Nothing Special   »   [go: up one dir, main page]

JP4862318B2 - Load measuring device - Google Patents

Load measuring device Download PDF

Info

Publication number
JP4862318B2
JP4862318B2 JP2005238175A JP2005238175A JP4862318B2 JP 4862318 B2 JP4862318 B2 JP 4862318B2 JP 2005238175 A JP2005238175 A JP 2005238175A JP 2005238175 A JP2005238175 A JP 2005238175A JP 4862318 B2 JP4862318 B2 JP 4862318B2
Authority
JP
Japan
Prior art keywords
load
output signal
detected
characteristic
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005238175A
Other languages
Japanese (ja)
Other versions
JP2007051962A (en
Inventor
浩一郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005238175A priority Critical patent/JP4862318B2/en
Publication of JP2007051962A publication Critical patent/JP2007051962A/en
Application granted granted Critical
Publication of JP4862318B2 publication Critical patent/JP4862318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

この発明に係る荷重測定装置は、例えば車両(自動車)の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受ユニットに組み込んで、この車輪に加わる荷重を測定し、車両の安定運行の確保に利用する。   The load measuring device according to the present invention is incorporated in a wheel bearing rolling bearing unit that supports a vehicle (automobile) wheel rotatably with respect to a suspension device, measures the load applied to the wheel, and operates the vehicle stably. Use to secure.

例えば、車両の車輪を懸架装置に対して回転自在に支持する為に、転がり軸受ユニットを使用する。又、車両の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)等の車両の走行状態安定化装置が広く使用されている。これらABSやTCS等の走行状態安定化装置によれば、制動時や加速時に於ける車両の走行状態を安定させる事はできるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。   For example, a rolling bearing unit is used to rotatably support a vehicle wheel with respect to a suspension device. In order to ensure the running stability of the vehicle, a running state stabilizing device for the vehicle such as an antilock brake system (ABS) or a traction control system (TCS) is widely used. According to these running state stabilizing devices such as ABS and TCS, the running state of the vehicle at the time of braking or acceleration can be stabilized, but in order to ensure this stability even under more severe conditions, the vehicle It is necessary to control the brakes and the engine by incorporating more information that affects the running stability of the vehicle.

即ち、上記ABSやTCS等の従来の走行状態安定化装置の場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている為、これらブレーキやエンジンの制御が一瞬とは言え遅れる。言い換えれば、厳しい条件下での性能向上を図るべく、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。   That is, in the case of the conventional running state stabilizing device such as ABS or TCS, since so-called feedback control is performed to detect the slip between the tire and the road surface and control the brake and the engine, the brake and engine Control is delayed for a moment. In other words, in order to improve performance under severe conditions, the so-called feed-forward control prevents slippage between the tire and the road surface, or the so-called brake one-side effect where the braking forces of the left and right wheels are extremely different. Cannot be prevented.

この様な問題に対応すべく、上記フィードフォワード制御等を行なう為には、懸架装置に対して車輪を支持する為の転がり軸受ユニットに、この車輪に加わるラジアル荷重とアキシアル荷重とのうちの一方又は双方を測定する為の荷重測定装置を組み込む事が考えられる。この様な場合に使用可能な荷重測定装置付車輪支持用転がり軸受ユニットとして従来から、特許文献1〜5に記載されたものが知られている。   In order to cope with such a problem, in order to perform the feedforward control or the like, one of a radial load and an axial load applied to the wheel is applied to the rolling bearing unit for supporting the wheel with respect to the suspension device. Or it is possible to incorporate a load measuring device for measuring both. Conventionally, what was described in patent documents 1-5 is known as a wheel bearing rolling bearing unit with a load measuring device which can be used in such a case.

このうちの特許文献1には、ラジアル荷重を測定自在な、荷重測定装置付転がり軸受ユニットが記載されている。この従来構造の第1例の場合には、非接触式の変位センサにより、回転しない外輪と、この外輪の内径側で回転するハブとの、径方向に関する変位を測定する事により、これら外輪とハブとの間に加わるラジアル荷重を求める様にしている。求めたラジアル荷重は、ABSを適正に制御する他、積載状態の不良を運転者に知らせる為に利用する。   Of these, Patent Document 1 describes a rolling bearing unit with a load measuring device capable of measuring a radial load. In the case of the first example of this conventional structure, by measuring the displacement in the radial direction between the outer ring that does not rotate and the hub that rotates on the inner diameter side of the outer ring by a non-contact type displacement sensor, The radial load applied to the hub is calculated. The obtained radial load is used not only to properly control the ABS but also to inform the driver of a bad loading condition.

又、特許文献2には、転がり軸受ユニットに加わるアキシアル荷重を測定する構造が記載されている。この特許文献2に記載された従来構造の第2例の場合、外輪の外周面に設けた固定側フランジの内側面複数個所で、この固定側フランジをナックルに結合する為のボルトを螺合する為のねじ孔を囲む部分に、それぞれ荷重センサを添設している。上記外輪を上記ナックルに支持固定した状態でこれら各荷重センサは、このナックルの外側面と上記固定側フランジの内側面との間で挟持される。この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、車輪と上記ナックルとの間に加わるアキシアル荷重は、上記各荷重センサにより測定される。   Patent document 2 describes a structure for measuring an axial load applied to a rolling bearing unit. In the case of the second example of the conventional structure described in Patent Document 2, bolts for connecting the fixed side flange to the knuckle are screwed at a plurality of positions on the inner side surface of the fixed side flange provided on the outer peripheral surface of the outer ring. Each load sensor is attached to a portion surrounding the screw hole. Each load sensor is clamped between the outer surface of the knuckle and the inner surface of the fixed flange in a state where the outer ring is supported and fixed to the knuckle. In the case of the load measuring device for the rolling bearing unit of the second example having such a conventional structure, the axial load applied between the wheel and the knuckle is measured by the load sensors.

又、特許文献3には、外輪の円周方向4個所位置に支持した変位センサユニットとハブに外嵌固定した断面L字形の被検出リングとにより、上記4個所位置での、上記外輪に対する上記ハブの、ラジアル方向及びアキシアル方向の変位を検出し、各部の検出値に基づいて、このハブに加わる荷重の方向及びその大きさを求める構造が記載されている。   Further, in Patent Document 3, the displacement sensor unit supported at four positions in the circumferential direction of the outer ring and the L-shaped detection ring that is externally fitted and fixed to the hub are used to detect the above-described outer ring at the four positions. A structure is described in which the displacement of the hub in the radial direction and the axial direction is detected, and the direction of the load applied to the hub and the magnitude thereof are determined based on the detection values of the respective parts.

又、特許文献4には、一部の剛性を低くした外輪相当部材に動的歪みを検出する為のストレンゲージを設け、このストレンゲージが検出する転動体の通過周波数から転動体の公転速度を求め、この公転速度から、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。   Further, in Patent Document 4, a strain gauge for detecting dynamic strain is provided in a member corresponding to an outer ring whose rigidity is partially reduced, and the revolution speed of the rolling element is determined from the passing frequency of the rolling element detected by the strain gauge. A method for determining the axial load applied to the rolling bearing from the revolution speed is described.

更に、特許文献5には、互いに逆方向の接触角を付与された転動体の公転速度が荷重の作用方向及び大きさにより変化する事を利用して、静止側軌道輪である外輪と、回転側軌道輪であるハブとの間に作用するラジアル荷重とアキシアル荷重との一方又は双方を求める構造が記載されている。   Further, in Patent Document 5, the revolution speed of the rolling elements provided with contact angles in opposite directions is changed depending on the direction and magnitude of the load, and the outer ring that is a stationary side race ring is rotated. The structure which calculates | requires one or both of the radial load and axial load which act between the hubs which are a side track ring is described.

又、未公開ではあるが、例えば特願2005−147642号には、回転側軌道輪に支持したエンコーダと静止側軌道輪に支持したセンサとにより、これら両軌道輪同士の間の変位を測定し、この変位から、これら両軌道輪同士の間に加わる荷重を求める構造が開示されている。図5〜7は、上記特願2005−147642号に開示された、先発明の第1例を示している。この先発明の第1例の構造は、図5に示す様に、懸架装置に支持された状態で回転しない静止側軌道輪である外輪1の径方向内方に、車輪を支持固定する回転側軌道輪であるハブ2を、複数個の転動体3、3を介して回転自在に支持している。そして、このハブ2の中間部に、永久磁石により円筒状に構成したエンコーダ4を外嵌固定すると共に、上記外輪1の軸方向中間部で複列に配置された上記各転動体3、3の間部分にセンサ5を、その検出部を被検出面である上記エンコーダ4の外周面に近接対向させた状態で設けている。尚、このセンサ5の検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込む事が適切である。   Although not disclosed, for example, in Japanese Patent Application No. 2005-147642, the displacement between these two races is measured by an encoder supported on the rotation side raceway and a sensor supported on the stationary side raceway. The structure which calculates | requires the load added between these both bearing rings from this displacement is disclosed. 5 to 7 show a first example of the prior invention disclosed in Japanese Patent Application No. 2005-147642. As shown in FIG. 5, the structure of the first example of the prior invention is a rotating side track that supports and fixes a wheel radially inward of the outer ring 1 that is a stationary side ring that does not rotate while being supported by a suspension device. A hub 2 that is a ring is rotatably supported via a plurality of rolling elements 3 and 3. Then, an encoder 4 configured in a cylindrical shape by a permanent magnet is externally fitted and fixed to an intermediate portion of the hub 2, and each of the rolling elements 3 and 3 disposed in a double row at an axially intermediate portion of the outer ring 1. The sensor 5 is provided in the intermediate portion in a state where the detection portion is close to and opposed to the outer peripheral surface of the encoder 4 that is the detection surface. In addition, it is appropriate to incorporate a magnetic detection element such as a Hall IC, a Hall element, an MR element, or a GMR element in the detection portion of the sensor 5.

図6に示す様に、上記エンコーダ4の外周面には、N極に着磁した部分(第一特性部)とS極に着磁した部分(第二特性部)とを、円周方向に関して交互に且つ等間隔で配置している。そして、これらN極に着磁された部分とS極に着磁された部分との境界の形状を、上記エンコーダ4の軸方向(上記外周面の幅方向)に対し所定角度だけ傾斜した直線形状とすると共に、円周方向に隣り合う各境界同士で軸方向に対する傾斜方向を互いに逆にしている。これにより、上記N極に着磁された部分の円周方向に関する幅を軸方向片側{図6(B)の下側}程広くし、且つ、上記S極に着磁された部分の円周方向に関する幅を軸方向他側{図6(B)の上側}程広くしている。尚、図示の構造では、上記エンコーダ4として永久磁石製のものを使用している為、上記センサ5側に永久磁石を組み込んではいない。これに対し、エンコーダとして磁性材製のもの(例えば、第一特性部を凸部又は柱部とし、第二特性部を凹部又は透孔としたもの)を使用する場合には、上記センサ5側に永久磁石を組み込む。   As shown in FIG. 6, the outer peripheral surface of the encoder 4 includes a portion magnetized in the N pole (first characteristic portion) and a portion magnetized in the S pole (second characteristic portion) in the circumferential direction. They are arranged alternately and at equal intervals. A linear shape in which the shape of the boundary between the part magnetized in the N pole and the part magnetized in the S pole is inclined by a predetermined angle with respect to the axial direction of the encoder 4 (the width direction of the outer peripheral surface). In addition, the inclination directions with respect to the axial direction are opposite to each other at the boundaries adjacent to each other in the circumferential direction. As a result, the width in the circumferential direction of the portion magnetized in the N pole is made wider toward one axial side {lower side in FIG. 6B), and the circumference of the portion magnetized in the S pole The width with respect to the direction is made wider toward the other side in the axial direction (upper side in FIG. 6B). In the illustrated structure, since the encoder 4 is made of a permanent magnet, no permanent magnet is incorporated on the sensor 5 side. On the other hand, when using an encoder made of a magnetic material (for example, the first characteristic part is a convex part or a column part and the second characteristic part is a concave part or a through hole), the sensor 5 side is used. Incorporate a permanent magnet.

この様に構成する先発明の第1例の場合、上記センサ5の出力信号に関する比は、上記外輪1と上記ハブ2との間にアキシアル荷重が作用する事により変化する。この点に就いて、図7を参照しつつ説明する。先ず、上記外輪1と上記ハブ2との間にアキシアル荷重が作用していない状態で、上記センサ5の検出部は、図7の鎖線α上、即ち、上記エンコーダ4の外周面の軸方向中央部分に対向していると仮定する。この鎖線α上では、N極に着磁された部分の円周方向に関する幅と、S極に着磁された部分の円周方向に関する幅とが互いに等しい為、上記センサ5の出力信号は、図7の(B)に示す様に、基準電圧(例えば0V)を中心として両側に同じだけ振れる。即ち、上記出力信号の電圧がこの基準電圧よりも高くなる周期T と低くなる周期T とは互いに等しく(T =T )なる。又、上記出力信号の電圧の最大値と上記基準電圧との差△V と、同じく最小値と基準電圧との差△V とも、互いに等しく(△V =△V )なる。 In the case of the first example of the prior invention configured as described above, the ratio relating to the output signal of the sensor 5 changes when an axial load acts between the outer ring 1 and the hub 2. This point will be described with reference to FIG. First, in a state where an axial load is not applied between the outer ring 1 and the hub 2, the detection portion of the sensor 5 is on the chain line α in FIG. 7, that is, in the axial center of the outer peripheral surface of the encoder 4. Suppose that they face each other. On this chain line α, the width in the circumferential direction of the part magnetized in the N pole and the width in the circumferential direction of the part magnetized in the S pole are equal to each other. As shown in FIG. 7B, the same voltage is swung on both sides around the reference voltage (for example, 0 V). That is, the period T H when the voltage of the output signal is higher than the reference voltage and the period T L when it is lower are equal to each other (T H = T L ). The difference ΔV H between the maximum value of the output signal voltage and the reference voltage and the difference ΔV L between the minimum value and the reference voltage are also equal to each other (ΔV H = ΔV L ).

これに対し、上記エンコーダ4を固定したハブ2に、図7で下向きのアキシアル荷重が作用し(上記外輪1と上記ハブ2とが軸方向に相対変位し)た場合には、上記センサ5の検出部は、図7の鎖線β上の部分に対向する。この鎖線β上では、N極に着磁された部分の円周方向に関する幅が、S極に着磁された部分の円周方向に関する幅よりも狭い為、上記センサ5の出力信号は、図7の(A)に示す様に、基準電圧(例えば0V)を中心として低位側に大きく振れる。即ち、上記出力信号の電圧がこの基準電圧よりも低くなる周期TL が高くなる周期TH よりも大きく(TH <TL )なる。又、上記出力信号の電圧の最小値と基準電圧との差△VL が、同じく最大値と基準電圧との差△VH よりも大きく(△VL >△VH )なる。 On the other hand, when a downward axial load in FIG. 7 acts on the hub 2 to which the encoder 4 is fixed (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), the sensor 5 The detection unit faces the portion on the chain line β in FIG. On the chain line β, the width in the circumferential direction of the portion magnetized in the N pole is narrower than the width in the circumferential direction of the portion magnetized in the S pole. As shown in (A) of FIG. 7, the reference voltage (for example, 0 V) is largely shifted toward the lower side. That is, the period T L at which the voltage of the output signal is lower than the reference voltage is greater than the period T H at which the voltage T L becomes higher (T H <T L ). Further, the difference ΔV L between the minimum value of the output signal voltage and the reference voltage is also larger than the difference ΔV H between the maximum value and the reference voltage (ΔV L > ΔV H ).

更に、上記エンコーダ4を固定したハブ2に、図7で上向きのアキシアル荷重が作用した場合には、上記センサ5の検出部は、図7の鎖線γ上の部分に対向する。この鎖線γ上では、N極に着磁された部分の円周方向に関する幅が、S極に着磁された部分の円周方向に関する幅よりも広い為、上記センサ5の出力信号は、図7の(C)に示す様に、基準電圧(例えば0V)を中心として高位側に大きく振れる。即ち、上記出力信号の電圧がこの基準電圧よりも高くなる周期TH が低くなる周期TL よりも大きく(TH >TL )なる。又、上記出力信号の電圧の最大値と上記基準電圧との差△VH が、同じく最小値と基準電圧との差△VL よりも大きく(△VH >△VL )なる。 Further, when an upward axial load in FIG. 7 is applied to the hub 2 to which the encoder 4 is fixed, the detection portion of the sensor 5 faces the portion on the chain line γ in FIG. On this chain line γ, the width in the circumferential direction of the portion magnetized in the N pole is wider than the width in the circumferential direction of the portion magnetized in the S pole. As shown in (C) of FIG. 7, the reference voltage (for example, 0V) is largely swung to the higher side. That is, the period T H when the voltage of the output signal becomes higher than the reference voltage is larger than the period T L when it becomes lower (T H > T L ). Further, the difference ΔV H between the maximum value of the output signal voltage and the reference voltage is also larger than the difference ΔV L between the minimum value and the reference voltage (ΔV H > ΔV L ).

従って、上記センサ5の出力信号に関する比を見れば、上記外輪1に対する上記ハブ2の軸方向変位量を求める事ができる。具体的には、この出力信号の電位が基準電圧よりも高くなる周期T と低くなる周期T との比「T /T 」を観察すれば、上記軸方向変位量を求める事ができる。又は、上記出力信号の電圧の最大値と上記基準電圧との差△V と、同じく最小値と基準電圧との差△V との比「△V /△V 」を観察する事によっても、上記軸方向変位量を求められる。更には、上記センサ5の出力信号を、例えば上記基準電圧よりも高位側をHighレベルとし、低位側をLowレベルとする矩形波信号に変換し、この矩形波信号のデューティ比「T /(T +T )」を観察する事によっても、上記軸方向変位量を求められる。これら各比「T /T 」、「△V /△V 」、「T /(T +T )」と上記軸方向変位量との関係は、何れの比に就いても直線的であるから、容易に求められる。そして、求めた関係を、図示しない演算器(マイクロコンピュータ)にインストールするソフトウェア中に組み込んでおく。 Therefore, the axial displacement of the hub 2 relative to the outer ring 1 can be obtained by looking at the ratio of the output signal of the sensor 5. Specifically, by looking at the ratio "T H / T L" in the period T L of the potential of the output signal becomes lower as the higher becomes the period T H than the reference voltage, it finding the axial displacement it can. Or, observe the ratio “ΔV H / ΔV L ” between the difference ΔV H between the maximum value of the voltage of the output signal and the reference voltage and the difference ΔV L between the minimum value and the reference voltage. Can also determine the amount of axial displacement. Furthermore, the output signal of the sensor 5 is converted into a rectangular wave signal in which, for example, the higher side than the reference voltage is set to a high level and the lower side is set to a low level, and the duty ratio “T H / ( The axial displacement amount can also be obtained by observing “T H + T L )”. Each of these ratios "T H / T L", "△ V H / △ V L", the relationship between "T H / (T H + T L) " and the axial displacement is also concerning in any ratio Since it is linear, it is easily obtained. Then, the obtained relationship is incorporated in software installed in a computing unit (microcomputer) (not shown).

更に、上記軸方向変位量と上記アキシアル荷重との関係は、計算により、或は実験により求められる。計算により求める場合には、転がり軸受ユニットの諸元や材質を基に、この転がり軸受ユニットの技術分野で広く知られた理論に基づいて求める。又、実験により求める場合には、上記外輪1とハブ2との間に、それぞれが既知である、異なる大きさのアキシアル荷重を加えつつ、上記外輪1に対する上記ハブ2の軸方向変位量を測定する。何れにしても、これら軸方向変位量とアキシアル荷重との関係を求め、上記ソフトウェア中に組み込んでおく。運転時には、上記演算器が、上記センサ5の出力信号に関する上記何れかの比「TH /TL 」、「△VH /△VL 」、「TH /(TH +TL )」と、上記各関係とに基づいて、上記アキシアル荷重を求める。 Further, the relationship between the axial displacement and the axial load can be obtained by calculation or experiment. When obtaining by calculation, it is obtained based on the theory widely known in the technical field of the rolling bearing unit based on the specifications and materials of the rolling bearing unit. Further, when obtained by experiment, the axial displacement of the hub 2 with respect to the outer ring 1 is measured while applying different known axial loads between the outer ring 1 and the hub 2. To do. In any case, the relationship between the axial displacement amount and the axial load is obtained and incorporated in the software. At the time of operation, the arithmetic unit operates as any one of the ratios “T H / T L ”, “ΔV H / ΔV L ”, “T H / (T H + T L )” regarding the output signal of the sensor 5. The axial load is determined based on the above relationships.

次に、図8〜11は、前記特願2005−147642号に開示された、先発明の第2例を示している。この先発明の第2例の場合には、回転側軌道輪であるハブ2の中間部に、永久磁石により円筒状に構成したエンコーダ4aを外嵌固定すると共に、静止側軌道輪である外輪1の軸方向中間部で複列に配置された各転動体3、3の間部分に1対のセンサ5、5を、それぞれの検出部を被検出面である上記エンコーダ4aの外周面に近接対向させた状態で設けている。   Next, FIGS. 8 to 11 show a second example of the prior invention disclosed in Japanese Patent Application No. 2005-147642. In the case of the second example of the present invention, an encoder 4a configured in a cylindrical shape by a permanent magnet is fitted and fixed to an intermediate portion of the hub 2 which is a rotating side raceway, and the outer ring 1 which is a stationary side raceway is fixed. A pair of sensors 5, 5 are arranged between the rolling elements 3, 3 arranged in a double row at the axially intermediate portion, and the respective detection portions are made to face each other close to the outer peripheral surface of the encoder 4 a as a detection surface. Provided.

図9〜11に示す様に、上記エンコーダ4aの外周面には、N極に着磁した部分(第一特性部)とS極に着磁した部分(第二特性部)とを、円周方向に関して交互に且つ等間隔で配置している。又、この外周面を、上記エンコーダ4aの軸方向(この外周面の幅方向)中央部を境として、軸方向に隣り合う2つの領域に分けると共に、これら各領域同士で、上記N極に着磁された部分と上記S極に着磁された部分との境界の形態を、互いに異ならせている。具体的には、上記各領域でそれぞれ、N極に着磁された部分とS極に着磁された部分との境界の形状を、軸方向に対し絶対値で同じ角度だけ傾斜した直線形状とすると共に、上記各領域同士で、軸方向に対する上記境界の傾斜方向を互いに逆方向としている。従って、上記外周面に配置された、上記N極に着磁された部分と上記S極に着磁された部分とは、それぞれ軸方向中央部が円周方向に関して最も突出した(又は凹んだ)、「く」字形となっている。   As shown in FIGS. 9 to 11, on the outer peripheral surface of the encoder 4a, there are a portion magnetized in the N pole (first characteristic portion) and a portion magnetized in the S pole (second characteristic portion). They are alternately arranged at equal intervals in the direction. Further, the outer peripheral surface is divided into two regions adjacent to each other in the axial direction with the central portion of the encoder 4a in the axial direction (the width direction of the outer peripheral surface) as a boundary, and these regions are attached to the N pole. The form of the boundary between the magnetized portion and the portion magnetized to the S pole is made different from each other. Specifically, in each of the above regions, the shape of the boundary between the portion magnetized at the N pole and the portion magnetized at the S pole is a linear shape inclined by the same angle as an absolute value with respect to the axial direction. In addition, the inclination directions of the boundary with respect to the axial direction are opposite to each other in the regions. Therefore, the axially central portion of the portion magnetized by the N pole and the portion magnetized by the S pole arranged on the outer peripheral surface protrudes most (or is depressed) in the circumferential direction. , "K" character shape.

又、上記各センサ5、5は、検出部に、ホールIC、ホール素子、MR、GMR等の磁気検知素子を組み込んでいる。この様な両センサ5、5の検出部が上記エンコーダ4aの外周面に対向する位置は、このエンコーダ4aの円周方向に関して同じ位置としている。言い換えれば、上記両センサ5、5の検出部は、上記外輪1の中心軸を含む同一の仮想平面上に配置されている。又、この外輪1と上記ハブ2との間にアキシアル荷重が作用しない状態で、上記N極に着磁された部分と上記S極に着磁された部分との軸方向中央部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ5、5の検出部同士の間の丁度中央位置に存在する様に、各部材4a、5、5の設置位置を規制している。   Each of the sensors 5 and 5 incorporates a magnetic detection element such as a Hall IC, a Hall element, MR, or GMR in the detection unit. The positions at which the detection parts of both the sensors 5 and 5 face the outer peripheral surface of the encoder 4a are the same with respect to the circumferential direction of the encoder 4a. In other words, the detection parts of the sensors 5 and 5 are arranged on the same virtual plane including the central axis of the outer ring 1. Further, in a state where an axial load is not applied between the outer ring 1 and the hub 2, a circumferential direction is provided at the axial center portion between the portion magnetized at the N pole and the portion magnetized at the S pole. The positions where the members 4a, 5 and 5 are installed so that the most protruding part (the part where the inclination direction of the boundary changes) exists at the central position between the detection parts of the sensors 5 and 5 above. It is regulated.

上述の様に構成する先発明の第2例の場合、上記外輪1と上記ハブ2との間にアキシアル荷重が作用すると、上記両センサ5、5の出力信号が変化する位相がずれる。即ち、上記外輪1と上記ハブ2との間にアキシアル荷重が作用していない状態では、上記両センサ5、5の検出部は、図11の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ5、5の出力信号の位相は、同図の(C)に示す様に一致する。これに対し、上記エンコーダ4aを固定したハブ2に、図11の(A)で下向きのアキシアル荷重が作用し(上記外輪1と上記ハブ2とが軸方向に相対変位し)た場合には、上記両センサ5、5の検出部は、図11の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ5、5の出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4aを固定したハブ2に、図11の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ5、5の検出部は、図11の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ5、5の出力信号の位相は、同図の(D)に示す様にずれる。   In the case of the second example of the prior invention configured as described above, when an axial load is applied between the outer ring 1 and the hub 2, the phase in which the output signals of the sensors 5, 5 change is shifted. That is, in a state where an axial load is not applied between the outer ring 1 and the hub 2, the detection parts of the sensors 5 and 5 are on the solid lines A and B in FIG. It faces a portion that is shifted by the same amount in the axial direction from the most protruding portion. Accordingly, the phases of the output signals of the sensors 5 and 5 coincide as shown in FIG. On the other hand, when a downward axial load acts on the hub 2 to which the encoder 4a is fixed in FIG. 11A (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), The detection parts of the sensors 5 and 5 are opposed to the broken lines B and B in FIG. 11A, that is, the parts different from each other in the axial direction from the most protruding part. In this state, the phases of the output signals of the sensors 5 and 5 are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4a is fixed as shown in FIG. 11A, the detecting portions of both the sensors 5 and 5 are connected to the chain line hub of FIG. , C, that is, the deviation in the axial direction from the most projecting portion opposes different portions in the opposite direction. In this state, the phases of the output signals of the sensors 5 and 5 are shifted as shown in FIG.

この様に、先発明の第2例の場合には、上記両センサ5、5の出力信号の位相が、上記外輪1と上記ハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ5、5の出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って、上述した先発明の第2例の場合には、上記両センサ5、5の出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪1とハブ2との軸方向の相対変位の向き及び大きさ、延いては、これら外輪1とハブ2との間に作用しているアキシアル荷重の向き及び大きさを求められる。この先発明の第2例の場合も、上述した先発明の第1例の場合と同様、上記軸方向の相対変位量やアキシアル荷重を求める為の演算は、図示しない演算器により行なう。   Thus, in the case of the second example of the prior invention, the phases of the output signals of the sensors 5 and 5 are shifted in a direction corresponding to the direction of the axial load applied between the outer ring 1 and the hub 2. . Further, the degree to which the phase of the output signals of the sensors 5, 5 is shifted by this axial load (displacement amount) increases as the axial load increases. Therefore, in the case of the above-described second example of the present invention, the outer ring 1 and the outer ring 1 are determined based on the presence / absence of the phase shift of the output signals of the sensors 5 and 5 and, if there is a shift, the direction and magnitude. The direction and magnitude of the axial relative displacement with the hub 2 and, in turn, the direction and magnitude of the axial load acting between the outer ring 1 and the hub 2 can be obtained. In the case of the second example of the prior invention, as in the case of the first example of the previous invention, the calculation for obtaining the axial relative displacement amount and the axial load is performed by a calculator (not shown).

次に、図12は、未公開ではあるが、本発明者が先に考えた、先発明の第3例を示している。この先発明の第3例の場合には、回転側軌道輪であるハブ2の中間部に、永久磁石により円筒状に構成したエンコーダ4bを、断面クランク形の支持環12を介して外嵌固定している。このエンコーダ4bの被検出面である外周面には、N極に着磁した部分(第一特性部)とS極に着磁した部分(第二特性部)とを、円周方向に関して交互に且つ等間隔で配置している。又、図12(A)に示す様に、上記N極に着磁された部分とS極に着磁された部分との境界の形状を、上記エンコーダ4bの軸方向(上記外周面の幅方向)に対して同方向に同じ角度だけ傾斜した直線形状としている。この様なエンコーダ4bの外周面には、静止側軌道輪である外輪1の軸方向中間部に支持したセンサ5の検出部6を、径方向に近接対向させている。尚、このセンサ5の検出部6には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込む事が適切である。   Next, FIG. 12 shows a third example of the prior invention, which has been undisclosed, but which the present inventor previously considered. In the case of the third example of the present invention, an encoder 4b configured in a cylindrical shape by a permanent magnet is fitted and fixed to the intermediate portion of the hub 2 which is a rotating side raceway through a support ring 12 having a crank-shaped cross section. ing. On the outer peripheral surface, which is the detected surface of the encoder 4b, portions magnetized in the N pole (first characteristic portion) and portions magnetized in the S pole (second characteristic portion) are alternately arranged in the circumferential direction. And it arranges at equal intervals. As shown in FIG. 12A, the shape of the boundary between the portion magnetized at the N pole and the portion magnetized at the S pole is defined as the axial direction of the encoder 4b (the width direction of the outer peripheral surface). ) In the same direction and inclined by the same angle. On the outer peripheral surface of such an encoder 4b, the detection unit 6 of the sensor 5 supported on the intermediate portion in the axial direction of the outer ring 1 which is a stationary-side raceway is closely opposed in the radial direction. In addition, it is appropriate to incorporate a magnetic detection element such as a Hall IC, a Hall element, an MR element, or a GMR element into the detection unit 6 of the sensor 5.

又、上記外輪1の内端部{軸方向に関して「内」とは、自動車への組み付け状態で車両の幅方向中央側を言い、図12(A)及び図13の右側}内周面と上記ハブ2の内端部外周面との間を塞ぐ組み合わせシールリング7を構成する、上記ハブ2の内端部に外嵌固定したスリンガ8の内側面に、円輪状の第二エンコーダ9を、上記ハブ2と同心に添着固定している。この第二エンコーダ9の被検出面である内側面には、N極に着磁した部分とS極に着磁した部分とを、円周方向に関して交互に且つ等間隔で配置している。又、図12(B)に示す様に、上記N極に着磁された部分とS極に着磁された部分との境界を、放射方向の直線形状としている。上記エンコーダ4bの外周面に存在するS極及びN極の数と、上記第二エンコーダ9の内側面に存在するS極及びN極の数とは、互いに等しい。この様な第二エンコーダ9の内側面には、懸架装置を構成するナックル(図示せず)等の静止部材の一部に支持した第二センサ10の検出部11を、軸方向に近接対向させている。尚、この第二センサ10の検出部11にも、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込む事が適切である。   Further, the inner end portion of the outer ring 1 {"inner with respect to the axial direction" means the center side in the width direction of the vehicle when assembled to an automobile, and the inner peripheral surface of the right side in FIG. 12 (A) and FIG. An annular second encoder 9 is formed on the inner surface of the slinger 8 that is externally fitted and fixed to the inner end portion of the hub 2 that constitutes the combined seal ring 7 that closes the outer peripheral surface of the inner end portion of the hub 2. It is attached and fixed concentrically with the hub 2. On the inner side surface, which is the detected surface of the second encoder 9, portions magnetized in the N pole and portions magnetized in the S pole are arranged alternately and at equal intervals in the circumferential direction. Further, as shown in FIG. 12B, the boundary between the portion magnetized at the N pole and the portion magnetized at the S pole is a linear shape in the radial direction. The number of S poles and N poles existing on the outer peripheral surface of the encoder 4b is equal to the number of S poles and N poles existing on the inner side surface of the second encoder 9. On the inner side surface of the second encoder 9, the detection unit 11 of the second sensor 10 supported by a part of a stationary member such as a knuckle (not shown) constituting the suspension device is made to face and oppose in the axial direction. ing. In addition, it is appropriate to incorporate a magnetic detection element such as a Hall IC, a Hall element, an MR element, or a GMR element into the detection unit 11 of the second sensor 10.

又、この先発明の第3例の場合には、上記外輪1と上記ハブ2との間にアキシアル荷重が作用せず、これら外輪1とハブ2とが軸方向に相対変位していない、中立状態で、上記両センサ4b、9の検出信号が同時に(或いは所定の時間差で)変化する様にしている。この為に、上記中立状態で、上記第二センサ10の検出部11が上記第二エンコーダ9の内側面に存在するS極とN極との境界に対向するのと同時に、上記センサ5の検出部6が上記エンコーダ4bの外周面に存在するS極とN極との境界に対向する様に、各部材10、9、5、4bの設置位置を規制している。   In the case of the third example of the present invention, an axial load does not act between the outer ring 1 and the hub 2, and the outer ring 1 and the hub 2 are not displaced relative to each other in the axial direction. Thus, the detection signals of the sensors 4b and 9 are changed simultaneously (or with a predetermined time difference). For this reason, in the neutral state, the detection unit 11 of the second sensor 10 faces the boundary between the S pole and the N pole existing on the inner surface of the second encoder 9 and at the same time, the detection of the sensor 5 The installation positions of the members 10, 9, 5, 4b are restricted so that the portion 6 faces the boundary between the S pole and the N pole existing on the outer peripheral surface of the encoder 4b.

上述の様に構成する先発明の第3例の場合、上記外輪1と上記ハブ2との間にアキシアル荷重が作用する(これら外輪1とハブ2とが軸方向に相対変位する)と、上記両センサ5、10の出力信号の位相がずれる。即ち、上記第二エンコーダ9の内側面に対向している上記第二センサ10の検出信号の位相は、上記相対変位の有無に関係なく、一定である(進んだり遅れたりする事はない)。これに対し、上記エンコーダ4bの外周面に対向している上記センサ5の検出信号の位相は、上記相対変位に伴って、進んだり遅れたりする。従って、この様に進んだり遅れたりする分だけ、上記両センサ5、10の出力信号の位相がずれる。   In the third example of the prior invention configured as described above, when an axial load acts between the outer ring 1 and the hub 2 (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), The phases of the output signals of both sensors 5, 10 are shifted. That is, the phase of the detection signal of the second sensor 10 facing the inner surface of the second encoder 9 is constant (no advance or delay) regardless of the presence or absence of the relative displacement. On the other hand, the phase of the detection signal of the sensor 5 facing the outer peripheral surface of the encoder 4b is advanced or delayed with the relative displacement. Therefore, the phases of the output signals of the sensors 5 and 10 are shifted by the amount of advance or delay.

この様に、先発明の第3例の場合には、上記両センサ5、10の出力信号の位相が、上記外輪1と上記ハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ5、10の出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って、上述した先発明の第3例の場合には、上記両センサ5、10の出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪1とハブ2との軸方向の相対変位の向き及び大きさ、延いては、これら外輪1とハブ2との間に作用しているアキシアル荷重の向き及び大きさを求められる。この先発明の第3例の場合も、前述した先発明の第1例の場合と同様、上記軸方向の相対変位量やアキシアル荷重を求める為の演算は、図示しない演算器により行なう。   Thus, in the case of the third example of the present invention, the phases of the output signals of the sensors 5, 10 are shifted in a direction corresponding to the direction of the axial load applied between the outer ring 1 and the hub 2. . Further, the degree to which the phase of the output signals of the sensors 5 and 10 is displaced by this axial load (the amount of displacement) increases as the axial load increases. Therefore, in the case of the above-described third example of the present invention, the outer ring 1 and the outer ring 1 are determined based on the presence / absence of a phase shift between the output signals of the sensors 5 and 10 and, if there is a shift, the direction and magnitude thereof. The direction and magnitude of the axial relative displacement with the hub 2 and, in turn, the direction and magnitude of the axial load acting between the outer ring 1 and the hub 2 can be obtained. In the case of the third example of the prior invention, as in the case of the first example of the previous invention described above, the calculation for obtaining the axial relative displacement amount and the axial load is performed by a calculator (not shown).

次に、図13は、やはり未公開ではあるが、本発明者が先に考えた、先発明の第4例を示している。この先発明の第4例の場合には、回転側軌道輪であるハブ2の内端部に支持環13を、このハブ2と同心に外嵌固定している。これと共に、この支持環13を構成する大径円筒部14の外周面に、上述した先発明の第3例で使用したものと同様の構成を有する円筒状のエンコーダ4bを添着固定している。又、このエンコーダ4bの被検出面である外周面の上下両端部に、1対のセンサ5a、5bの検出部を近接対向させている。即ち、静止側軌道輪である外輪1の内端開口部に被着したカバー15の内周面の上下両端部に上記両センサ5a、5bを支持固定すると共に、これら両センサ5a、5bの検出部を、上記エンコーダ4bの外周面の上下両端部に近接対向させている。尚、これら両センサ5a、5bの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込む事が適切である。   Next, FIG. 13 shows a fourth example of the prior invention, which is still unpublished, and which the present inventor considered earlier. In the case of the fourth example of the prior invention, the support ring 13 is fitted and fixed concentrically with the hub 2 at the inner end of the hub 2 which is the rotating raceway. At the same time, a cylindrical encoder 4b having the same configuration as that used in the above-described third example of the invention is attached and fixed to the outer peripheral surface of the large-diameter cylindrical portion 14 constituting the support ring 13. Further, the detection portions of the pair of sensors 5a and 5b are made to face each other close to the upper and lower end portions of the outer peripheral surface which is the detection surface of the encoder 4b. That is, both the sensors 5a and 5b are supported and fixed at both upper and lower ends of the inner peripheral surface of the cover 15 attached to the inner end opening of the outer ring 1 which is a stationary side race, and the detection of these sensors 5a and 5b is performed. The portion is made to face and oppose the upper and lower end portions of the outer peripheral surface of the encoder 4b. In addition, it is appropriate to incorporate a magnetic detection element such as a Hall IC, a Hall element, an MR element, or a GMR element in the detection portions of both the sensors 5a and 5b.

自動車の車輪支持用転がり軸受ユニットの場合、上記外輪1と上記ハブ2との間に加わるアキシアル荷重は、このハブ2に結合固定した車輪(タイヤ)の外周面と路面との接地面から入力される。この接地面は、上記外輪1及び上記ハブ2の回転中心よりも径方向外方に存在する為、上記アキシアル荷重はこれら外輪1とハブ2との間に、純アキシアル荷重としてではなく、これら外輪1及びハブ2の中心軸と上記接地面の中心とを含む(鉛直方向の)仮想平面内での、モーメントを伴って加わる。そして、このモーメントの大きさは、上記接地面から入力されるアキシアル荷重の大きさに比例する。そこで、このモーメントを求めれば、このアキシアル荷重を求められる事になる。一方、上記ハブ2にモーメントが加わると、上記エンコーダ4bの上端部が、軸方向に関して何れかの方向に、同じく下端部がこれと逆方向に、それぞれ変位する。この結果、上記エンコーダ4bの外周面の上下両端部にそれぞれの検出部を近接対向させた、上記両センサ5a、5bの検出信号の位相が、それぞれ中立位置に対して、逆方向にずれる。そこで、これら両センサ5a、5bの検出信号の位相のずれの向き及び大きさに基づいて、上記アキシアル荷重の向き及び大きさを求められる。この先発明の第4例の場合も、前述した先発明の第1例の場合と同様、上記モーメントやアキシアル荷重を求める為の演算は、図示しない演算器により行なう。   In the case of a rolling bearing unit for supporting a wheel of an automobile, the axial load applied between the outer ring 1 and the hub 2 is input from the ground contact surface between the outer peripheral surface of the wheel (tire) coupled to the hub 2 and the road surface. The Since this ground contact surface exists radially outward from the rotation center of the outer ring 1 and the hub 2, the axial load is not between the outer ring 1 and the hub 2 but as a pure axial load. 1 and the center axis of the hub 2 and the center of the grounding surface are applied with a moment in a virtual plane (in the vertical direction). The magnitude of this moment is proportional to the magnitude of the axial load input from the ground plane. Therefore, if this moment is obtained, this axial load can be obtained. On the other hand, when a moment is applied to the hub 2, the upper end of the encoder 4b is displaced in any direction with respect to the axial direction, and the lower end is similarly displaced in the opposite direction. As a result, the phases of the detection signals of the two sensors 5a and 5b in which the respective detection units are brought close to and opposed to the upper and lower ends of the outer peripheral surface of the encoder 4b are shifted in the opposite directions with respect to the neutral positions. Therefore, the direction and magnitude of the axial load can be obtained based on the direction and magnitude of the phase shift of the detection signals of both the sensors 5a and 5b. In the case of the fourth example of the prior invention, as in the case of the first example of the prior invention, the calculation for obtaining the moment and the axial load is performed by a calculator (not shown).

上述した様に、先発明の第1〜4例の場合には、センサ5、5a、5b、10の出力信号に基づいて変位量や荷重を求められる為、荷重測定装置のコスト低減並びに耐久性確保を十分に図れる。ところが、上述した様な各先発明には、上記変位量や荷重を求める際に行なう演算処理に関して、次の様な改良すべき点がある。この点に就いて、図14〜15を参照しつつ説明する。上述した各先発明が対象とした転がり軸受ユニットの場合、外輪1とハブ2との間に作用する荷重若しくは力(アキシアル荷重、ラジアル荷重、モーメント、以下、単に荷重とする)と、これら外輪1とハブ2との相対変位量(軸方向変位量、径方向変位量、傾き)との間には、図14(A)に示す様な関係、即ち、上記荷重の絶対値が大きくなる程この荷重に対する上記相対変位量の変化率が小さくなる関係{非線形(曲線)関係}が成立するのが一般的である。この様な非線形関係が成立する理由は、上記荷重の絶対値と共に上記相対変位量の絶対値が増大する程、上記転がり軸受ユニットの剛性が高くなる為である。一方、上述した各先発明の場合、上記相対変位量と、上記各センサ5、5a、5bの出力信号に関する変化情報(例えば、デューティ比、位相差)との間には、図14(B)に示す様な関係{線形(直線)関係}が成立する。この様な直線関係が成立する理由は、上述した各先発明の場合、図15{(A)は先発明の第1例、(B)は同第2例、(C)は同第3〜4例}に示す様に、エンコーダ4、4a、4bの被検出面に存在するN極に着磁された部分とS極に着磁された部分との境界を、それぞれ全体的に{同図(A)(C)}又は各領域毎に{同図(B)}、上記被検出面の幅方向に対して傾斜した直線形状としている為である。   As described above, in the case of the first to fourth examples of the present invention, since the displacement amount and the load are obtained based on the output signals of the sensors 5, 5a, 5b, and 10, the cost measurement and durability of the load measuring device are reduced. Secure enough. However, each of the prior inventions as described above has the following points to be improved regarding the arithmetic processing performed when the displacement amount and the load are obtained. This point will be described with reference to FIGS. In the case of the rolling bearing unit targeted by each of the above-described prior inventions, a load or force acting between the outer ring 1 and the hub 2 (axial load, radial load, moment, hereinafter simply referred to as load), and these outer rings 1 And the hub 2 have a relative displacement (axial displacement, radial displacement, inclination) as shown in FIG. 14A, that is, as the absolute value of the load increases. In general, a relationship {nonlinear (curve) relationship} in which the rate of change of the relative displacement with respect to the load is small is established. The reason why such a non-linear relationship is established is that as the absolute value of the relative displacement increases with the absolute value of the load, the rigidity of the rolling bearing unit increases. On the other hand, in the case of each of the above-described prior inventions, there is a difference between the relative displacement amount and change information (for example, duty ratio, phase difference) regarding the output signals of the sensors 5, 5a, 5b as shown in FIG. The following relationship {linear (straight line) relationship} is established. In the case of each of the above-described prior inventions, the reason why such a linear relationship is established is that FIG. 15 {(A) is the first example of the prior invention, (B) is the second example, and (C) is the third to third. As shown in FIG. 4}, the boundary between the part magnetized in the N pole and the part magnetized in the S pole existing on the detected surfaces of the encoders 4, 4a and 4b is { This is because (A), (C)} or each region {FIG. (B)} has a linear shape inclined with respect to the width direction of the detected surface.

従って、上述した各先発明の場合、上記変化情報と上記荷重との間には、図14(C)に示す様な関係、即ち、上記変化情報の絶対値が大きくなる程この変化情報に対する上記荷重の変化率が大きくなる関係(非線形関係)が成立する。この結果、上述した各先発明の場合、上記変化情報から上記荷重を求める際には、これら変化情報と荷重との関係を示すマップを利用して、上記演算器によりマップ換算を行なう必要がある。ところが、この様なマップ換算を行なう場合には、例えば単純な四則演算を行なう場合に比べて、計算量が多くなる。従って、その分だけ上記荷重を求めるのに要する時間が長くなる。ところが、この様に荷重を求めるのに要する時間が長くなる事は、車両の走行制御の信頼性を向上させる観点より、好ましくない。又、上述した各先発明の場合には、上記演算器によりマップ換算を行なうべく、この演算器のメモリーに上記マップを記憶させておく必要がある。ところが、この様にメモリーにマップを記憶させると、その分だけ上記演算器のコストが高くなる為、好ましくない。   Therefore, in each of the above-described prior inventions, the relationship as shown in FIG. 14C between the change information and the load, that is, as the absolute value of the change information increases, the change information with respect to the change information becomes larger. A relationship (nonlinear relationship) in which the rate of change in load increases is established. As a result, in the case of each of the above-described prior inventions, when obtaining the load from the change information, it is necessary to perform map conversion by the arithmetic unit using a map indicating the relationship between the change information and the load. . However, when such map conversion is performed, the amount of calculation increases compared to, for example, the case where simple four arithmetic operations are performed. Accordingly, the time required to obtain the load is correspondingly increased. However, such a long time required to obtain the load is not preferable from the viewpoint of improving the reliability of the vehicle travel control. In the case of each of the above-described prior inventions, it is necessary to store the map in the memory of the arithmetic unit so that the map can be converted by the arithmetic unit. However, storing the map in the memory in this way is not preferable because the cost of the arithmetic unit increases accordingly.

これらの問題を解決する為の対応策として、例えば測定すべき荷重範囲の全体で上記荷重と上記相対変位量との間に直線関係が成立する様に、転がり軸受ユニットの構造を工夫する事が考えられる。ところが、この様な対応策を採用すると、当該転がり軸受ユニットの軸受性能が犠牲となる為、好ましくない。又、別の対応策として、マップを用いる代わりに、上記荷重と上記相対変位量との関係を多項式関数で近似し、この多項式関数の係数から上記荷重を求める事が考えられる。ところが、この様な対応策を採用する場合には、上記荷重と上記相対変位量との関係を単純な多項式関数で近似しきれない場合が多く、演算結果に大きな近似誤差が生じる可能性がある。又、この近似誤差を極力小さくすべく、複雑な多項式関数を用いると、上記マップ換算を行なう場合と同様、計算量が増加し、上記荷重を求めるのに要する時間が長くなると言った不都合を生じる。   As a countermeasure for solving these problems, for example, the structure of the rolling bearing unit may be devised so that a linear relationship is established between the load and the relative displacement amount over the entire load range to be measured. Conceivable. However, adopting such a countermeasure is not preferable because the bearing performance of the rolling bearing unit is sacrificed. As another countermeasure, it is conceivable to approximate the relationship between the load and the relative displacement amount by a polynomial function instead of using a map, and obtain the load from the coefficient of the polynomial function. However, when such a countermeasure is adopted, there are many cases where the relationship between the load and the relative displacement cannot be approximated by a simple polynomial function, and a large approximation error may occur in the calculation result. . In addition, if a complex polynomial function is used to minimize this approximation error, the amount of calculation increases as in the case of the above map conversion, resulting in a disadvantage that the time required for obtaining the load becomes longer. .

特開2001−21577号公報JP 2001-21577 A 特開平3−209016号公報Japanese Patent Laid-Open No. 3-209016 特開2004−3918号公報Japanese Patent Laid-Open No. 2004-3918 特公昭62−3365号公報Japanese Patent Publication No.62-3365 特開2005−31063号公報JP 2005-31063 A

本発明の荷重測定装置は、上述の様な事情に鑑み、荷重と相対変位量との関係が非線形になる回転支持装置を対象とする場合でも、マップを用いる事なく、センサの出力信号に関する変化情報から荷重を求める演算を容易に行なえる構造を実現すべく発明したものである。   In view of the circumstances as described above, the load measuring device of the present invention is a change related to the output signal of the sensor without using a map, even in the case of a rotation support device in which the relationship between the load and the relative displacement amount is nonlinear. The present invention was invented to realize a structure capable of easily calculating a load from information.

本発明の荷重測定装置は、エンコーダと、1個のセンサ又は複数のセンサと、演算器とを備える。
このうちのエンコーダは、回転部材の一部に支持されて、この回転部材と共に回転する。そして、この回転部材の回転中心と同心で、この回転部材の回転方向に対する直角方向をその幅方向とする、被検出面を備える。そして、この被検出面に互いに異なる特性を有する第一特性部と第二特性部とを、円周方向に関して交互に配置すると共に、これら第一特性部と第二特性部との境界の円周方向に関するピッチ若しくは位相を、上記被検出面の幅方向に亙り連続的に変化させている。
又、上記1個のセンサ又は複数のセンサは、その検出部を上記エンコーダの被検出面に対向させた状態で、静止部材に支持されている。そして、この静止部材と上記回転部材との間に荷重が作用する事により、これら静止部材と回転部材との相対位置が変化する事に伴い、上記被検出面に対する上記検出部の対向位置が、この被検出面の幅方向に変化し、且つ、この被検出面のうち上記検出部を対向させた部分の円周方向に関する特性変化のパターンに対応して、その出力信号に関する比(上記1個のセンサの場合)又は出力信号同士の間の位相差(上記複数のセンサの場合)を変化させる。
尚、このうちの出力信号に関する比とは、この出力信号の電位が基準電圧よりも高くなる周期と低くなる周期との比と、この出力信号の電圧の最大値と基準電圧との差と同じく最小値と基準電圧との差との比と、この出力信号のうちで基準電圧よりも高位側をHighレベルとし同じく低位側をLowレベルとした矩形波信号のデューティ比とのうちの何れかである。
又、上記演算器は、上記センサの出力信号に基づいて、上記荷重を求める。
特に、本発明の荷重測定装置に於いては、上記荷重と上記センサの出力信号に関する比又は出力信号同士の間の位相差とが、互いに一次関数の関係(請求項1)又は二次若しくは三次の多項式関数の関係(請求項3)で変化する様に、上記第一特性部と上記第二特性部との境界の形状を規制している。
The load measuring device of the present invention includes an encoder, one sensor or a plurality of sensors, and a calculator.
Of these, the encoder is supported by a part of the rotating member and rotates together with the rotating member. And the to-be-detected surface which makes the direction perpendicular to the rotation direction of this rotation member the width direction is concentric with the rotation center of this rotation member is provided. Then, the first characteristic portion and the second characteristic portion having different characteristics on the detected surface are alternately arranged in the circumferential direction, and the circumference of the boundary between the first characteristic portion and the second characteristic portion is arranged. The pitch or phase related to the direction is continuously changed over the width direction of the detected surface.
The one sensor or the plurality of sensors are supported by a stationary member in a state where the detection unit faces the detection surface of the encoder. And, as the relative position between the stationary member and the rotating member changes due to the load acting between the stationary member and the rotating member, the opposing position of the detection unit with respect to the detected surface becomes The ratio of the output signal corresponding to the pattern of characteristic change in the circumferential direction of the portion of the detected surface that faces the detecting portion of the detected surface is changed (the one above) Or the phase difference between the output signals (in the case of the plurality of sensors) is changed.
The ratio regarding the output signal is the same as the ratio between the period when the potential of the output signal is higher than the reference voltage and the period when the potential of the output signal is lower, and the difference between the maximum value of the voltage of the output signal and the reference voltage. Any of the ratio of the difference between the minimum value and the reference voltage and the duty ratio of the rectangular wave signal in which the higher side of the output voltage is higher than the reference voltage and the lower side is also low. is there.
The computing unit obtains the load based on the output signal of the sensor.
In particular, in the load measuring apparatus of the present invention, the ratio of the load and the output signal of the sensor or the phase difference between the output signals is a linear function (Claim 1) or quadratic or cubic. The shape of the boundary between the first characteristic part and the second characteristic part is regulated so as to change according to the relation of the polynomial function (Claim 3).

上述の様に、本発明の荷重測定装置の場合には、対象となる回転支持装置の荷重の大きさと変位量との関係に関する特性に拘わらず、荷重とセンサの出力信号に関する比又は出力信号同士の間の位相差とが、互いに一次関数の関係又は二次若しくは三次の多項式関数の関係で変化する。この為、上記センサの出力信号に関する変化情報(例えば、デューティ比、複数のセンサの出力信号の位相差)も、上記荷重に対し、一次関数の関係又は二次若しくは三次の多項式関数の関係で変化する。従って、マップを用いる事なく、センサの出力信号に関する変化情報から荷重を求める演算を、演算器により容易に行なえる。この結果、この演算器のコストを低減できる。これと共に、荷重を求めるのに要する時間を短くできる為、車両の走行制御の信頼性を向上させる事ができる。 As described above, in the case of the load measuring device according to the present invention, the ratio of the load and the output signal of the sensor or the output signals between the output signals regardless of the characteristics related to the relationship between the load magnitude and the displacement amount of the target rotation support device The phase difference between the two changes in a linear function relationship or a quadratic or cubic polynomial function . For this reason, change information regarding the output signal of the sensor (for example, duty ratio, phase difference of output signals of a plurality of sensors) also changes with a relationship of a linear function or a quadratic or cubic polynomial function with respect to the load. To do. Therefore, the calculation for obtaining the load from the change information regarding the output signal of the sensor can be easily performed by the calculator without using the map. As a result, the cost of this calculator can be reduced. At the same time, since the time required to obtain the load can be shortened, the reliability of the vehicle travel control can be improved.

請求項1に記載した発明を実施する場合に、好ましくは、請求項2に記載した様に、第一特性部と第二特性部との境界を、回転部材と静止部材との相対位置と荷重との関係を示す特性曲線又はこの特性曲線に鏡面対称な曲線と同形状(相似形状を含む事は当然である)とする。   When the invention described in claim 1 is carried out, preferably, as described in claim 2, the boundary between the first characteristic portion and the second characteristic portion is defined by the relative position between the rotating member and the stationary member and the load. Or a characteristic curve showing a relationship with the characteristic curve or a mirror-symmetrical curve with this characteristic curve (it is natural to include a similar shape).

又、請求項1〜3に記載した発明を実施する場合に、例えば、請求項4に記載した様に、円周方向に関する第一特性部の幅が被検出面の幅方向片側程広くし、且つ、円周方向に関する第二特性部の幅が上記被検出面の幅方向他側程広くした構造を採用する。
或いは、請求項5に記載した様に、被検出面を幅方向に関する複数の領域に分けると共に、これら各領域毎に第一特性部と第二特性部との境界の形状を互いに異ならせ、且つ、このうちの少なくとも1つの領域の境界の形状を、荷重と複数のセンサの出力信号同士の間の位相差とが互いに一次関数又は二次若しくは三次の多項式関数の関係で変化する様に規制する。これと共に、上記各領域にそれぞれの検出部を対向させた複数のセンサの出力信号の位相差に基づいて、演算器により荷重の大きさを求める構造を採用する。
或いは、請求項6に記載した様に、円周方向に関する第一、第二両特性部の幅を、それぞれ被検出面の幅方向に関して一定とする。これと共に、この被検出面の円周方向複数個所にそれぞれの検出部を対向させた複数のセンサの出力信号の位相差に基づいて、演算器により荷重の大きさを求める構造を採用する。
或いは、請求項7に記載した様に、円周方向に関する第一、第二両特性部の幅を、それぞれ被検出面の幅方向に関して一定とする。これと共に、この被検出面にその検出部を対向させたセンサの出力信号と、他のエンコーダの被検出面にその検出部を対向させた他のセンサの出力信号との位相差に基づいて、演算器により荷重の大きさを求める構造を採用する。
Further, when the invention described in claims 1 to 3 is carried out, for example, as described in claim 4, the width of the first characteristic portion in the circumferential direction is increased toward one side in the width direction of the detected surface, In addition, a structure is adopted in which the width of the second characteristic portion in the circumferential direction is increased toward the other side in the width direction of the detected surface.
Alternatively, as described in claim 5, the surface to be detected is divided into a plurality of regions in the width direction, and the shape of the boundary between the first characteristic portion and the second characteristic portion is made different for each region, and The shape of the boundary of at least one of these regions is regulated so that the load and the phase difference between the output signals of the plurality of sensors change in relation to a linear function or a quadratic or cubic polynomial function. . At the same time, a structure is employed in which the magnitude of the load is obtained by an arithmetic unit based on the phase difference between the output signals of a plurality of sensors having the respective detection units opposed to the respective regions.
Alternatively, as described in claim 6, the widths of the first and second characteristic portions in the circumferential direction are set constant in the width direction of the detected surface. Along with this, a structure is employed in which the magnitude of the load is obtained by an arithmetic unit based on the phase difference of the output signals of a plurality of sensors having their respective detection portions opposed to a plurality of locations in the circumferential direction of the detected surface.
Alternatively, as described in claim 7, the widths of both the first and second characteristic portions in the circumferential direction are set constant in the width direction of the detected surface. At the same time, based on the phase difference between the output signal of the sensor whose detection unit faces the detection surface and the output signal of another sensor whose detection unit faces the detection surface of another encoder, A structure is used in which the magnitude of the load is determined by an arithmetic unit.

又、本発明を実施する場合に、好ましくは、請求項8に記載した様に、回転部材を、転がり軸受ユニットを構成して使用時に回転する回転側軌道輪又はこの回転側軌道輪に結合固定する部材とし、静止部材を、上記転がり軸受ユニットを構成して使用時にも回転しない静止側軌道輪又はこの静止側軌道輪を支持固定する部材とする。
更に好ましくは、請求項9に記載した様に、上記転がり軸受ユニットを、自動車の車輪を懸架装置に対して回転自在に支持するものとする。
In carrying out the present invention, preferably, as described in claim 8, the rotating member constitutes a rolling bearing unit and is rotated and fixed at the time of use. The stationary member is a stationary bearing ring that does not rotate during use by configuring the rolling bearing unit or a member that supports and fixes the stationary bearing ring.
More preferably, as described in claim 9, the rolling bearing unit is configured to support the wheels of the automobile so as to be rotatable with respect to the suspension device.

図1〜2は、請求項1、2、4、8、9に対応する、本発明の実施例1を示している。尚、本実施例の特徴は、エンコーダ4cの外周面(被検出面)に存在するN極に着磁された部分とS極に着磁された部分との境界の形状を工夫した点にある。その他の部分の構造及び作用は、前述の図5〜7及び図15(A)に示した先発明の第1例の場合と同様であるから、重複する図示並びに説明は省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。   1 and 2 show a first embodiment of the present invention corresponding to claims 1, 2, 4, 8 and 9. The feature of this embodiment is that the shape of the boundary between the part magnetized in the N pole and the part magnetized in the S pole existing on the outer peripheral surface (detected surface) of the encoder 4c is devised. . Since the structure and operation of the other parts are the same as those in the first example of the prior invention shown in FIGS. 5 to 7 and FIG. 15A, overlapping illustrations and explanations are omitted or simplified. The description will focus on the features of this embodiment.

本実施例の場合には、前述の図6〜7及び図15(A)に示した様な被検出面を有するエンコーダ4の代わりに、図1に示す様な被検出面を有するエンコーダ4cを使用する。図6〜7及び図15(A)に示したエンコーダ4の場合と同様、本実施例のエンコーダ4cの場合には、被検出面である外周面に存在するN極に着磁された部分とS極に着磁された部分とのうち、N極に着磁された部分の円周方向(図1、15の左右方向)に関する幅を、軸方向片側{図1、15の上側}程広くし、且つ、S極に着磁された部分の円周方向に関する幅を、軸方向他側{図1、15の下側}程広くしている。但し、図6〜7及び図15(A)に示したエンコーダ4の場合が、N極に着磁された部分とS極に着磁された部分との境界の形状を、それぞれ直線形状としていたのに対し、本実施例のエンコーダ4の場合には、N極に着磁された部分とS極に着磁された部分との境界の形状を、それぞれ曲線形状としている。具体的には、これら各境界の形状を、図2(A){前述の図14(A)}に示す様な特性曲線、即ち、転がり軸受ユニットの外輪1とハブ2(図5参照)との間に作用するアキシアル荷重(「荷重」)の絶対値が大きくなる程、このアキシアル荷重に対する上記外輪1とハブ2との軸方向の相対変位量(「相対変位量」)の変化率が小さくなる関係を示す特性曲線(非線形曲線)、又は、この特性曲線に鏡面対称な曲線と同形状としている。より具体的には、上記エンコーダ4cの外周面に、上記特性曲線と同形状の境界と、この特性曲線に鏡面対称な曲線と同形状の境界とを、円周方向に関して交互に配置している。   In the case of the present embodiment, instead of the encoder 4 having the detected surface as shown in FIGS. 6 to 7 and FIG. 15A, an encoder 4c having the detected surface as shown in FIG. use. As in the case of the encoder 4 shown in FIGS. 6 to 7 and FIG. 15A, in the case of the encoder 4c of this embodiment, a portion magnetized to the N pole existing on the outer peripheral surface that is the detected surface, Of the portion magnetized at the S pole, the width of the portion magnetized at the N pole in the circumferential direction (left and right direction in FIGS. 1 and 15) is wider as one axial side {upper side in FIGS. 1 and 15}. In addition, the width in the circumferential direction of the portion magnetized in the S pole is made wider toward the other side in the axial direction (the lower side in FIGS. 1 and 15). However, in the case of the encoder 4 shown in FIGS. 6 to 7 and FIG. 15 (A), the shape of the boundary between the portion magnetized at the N pole and the portion magnetized at the S pole is a linear shape. On the other hand, in the case of the encoder 4 of the present embodiment, the shape of the boundary between the portion magnetized at the N pole and the portion magnetized at the S pole is a curved shape. Specifically, the shape of each boundary is represented by a characteristic curve as shown in FIG. 2A {the above-mentioned FIG. 14A}, that is, the outer ring 1 and the hub 2 (see FIG. 5) of the rolling bearing unit. As the absolute value of the axial load (“load”) acting during the period increases, the rate of change in the axial relative displacement (“relative displacement”) between the outer ring 1 and the hub 2 with respect to this axial load decreases. A characteristic curve (non-linear curve) showing the following relationship or a shape that is mirror-symmetrical to the characteristic curve. More specifically, a boundary having the same shape as the characteristic curve and a boundary having the same shape as a mirror-symmetrical curve with respect to the characteristic curve are alternately arranged on the outer peripheral surface of the encoder 4c in the circumferential direction. .

そして、この様な構成を採用する事により、上記軸方向の相対変位量と、上記エンコーダ4cの外周面に対向させたセンサ5の出力信号(図5、7参照)に関する変化情報(例えば、前述したデューティ比「TH /(TH +TL )」)との間に、図2(B)に示す様な関係、即ち、上記軸方向の相対変位量の絶対値が大きくなる程、この相対変位量に対する上記変化情報の変化率が大きくなる関係(非線形曲線関係)が成立する様にしている。そして、この様な関係を成立させる事により{図2(A)の関係と図2(B)の関係との合成により}、上記変化情報と上記アキシアル荷重との間に、図2(C)に示す様な直線関係が成立する様にしている。 By adopting such a configuration, change information (for example, the above-described relative displacement amount in the axial direction and the output signal (see FIGS. 5 and 7) of the sensor 5 opposed to the outer peripheral surface of the encoder 4c). (T H / (T H + T L ))) as shown in FIG. 2B, that is, as the absolute value of the relative displacement in the axial direction increases, the relative A relationship (nonlinear curve relationship) in which the rate of change of the change information with respect to the displacement amount increases is established. Then, by establishing such a relationship {by the combination of the relationship of FIG. 2A and the relationship of FIG. 2B}, between the change information and the axial load, FIG. The linear relationship as shown in is established.

上述の様に、本実施例の荷重測定装置の場合には、上記センサ5の出力信号に関する変化情報と上記アキシアル荷重とが、互いに図2(C)に示す様な直線関係(一次関数)で変化する。従って、本実施例の場合、マップを用いる事なく、図示しない演算器により、上記直線関係を利用した簡単な(一次関数の)四則演算を行なうだけで、上記センサ5の出力信号に関する変化情報から上記アキシアル荷重を求める事ができる。この結果、本実施例の場合には、上記演算器のコストを低減できる。これと共に、上記アキシアル荷重を求めるのに要する時間を短くできる為、車両の走行制御の信頼性を向上させる事ができる。   As described above, in the case of the load measuring device of this embodiment, the change information related to the output signal of the sensor 5 and the axial load are in a linear relationship (linear function) as shown in FIG. Change. Therefore, in the case of the present embodiment, it is possible to obtain from the change information regarding the output signal of the sensor 5 only by performing a simple (primary function) arithmetic operation using the linear relationship by an arithmetic unit (not shown) without using a map. The axial load can be obtained. As a result, in the case of the present embodiment, the cost of the arithmetic unit can be reduced. At the same time, since the time required to obtain the axial load can be shortened, the reliability of the vehicle running control can be improved.

次に、請求項1、2、5、8、9に対応する、本発明の実施例2に就いて、上述の実施例1で使用した図2に加えて、図3を参照しつつ説明する。尚、本実施例の特徴は、エンコーダ4dの外周面(被検出面)に存在するN極に着磁された部分とS極に着磁された部分との境界の形状を工夫した点にある。その他の部分の構造及び作用は、前述の図8〜11及び図15(B)に示した先発明の第2例の場合と同様であるから、重複する図示並びに説明は省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。   Next, a second embodiment of the present invention corresponding to claims 1, 2, 5, 8, and 9 will be described with reference to FIG. 3 in addition to FIG. 2 used in the first embodiment. . The feature of this embodiment is that the shape of the boundary between the part magnetized in the N pole and the part magnetized in the S pole existing on the outer peripheral surface (detected surface) of the encoder 4d is devised. . Since the structure and operation of the other parts are the same as those of the second example of the prior invention shown in FIGS. 8 to 11 and FIG. 15 (B), overlapping illustrations and descriptions are omitted or simplified. The description will focus on the features of this embodiment.

本実施例の場合には、前述の図9〜11及び図15(B)に示した様な被検出面を有するエンコーダ4aの代わりに、図3に示す様な被検出面を有するエンコーダ4dを使用する。図9〜11及び図15(B)に示したエンコーダ4aの場合と同様、図3に示した本実施例のエンコーダ4dの場合には、被検出面である外周面を、このエンコーダ4aの軸方向(この外周面の幅方向。図3、15の上下方向)中央部を境として、軸方向に隣り合う2つの領域に分けると共に、これら各領域同士で、N極に着磁された部分とS極に着磁された部分との境界の形態を、互いに異ならせている。これにより、上記外周面に配置された、N極に着磁された部分とS極に着磁された部分とを、それぞれ軸方向中央部が円周方向(図3、15の左右方向)に関して最も突出した(又は凹んだ)、紡錘形としている。即ち、図9〜11及び図15(B)に示したエンコーダ4aの場合が、上記各領域毎の境界の形状を、それぞれ直線形状としていたのに対し、本実施例のエンコーダ4dの場合には、上記各領域毎の境界の形状を、それぞれ曲線形状としている。具体的には、これら各領域毎の境界の形状を、図2(A){前述の図14(A)}に示す様な特性曲線、即ち、転がり軸受ユニットの外輪1とハブ2(図8参照)との間に作用するアキシアル荷重の絶対値が大きくなる程、このアキシアル荷重に対する上記外輪1とハブ2との軸方向の相対変位量の変化率が小さくなる関係を示す特性曲線(非線形曲線)、又は、この特性曲線に鏡面対称な曲線と同形状としている。より具体的には、軸方向片側(図3の上側)の領域に存在する境界の形状を、それぞれ上記特性曲線と同形状にすると共に、軸方向他側(図3の下側)の領域に存在する境界の形状を、それぞれ上記特性曲線に鏡面対称な曲線と同形状にしている。   In the case of the present embodiment, instead of the encoder 4a having the detected surface as shown in FIGS. 9 to 11 and FIG. 15B, an encoder 4d having the detected surface as shown in FIG. use. As in the case of the encoder 4a shown in FIGS. 9 to 11 and FIG. 15 (B), in the case of the encoder 4d of the present embodiment shown in FIG. The direction (the width direction of this outer peripheral surface; the vertical direction in FIGS. 3 and 15) is divided into two regions adjacent to each other in the axial direction with the central portion as a boundary. The form of the boundary with the portion magnetized in the S pole is made different from each other. As a result, the axially central portion of the portion magnetized at the N pole and the portion magnetized at the S pole arranged on the outer peripheral surface is in the circumferential direction (left and right direction in FIGS. 3 and 15). The most protruding (or recessed) spindle shape. That is, in the case of the encoder 4a shown in FIGS. 9 to 11 and FIG. 15B, the shape of the boundary for each region is a linear shape, whereas in the case of the encoder 4d of the present embodiment, The shape of the boundary for each region is a curved shape. Specifically, the shape of the boundary for each of these regions is represented by a characteristic curve as shown in FIG. 2A {the above-mentioned FIG. 14A}, that is, the outer ring 1 and the hub 2 of the rolling bearing unit (FIG. 8). The characteristic curve (nonlinear curve) showing the relationship that the rate of change of the relative displacement in the axial direction of the outer ring 1 and the hub 2 with respect to the axial load decreases as the absolute value of the axial load acting between the outer ring 1 and the hub 2 increases. ), Or the same shape as a mirror-symmetrical curve with respect to this characteristic curve. More specifically, the shape of the boundary existing in the region on one side in the axial direction (upper side in FIG. 3) is made the same shape as the above characteristic curve, and the region on the other side in the axial direction (lower side in FIG. 3). The shape of the existing boundary is the same as that of a mirror-symmetrical curve with respect to the characteristic curve.

そして、この様な構成を採用する事により、上記軸方向の相対変位量と、上記各領域に対向させた1対のセンサ5、5の出力信号(図8、11参照)に関する変化情報(これら両センサ5、5の出力信号の位相差)との間に、図2(B)に示す様な関係、即ち、上記軸方向の相対変位量の絶対値が大きくなる程、この相対変位量に対する上記変化情報の変化率が大きくなる関係(非線形関係)が成立する様にしている。そして、この様な関係を成立させる事により、上記変化情報と上記アキシアル荷重との間に、図2(C)に示す様な直線関係が成立する様にしている。   By adopting such a configuration, change information (these are information about the relative displacement in the axial direction and the output signals (see FIGS. 8 and 11) of the pair of sensors 5 and 5 facing each region. 2 (B), that is, as the absolute value of the relative displacement amount in the axial direction increases, the relative displacement amount increases with respect to the relative displacement amount. The relationship (nonlinear relationship) in which the change rate of the change information increases is established. Then, by establishing such a relationship, a linear relationship as shown in FIG. 2C is established between the change information and the axial load.

上述の様に、本実施例の荷重測定装置の場合も、上記各センサ5、5の出力信号に関する変化情報と上記アキシアル荷重とが、互いに図2(C)に示す様な直線関係で変化する。従って、本実施例の場合も、マップを用いる事なく、図示しない演算器により、上記直線関係を利用した簡単な四則演算を行なうだけで、上記各センサ5、5の出力信号に関する変化情報から上記アキシアル荷重を求める事ができる。この結果、上記演算器のコストを低減できる。これと共に、上記アキシアル荷重を求めるのに要する時間を短くできる為、車両の走行制御の信頼性を向上させる事ができる。   As described above, also in the case of the load measuring apparatus of the present embodiment, the change information regarding the output signals of the sensors 5 and 5 and the axial load change in a linear relationship as shown in FIG. . Therefore, also in the case of the present embodiment, the above-described change information regarding the output signals of the sensors 5 and 5 can be obtained by simply performing a simple four arithmetic operation using the linear relationship without using a map. Axial load can be obtained. As a result, the cost of the computing unit can be reduced. At the same time, since the time required to obtain the axial load can be shortened, the reliability of the vehicle running control can be improved.

次に、請求項1、2、6、7、8、9に対応する、本発明の実施例3に就いて、前述の実施例1で使用した図2に加えて、図4を参照しつつ説明する。尚、本実施例の特徴は、円筒状のエンコーダ4eの外周面(被検出面)に存在するN極に着磁された部分とS極に着磁された部分との境界の形状を工夫した点にある。その他の部分の構造及び作用は、前述の図12〜13及び図15(C)に示した先発明の第3〜4例の場合と同様であるから、重複する図示並びに説明は省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。   Next, with reference to FIG. 4 in addition to FIG. 2 used in the above-described first embodiment, the third embodiment of the present invention corresponding to claims 1, 2, 6, 7, 8, and 9 will be described. explain. The feature of this embodiment is that the shape of the boundary between the part magnetized in the N pole and the part magnetized in the S pole on the outer peripheral surface (detected surface) of the cylindrical encoder 4e is devised. In the point. Since the structure and operation of the other parts are the same as those of the third to fourth examples of the prior invention shown in FIGS. 12 to 13 and FIG. 15C, overlapping illustrations and explanations are omitted or simplified. Hereinafter, the characteristic part of the present embodiment will be mainly described.

本実施例の場合には、前述の図12〜13及び図15(C)に示した様な被検出面を有するエンコーダ4bの代わりに、図4に示す様な被検出面を有するエンコーダ4eを使用する。図12〜13及び図15(C)に示したエンコーダ4bの場合と同様、図4に示した本実施例のエンコーダ4eの場合には、被検出面である外周面に存在するN極に着磁された部分とS極に着磁された部分との境界の円周方向(図4、15の左右方向)に関する位相を、上記エンコーダ4eの軸方向(上記外周面の幅方向。図4、15の上下方向)片側(同図の上側)から他側(同図の下側)に向かう程、円周方向片側(同図の右側)から他側(同図の左側)に向かう方向に連続的に変化させている。そして、上記各境界の形状を互いに等しくする事により、上記N極に着磁された部分及び上記S極に着磁された部分の円周方向に関する幅が、それぞれ軸方向の何れの部分でも等しくなる様にしている。但し、図12〜13及び図15(C)に示したエンコーダ4bの場合が、N極に着磁された部分とS極に着磁された部分との境界の形状を、それぞれ上記軸方向に対し傾斜した直線形状としていたのに対し、本実施例のエンコーダ4eの場合には、N極に着磁された部分とS極に着磁された部分との境界の形状を、それぞれ曲線形状としている。具体的には、これら各境界の形状を、図2(A)(前述の図14)に示す様な特性曲線、即ち、転がり軸受ユニットの外輪1とハブ2(図12〜13参照)との間に作用するアキシアル荷重又はモーメント(荷重)の絶対値が大きくなる程、このアキシアル荷重又はモーメントに対する上記外輪1とハブ2との軸方向の相対変位量又は傾き(「相対変位量」)の変化率が小さくなる関係を示す特性曲線(非線形曲線)と同形状としている。   In the case of the present embodiment, an encoder 4e having a detected surface as shown in FIG. 4 is used instead of the encoder 4b having the detected surface as shown in FIGS. use. As in the case of the encoder 4b shown in FIGS. 12 to 13 and FIG. 15 (C), in the case of the encoder 4e of the present embodiment shown in FIG. The phase of the boundary between the magnetized portion and the portion magnetized to the S pole in the circumferential direction (the left-right direction in FIGS. 4 and 15) is expressed in the axial direction of the encoder 4e (the width direction of the outer peripheral surface. FIG. 15 (vertical direction) Continuing from one side (upper side of the figure) to the other side (lower side of the figure) in the direction from the circumferential one side (right side of the figure) to the other side (left side of the figure) Is changing. By making the shape of each boundary equal to each other, the width in the circumferential direction of the portion magnetized in the N pole and the portion magnetized in the S pole is the same in any part in the axial direction. It ’s like that. However, in the case of the encoder 4b shown in FIGS. 12 to 13 and FIG. 15C, the shape of the boundary between the portion magnetized in the N pole and the portion magnetized in the S pole is set in the axial direction. On the other hand, in the case of the encoder 4e according to the present embodiment, the shape of the boundary between the portion magnetized in the N pole and the portion magnetized in the S pole is set as a curved shape. Yes. Specifically, the shape of each boundary is a characteristic curve as shown in FIG. 2A (the above-mentioned FIG. 14), that is, the outer ring 1 of the rolling bearing unit and the hub 2 (see FIGS. 12 to 13). As the absolute value of the axial load or moment (load) acting between them increases, the relative displacement amount or inclination ("relative displacement amount") in the axial direction between the outer ring 1 and the hub 2 with respect to this axial load or moment changes. It has the same shape as a characteristic curve (nonlinear curve) showing a relationship of decreasing rate.

そして、この様な構成を採用する事により、上記軸方向の相対変位量又は傾きと、上記エンコーダ4eの外周面に対向させたセンサ5(5a)の出力信号に関する変化情報(本実施例を前記図12の構造に適用する場合には、上記センサ5の出力信号と第二センサ10の出力信号との位相差。同じく前記図13の構造に適用する場合には、上記センサ5aの出力信号と他のセンサ5bの出力信号との位相差)との間に、図2(B)に示す様な関係、即ち、上記軸方向の相対変位量又は傾きの絶対値が大きくなる程、この軸方向の相対変位量又は傾きに対する上記変化情報の変化率が大きくなる関係(非線形関係)が成立する様にしている。そして、この様な関係を成立させる事により、上記変化情報と上記アキシアル荷重又はモーメント荷重との間に、図2(C)に示す様な直線関係が成立する様にしている。   Then, by adopting such a configuration, the relative displacement amount or inclination in the axial direction and the change information regarding the output signal of the sensor 5 (5a) opposed to the outer peripheral surface of the encoder 4e (this embodiment is described above). 12, the phase difference between the output signal of the sensor 5 and the output signal of the second sensor 10. Similarly, when applied to the structure of FIG. 2B), the higher the relative displacement amount or the absolute value of the inclination in the axial direction is, the larger the axial direction is. A relationship (nonlinear relationship) is established in which the rate of change of the change information with respect to the relative displacement amount or inclination is large. Then, by establishing such a relationship, a linear relationship as shown in FIG. 2C is established between the change information and the axial load or moment load.

上述の様に、本実施例の荷重測定装置の場合も、上記センサ5(5a)の出力信号に関する変化情報と上記アキシアル荷重又はモーメント荷重とが、互いに図2(C)に示す様な直線関係で変化する。従って、本実施例の場合も、マップを用いる事なく、図示しない演算器により、上記直線関係を利用した簡単な四則演算を行なうだけで、上記各センサ5、5の出力信号に関する変化情報から上記アキシアル荷重又はモーメント荷重を求める事ができる。この結果、上記演算器のコストを低減できる。これと共に、上記アキシアル荷重又はモーメント荷重を求めるのに要する時間を短くできる為、車両の走行制御の信頼性を向上させる事ができる。   As described above, also in the case of the load measuring apparatus according to the present embodiment, the change information related to the output signal of the sensor 5 (5a) and the axial load or moment load are in a linear relationship as shown in FIG. It changes with. Therefore, also in the case of the present embodiment, the above-described change information regarding the output signals of the sensors 5 and 5 can be obtained by simply performing a simple four arithmetic operation using the linear relationship without using a map. Axial load or moment load can be obtained. As a result, the cost of the computing unit can be reduced. At the same time, the time required to obtain the axial load or moment load can be shortened, so that the reliability of vehicle travel control can be improved.

尚、上述した各実施例では、エンコーダを永久磁石により構成すると共に、このエンコーダの被検出面に設ける第一特性部をN極に着磁された部分とし、第二特性部をS極に着磁された部分とした。但し、本発明を実施する場合には、エンコーダを磁性材により構成すると共に、このエンコーダの被検出面に設ける第一特性部を凸部又は柱部若しくは舌片とし、第二特性部を凹部又は透孔若しくは切り欠きとする事もできる。この様な磁性材製のエンコーダを採用する場合には、このエンコーダの被検出面に対向させるセンサ側に永久磁石を組み込む。   In each of the above-described embodiments, the encoder is composed of a permanent magnet, the first characteristic portion provided on the detection surface of the encoder is a portion magnetized to the N pole, and the second characteristic portion is attached to the S pole. The magnetized part. However, when implementing the present invention, the encoder is made of a magnetic material, the first characteristic portion provided on the detection surface of the encoder is a convex portion, a column portion, or a tongue piece, and the second characteristic portion is a concave portion or It can be a through hole or a notch. When such an encoder made of a magnetic material is employed, a permanent magnet is incorporated on the sensor side facing the detection surface of the encoder.

又、上述した各実施例では、エンコーダの被検出面を円筒面とする事により、転がり軸受ユニットを構成する外輪とハブとの間の軸方向の相対変位量又は傾き、更にはこれら外輪とハブとの間に作用するアキシアル荷重又はモーメント荷重を求める構造を採用した。但し、本発明を実施する場合には、エンコーダの被検出面を円輪面とする事により、上述した各実施例の場合と同様の原理で、上記外輪とハブとの間の径方向の相対変位量、更にはこれら外輪とハブとの間に作用するラジアル荷重を求める事もできる。この場合には、第一、第二両特性部同士の境界を、径方向に対し傾斜させる(図1、3、4の上下方向を径方向とする形状の被検出面を設ける)。   Further, in each of the embodiments described above, the detection surface of the encoder is a cylindrical surface, so that the relative displacement amount or inclination in the axial direction between the outer ring and the hub constituting the rolling bearing unit, and further, the outer ring and the hub. A structure for determining the axial load or moment load acting between the two is adopted. However, when the present invention is carried out, the relative surface in the radial direction between the outer ring and the hub is obtained by using the same principle as in each of the above-described embodiments by making the detected surface of the encoder an annular surface. The radial load acting between the outer ring and the hub can also be obtained. In this case, the boundary between the first and second characteristic portions is inclined with respect to the radial direction (a surface to be detected having a shape in which the vertical direction in FIGS. 1, 3 and 4 is the radial direction is provided).

又、本発明を実施する場合、エンコーダの被検出面に存在する境界の形状の設計自由度が小さく、センサの出力信号に関する変化情報と荷重との関係を完全な直線関数の関係に補正する事ができない場合でも、簡単な多項式関数(例えば、二次又は三次の多項式関数)に補正すれば、上述した各実施例の場合と同様、マップを用いる事なく、当該関係を利用した簡単な四則演算を行なうだけで、上記変化情報から上記荷重を求める事ができる。 Further, when the present invention is implemented, the degree of freedom in designing the shape of the boundary existing on the detected surface of the encoder is small, and the relationship between the change information relating to the output signal of the sensor and the load is corrected to a complete linear function relationship. Even if it is not possible, if it is corrected to a simple polynomial function (for example, a quadratic or cubic polynomial function), as in the case of the above-described embodiments, a simple four arithmetic operation using the relationship without using a map. The load can be obtained from the change information simply by performing the above.

又、上述した各実施例では、エンコーダの被検出面に存在する境界の形状を工夫する事により、転がり軸受ユニットに加わる荷重の大きさと、この転がり軸受ユニットを構成する軌道輪同士の変位量との関係に関する非線形特性を補正した。これに対して、本発明を実施する場合には、エンコーダの被検出面に存在する境界の形状を工夫する事により、上記以外の非線形要因(例えば、エンコーダや演算器の非線形性)を補正する事もできる。   Further, in each of the above-described embodiments, by devising the shape of the boundary existing on the detected surface of the encoder, the magnitude of the load applied to the rolling bearing unit and the amount of displacement between the bearing rings constituting this rolling bearing unit The non-linear characteristic related to the relationship was corrected. On the other hand, when the present invention is implemented, non-linear factors other than the above (for example, non-linearity of the encoder and the arithmetic unit) are corrected by devising the shape of the boundary existing on the detected surface of the encoder. You can also do things.

本発明の実施例1を示す、エンコーダの被検出面の展開図。The expanded view of the to-be-detected surface of the encoder which shows Example 1 of this invention. 実施例の作用を説明する為の、三種類の特性線図。Three types of characteristic diagrams for explaining the operation of the embodiment. 本発明の実施例2を示す、エンコーダの被検出面の展開図。The expanded view of the to-be-detected surface of the encoder which shows Example 2 of this invention. 同実施例3を示す、エンコーダの被検出面の展開図。The expanded view of the to-be-detected surface of the encoder which shows the same Example 3. FIG. 先発明の第1例の構造を示す断面図。Sectional drawing which shows the structure of the 1st example of a prior invention. エンコーダを示しており、(A)は素材の、(B)は完成品の、それぞれ斜視図。The encoder is shown, (A) is a raw material, (B) is a perspective view of a finished product. アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。The diagram which shows the output signal of the sensor which changes with the fluctuation | variation of an axial load. 先発明の第2例の構造を示す断面図。Sectional drawing which shows the structure of the 2nd example of a prior invention. エンコーダの斜視図。The perspective view of an encoder. エンコーダの被検出面の展開図。The expanded view of the to-be-detected surface of an encoder. アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。The diagram which shows the output signal of the sensor which changes with the fluctuation | variation of an axial load. 先発明の第3例の構造を示す断面図。Sectional drawing which shows the structure of the 3rd example of a prior invention. 同第4例の構造を示す断面図。Sectional drawing which shows the structure of the 4th example. 先発明で生じる問題を説明する為の、三種類の特性線図。Three types of characteristic diagrams for explaining the problems caused by the prior invention. 同じく、エンコーダの被検出面の3例を示す展開図。Similarly, the expanded view which shows three examples of the to-be-detected surface of an encoder.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a〜4e エンコーダ
5、5a、5b センサ
6 検出部
7 組み合わせシールリング
8 スリンガ
9 第二エンコーダ
10 第二センサ
11 検出部
12 支持環
13 支持環
14 大径円筒部
15 カバー
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a-4e Encoder 5, 5a, 5b Sensor 6 Detection part 7 Combination seal ring 8 Slinger 9 Second encoder 10 Second sensor 11 Detection part 12 Support ring 13 Support ring 14 Large diameter cylindrical part 15 Cover

Claims (9)

回転部材の一部に支持されてこの回転部材と共に回転する、この回転部材の回転中心と同心でこの回転部材の回転方向に対する直角方向をその幅方向とする被検出面を備え、この被検出面に互いに異なる特性を有する第一特性部と第二特性部とを円周方向に関して交互に配置すると共に、これら第一特性部と第二特性部との境界の円周方向に関するピッチ若しくは位置を上記被検出面の幅方向に亙り連続的に変化させたエンコーダと、その検出部をこのエンコーダの被検出面に対向させた状態で静止部材に支持され、この静止部材と上記回転部材との間に荷重が作用する事によりこれら静止部材と回転部材との相対位置が変化する事に伴い上記被検出面に対する上記検出部の対向位置がこの被検出面の幅方向に変化し、且つ、この被検出面のうち上記検出部を対向させた部分の円周方向に関する特性変化のパターンに対応して、その出力信号に関する比を変化させる1個のセンサ又は出力信号同士の間の位相差を変化させる複数のセンサと、この1個のセンサ又は複数のセンサの出力信号に基づいて上記荷重を求める演算器とを備え、上記出力信号に関する比は、この出力信号の電位が基準電圧よりも高くなる周期と低くなる周期との比と、この出力信号の電圧の最大値と基準電圧との差と同じく最小値と基準電圧との差との比と、この出力信号のうちで基準電圧よりも高位側をHighレベルとし同じく低位側をLowレベルとした矩形波信号のデューティ比とのうちの何れかである荷重測定装置に於いて、上記荷重と、上記出力信号に関する比又は出力信号同士の間の位相差とが互いに一次関数の関係で変化する様に、上記第一特性部と上記第二特性部との境界の形状を規制した事を特徴とする荷重測定装置。 A detected surface that is supported by a part of the rotating member and rotates with the rotating member, is concentric with the rotation center of the rotating member and has a width direction that is perpendicular to the rotating direction of the rotating member. The first characteristic portion and the second characteristic portion having different characteristics are alternately arranged in the circumferential direction, and the pitch or position in the circumferential direction of the boundary between the first characteristic portion and the second characteristic portion is set as described above. An encoder that is continuously changed in the width direction of the surface to be detected, and a detector that is supported by a stationary member with the detection portion facing the surface to be detected of the encoder, and between the stationary member and the rotating member As the relative position of the stationary member and the rotating member changes due to the action of a load, the opposing position of the detection unit with respect to the detected surface changes in the width direction of the detected surface, and the detected Plane Chi the detection unit corresponding to the pattern of the characteristic change in the circumferential direction of the opposite is not part of a plurality of sensors for changing the phase difference between the one sensor or output signals with each other to change the ratio for that output signal And an arithmetic unit that obtains the load based on the output signals of the one sensor or the plurality of sensors , and the ratio relating to the output signal is low when the potential of the output signal is higher than the reference voltage. The ratio between the period, the ratio between the maximum value of the voltage of the output signal and the reference voltage, the difference between the minimum value and the reference voltage, and the high level of the output signal higher than the reference voltage. and then also at the low side to the load measuring device is one of a duty ratio of the Low level to the square wave signal, and the load, and the phase difference between the ratio or the output signal to each other about said output signal As changes in relation to a linear function with each other, the load measuring device, characterized in that the regulating the shape of the boundary between the first characteristic portion and the second characteristic portion. 第一特性部と第二特性部との境界を、回転部材と静止部材との相対位置の変化量と荷重の大きさとの関係を示す特性曲線又はこの特性曲線に鏡面対称な曲線と同形状とした、請求項1に記載した荷重測定装置。   The boundary between the first characteristic part and the second characteristic part has the same shape as the characteristic curve showing the relationship between the amount of change in the relative position between the rotating member and the stationary member and the magnitude of the load, or a mirror-symmetrical curve with this characteristic curve. The load measuring device according to claim 1. 回転部材の一部に支持されてこの回転部材と共に回転する、この回転部材の回転中心と同心でこの回転部材の回転方向に対する直角方向をその幅方向とする被検出面を備え、この被検出面に互いに異なる特性を有する第一特性部と第二特性部とを円周方向に関して交互に配置すると共に、これら第一特性部と第二特性部との境界の円周方向に関するピッチ若しくは位置を上記被検出面の幅方向に亙り連続的に変化させたエンコーダと、その検出部をこのエンコーダの被検出面に対向させた状態で静止部材に支持され、この静止部材と上記回転部材との間に荷重が作用する事によりこれら静止部材と回転部材との相対位置が変化する事に伴い上記被検出面に対する上記検出部の対向位置がこの被検出面の幅方向に変化し、且つ、この被検出面のうち上記検出部を対向させた部分の円周方向に関する特性変化のパターンに対応して、その出力信号に関する比を変化させる1個のセンサ又は出力信号同士の間の位相差を変化させる複数のセンサと、この1個のセンサ又は複数のセンサの出力信号に基づいて上記荷重を求める演算器とを備え、上記出力信号に関する比は、この出力信号の電位が基準電圧よりも高くなる周期と低くなる周期との比と、この出力信号の電圧の最大値と基準電圧との差と同じく最小値と基準電圧との差との比と、この出力信号のうちで基準電圧よりも高位側をHighレベルとし同じく低位側をLowレベルとした矩形波信号のデューティ比とのうちの何れかである荷重測定装置に於いて、上記荷重と上記出力信号に関する比又は出力信号同士の間の位相差とが、互いに二次若しくは三次の多項式関数の関係で変化する様に、上記第一特性部と上記第二特性部との境界の形状を規制した事を特徴とする荷重測定装置。 A detected surface that is supported by a part of the rotating member and rotates with the rotating member, is concentric with the rotation center of the rotating member and has a width direction that is perpendicular to the rotating direction of the rotating member. The first characteristic portion and the second characteristic portion having different characteristics are alternately arranged in the circumferential direction, and the pitch or position in the circumferential direction of the boundary between the first characteristic portion and the second characteristic portion is set as described above. An encoder that is continuously changed in the width direction of the surface to be detected, and a detector that is supported by a stationary member with the detection portion facing the surface to be detected of the encoder, and between the stationary member and the rotating member As the relative position of the stationary member and the rotating member changes due to the action of a load, the opposing position of the detection unit with respect to the detected surface changes in the width direction of the detected surface, and the detected Plane Chi the detection unit corresponding to the pattern of the characteristic change in the circumferential direction of the opposite is not part of a plurality of sensors for changing the phase difference between the one sensor or output signals with each other to change the ratio for that output signal And an arithmetic unit that obtains the load based on the output signals of the one sensor or the plurality of sensors , and the ratio relating to the output signal is low when the potential of the output signal is higher than the reference voltage. The ratio between the period, the ratio between the maximum value of the voltage of the output signal and the reference voltage, the difference between the minimum value and the reference voltage, and the high level of the output signal higher than the reference voltage. and to also at the load measuring device is one of a duty ratio of the Low level to the square wave signal to low side, and the phase difference between the ratio or the output signal to each other about the load and the output signal As changes in relation to each other secondary or tertiary polynomial function, the load measuring device, characterized in that the regulating the shape of the boundary between the first characteristic portion and the second characteristic portion. 円周方向に関する第一特性部の幅が被検出面の幅方向片側程広く、円周方向に関する第二特性部の幅が上記被検出面の幅方向他側程広い、請求項1〜3のうちの何れか1項に記載した荷重測定装置。   The width of the first characteristic part in the circumferential direction is wider toward one side in the width direction of the detected surface, and the width of the second characteristic part in the circumferential direction is wider toward the other side in the width direction of the detected surface. The load measuring apparatus described in any one of them. 被検出面を幅方向に関する複数の領域に分けると共に、これら各領域毎に第一特性部と第二特性部との境界の形状を互いに異ならせ、且つ、このうちの少なくとも1つの領域の境界の形状を、荷重と複数のセンサの出力信号同士の間の位相差とが互いに一次関数又は二次若しくは三次の多項式関数の関係で変化する様に規制しており、演算器が、上記各領域にそれぞれの検出部を対向させた上記各センサの出力信号同士の間の位相差に基づいて荷重の大きさを求める、請求項1〜3のうちの何れか1項に記載した荷重測定装置。 The detected surface is divided into a plurality of regions in the width direction, and the shape of the boundary between the first characteristic portion and the second characteristic portion is made different for each region, and the boundary of at least one of these regions is The shape is regulated so that the load and the phase difference between the output signals of the plurality of sensors change in relation to each other by a linear function or a quadratic or cubic polynomial function. obtains the magnitude of the load based on the phase difference between the output signal between the respective sensors are opposed to each detection unit, the load measuring apparatus according to any one of claims 1 to 3. 円周方向に関する第一、第二両特性部の幅が、それぞれ被検出面の幅方向に関して一定であり、演算器が、この被検出面の円周方向複数個所にそれぞれの検出部を対向させた複数のセンサの出力信号の位相差に基づいて荷重の大きさを求める、請求項1〜3のうちの何れか1項に記載した荷重測定装置。   The widths of the first and second characteristic portions in the circumferential direction are constant with respect to the width direction of the surface to be detected, and the arithmetic unit makes each detection portion face a plurality of locations in the circumferential direction of the surface to be detected. The load measuring device according to any one of claims 1 to 3, wherein a load magnitude is obtained based on a phase difference between output signals of a plurality of sensors. 円周方向に関する第一、第二両特性部の幅が、それぞれ被検出面の幅方向に関して一定であり、演算器が、この被検出面にその検出部を対向させたセンサの出力信号と、他のエンコーダの被検出面にその検出部を対向させた他のセンサの出力信号との位相差に基づいて荷重の大きさを求める、請求項1〜3のうちの何れか1項に記載した荷重測定装置。   The widths of the first and second characteristic portions in the circumferential direction are constant with respect to the width direction of the surface to be detected, respectively, and the calculator outputs an output signal of a sensor having the detection portion opposed to the surface to be detected; The magnitude of a load is calculated according to any one of claims 1 to 3, wherein a magnitude of a load is obtained based on a phase difference with an output signal of another sensor whose detection unit is opposed to a detection surface of another encoder. Load measuring device. 回転部材が、転がり軸受ユニットを構成して使用時に回転する回転側軌道輪又はこの回転側軌道輪に結合固定する部材であり、静止部材が、上記転がり軸受ユニットを構成して使用時にも回転しない静止側軌道輪又はこの静止側軌道輪を支持固定する部材である、請求項1〜7のうちの何れか1項に記載した荷重測定装置。   The rotating member is a rotating bearing ring that constitutes a rolling bearing unit and rotates during use, or a member that is coupled and fixed to the rotating bearing ring, and the stationary member does not rotate even when used by constituting the rolling bearing unit. The load measuring device according to any one of claims 1 to 7, wherein the load measuring device is a stationary side ring or a member that supports and fixes the stationary side ring. 転がり軸受ユニットが、自動車の車輪を懸架装置に対して回転自在に支持するものである、請求項8に記載した荷重測定装置。   The load measuring device according to claim 8, wherein the rolling bearing unit rotatably supports the wheel of the automobile with respect to the suspension device.
JP2005238175A 2005-08-19 2005-08-19 Load measuring device Expired - Fee Related JP4862318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238175A JP4862318B2 (en) 2005-08-19 2005-08-19 Load measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238175A JP4862318B2 (en) 2005-08-19 2005-08-19 Load measuring device

Publications (2)

Publication Number Publication Date
JP2007051962A JP2007051962A (en) 2007-03-01
JP4862318B2 true JP4862318B2 (en) 2012-01-25

Family

ID=37916504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238175A Expired - Fee Related JP4862318B2 (en) 2005-08-19 2005-08-19 Load measuring device

Country Status (1)

Country Link
JP (1) JP4862318B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007616B2 (en) * 2007-07-17 2012-08-22 日本精工株式会社 State quantity measuring device for rolling bearing units
JP5471452B2 (en) * 2009-01-20 2014-04-16 日本精工株式会社 Manufacturing method of state quantity measuring device of rolling bearing unit
DE102018106438A1 (en) * 2017-12-13 2019-06-13 Schaeffler Technologies AG & Co. KG Sensor arrangement with a Multipolencoder and rotary bearing with such a sensor arrangement
DE102019120790A1 (en) * 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Sensor arrangement with multipole encoder and rotation bearing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629217A (en) * 1985-07-08 1987-01-17 Hitachi Metals Ltd Magnetic rotation detector
JP2004077159A (en) * 2002-08-12 2004-03-11 Koyo Seiko Co Ltd Pulser ring and bearing unit having sensor
JP4269669B2 (en) * 2002-12-05 2009-05-27 日本精工株式会社 Load measuring device for rolling bearing units
JP2005043336A (en) * 2003-07-04 2005-02-17 Ntn Corp Wheel bearing with built-in load sensor
JP2005140606A (en) * 2003-11-06 2005-06-02 Nsk Ltd Load measuring device of rolling bearing unit and its manufacturing apparatus
JP2005180688A (en) * 2003-11-26 2005-07-07 Ntn Corp Arrangement of bearing for wheels
JP2005164253A (en) * 2003-11-28 2005-06-23 Nsk Ltd Load measuring instrument for rolling bearing unit

Also Published As

Publication number Publication date
JP2007051962A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
JP4844010B2 (en) Rolling bearing unit with load measuring device
JP4887882B2 (en) Displacement measuring device and load measuring device of rolling bearing unit
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP4862318B2 (en) Load measuring device
JP2007078678A (en) Rotation supporting device with displacement measuring unit, and rotation supporting device with load measuring unit
WO2014087871A1 (en) Wheel bearing device with attached sensor
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP4363103B2 (en) Hub unit with sensor
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2004198210A (en) Load measuring apparatus for rolling bearing unit
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP4952405B2 (en) State quantity measuring device for rolling bearing units
JP2013007657A (en) Load cell
JP4956940B2 (en) State quantity measuring device
JP2008128812A (en) Roller bearing device equipped with sensor
JP5098379B2 (en) Bearing load measuring device
JP4779544B2 (en) Air pressure abnormality judgment device
JP2006308465A (en) Load measuring device
JP2008224397A (en) Load measuring device for roller bearing unit
JP4752483B2 (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP2007051983A (en) Encoder for rotation detection
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2007171104A (en) Roller bearing unit with load-measuring device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees