the flat soft magnetic powder is arranged in the in-plane direction of the sheet-like soft magnetic material. Thereby, magnetic characteristics can be improved and specific gravity can be increased. Arranging in the in-plane direction means that a curable soft magnetic sheet (2) obtained by applying the soft magnetic composition onto the release substrate when the sheet-like soft magnetic material is prepared from the soft magnetic composition described above. This can be achieved by compressing the layer (including the case of laminating more than one layer). In this case, although it compresses, it does not extend in a two-dimensional direction, that is, does not roll. Specifically, the linear elongation rate in the planar direction should not exceed 1%. If the rolling exceeds 1%, the thickness will vary, the μ 'and specific gravity will also vary, and shape defects such as wrinkles and cracks, insufficient filling of soft magnetic powder, and orientation failure will occur. This is because μ ′ does not increase.
本発明のシート状軟磁性材料の引張り強度は、小さすぎると圧縮が不十分で、密に軟磁性粉末が詰まっていないため、シート内部にエアが混入しており、厚み変化が大きくなることが懸念され、逆に大きすぎるとシートが圧縮されすぎており、シートが硬くなり、柔軟性が損なわれるおそれがあるので、好ましくは20MPa以上50MPa以下、より好ましくは25MPa以上45MPa以下である。この結果、引張り強度がこの範囲にあると、適度な柔軟性を有しながらもシート自体にこしがあり、作業性と取扱性とに優れ、シート状軟磁性材料を電子機器などに組み込む際の歩留まりを低下させることがないという利点が得られる。引張り強度をこの範囲に設定する手法としては、プレス圧力や軟磁性粉末の配合量を調整することにより行うことができる。なお、引張り強度の測定は、公知の方法により行うことができる。 If the tensile strength of the sheet-like soft magnetic material of the present invention is too small, the compression is insufficient and the soft magnetic powder is not tightly packed, so air is mixed inside the sheet, and the thickness change may increase. is concerned, and an excessively large and the sheet is too compressed, the sheet becomes hard, since there is a possibility that flexibility is impaired, preferably 20M P a higher 50MPa or less, more preferably below 25M P a higher 45MPa is there. As a result, when the tensile strength is within this range, the sheet itself has a strain while having appropriate flexibility, excellent workability and handleability, and when incorporating a sheet-like soft magnetic material into an electronic device or the like. There is an advantage that the yield is not lowered. As a method of setting the tensile strength within this range, it can be performed by adjusting the pressing pressure and the blending amount of the soft magnetic powder. The tensile strength can be measured by a known method.
また、本発明のシート状軟磁性材料の光沢度が小さすぎると、シート断面だけでなく、シート表面からも軟磁性粉末が脱落するおそれがあり、また、十分に圧縮されていないためにシート内部にエアが混入し、水分がシート内に侵入しやすく、高温あるいは高温高湿環境下においてシート厚が厚くなるので、磁気特性が低下するおそれがある。逆に大きすぎると、シートが十分に圧縮されて表面が平滑となるが、シートが硬くなる。従って、その光沢度は入射角60度で好ましくは20%以上50%以下、より好ましくは23%以上48%以下である。この結果、光沢度がこの範囲にあると、シートに柔軟性を有したまま、高温高湿環境下でも厚み変化や磁気特性の変化を小さくできるという利点が得られる。光沢度をこの範囲に設定する手法としては、プレス時に用いる緩衝材の種類の選択、凹凸の大きさ、圧力の大きさ等を調整することにより行うことができる。なお、光沢度の測定は、JIS Z8741またはJIS P8142に従って行うことができる。 In addition, if the glossiness of the sheet-like soft magnetic material of the present invention is too small, the soft magnetic powder may fall off not only from the sheet cross section but also from the sheet surface, and since it is not sufficiently compressed, Since air is mixed into the sheet and moisture easily penetrates into the sheet, and the sheet thickness increases in a high temperature or high temperature and high humidity environment, the magnetic characteristics may be deteriorated. Conversely, if it is too large, the sheet is sufficiently compressed and the surface becomes smooth, but the sheet becomes hard. Therefore, the glossiness is preferably 20% to 50%, more preferably 23% to 48% at an incident angle of 60 degrees. As a result, when the glossiness is within this range, there is an advantage that the thickness change and the magnetic property change can be reduced even in a high-temperature and high-humidity environment with the sheet having flexibility. As a method for setting the gloss level within this range, it is possible to perform the selection by selecting the type of the cushioning material used at the time of pressing, the size of the unevenness, the size of the pressure, and the like. The glossiness can be measured according to JIS Z8741 or JIS P8142.
更に、本発明のシート状軟磁性材料の線膨張係数は、大きすぎるとシートが柔らかくなりすぎる傾向があり、小さすぎるとシートが硬くなりすぎる傾向があるので、好ましくは15〜22ppm/℃、より好ましくは16〜21ppm/℃である。また、被着体とシート状軟磁性材料との線膨張係数の差を、10ppm/℃以下となるようにする。これにより、両者の線膨張係数を略等しくでき、加熱と冷却を繰り返しても剥離し難くすることができる。例えば、アンテナとシート状磁性材料とを粘着剤を用いて積層した場合、剥離の問題の発生を大きく抑制することができ、良好な平面性を実現することができる。また、アクリルゴムとエポキシ樹脂と潜在性硬化剤とからなるシート状軟磁性材料の吸湿性は低いので、本発明のシート状軟磁性材料を被着体である導体に貼り付けたとしても、錆びの発生を抑制することができる。 Further, the linear expansion coefficient of the sheet-like soft magnetic material of the present invention tends to be too soft if the sheet is too large , and tends to be too hard if it is too small , preferably 15 to 22 ppm / ° C. Preferably it is 16-21 ppm / degrees C. Further, the difference in coefficient of linear expansion between the adherend and the sheet-like soft magnetic material is set to 10 ppm / ° C. or less. Thereby, both linear expansion coefficients can be made substantially equal, and even if heating and cooling are repeated, peeling can be made difficult. For example, when an antenna and a sheet-like magnetic material are laminated using an adhesive, the occurrence of a peeling problem can be greatly suppressed, and good flatness can be realized. In addition, the sheet-like soft magnetic material composed of acrylic rubber, epoxy resin, and latent curing agent has low hygroscopicity, so even if the sheet-like soft magnetic material of the present invention is affixed to a conductor, which is an adherend, it will rust. Can be suppressed.
次に、本発明のシート状軟磁性材料の製造方法の好ましい例を説明する。この製造方法は、少なくとも扁平軟磁性粉末と、グリシジル基を有するアクリルゴムと、エポキシ樹脂と、エポキシ樹脂用硬化剤と、溶剤とを混合してなる軟磁性組成物を、硬化反応が実質的に進行しない温度で剥離基材上に塗布し乾燥させて硬化性軟磁性シートを作成し、この硬化性軟磁性シートを2枚以上積層して積層物を取得し、硬化反応が生ずる温度で積層物を圧延しないように圧縮することによりシート状軟磁性材料を製造するものである。 Next, the preferable example of the manufacturing method of the sheet-like soft magnetic material of this invention is demonstrated. In this production method, a soft magnetic composition obtained by mixing at least a flat soft magnetic powder, an acrylic rubber having a glycidyl group, an epoxy resin, a curing agent for epoxy resin, and a solvent is substantially cured. A curable soft magnetic sheet is prepared by applying onto a release substrate at a temperature that does not proceed and drying, and a laminate is obtained by laminating two or more curable soft magnetic sheets, and the laminate is obtained at a temperature at which a curing reaction occurs. The sheet-like soft magnetic material is manufactured by compressing so as not to be rolled.
この製造方法では、まず、軟磁性組成物を硬化反応が実質的に進行しない温度で剥離基材上に塗布し乾燥して硬化性軟磁性シートを得る。軟磁性組成物を剥離基材上に塗布する手法としては、ドクターブレードコート法、コンマコータコート法など公知の手法を利用することができる。塗布厚は、シート状軟磁性材料の用途や積層数に応じて適宜決定することができるが、通常、乾燥厚が50〜200μmとなる厚さで塗布する。なお、200μmを超える厚さで塗布すると乾燥し難く、乾燥時にシートがふくれる場合があるので注意が必要である。 In this production method, first, a soft magnetic composition is applied onto a release substrate at a temperature at which the curing reaction does not substantially proceed and dried to obtain a curable soft magnetic sheet. As a method for applying the soft magnetic composition onto the release substrate, a known method such as a doctor blade coating method or a comma coater coating method can be used. The coating thickness can be appropriately determined according to the use of the sheet-like soft magnetic material and the number of laminated layers, but it is usually applied at a thickness that results in a dry thickness of 50 to 200 μm. It should be noted that it is difficult to dry when applied in a thickness exceeding 200 μm, and the sheet may swell during drying.
軟磁性組成物の硬化反応が実質的に進行しない温度で塗布乾燥する理由は、硬化反応が進行すると圧縮性が悪くなり、μ′が大きくならず、また、硬化反応が進んだものを圧縮すると高温高湿環境下での厚み変化が大きくなるからである。ここで、「硬化反応が実質的に進行しない」とは、架橋反応を最終工程にて均一に形成できることを意味する。具体的な温度は、軟磁性組成物の組成により異なるが、通常、130℃以下である。乾燥の具体的な手法としては、温風乾燥炉、電気加熱炉、赤外線加熱等などを使用した公知の手法を採用することができる。 The reason for applying and drying at a temperature at which the curing reaction of the soft magnetic composition does not substantially proceed is that when the curing reaction proceeds, the compressibility deteriorates, μ ′ does not increase, and when the curing reaction has progressed, This is because the thickness change in a high temperature and high humidity environment becomes large. Here, “the curing reaction does not substantially proceed” means that the crosslinking reaction can be uniformly formed in the final step. The specific temperature varies depending on the composition of the soft magnetic composition, but is usually 130 ° C. or lower. As a specific method of drying, a known method using a hot air drying furnace, an electric heating furnace, infrared heating or the like can be employed.
剥離基材としては、通常の剥離基材を使用することができる。例えば、表面をシリコーン剥離処理したポリエステルシート等が挙げられる。 As the release substrate, a normal release substrate can be used. For example, a polyester sheet whose surface has been subjected to a silicone release treatment can be used.
次に、硬化性軟磁性シートを2枚以上用意し、それらを積層して積層物を取得する。積層数は、シート状軟磁性材料の用途等によって決定される。また、積層する際に、軟磁性シートの積層物の両側に剥離シートを配置することが好ましい。この場合の剥離シートとしては、表面をシリコーン剥離処理したポリエステルシート等を使用できる。なお、2層以上を積層する場合、シート全体を一体的に加圧するプレス機を使用することができる。この場合、プレス圧を高くしすぎると光沢度と引張り強度とが上昇するが、柔軟性が低下する傾向がある。また、プレス機に代えて線圧を印加するラミネーターを使用すると、光沢度と引張り強度とが低くなる傾向がある。 Next, two or more curable soft magnetic sheets are prepared and laminated to obtain a laminate. The number of layers is determined by the use of the sheet-like soft magnetic material. Moreover, when laminating, it is preferable to arrange release sheets on both sides of the laminate of soft magnetic sheets. As the release sheet in this case, a polyester sheet or the like whose surface is subjected to silicone release treatment can be used. In addition, when laminating | stacking two or more layers, the press which pressurizes the whole sheet | seat integrally can be used. In this case, if the press pressure is too high, the glossiness and the tensile strength increase, but the flexibility tends to decrease. In addition, when a laminator that applies linear pressure is used instead of a press, the glossiness and tensile strength tend to be low.
次に、前述のように得られた積層物を、硬化反応が生ずる温度で圧延しないように圧縮する。これによりシート厚変化が抑制され且つ透磁率の変動も小さいシート状軟磁性材料が得られる。 Next, the laminate obtained as described above is compressed so as not to be rolled at a temperature at which a curing reaction occurs. As a result, a sheet-like soft magnetic material is obtained in which the change in sheet thickness is suppressed and the variation in magnetic permeability is small.
圧延しないように圧縮する理由は、前述したように、圧延すると厚さにばらつきが生じ、μ′や比重にもばらつきが生じ、また、しわやひび割れなどの形状不良、軟磁性粉末の充填不足、配向不良によってμ′が大きくならないからである。また、「積層物の硬化反応が生ずる温度」に加熱する理由は、高充填高配向状態で架橋させるためだからである。具体的な温度は、軟磁性組成物の組成により異なるが、通常100〜200℃、好ましくは140〜180℃である。 The reason for compressing so as not to roll is that, as described above, the thickness varies when rolled, the μ 'and specific gravity also vary, the shape is poor such as wrinkles and cracks, the soft magnetic powder is insufficiently filled, This is because μ ′ does not increase due to poor alignment. The reason for heating to “the temperature at which the curing reaction of the laminate occurs” is to crosslink in a highly filled and highly oriented state. Although specific temperature changes with compositions of a soft-magnetic composition, it is 100-200 degreeC normally, Preferably it is 140-180 degreeC.
なお、圧縮する手法としては、二つのロールで線圧を加えるラミネーターを使用してもよいが、延伸を抑える点で平坦な面を有し加熱することもできるプレス機を使用することが好ましい。この場合、圧縮圧力の値は、硬化性軟磁性シートの素材、積層数等により異なるが、好ましくは10〜50kgf/cm2、より好ましくは20〜40kgf/cm2である。また、積層と圧縮とを同時に行うこともできる。 As a method of compressing, a laminator that applies linear pressure with two rolls may be used. However, it is preferable to use a press machine that has a flat surface and can be heated in order to suppress stretching. In this case, the value of the compression pressure varies depending on the material of the curable soft magnetic sheet, the number of laminated layers, and the like, but is preferably 10 to 50 kgf / cm 2 , more preferably 20 to 40 kgf / cm 2 . Also, lamination and compression can be performed simultaneously.
以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
実施例1
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)500重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製;重量平均分子量35万、Tg7.5℃)75.5重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)21重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.3重量部と、トルエン270重量部と酢酸エチル120重量部とを均一に混合して得た軟磁性組成物を、コーターを用いて、表面に剥離処理が施されたポリエステルフィルム(剥離PET)上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシートの厚さが100μm前後の硬化性軟磁性シートを得た。
Example 1
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 500 parts by weight, acrylic rubber having glycidyl group (SG80H-3, manufactured by Nagase ChemteX Corporation; weight average molecular weight 350,000, Tg 7.5 ° C.) 75.5 parts by weight, epoxy resin (Epicoat 1031S, Japan Epoxy Resin) Co., Ltd.) 21 parts by weight, epoxy resin latent curing agent (HX3748, Asahi Kasei Chemicals Co., Ltd.) 6.3 parts by weight, toluene 270 parts by weight and ethyl acetate 120 parts by weight. The coated soft magnetic composition was applied on a polyester film (peeled PET) having a surface treated with a coater, and dried at a temperature of less than 80 ° C. There was dried at 100 ° C., the thickness of the sheet after drying to obtain a curable soft magnetic sheet before and after the 100 [mu] m.
得られた硬化性軟磁性シートから剥離PETを剥離除去したものを4枚用意し、それらを積層し、その積層物の両面を剥離PETで挟み、更に、その両面に100μm厚の上質紙を緩衝材として配置し、その両側を2枚のステンレス(SUS)板で挟んで真空プレス(北川精機製)で24.9kgf/cm2の圧力で165℃で10分間圧縮し、シート状軟磁性材料を得た。 Prepare four sheets of peeled PET removed from the obtained curable soft magnetic sheet, laminate them, sandwich both sides of the laminate with peeled PET, and buffer 100 μm thick fine paper on both sides The sheet-like soft magnetic material was placed on both sides with two stainless steel (SUS) plates and compressed with a vacuum press (made by Kitagawa Seiki) at 24.9 kgf / cm 2 at 165 ° C. for 10 minutes. Obtained.
(評価)
得られたシート状軟磁性材料に対し耐熱試験(温度85℃、湿度60Rh%のオーブンに96hr静置)を施したところ、耐熱試験後のシート状軟磁性材料の厚さは薄くなる方に変化したが、その変化率は耐熱試験前のシート状軟磁性材料を基準にして2%未満であった。また、実効透磁率μ′の値は34以上38未満かつ磁気損失μ″が1.5未満であった。得られた結果を表1に示す。また、表1には、アクリルゴムとエポキシ樹脂とエポキシ樹脂用硬化剤との合計量に対する扁平軟磁性粉末の重量比(磁粉/樹脂分の重量比)を併せて示す。
(Evaluation)
When the obtained sheet-shaped soft magnetic material was subjected to a heat resistance test (stands in an oven at a temperature of 85 ° C. and a humidity of 60 Rh% for 96 hours), the thickness of the sheet-shaped soft magnetic material after the heat resistance test changed to become thinner. However, the rate of change was less than 2% based on the sheet-like soft magnetic material before the heat resistance test. The effective magnetic permeability μ ′ was 34 or more and less than 38 and the magnetic loss μ ″ was less than 1.5. The obtained results are shown in Table 1. Table 1 also shows acrylic rubber and epoxy resin. The weight ratio of the flat soft magnetic powder to the total amount of the epoxy resin curing agent and the epoxy resin curing agent (magnetic powder / resin weight ratio) is also shown.
なお、外径7.05mm、内径2.945mmに抜き加工したリング状サンプルを作製し、これに導線コイルを5ターン巻き、端子に半田付けをした。端子の根元からリング状サンプルの下までの長さを20mmとした。実効透磁率μ′に関しては、インピーダンスアナライザー(4294A、アジレントテクノロジー社)を用いてキャリア周波数(13.56MHz)におけるインダクタンスと抵抗値を測定し、透磁率を算出した。得られた結果を表1に示す。 In addition, a ring-shaped sample punched into an outer diameter of 7.05 mm and an inner diameter of 2.945 mm was produced, and a conductive wire coil was wound around this for 5 turns and soldered to a terminal. The length from the base of the terminal to the bottom of the ring-shaped sample was 20 mm. Regarding the effective magnetic permeability μ ′, the inductance and resistance values at the carrier frequency (13.56 MHz) were measured using an impedance analyzer (4294A, Agilent Technologies), and the magnetic permeability was calculated. The obtained results are shown in Table 1.
更に、得られたシート状軟磁性材料について、入射角60度(−60度)での光沢度をJIS Z8741またはJIS P8142に基づき光沢計(VG2000,日本電色工業社)を用いて測定した。光沢度は20〜50%であることが望まれる。得られた結果を表1に示す。 Furthermore, the glossiness at an incident angle of 60 degrees (−60 degrees) of the obtained sheet-like soft magnetic material was measured using a gloss meter (VG2000, Nippon Denshoku Industries Co., Ltd.) based on JIS Z8741 or JIS P8142. The glossiness is desirably 20 to 50%. The obtained results are shown in Table 1.
得られたシート状軟磁性材料の引張り強度については、引張試験器(テンシロン、オリエンテック社)を用い、250μm厚さ、25mm幅、100mm長さのサンプルを、荷重50kgfで引張速度10mm/分の条件で測定した。引張り強度は20〜50MPaであることが望まれる。得られた結果を表1に示す。 About the tensile strength of the obtained sheet-like soft magnetic material, using a tensile tester (Tensilon, Orientec Co., Ltd.), a sample having a thickness of 250 μm, a width of 25 mm, and a length of 100 mm was applied at a load of 50 kgf and a tensile speed of 10 mm / min. Measured under conditions. The tensile strength is desirably 20 to 50 MPa. The obtained results are shown in Table 1.
得られたシート状軟磁性材料の電気抵抗については、電気抵抗測定装置(ハイレスタP MCP HP260、(株)ダイアインスツルメンツ社)を用いて測定した。電気抵抗は1×104Ω以上であることが望まれる。得られた結果を表1に示す。 The electrical resistance of the obtained sheet-like soft magnetic material was measured using an electrical resistance measuring device (Hiresta P MCP HP260, Dia Instruments Co., Ltd.). The electrical resistance is desirably 1 × 10 4 Ω or more. The obtained results are shown in Table 1.
また、得られたシート状軟磁性材料の粉落ち(磁性シートを触ったときに軟磁性粉末が脱落して付着するという現象)の有無を目視観察し、観察結果を表1に示した。粉落ちは観察されないことが望まれる。 In addition, the presence or absence of powder falling of the obtained sheet-like soft magnetic material (a phenomenon in which soft magnetic powder falls off and adheres when the magnetic sheet is touched) was visually observed, and the observation results are shown in Table 1. It is desirable that no powder fall is observed.
また、得られたシート状軟磁性材料の柔軟性については、250mm角のシートを半分に折り曲げる試験を行い、折れた場合を“不良”、折れなかった場合を“良好”と評価した。評価結果を表1に示す。折れないことが望まれる。 Further, regarding the softness of the obtained sheet-like soft magnetic material, a test was performed by bending a 250 mm square sheet in half, and the case where it was folded was evaluated as “bad”, and the case where it was not folded was evaluated as “good”. The evaluation results are shown in Table 1. It is hoped that it will not break.
得られたシート状軟磁性材料の線膨張係数については、熱・応力・歪測定装置(EXSTA6000 TMA/SS、エスエスアイ・ナノテクノロジー社)を用いて測定した。線膨張係数は15〜22ppm/℃であることが望まれる。得られた結果を表1に示した。 About the linear expansion coefficient of the obtained sheet-like soft magnetic material, it measured using the thermal / stress / strain measuring apparatus (EXSTA6000TMA / SS, SSI nanotechnology company). The linear expansion coefficient is desirably 15 to 22 ppm / ° C. The obtained results are shown in Table 1.
得られたシート状軟磁性材料について、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 About the obtained sheet-like soft magnetic material, glossiness, tensile strength, electrical resistance, powder fall, flexibility, and coefficient of linear expansion all showed good results.
実施例2
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)425重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥して乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 2
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 425 parts by weight, glycidyl group-containing acrylic rubber (SG80H-3, manufactured by Nagase ChemteX Corporation) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, A soft magnetic composition composed of 6.7 parts by weight of a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate is applied onto the peeled PET with a coater. And dried at a temperature of less than 80 ° C., followed by drying at 100 ° C. to obtain a curable soft magnetic sheet having a thickness of about 100 μm after drying.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後のシート厚は薄くなる方に変化したが、変化率は2%未満であった。透磁率μ′の値は34以上38未満かつ磁気損失μ″が1.5未満であった。また、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness after the heat test was changed to be thinner, but the rate of change was less than 2%. The value of the magnetic permeability μ ′ was 34 or more and less than 38 and the magnetic loss μ ″ was less than 1.5. Also, the glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient were all good. Results are shown.
実施例3
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)450重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 3
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 450 parts by weight, acrylic rubber having glycidyl group (SG80H-3, manufactured by Nagase ChemteX Corporation) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, A soft magnetic composition composed of 6.7 parts by weight of a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate is applied onto the peeled PET with a coater. And dried at a temperature of less than 80 ° C., followed by drying at 100 ° C., to obtain a curable soft magnetic sheet having a dried sheet thickness of about 100 μm.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後のシート厚は厚くなる方に変化したが、変化率は1%未満であった。透磁率μ′の値は38以上40未満かつ磁気損失μ″が1.5未満であった。光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness after the heat test changed to be thicker, but the rate of change was less than 1%. The value of magnetic permeability μ ′ was 38 or more and less than 40 and the magnetic loss μ ″ was less than 1.5. Good results were obtained for glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient. Indicated.
実施例4
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)475重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 4
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 475 parts by weight, glycidyl group-containing acrylic rubber (SG80H-3, manufactured by Nagase ChemteX Corporation) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, A soft magnetic composition composed of 6.7 parts by weight of a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate is applied onto the peeled PET with a coater. And dried at a temperature of less than 80 ° C., followed by drying at 100 ° C., to obtain a curable soft magnetic sheet having a dried sheet thickness of about 100 μm.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後のシート厚は薄くなる方に変化したが、変化率は1%未満であった。透磁率μ′の値は38以上40未満かつ磁気損失μ″が1.5未満であった。また、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness after the heat test changed to be thinner, but the rate of change was less than 1%. The value of the magnetic permeability μ ′ was 38 or more and less than 40 and the magnetic loss μ ″ was less than 1.5. Also, the glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient were all good. Results are shown.
実施例5
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)510重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)67重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 5
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 510 parts by weight, glycidyl group-containing acrylic rubber (SG80H-3, manufactured by Nagase ChemteX Corporation) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, A soft magnetic composition composed of 67 parts by weight of a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Co., Ltd.), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate was applied onto release PET with a coater. Drying was performed at a temperature of less than 80 ° C., followed by drying at 100 ° C. to obtain a curable soft magnetic sheet having a sheet thickness of about 100 μm after drying.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後にもシート厚は変化しなかった。透磁率μ′の値は40以上かつ磁気損失μ″が1.5未満であった。得られた結果を表1に示す。また、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness did not change even after the heat resistance test. The value of the magnetic permeability μ ′ was 40 or more and the magnetic loss μ ″ was less than 1.5. The results obtained are shown in Table 1. Also, the glossiness, tensile strength, electrical resistance, powder fall, flexibility, The linear expansion coefficient showed good results.
実施例6
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)530重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 6
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 530 parts by weight, glycidyl group-containing acrylic rubber (SG80H-3, manufactured by Nagase ChemteX Corporation) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, A soft magnetic composition composed of 6.7 parts by weight of a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate is applied onto the peeled PET with a coater. And dried at a temperature of less than 80 ° C., followed by drying at 100 ° C., to obtain a curable soft magnetic sheet having a dried sheet thickness of about 100 μm.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化したが、変化率は1%未満であった。透磁率μ′の値は40以上かつ磁気損失μ″が1.5未満であった。また、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness changed to be thicker after the heat test, but the rate of change was less than 1%. The value of the magnetic permeability μ ′ was 40 or more and the magnetic loss μ ″ was less than 1.5. Also, the glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient were all good. Indicated.
実施例7
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)550重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 7
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 550 parts by weight, glycidyl group-containing acrylic rubber (SG80H-3, manufactured by Nagase ChemteX Corp.) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, A soft magnetic composition composed of 6.7 parts by weight of a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate is applied onto the peeled PET with a coater. And dried at a temperature of less than 80 ° C., followed by drying at 100 ° C., to obtain a curable soft magnetic sheet having a dried sheet thickness of about 100 μm.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化したが、変化率は1%未満であった。透磁率μ′の値は40以上かつ磁気損失μ″が1.5未満であった。また、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness changed to be thicker after the heat test, but the rate of change was less than 1%. The value of the magnetic permeability μ ′ was 40 or more and the magnetic loss μ ″ was less than 1.5. Also, the glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient were all good. Indicated.
実施例8
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)575重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 8
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 575 parts by weight, acrylic rubber having a glycidyl group (SG80H-3, manufactured by Nagase ChemteX Corporation) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, A soft magnetic composition composed of 6.7 parts by weight of a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate is applied onto the peeled PET with a coater. And dried at a temperature of less than 80 ° C., followed by drying at 100 ° C., to obtain a curable soft magnetic sheet having a dried sheet thickness of about 100 μm.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化したが、変化率は1%未満であった。透磁率μ′の値は40以上かつ磁気損失μ″が1.5未満であった。また、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness changed to be thicker after the heat test, but the rate of change was less than 1%. The value of the magnetic permeability μ ′ was 40 or more and the magnetic loss μ ″ was less than 1.5. Also, the glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient were all good. Indicated.
実施例9
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)600重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部とエポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物をコーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 9
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 600 parts by weight, acrylic rubber having glycidyl group (SG80H-3, manufactured by Nagase ChemteX Corp.) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, epoxy A soft magnetic composition comprising 6.7 parts by weight of a latent curing agent for resin (HX3748, manufactured by Asahi Kasei Chemicals Co., Ltd.), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate was applied onto the release PET with a coater. Drying was performed at a temperature of less than 80 ° C., followed by drying at 100 ° C. to obtain a curable soft magnetic sheet having a sheet thickness of about 100 μm after drying.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化したが、変化率は2%未満であった。透磁率μ′の値は38以上40未満かつ磁気損失μ″が1.5未満であった。また、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness was changed to be thicker after the heat test, but the rate of change was less than 2%. The value of the magnetic permeability μ ′ was 38 or more and less than 40 and the magnetic loss μ ″ was less than 1.5. Also, the glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient were all good. Results are shown.
実施例10
扁平軟磁性粉末として、表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社ゼムコ製)を使用する以外は、実施例5と同様の操作を繰り返すことにより乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Example 10
As the flat soft magnetic powder, the flat soft magnetic powder Fe-Si-Cr-Ni showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercive force shown in Table 1 A curable soft magnetic sheet having a dried sheet thickness of about 100 μm was obtained by repeating the same operation as in Example 5 except that (made by Zemco Co., Ltd.) was used.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表1に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化したが、変化率は2%未満であった。透磁率μ′の値は40以上かつ磁気損失μ″が1.5未満であった。また、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 1. As a result, the sheet thickness was changed to be thicker after the heat test, but the rate of change was less than 2%. The value of the magnetic permeability μ ′ was 40 or more and the magnetic loss μ ″ was less than 1.5. Also, the glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient were all good. Indicated.
比較例1
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)500重量部と、グリシジル基を有さないアクリルゴム(SG700AS、ナガセケムテックス株式会社製;重量平均分子量35万、Tg4.9℃)75.5重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)21重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.3重量部と、トルエン270重量部と酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Comparative Example 1
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 500 parts by weight, acrylic rubber having no glycidyl group (SG700AS, manufactured by Nagase ChemteX Corporation; weight average molecular weight 350,000, Tg 4.9 ° C.) 75.5 parts by weight, and epoxy resin (Epicoat 1031S, Japan Epoxy Resin) A soft magnetic composition comprising 21 parts by weight of an epoxy resin latent curing agent (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate. , Coated on the peeled PET with a coater, dried at a temperature of less than 80 ° C., subsequently dried at 100 ° C., and a curable soft sheet having a thickness of about 100 μm after drying. To obtain a sexual sheet.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表2に示す。その結果、耐熱試験後のシート厚は厚くなる方に変化し、変化率は2%以上であった。透磁率μ′の値は34未満であった。なお、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性はいずれも良好な結果を示したが、線膨張係数は22ppm/℃を超えていた。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 2. As a result, the sheet thickness after the heat test changed to be thicker, and the rate of change was 2% or more. The value of the magnetic permeability μ ′ was less than 34. The glossiness, tensile strength, electrical resistance, powder fall, and flexibility all showed good results, but the linear expansion coefficient exceeded 22 ppm / ° C.
比較例2
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)500重量部と、ブチラール樹脂(BL−1、積水化学工業株式会社製;重量平均分子量19000,Tg66℃)77.1重量部と、ブロックイソシアネート(コロネート2507、日本ポリウレタン株式会社製)25.7重量部と、MEK(メチルエチルケトン)390重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて115℃で乾燥して乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Comparative Example 2
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 500 parts by weight, butyral resin (BL-1, manufactured by Sekisui Chemical Co., Ltd .; weight average molecular weight 19000, Tg 66 ° C.) 77.1 parts by weight, and blocked isocyanate (Coronate 2507, manufactured by Nippon Polyurethane Co., Ltd.) 25.7 parts by weight And a soft magnetic composition consisting of 390 parts by weight of MEK (methyl ethyl ketone) is coated on the peeled PET with a coater, dried at a temperature of less than 80 ° C., subsequently dried at 115 ° C., and the sheet thickness after drying A curable soft magnetic sheet having a thickness of about 100 μm was obtained.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表2に示す。その結果、耐熱試験後のシート厚は厚くなる方に変化し、変化率は2%以上であった。なお、光沢度、引張り強度、電気抵抗、粉落ちはいずれも良好な結果を示したが、線膨張係数は22ppm/℃を超えており、柔軟性の評価は不良であった。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 2. As a result, the sheet thickness after the heat test changed to be thicker, and the rate of change was 2% or more. In addition, although glossiness, tensile strength, electrical resistance, and powder falling all showed good results, the linear expansion coefficient exceeded 22 ppm / ° C., and the evaluation of flexibility was poor.
比較例3
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)500重量部と、アセタール樹脂(KS−1、積水化学工業株式会社製;重量平均分子量27000、Tg107℃)77.1重量部と、ブロックイソシアネート(コロネート2507、日本ポリウレタン株式会社製)25.7重量部と、MEK390重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて115℃で乾燥して乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Comparative Example 3
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 500 parts by weight, acetal resin (KS-1, manufactured by Sekisui Chemical Co., Ltd .; weight average molecular weight 27000, Tg 107 ° C.) 77.1 parts by weight, and block isocyanate (coronate 2507, manufactured by Nippon Polyurethane Co., Ltd.) 25.7 parts by weight And a soft magnetic composition consisting of 390 parts by weight of MEK is coated on release PET with a coater, dried at a temperature of less than 80 ° C., subsequently dried at 115 ° C., and the sheet thickness after drying is around 100 μm. A curable soft magnetic sheet was obtained.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表2に示す。その結果、耐熱試験後のシート厚は厚くなる方に変化し、変化率は2%以上であった。また、透磁率μ′の値は34未満であった。なお、光沢度、引張り強度、電気抵抗、粉落ちはいずれも良好な結果を示したが、線膨張係数は22ppm/℃を超えており、柔軟性の評価は不良であった。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 2. As a result, the sheet thickness after the heat test changed to be thicker, and the rate of change was 2% or more. The value of the magnetic permeability μ ′ was less than 34. In addition, although glossiness, tensile strength, electrical resistance, and powder falling all showed good results, the linear expansion coefficient exceeded 22 ppm / ° C., and the evaluation of flexibility was poor.
比較例4
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)400重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量と、トルエン270重量と、酢酸エチル120重量とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Comparative Example 4
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 400 parts by weight, acrylic rubber having a glycidyl group (SG80H-3, manufactured by Nagase ChemteX Corporation) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, An epoxy resin latent curing agent (HX3748, manufactured by Asahi Kasei Chemicals Co., Ltd.) 6.7 weight, toluene 270 weight, and ethyl acetate 120 weight were coated on release PET with a coater, and 80 Drying was performed at a temperature below 100 ° C., followed by drying at 100 ° C. to obtain a curable soft magnetic sheet having a thickness of about 100 μm after drying.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表2に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化し、変化率は2%以上であった。また、透磁率μ′の値は34未満であった。なお、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性はいずれも良好な結果を示したが、線膨張係数は22ppm/℃を超えていた。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 2. As a result, the sheet thickness changed to be thicker after the heat test, and the rate of change was 2% or more. The value of the magnetic permeability μ ′ was less than 34. The glossiness, tensile strength, electrical resistance, powder fall, and flexibility all showed good results, but the linear expansion coefficient exceeded 22 ppm / ° C.
比較例5
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)650重量部と、グリシジル基を有するアクリルゴム(SG80H−3、ナガセケムテックス株式会社製)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Comparative Example 5
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 650 parts by weight, glycidyl group-containing acrylic rubber (SG80H-3, manufactured by Nagase ChemteX Corporation) 80.8 parts by weight, epoxy resin (Epicoat 1031S, manufactured by Japan Epoxy Resin Co., Ltd.) 22.5 parts by weight, A soft magnetic composition composed of 6.7 parts by weight of a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate is applied onto the peeled PET with a coater. And dried at a temperature of less than 80 ° C., followed by drying at 100 ° C., to obtain a curable soft magnetic sheet having a dried sheet thickness of about 100 μm.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表2に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化し、変化率は2%以上であった。また、バインダーに対する扁平軟磁性粉末の量の最適範囲を超えた場合、流動性が低下するため配向状態が悪くなり透磁率μ′の値は大きくならなかった。具体的に透磁率μ′の値は38以上40未満かつμ″が1.5未満であった。なお、引張り強度、電気抵抗、粉落ち、柔軟性はいずれも良好な結果を示したが、線膨張係数は15ppm/℃を下回っており、光沢度の評価は不良であった。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 2. As a result, the sheet thickness changed to be thicker after the heat test, and the rate of change was 2% or more. On the other hand, when the amount of the flat soft magnetic powder with respect to the binder exceeded the optimum range, the fluidity was lowered, the orientation state was deteriorated, and the value of the magnetic permeability μ ′ was not increased. Specifically, the value of the magnetic permeability μ ′ was 38 or more and less than 40 and μ ″ was less than 1.5. The tensile strength, electrical resistance, powder fall, and flexibility all showed good results. The linear expansion coefficient was below 15 ppm / ° C., and the glossiness was poorly evaluated.
比較例6
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)500重量部と、グリシジル基を有しないニトリルブタジエンラバー(1072J、日本ゼオン社製;重量平均分子量34万、Tg−24℃)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Comparative Example 6
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 500 parts by weight, nitrile butadiene rubber having no glycidyl group (1072J, manufactured by Nippon Zeon Co., Ltd .; weight average molecular weight 340,000, Tg-24 ° C.) 80.8 parts by weight, epoxy resin (Epicoat 1031S, Japan Epoxy Resin Co., Ltd.) A soft magnetic composition comprising 22.5 parts by weight, a latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight of toluene, and 120 parts by weight of ethyl acetate. Is coated on release PET with a coater, dried at a temperature of less than 80 ° C., then dried at 100 ° C., and a curable soft magnetic sheet having a thickness of about 100 μm after drying. It was obtained over door.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表2に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化し、変化率は2%以上であった。また、バインダーに対する扁平軟磁性粉末の量の最適範囲を超えた場合、流動性が低下するため配向状態が悪くなり透磁率μ′の値は大きくならなかった。具体的に透磁率μ′の値は34未満かつμ″が1.5未満であった。なお、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性はいずれも良好な結果を示したが、線膨張係数は22ppm/℃を超えていた。 Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 2. As a result, the sheet thickness changed to be thicker after the heat test, and the rate of change was 2% or more. On the other hand, when the amount of the flat soft magnetic powder with respect to the binder exceeded the optimum range, the fluidity was lowered, the orientation state was deteriorated, and the value of the magnetic permeability μ ′ was not increased. Specifically, the value of magnetic permeability μ ′ was less than 34 and μ ″ was less than 1.5. Although glossiness, tensile strength, electrical resistance, powder fall and flexibility were all good results. The linear expansion coefficient exceeded 22 ppm / ° C.
比較例7
表1に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平率および保磁力を示す扁平軟磁性粉末Fe−Si−Cr−Ni(株式会社メイト製)650重量部と、グリシジル基を有しないアクリル樹脂(WS−023、ナガセケムテックス株式会社製;重量平均分子量50万、Tg15℃)80.8重量部と、エポキシ樹脂(エピコート1031S、ジャパンエポキシレジン株式会社製)22.5重量部と、エポキシ樹脂用潜在性硬化剤(HX3748、旭化成ケミカルズ株式会社製)6.7重量部と、トルエン270重量部と、酢酸エチル120重量部とからなる軟磁性組成物を、コーターで剥離PET上に塗布し、80℃未満の温度で乾燥し、続いて100℃で乾燥し、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Comparative Example 7
Flat soft magnetic powder Fe—Si—Cr—Ni (made by Mate Co., Ltd.) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercivity shown in Table 1. 650 parts by weight, acrylic resin having no glycidyl group (WS-023, manufactured by Nagase ChemteX Corporation; weight average molecular weight 500,000, Tg 15 ° C.) 80.8 parts by weight, and epoxy resin (Epicoat 1031S, Japan Epoxy Resin Co., Ltd.) Soft magnetic composition comprising 22.5 parts by weight), latent curing agent for epoxy resin (HX3748, manufactured by Asahi Kasei Chemicals Corporation), 270 parts by weight toluene, and 120 parts by weight ethyl acetate The product is coated on the release PET with a coater, dried at a temperature of less than 80 ° C., subsequently dried at 100 ° C., and a curable soft magnetic sheet having a dried sheet thickness of around 100 μm. To obtain a sheet.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表2に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化し、変化率は2%以上であった。また、バインダーに対する扁平軟磁性粉末の量の最適範囲を超えた場合、流動性が低下するため配向状態が悪くなり透磁率μ′の値は大きくならなかった。具体的に透磁率μ′の値は34未満かつμ″が1.5未満であった。なお、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性はいずれも良好な結果を示したが、線膨張係数は22ppm/℃を超えていた。
Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 2. As a result, the sheet thickness changed to be thicker after the heat test, and the rate of change was 2% or more. On the other hand, when the amount of the flat soft magnetic powder with respect to the binder exceeded the optimum range, the fluidity was lowered, the orientation state was deteriorated, and the value of the magnetic permeability μ ′ was not increased. Specifically, the value of magnetic permeability μ ′ was less than 34 and μ ″ was less than 1.5. Although glossiness, tensile strength, electrical resistance, powder fall and flexibility were all good results. The linear expansion coefficient exceeded 22 ppm / ° C.
表1から解るように、実施例1〜9のシート状軟磁性材料は、いずれも耐熱試験後にもシート厚変化率が小さく、磁気特性も良好であった。また、実施例10のシート状軟磁性材料の場合、タップ密度が小さいので、実施例5の場合に比べシート厚変化率が大きいものであった。 As can be seen from Table 1, each of the sheet-like soft magnetic materials of Examples 1 to 9 had a small sheet thickness change rate and good magnetic properties even after the heat resistance test. Further, in the case of the sheet-like soft magnetic material of Example 10, since the tap density was small, the sheet thickness change rate was larger than that in Example 5.
それに対し、表2から解るように、比較例1、7の場合には、グリシジル基を持たないアクリルゴムはエポキシ樹脂との相溶性が悪く、また、ゴム弾性が大きく圧縮性が十分ではないので厚み変化も大きい。比較例2の場合には、ブチラール樹脂を使用しているので、可撓性がなく、硬化物の加工ができず、比較例3の場合には、Tgが高いアセタール樹脂を使用しているので、加工性が悪く厚み変化も大きい。また、比較例4の場合には、バインダーに対して扁平軟磁性粉末の量が少ないので、厚みの収縮が大きくなり、そして比較例5の場合には、扁平軟磁性粉末の配向が悪くなるのでμ′が小さくなり、空隙が多くなることによって厚み変化が大きくなる。また、比較例6の場合には、ニトリルブタジエンラバーを使用しているので、厚みが厚くなる方に変化が大きくなる。 On the other hand, as can be seen from Table 2, in Comparative Examples 1 and 7, the acrylic rubber having no glycidyl group has poor compatibility with the epoxy resin, and the rubber elasticity is large and the compressibility is not sufficient. The thickness change is also large. In the case of Comparative Example 2, since a butyral resin is used, there is no flexibility, and the cured product cannot be processed. In the case of Comparative Example 3, an acetal resin having a high Tg is used. The processability is poor and the thickness change is large. In the case of Comparative Example 4, since the amount of the flat soft magnetic powder is small relative to the binder, the shrinkage of the thickness is increased, and in the case of Comparative Example 5, the orientation of the flat soft magnetic powder is deteriorated. As μ ′ decreases and voids increase, the thickness change increases. Moreover, in the case of the comparative example 6, since the nitrile butadiene rubber is used, a change becomes large as the thickness increases.
実施例12〜18
表3に示した比表面積、タップ密度、10%粒径、50%粒径、90%粒径、扁平度および保磁力を示す扁平軟磁性粉末Fe−Si−Al(メイト社)を使用する以外は、実施例12、14〜18の場合は実施例7の操作を繰り返し、実施例13の場合は実施例8の操作を繰り返すことにより、乾燥後のシート厚が100μm前後の硬化性軟磁性シートを得た。
Examples 12-18
Other than using the flat soft magnetic powder Fe-Si-Al (Mate Corporation) showing the specific surface area, tap density, 10% particle size, 50% particle size, 90% particle size, flatness and coercive force shown in Table 3. In the case of Examples 12 and 14 to 18, the operation of Example 7 is repeated, and in the case of Example 13, the operation of Example 8 is repeated, whereby the curable soft magnetic sheet having a sheet thickness after drying of around 100 μm is obtained. Got.
得られた硬化性軟磁性シートを用い、実施例1と同様にシート状軟磁性材料を得、実施例1と同様に評価した。得られた結果を表3に示す。その結果、耐熱試験後にシート厚は厚くなる方に変化したが、変化率は2%未満であった。なお、光沢度、引張り強度、電気抵抗、粉落ち、柔軟性、線膨張係数はいずれも良好な結果を示した。
Using the obtained curable soft magnetic sheet, a sheet-like soft magnetic material was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The obtained results are shown in Table 3. As a result, the sheet thickness was changed to be thicker after the heat test, but the rate of change was less than 2%. The glossiness, tensile strength, electrical resistance, powder fall, flexibility, and linear expansion coefficient all showed good results.
表3から解るように、軟磁性粉末としてFe−Si−Alを使用した実施例12〜18のシート状軟磁性材料は、いずれも耐熱試験後にもシート厚変化率が小さく、磁気特性も良好であった。 As can be seen from Table 3, each of the sheet-like soft magnetic materials of Examples 12 to 18 using Fe-Si-Al as the soft magnetic powder has a small sheet thickness change rate after the heat resistance test and good magnetic properties. there were.
実施例19
実施例15と同様の操作を繰り返すことにより硬化性軟磁性シートを得た。得られた硬化性軟磁性シートから剥離PETを剥離除去したものを4枚用意し、それらを積層し、その積層物の両面を剥離PETで挟み、更に、その両面に100μm厚の上質紙を緩衝材として配置し、その両側を2枚のステンレス(SUS)板で挟んで真空プレス(北川精機製)で24.9kgf/cm2の圧力で温度を変えて10分間圧縮し、シート状軟磁性材料を得た。得られたシート状軟磁性材料に対し耐熱試験(温度85℃、湿度60Rh%のオーブンに96hr静置)を施したところ、耐熱試験後のシート状軟磁性材料の厚さは厚くなる方に変化した。その変化率を表4に示す。
Example 19
A curable soft magnetic sheet was obtained by repeating the same operation as in Example 15. Prepare four sheets of peeled PET removed from the obtained curable soft magnetic sheet, laminate them, sandwich both sides of the laminate with peeled PET, and buffer 100 μm thick fine paper on both sides A sheet-like soft magnetic material that is placed as a material, sandwiched between two stainless steel (SUS) plates and compressed with a vacuum press (made by Kitagawa Seiki) at a pressure of 24.9 kgf / cm 2 for 10 minutes. Got. When the obtained sheet-shaped soft magnetic material was subjected to a heat resistance test (stands in an oven at a temperature of 85 ° C. and a humidity of 60 Rh% for 96 hours), the thickness of the sheet-shaped soft magnetic material after the heat resistance test changed to be thicker. did. Table 4 shows the rate of change.
表4から、本実施例の条件下では、プレス時の温度は140℃〜180℃が好ましいことが解った。 From Table 4, it was found that the temperature during pressing is preferably 140 ° C. to 180 ° C. under the conditions of this example.
本発明のシート状軟磁性材料は、扁平軟磁性粉末とグリシジル基を有するアクリルゴムとエポキシ樹脂とエポキシ樹脂用硬化剤と溶剤とからなる軟磁性組成物から形成されている。ここで、グリシジル基を有するアクリルゴムは、エポキシ樹脂と反応するので、シート状軟磁性材料を構成する分子の凝集力をいっそう高めることができる。また、バインダーとして使用するアクリルゴムとエポキシ樹脂は、耐熱性と耐湿性にも優れている。従って、本発明のシート状軟磁性材料は、高温高湿環境下でも長期間に亘り、良好な寸法安定性を実現することができる。また、扁平軟磁性粉末がシート状軟磁性材料の面内方向に配列しているので、磁気特性が良好となる。また、本発明のシート状軟磁性材料は、アクリルゴムとエポキシ樹脂とエポキシ樹脂用硬化剤をバインダーとして用いているので、プレス後にシート表面全体に金属光沢とは異なる光沢を有しており、しかも長期にわたって表面光沢を維持できる。従って、このシート状軟磁性材料は、非接触式ICカードやICタグなどのRFIDシステム等における磁束収束体として、あるいは一般の電波吸収体として有用である。即ち、RFID用フレキシブルシールド材、携帯用デジタルカメラ等の電子機器のノイズ電磁波吸収体として有用である。 The sheet-like soft magnetic material of the present invention is formed from a soft magnetic composition comprising flat soft magnetic powder, acrylic rubber having a glycidyl group, an epoxy resin, a curing agent for epoxy resin, and a solvent. Here, since the acrylic rubber having a glycidyl group reacts with the epoxy resin, the cohesive force of molecules constituting the sheet-like soft magnetic material can be further increased. Moreover, the acrylic rubber and epoxy resin used as a binder are excellent also in heat resistance and moisture resistance. Therefore, the sheet-like soft magnetic material of the present invention can realize good dimensional stability over a long period even in a high temperature and high humidity environment. Moreover, since the flat soft magnetic powder is arranged in the in-plane direction of the sheet-like soft magnetic material, the magnetic characteristics are improved. In addition, since the sheet-like soft magnetic material of the present invention uses acrylic rubber, epoxy resin, and epoxy resin curing agent as a binder, the entire sheet surface has a gloss different from the metallic luster after pressing, and Surface gloss can be maintained for a long time. Therefore, this sheet-like soft magnetic material is useful as a magnetic flux converging body in an RFID system such as a non-contact type IC card or IC tag, or as a general electromagnetic wave absorber. That is, it is useful as a noise electromagnetic wave absorber for electronic devices such as RFID flexible shield materials and portable digital cameras.
Claims (15)
該扁平軟磁性粉末が該シート状軟磁性材料の面内方向に配列しており、
該アクリルゴムがグリシジル基を有しており、
アクリルゴムとエポキシ樹脂とエポキシ樹脂用硬化剤との合計量に対する扁平軟磁性粉末の重量比が3.86〜5.45である
ことを特徴とするシート状軟磁性材料。 A sheet-like soft magnetic material formed from a soft magnetic composition formed by mixing at least a flat soft magnetic powder, an acrylic rubber, an epoxy resin, an epoxy resin curing agent, and a solvent,
The flat soft magnetic powder is arranged in an in-plane direction of the sheet-like soft magnetic material;
The acrylic rubber has a glycidyl group;
A sheet-like soft magnetic material, wherein the weight ratio of the flat soft magnetic powder to the total amount of acrylic rubber, epoxy resin and epoxy resin curing agent is 3.86 to 5.45 .
該扁平軟磁性粉末が該シート状軟磁性材料の面内方向に配列しており、The flat soft magnetic powder is arranged in an in-plane direction of the sheet-like soft magnetic material;
該アクリルゴムがグリシジル基を有しており、The acrylic rubber has a glycidyl group;
アクリルゴムとエポキシ樹脂とエポキシ樹脂用硬化剤との合計量に対する扁平軟磁性粉末の重量比が3.86〜5.45であり、The weight ratio of the flat soft magnetic powder to the total amount of the acrylic rubber, the epoxy resin, and the epoxy resin curing agent is 3.86 to 5.45,
入射角60度での光沢度が20%以上50%以下であるThe glossiness at an incident angle of 60 degrees is 20% or more and 50% or less.
ことを特徴とするシート状軟磁性材料。A sheet-like soft magnetic material characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007274123A JP4807523B2 (en) | 2006-10-31 | 2007-10-22 | Sheet-like soft magnetic material and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006295472 | 2006-10-31 | ||
JP2006295472 | 2006-10-31 | ||
JP2007274123A JP4807523B2 (en) | 2006-10-31 | 2007-10-22 | Sheet-like soft magnetic material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008135724A JP2008135724A (en) | 2008-06-12 |
JP4807523B2 true JP4807523B2 (en) | 2011-11-02 |
Family
ID=39560310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007274123A Active JP4807523B2 (en) | 2006-10-31 | 2007-10-22 | Sheet-like soft magnetic material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4807523B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014165363A (en) * | 2013-02-26 | 2014-09-08 | Nitto Denko Corp | Soft magnetic thermosetting adhesive film, soft magnetic film lamination circuit board and position detection device |
WO2014188816A1 (en) * | 2013-05-22 | 2014-11-27 | 日東電工株式会社 | Soft magnetic resin composition and soft magnetic film |
WO2014192427A1 (en) * | 2013-05-27 | 2014-12-04 | 日東電工株式会社 | Soft-magnetic resin composition, soft-magnetic adhesive film, circuit board with soft-magnetic film laminated thereto, and position detection device |
TWI645618B (en) * | 2016-07-11 | 2018-12-21 | 斗山股份公司 | Composite substrate for antenna module and preparation method thereof |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4636113B2 (en) * | 2008-04-23 | 2011-02-23 | Tdk株式会社 | Flat soft magnetic material and method for producing the same |
CN102036565B (en) | 2008-05-23 | 2014-08-20 | 雷恩自动机株式会社 | Cutting method and device of food dough |
JP5469956B2 (en) * | 2008-08-27 | 2014-04-16 | デクセリアルズ株式会社 | Magnetic sheet composition, magnetic sheet, and method for producing magnetic sheet |
KR101541581B1 (en) * | 2012-06-28 | 2015-08-03 | 삼성전기주식회사 | Inductor and manufacturing method of the inductor |
JP6180159B2 (en) * | 2013-04-04 | 2017-08-16 | デクセリアルズ株式会社 | Anisotropic conductive film, connection method, and joined body |
JP6514462B2 (en) * | 2013-10-01 | 2019-05-15 | 日東電工株式会社 | Soft magnetic resin composition and soft magnetic film |
JP7102097B2 (en) | 2016-03-01 | 2022-07-19 | 日東電工株式会社 | Magnetic film and coil module |
WO2017150301A1 (en) * | 2016-03-01 | 2017-09-08 | 日東電工株式会社 | Magnetic film and coil module |
JP6738160B2 (en) * | 2016-03-01 | 2020-08-12 | 山陽特殊製鋼株式会社 | Soft magnetic flat powder and method for producing the same |
KR101831865B1 (en) * | 2016-05-31 | 2018-02-26 | 에스케이씨 주식회사 | Antenna device, preparation method thereof and potable terminal comprising same |
JP6396630B1 (en) * | 2016-12-19 | 2018-09-26 | 山陽特殊製鋼株式会社 | Soft magnetic flat powder |
JP6993161B2 (en) * | 2017-10-10 | 2022-01-13 | 株式会社タムラ製作所 | How to make the core |
JP6738502B2 (en) * | 2020-01-16 | 2020-08-12 | 山陽特殊製鋼株式会社 | Method for producing soft magnetic flat powder |
CN116072369A (en) * | 2021-11-03 | 2023-05-05 | 横店集团东磁股份有限公司 | Magnetic composite material composition, inductance magnetic core and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0722771A (en) * | 1993-06-30 | 1995-01-24 | New Oji Paper Co Ltd | Sheetlike magnetic shielding material and its manufacture |
JP2000101283A (en) * | 1998-09-18 | 2000-04-07 | Sony Corp | Electromagnetic wave absorbing body and manufacture thereof |
JP2000101284A (en) * | 1998-09-24 | 2000-04-07 | Sony Corp | Electromagnetic wave absorbing body and manufacture thereof |
JP2000243615A (en) * | 1998-12-17 | 2000-09-08 | Tokin Corp | Composite magnetic body and manufacture thereof |
JP2003229694A (en) * | 2002-02-05 | 2003-08-15 | Sony Corp | Electromagnetic wave absorbent and its manufacturing method |
JP2004140322A (en) * | 2002-08-20 | 2004-05-13 | Alps Electric Co Ltd | Electric wave absorber and manufacturing method of the same |
JP2006073949A (en) * | 2004-09-06 | 2006-03-16 | Showa Denko Kk | Electromagnetic wave absorber |
JP2006128649A (en) * | 2004-09-30 | 2006-05-18 | Nitta Ind Corp | Electromagnetic compatibility suppressor and method of manufacturing the same |
KR101067731B1 (en) * | 2004-12-03 | 2011-09-28 | 니타 가부시키가이샤 | Electromagnetic interference inhibitor, antenna device and electronic communication apparatus |
JP2006202266A (en) * | 2004-12-20 | 2006-08-03 | Toppan Forms Co Ltd | Contactless data receiver/transmitter |
-
2007
- 2007-10-22 JP JP2007274123A patent/JP4807523B2/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014165363A (en) * | 2013-02-26 | 2014-09-08 | Nitto Denko Corp | Soft magnetic thermosetting adhesive film, soft magnetic film lamination circuit board and position detection device |
WO2014188816A1 (en) * | 2013-05-22 | 2014-11-27 | 日東電工株式会社 | Soft magnetic resin composition and soft magnetic film |
WO2014192427A1 (en) * | 2013-05-27 | 2014-12-04 | 日東電工株式会社 | Soft-magnetic resin composition, soft-magnetic adhesive film, circuit board with soft-magnetic film laminated thereto, and position detection device |
JP2015008263A (en) * | 2013-05-27 | 2015-01-15 | 日東電工株式会社 | Soft magnetic resin composition, soft magnetic adhesive film, soft magnetic film laminate circuit board, and position detector |
CN105247632A (en) * | 2013-05-27 | 2016-01-13 | 日东电工株式会社 | Soft-magnetic resin composition, soft-magnetic adhesive film, circuit board with soft-magnetic film laminated thereto, and position detection device |
CN105247632B (en) * | 2013-05-27 | 2018-06-15 | 日东电工株式会社 | Soft magnetism resin combination, soft magnetism adhering film, soft magnetic film laminated circuit basal board and position detecting device |
TWI645618B (en) * | 2016-07-11 | 2018-12-21 | 斗山股份公司 | Composite substrate for antenna module and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2008135724A (en) | 2008-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4807523B2 (en) | Sheet-like soft magnetic material and method for producing the same | |
US8123972B2 (en) | Sheet-like soft-magnetic material and production method thereof | |
US8864929B2 (en) | Method for manufacturing laminated soft-magnetic sheet | |
JP4773479B2 (en) | Magnetic sheet, method for manufacturing magnetic sheet, antenna, and portable communication device | |
TWI512768B (en) | A soft magnetic material, an electronic device, an antenna module, a mobile communication terminal, a method for manufacturing a soft magnetic material, and a method for manufacturing a laminated soft magnetic sheet | |
TWI608788B (en) | Electromagnetic wave shield material for fpc | |
KR101173732B1 (en) | Magnetic sheet and production method thereof | |
JP4818852B2 (en) | Magnetic sheet manufacturing method and magnetic sheet | |
JP7354249B2 (en) | Electromagnetic steel sheet, manufacturing method thereof, and electromagnetic steel sheet laminate | |
JP4775593B2 (en) | Method for producing laminated soft magnetic sheet | |
JP2018022869A (en) | High-magnetic permeability magnetic sheet | |
JP2009267237A (en) | Manufacturing method of laminated soft magnetic sheet | |
JP2008183779A (en) | Manufacturing method of magnetic sheet and magnetic sheet | |
KR101384250B1 (en) | Magnetic flexible sheet with dual materials and the method for manufacturing the same | |
WO2009125639A1 (en) | Wound magnetic core and process for production thereof | |
CN110853861B (en) | Magnetic separation sheet for wireless charging receiving end and preparation method thereof | |
JP5102704B2 (en) | Magnetic sheet and method for producing magnetic sheet | |
JP5282921B2 (en) | Method for producing laminated soft magnetic sheet | |
JP7404927B2 (en) | magnetic sheet | |
WO2024203029A1 (en) | Electromagnetic wave shielding material, electronic component, and electronic device | |
JP2008004624A (en) | Magnetic material sheet | |
JP2006135137A (en) | Electromagnetic wave absorption sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110720 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4807523 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |