Nothing Special   »   [go: up one dir, main page]

JP4862074B2 - How to start the engine - Google Patents

How to start the engine Download PDF

Info

Publication number
JP4862074B2
JP4862074B2 JP2009226969A JP2009226969A JP4862074B2 JP 4862074 B2 JP4862074 B2 JP 4862074B2 JP 2009226969 A JP2009226969 A JP 2009226969A JP 2009226969 A JP2009226969 A JP 2009226969A JP 4862074 B2 JP4862074 B2 JP 4862074B2
Authority
JP
Japan
Prior art keywords
engine
double layer
electric double
layer capacitor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009226969A
Other languages
Japanese (ja)
Other versions
JP2011074828A (en
Inventor
哲司 渡辺
公昭 樽谷
尚吾 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009226969A priority Critical patent/JP4862074B2/en
Publication of JP2011074828A publication Critical patent/JP2011074828A/en
Application granted granted Critical
Publication of JP4862074B2 publication Critical patent/JP4862074B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

この発明は、エンジンの始動方法、特に電気二重層コンデンサを用いたエンジンの始動方法に関するものである。   The present invention relates to an engine starting method, and more particularly to an engine starting method using an electric double layer capacitor.

車両で使用される電力用蓄電装置として、回生時のエネルギー回収を主目的として、バッテリ電圧よりも高い電圧を蓄電し、それを利用する目的において電気二重層コンデンサが注目されている。(例えば特許文献1参照)。   As a power storage device for electric power used in a vehicle, an electric double layer capacitor has been attracting attention for the purpose of storing a voltage higher than a battery voltage for the purpose of recovering energy during regeneration and using it. (For example, refer to Patent Document 1).

電気二重層コンデンサは、カーボン(炭素)を主成分とする電極と、イオンを含む電解質とから構成され、炭素電極の表面に形成されるイオンの吸着層(電気二重層)に電気エネルギーを蓄えるもので、短時間に大電流での充放電が可能で、充電・放電を繰り返しても性能の劣化が少なく、電源として半永久的に使用可能な特徴を有している。   An electric double layer capacitor is composed of an electrode composed mainly of carbon and an electrolyte containing ions, and stores electric energy in an ion adsorption layer (electric double layer) formed on the surface of the carbon electrode. Therefore, charging / discharging with a large current is possible in a short time, and even when charging / discharging is repeated, there is little deterioration in performance, and it can be used as a power source semipermanently.

特許第3413527号 明細書Patent No. 3413527 Specification

電気二重層コンデンサの従来の充電方法は、特許文献1に示されるように、定電流電源によって充電を行うものであったため、電気二重層コンデンサを車両に搭載した場合には大型かつ高額な充電用の電子装置が必要となり、小型及び廉価に構成することができないという問題点があった。   Since the conventional charging method of the electric double layer capacitor is to charge with a constant current power source as shown in Patent Document 1, when the electric double layer capacitor is mounted on a vehicle, it is large and expensive for charging. Therefore, there is a problem that the electronic device cannot be constructed in a small size and at a low price.

この発明は上記のような問題点に対処するためになされたもので、定電流電源を使用することなく、バッテリと初期充電回路によって車載用発電電動機を電動機として駆動し得る最低限のエネルギーを電気二重層コンデンサに充電し、これを電源として車載用発電電動機を駆動し、車載用発電電動機と結合されているエンジンを始動する方法を提供することを目的とする。   The present invention has been made to address the above-described problems. The minimum energy that can drive a vehicle-mounted generator motor as a motor by a battery and an initial charging circuit without using a constant current power source is provided. An object of the present invention is to provide a method of charging a double-layer capacitor, using this as a power source to drive an in-vehicle generator / motor, and starting an engine coupled to the in-vehicle generator / motor.

エンジンの始動後はエンジンによって車載用発電電動機が発電機として運転され、その出力電圧によって電気二重層コンデンサがバッテリ電圧より高い電圧に充電され、以後の車載用発電電動機の駆動電源及びその他の機器の電源として使用されることになる。   After the engine is started, the on-vehicle generator / motor is operated as a generator by the engine, and the electric double layer capacitor is charged to a voltage higher than the battery voltage by the output voltage. It will be used as a power source.

この発明に係るエンジンの始動方法は、エンジンに結合されると共に、上記エンジンの始動後に上記エンジンによって発電機として運転され、バッテリ電圧より高い電圧を発生する車載用発電電動機を有し、上記車載用発電電動機の発生電圧を整流した電圧によって容量数100Fの電気二重層コンデンサを充電するようにしたものにおいて、上記電気二重層コンデンサにバッテリと初期充電回路とを直列接続し、上記初期充電回路は、50〜500Ωの電流制限抵抗および逆流防止素子を直列接続して構成され、上記エンジンの始動前に上記電気二重層コンデンサをバッテリ電圧まで初期充電した後、初期充電された上記電気二重層コンデンサを電源として上記車載用発電電動機を電動機として駆動し、上記エンジンを始動させるようにしたものである。 An engine start method according to the present invention includes an in-vehicle generator / motor that is coupled to an engine and that is operated as a generator by the engine after the engine is started and generates a voltage higher than a battery voltage. In the case where an electric double layer capacitor having a capacity of several hundreds F is charged by a voltage obtained by rectifying the generated voltage of the generator motor, a battery and an initial charging circuit are connected in series to the electric double layer capacitor, and the initial charging circuit is: A 50-500Ω current limiting resistor and a backflow prevention element are connected in series, and the electric double layer capacitor is initially charged to the battery voltage before starting the engine, and then the initially charged electric double layer capacitor is powered. Drive the on-vehicle generator motor as a motor and start the engine. It is intended.

この発明に係るエンジンの始動方法は上記のように構成され、定電流電源を使用することなくバッテリと初期充電回路によって充電しているため、初期充電時間としては数時間〜数10時間が必要となるが、車両の組み付け完了から実際のエンジン始動に至るまでの保管期間を充電時間として有効利用できるので、充電時間の長さは問題にはならず、小型かつ廉価で機器内蔵化を容易に実現し得る構成の初期充電回路を含むエンジンの始動方法を提供することができる。 Since the engine starting method according to the present invention is configured as described above and is charged by the battery and the initial charging circuit without using the constant current power source, the initial charging time requires several hours to several tens of hours. However, since the storage period from the completion of vehicle assembly to the actual engine start can be used effectively as the charging time, the length of the charging time is not a problem, and it is small and inexpensive, and can easily be built into the equipment. An engine starting method including an initial charging circuit having a possible configuration can be provided.

この発明の実施の形態1によるエンジンの始動方法を説明するためのブロック図である。It is a block diagram for demonstrating the starting method of the engine by Embodiment 1 of this invention. 電気二重層コンデンサの初期充電の状況を説明するためのタイミングチャートである。It is a timing chart for explaining the situation of the initial charge of an electric double layer capacitor.

実施の形態1.
以下、この発明の実施の形態1によるエンジンの始動方法を図にもとづいて説明する。図1は、実施の形態1によるエンジンの始動方法を説明するためのブロック図、図2は、電気二重層コンデンサの初期充電の状況を説明するためのタイミングチャートである。
Embodiment 1 FIG.
The engine starting method according to Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram for explaining an engine starting method according to the first embodiment, and FIG. 2 is a timing chart for explaining an initial charging state of an electric double layer capacitor.

図1に示す三相の車載用発電電動機1が図示しないエンジンに結合されており、エンジンの始動後はエンジンによって発電機として運転され、バッテリ電圧の2〜3倍の交流電圧が発生されるようにされている。ブリッジ整流回路2は上記車載用発電電動機1の各相の電機子巻線に接続された複数の整流素子21〜26を有し、車載用発電電動機1の発生電圧を整流して電気二重層コンデンサ3を充電するようになっている。   A three-phase in-vehicle generator / motor 1 shown in FIG. 1 is coupled to an engine (not shown). After the engine is started, the engine is operated as a generator to generate an AC voltage 2 to 3 times the battery voltage. Has been. The bridge rectifier circuit 2 has a plurality of rectifier elements 21 to 26 connected to the armature windings of the respective phases of the in-vehicle generator motor 1, and rectifies the voltage generated by the in-vehicle generator motor 1 to thereby generate an electric double layer capacitor. 3 is charged.

電気二重層コンデンサ3は、上述のように、カーボン(炭素)を主成分とする電極と、イオンを含む電解質とから構成され、炭素電極の表面に形成されるイオンの吸着層(電気二重層)に電気エネルギーを蓄えるもので、短時間に大電流での充放電が可能で、充電・放電を繰り返しても性能の劣化が少なく、電源として半永久的に使用可能な手段として周知のものである。   As described above, the electric double layer capacitor 3 is composed of an electrode mainly composed of carbon and an electrolyte containing ions, and an ion adsorption layer (electric double layer) formed on the surface of the carbon electrode. It is a well-known means that can be used semi-permanently as a power source because it can store electric energy, can be charged and discharged with a large current in a short time, has little deterioration in performance even after repeated charging and discharging.

この発明は、エンジンの始動前に電気二重層コンデンサ3を車載用発電電動機1の定常時における電圧よりは低いが、車載用発電電動機1を電動機として駆動し得る最低限の電圧であるバッテリ電圧にまで定電流電源を使用せずに初期充電し、初期充電された電気二重層コンデンサ3を電源として車載用発電電動機1を電動機として駆動することによりエンジンを始動させようとするものである。   In the present invention, before starting the engine, the electric double layer capacitor 3 is set to a battery voltage which is lower than the voltage during normal operation of the in-vehicle generator motor 1 but is the minimum voltage that can drive the in-vehicle generator motor 1 as an electric motor. The initial charging is performed without using a constant current power source, and the engine is started by driving the in-vehicle generator motor 1 as an electric motor using the initially charged electric double layer capacitor 3 as a power source.

電気二重層コンデンサ3の初期充電回路5は、電流制限抵抗51と逆流防止素子52と経路遮断用スイッチ素子53とで構成され、初期充電装置5はバッテリ6と電気二重層コンデンサ3とに直列接続されている。
初期充電回路5の逆流防止素子52は電気二重層コンデンサ3からバッテリ6に向かう電流を阻止する方向に接続された整流素子によって構成されており、経路遮断用スイッチ素子53は常閉接点を有し、故障が検出された場合には上記常閉接点を開放して初期充電回路5をバッテリ6から遮断するように構成されている。
The initial charging circuit 5 of the electric double layer capacitor 3 includes a current limiting resistor 51, a backflow prevention element 52, and a path interruption switch element 53. The initial charging device 5 is connected in series to the battery 6 and the electric double layer capacitor 3. Has been.
The backflow prevention element 52 of the initial charging circuit 5 is configured by a rectifier element connected in a direction to block current from the electric double layer capacitor 3 to the battery 6, and the path breaking switch element 53 has a normally closed contact. When a failure is detected, the normally closed contact is opened to disconnect the initial charging circuit 5 from the battery 6.

初期充電はバッテリ6から初期充電回路5を介して電気二重層コンデンサ3に通電することによって行われるが、充電が進行して電気二重層コンデンサ3の電圧がバッテリ6の電圧と同等またはそれ以上に上昇した場合には、逆流防止素子52の両端電圧が同等または電気二重層コンデンサ側電圧がバッテリ側電圧より高くなるため、充電が自動的に停止され、以後はバッテリ6から無効電力が消費されることはない。また、経時変化等による電気二重層コンデンサ3の自然放電などによる電圧降下に対しては、バッテリ6からの再充電が自動的に行われるため、メンテナンスフリーである。   Initial charging is performed by energizing the electric double layer capacitor 3 from the battery 6 via the initial charging circuit 5, but charging proceeds so that the voltage of the electric double layer capacitor 3 is equal to or higher than the voltage of the battery 6. When the voltage rises, the voltage at both ends of the backflow prevention element 52 is equal or the electric double layer capacitor side voltage becomes higher than the battery side voltage, so that charging is automatically stopped, and thereafter the reactive power is consumed from the battery 6. There is nothing. In addition, with respect to a voltage drop due to a natural discharge of the electric double layer capacitor 3 due to a change over time or the like, since recharging from the battery 6 is automatically performed, maintenance is free.

電圧検出手段7は初期充電回路5の故障を検出する手段で、バッテリ6の電圧を検出する電圧検出1と、電気二重層コンデンサ3の電圧を検出する電圧検出2と、逆流防止素子52の電流制限抵抗51側の端子の電圧を検出する電圧検出3と、上記各電圧検出要素1、2、3の検出電圧にもとづいて故障の有無を判断し、故障信号を発生する故障検出回路71とから構成されている。   The voltage detection means 7 is a means for detecting a failure of the initial charging circuit 5, the voltage detection 1 for detecting the voltage of the battery 6, the voltage detection 2 for detecting the voltage of the electric double layer capacitor 3, and the current of the backflow prevention element 52. From the voltage detection 3 for detecting the voltage at the terminal on the limiting resistor 51 side, and the failure detection circuit 71 that determines the presence or absence of a failure based on the detection voltage of each of the voltage detection elements 1, 2, and 3 and generates a failure signal. It is configured.

故障検出回路71による故障検出は次のようにして行われる。即ち、電圧検出1と電圧検出2の検出結果を比較し、電圧検出1では所定の電圧が検出されているのに電圧検出2で所定の電圧が検出されていない場合には、経路遮断用スイッチ素子53が開放状態になっているかまたは初期充電回路5を構成する直列経路の故障を検出することができる。
また、電圧検出1と電圧検出2と電圧検出3の検出結果を比較し、電圧検出1よりも電圧検出2が高く、電圧検出2と電圧検出3とが同等電圧を検出した場合には、逆流防止素子52のショート故障を検出し判定することができ、それぞれの故障に対応した故障信号を発生する。
Failure detection by the failure detection circuit 71 is performed as follows. That is, the detection results of the voltage detection 1 and the voltage detection 2 are compared, and when the predetermined voltage is detected by the voltage detection 1 but not the predetermined voltage by the voltage detection 2, the path cutoff switch It is possible to detect whether the element 53 is in an open state or a failure in the series path constituting the initial charging circuit 5.
Further, the detection results of the voltage detection 1, the voltage detection 2 and the voltage detection 3 are compared. When the voltage detection 2 is higher than the voltage detection 1, and the voltage detection 2 and the voltage detection 3 detect the same voltage, the reverse flow A short circuit failure of the prevention element 52 can be detected and determined, and a failure signal corresponding to each failure is generated.

スイッチ素子制御回路8は電圧検出手段7の故障検出回路71からの故障信号を受けて経路遮断用スイッチ素子53を開放するもので、故障信号を受け取る受信回路81と、受信回路81が故障信号を受けた時にオン動作するスイッチ素子82と、この素子がオン動作した時にオン動作して経路遮断用スイッチ素子53に開放信号を与えるスイッチ素子83とから構成されている。なお、図示していないが、受信回路81が故障信号を受けた時に経路遮断用スイッチ素子53の開放と共に、故障表示をするようにしてもよい。   The switch element control circuit 8 receives the failure signal from the failure detection circuit 71 of the voltage detection means 7 and opens the path interruption switch element 53. The reception circuit 81 that receives the failure signal and the reception circuit 81 receives the failure signal. The switch element 82 is turned on when received, and the switch element 83 is turned on when the element is turned on to give an open signal to the path cutoff switch element 53. Although not shown, when the receiving circuit 81 receives a failure signal, the failure indicator may be displayed along with the opening of the path interruption switch element 53.

図2は、電気二重層コンデンサ3への初期充電時における充電状況を示すタイミングチャートで、横軸は時間(秒)、縦軸は充電率(%)を示す。なお、充電率(%)=(電気二重層コンデンサ3の電圧)/(バッテリ6の電圧)×100で示される。
横軸に示された記号τは,電流制限抵抗51の抵抗値と電気二重層コンデンサ3の容量値との積算値となる時定数を示し、2τ〜5τは上記時定数τの2〜5倍の時間を示す。
縦軸の充電率に記載している数値は、横軸のτ〜5τの時に到達する充電比率であり、この値は一般過渡現象理論より容易かつ確実に予測できる。
FIG. 2 is a timing chart showing a charging state at the time of initial charging of the electric double layer capacitor 3, where the horizontal axis indicates time (seconds) and the vertical axis indicates the charging rate (%). The charging rate (%) = (voltage of electric double layer capacitor 3) / (voltage of battery 6) × 100.
Symbol τ shown on the horizontal axis indicates a time constant that is an integrated value of the resistance value of the current limiting resistor 51 and the capacitance value of the electric double layer capacitor 3, and 2τ to 5τ is 2 to 5 times the time constant τ. Indicates the time.
The numerical value described in the charging rate on the vertical axis is the charging ratio reached when τ to 5τ on the horizontal axis, and this value can be easily and reliably predicted from the general transient phenomenon theory.

実線の曲線は、電気二重層コンデンサ3が未充電状態から初期充電回路5を経由してバッテリ6から充電される状態を示している。時間=0から充電が開始され、時刻τではバッテリ6の電圧の約63%に、時刻2τでは約86%に、時刻3τでは約95%に、時刻5τではほぼ100%に充電されることを示している。また、破線の曲線は、電流制限抵抗51の抵抗値と電気二重層コンデンサ3の容量値との積算値が実線時と異なる場合の充電状況を示している。時定数が大の場合に充電時間は長くなるが、τ〜5τ(秒)と充電率(%)との関係は同一である。   A solid curve indicates a state in which the electric double layer capacitor 3 is charged from the battery 6 via the initial charging circuit 5 from an uncharged state. Charging starts at time = 0, and is charged to approximately 63% of the voltage of the battery 6 at time τ, approximately 86% at time 2τ, approximately 95% at time 3τ, and approximately 100% at time 5τ. Show. A broken line curve indicates a charging state when the integrated value of the resistance value of the current limiting resistor 51 and the capacitance value of the electric double layer capacitor 3 is different from that in the solid line. When the time constant is large, the charging time becomes long, but the relationship between τ to 5τ (seconds) and the charging rate (%) is the same.

初期充電について更に詳しく説明する。電気二重層コンデンサ3の容量値は一般的に数100Fの容量値付近で設定される場合が多いため、ここでは電気二重層コンデンサ3の容量値を200Fとして説明する。次に、電流制限抵抗51の抵抗値を選定する。この抵抗値選定に関しては電気二重層コンデンサ3の容量値と電流制限抵抗51の抵抗値の積算値で決定される時定数τにより、充電時間と充電状態(充電率)とが決定されるが、これは図2で説明している。   The initial charging will be described in more detail. Since the capacitance value of the electric double layer capacitor 3 is generally set in the vicinity of a capacitance value of several hundreds of F, here, the capacitance value of the electric double layer capacitor 3 is described as 200F. Next, the resistance value of the current limiting resistor 51 is selected. Regarding this resistance value selection, the charging time and the charging state (charging rate) are determined by the time constant τ determined by the integrated value of the capacitance value of the electric double layer capacitor 3 and the resistance value of the current limiting resistor 51. This is illustrated in FIG.

また、電流制限抵抗51の発熱も抑制することが必要であるが、その抵抗値としては50〜500Ω程度の範囲に成立領域がある。電気二重層コンデンサ3の容量値を200F、電流制限抵抗51の抵抗値を100Ω、バッテリ電圧を12Vとした場合のデータを例示すると、   Moreover, although it is necessary to suppress the heat generation of the current limiting resistor 51, the resistance value has a formation region in the range of about 50 to 500Ω. For example, when the capacitance value of the electric double layer capacitor 3 is 200F, the resistance value of the current limiting resistor 51 is 100Ω, and the battery voltage is 12V,

充電電流は、(バッテリ電圧)/(抵抗値)=12V/100Ω≦120mA
時定数τは、(電気二重層コンデンサの容量値)×(抵抗値)=200×100
= 20,000秒・・・( 5.5hr)
従って 3τ= 60,000秒・・・(16.5hr)
5τ=100,000秒・・・(27.7hr)となる。
また、発熱量は、(バッテリ電圧/抵抗値)2×(抵抗値)=0.0144×100≦1.44W
となる。充電率が約95%となる時定数3τ時点は16.5hrとなる。
The charging current is (battery voltage) / (resistance value) = 12 V / 100Ω ≦ 120 mA
The time constant τ is (capacitance value of electric double layer capacitor) × (resistance value) = 200 × 100
= 20,000 seconds (5.5 hr)
Therefore, 3τ = 60,000 seconds (16.5 hr)
5τ = 100,000 seconds (27.7 hr).
The amount of heat generated is (battery voltage / resistance value) 2 × (resistance value) = 0.0144 × 100 ≤ 1.44W
It becomes. The time constant 3τ when the charging rate is about 95% is 16.5 hr.

上記のように、この発明によれば定電流電源を使用しないため電気二重層コンデンサ3の初期の充電時間が長くなるが、小型かつ廉価な初期充電方式を含むエンジンの始動方法を実現することができる。初期充電時間としては上述のように、数時間〜数10時間が必要となるが、車両の組み立て完了から実際のエンジン始動に至るまでの保管期間を充電時間として有効利用できるので、充電時間の長さは問題にはならない。   As described above, according to the present invention, since the constant current power source is not used, the initial charging time of the electric double layer capacitor 3 becomes long. However, it is possible to realize an engine starting method including a small and inexpensive initial charging method. it can. As described above, the initial charging time requires several hours to several tens of hours. However, since the storage period from the completion of the vehicle assembly to the actual engine start can be effectively used as the charging time, the charging time is long. That doesn't matter.

1 車載用発電電動機、 2 ブリッジ整流回路、 3 電気二重層コンデンサ、
5 初期充電回路、 6 バッテリ、 7 電圧検出手段、 8 スイッチ素子制御回路、 21〜26 整流素子、 51 電流制限抵抗、 52 逆流防止素子、
53 経路遮断用スイッチ素子、 71 故障検出回路、 81 受信回路、
82、83 スイッチ素子。
1 onboard generator motor, 2 bridge rectifier circuit, 3 electric double layer capacitor,
DESCRIPTION OF SYMBOLS 5 Initial charging circuit, 6 Battery, 7 Voltage detection means, 8 Switch element control circuit, 21-26 Rectifier element, 51 Current limiting resistor, 52 Backflow prevention element,
53 path switching switch element, 71 failure detection circuit, 81 reception circuit,
82, 83 Switch element.

Claims (4)

エンジンに結合されると共に、上記エンジンの始動後に上記エンジンによって発電機として運転され、バッテリ電圧より高い電圧を発生する車載用発電電動機を有し、上記車載用発電電動機の発生電圧を整流した電圧によって容量数100Fの電気二重層コンデンサを充電するようにしたものにおいて、上記電気二重層コンデンサにバッテリと初期充電回路とを直列接続し、上記初期充電回路は、50〜500Ωの電流制限抵抗および逆流防止素子を直列接続して構成され、上記エンジンの始動前に上記電気二重層コンデンサをバッテリ電圧まで初期充電した後、初期充電された上記電気二重層コンデンサを電源として上記車載用発電電動機を電動機として駆動し、上記エンジンを始動させるようにしたことを特徴とするエンジンの始動方法。 It is coupled to an engine, and is operated as a generator by the engine after the engine is started, and has an in-vehicle generator / motor that generates a voltage higher than the battery voltage, and the voltage generated by rectifying the generated voltage of the in-vehicle generator / motor In the case where an electric double layer capacitor having a capacity of 100 F is charged, a battery and an initial charging circuit are connected in series to the electric double layer capacitor, and the initial charging circuit has a current limiting resistance of 50 to 500Ω and a backflow prevention. Elements are connected in series, and the electric double layer capacitor is initially charged to the battery voltage before starting the engine, and then the in-vehicle generator motor is driven as the motor using the initially charged electric double layer capacitor as a power source. An engine start method characterized by starting the engine 上記初期充電回路は、上記電流制限抵抗および上記逆流防止素子と、これらに直列接続され、常閉接点を有する経路遮断用スイッチ素子とによって構成したことを特徴とする請求項1記載のエンジンの始動方法。 The initial charging circuit, and the current limiting resistor and the backflow prevention device, these are connected in series, the starting of the engine according to claim 1, characterized by being configured by the path-blocking switch device having a normally-closed contact Method. 上記逆流防止素子は、上記電気二重層コンデンサからバッテリに向かう電流を阻止するように接続された整流素子によって構成され、上記電気二重層コンデンサの初期充電による蓄積電圧が上記バッテリと同等またはそれ以上に上昇した場合には初期充電を自動的に停止し、上記蓄積電圧がバッテリ電圧以下に低下した場合には初期充電を自動的に再開することを特徴とする請求項2記載のエンジンの始動方法。   The backflow prevention element is constituted by a rectifying element connected so as to block a current from the electric double layer capacitor to the battery, and an accumulated voltage due to initial charging of the electric double layer capacitor is equal to or higher than that of the battery. 3. The engine starting method according to claim 2, wherein when the voltage rises, the initial charging is automatically stopped, and when the accumulated voltage drops below the battery voltage, the initial charging is automatically restarted. 上記電気二重層コンデンサの初期充電の充電時間と、それに対応する充電率を、上記電気二重層コンデンサの静電容量値と上記初期充電回路の電流制限抵抗の抵抗値とで定まる時定数によって設定することを特徴とする請求項1ないし請求項3のいずれか1項に記載のエンジンの始動方法。 The initial charging time of the electric double layer capacitor and the corresponding charging rate are set by a time constant determined by the capacitance value of the electric double layer capacitor and the resistance value of the current limiting resistor of the initial charging circuit. The engine starting method according to any one of claims 1 to 3, wherein the engine is started.
JP2009226969A 2009-09-30 2009-09-30 How to start the engine Expired - Fee Related JP4862074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226969A JP4862074B2 (en) 2009-09-30 2009-09-30 How to start the engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226969A JP4862074B2 (en) 2009-09-30 2009-09-30 How to start the engine

Publications (2)

Publication Number Publication Date
JP2011074828A JP2011074828A (en) 2011-04-14
JP4862074B2 true JP4862074B2 (en) 2012-01-25

Family

ID=44019064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226969A Expired - Fee Related JP4862074B2 (en) 2009-09-30 2009-09-30 How to start the engine

Country Status (1)

Country Link
JP (1) JP4862074B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749217B2 (en) 2016-04-27 2020-08-18 Autonetworks Technologies, Ltd. Power source device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160089981A1 (en) * 2013-06-07 2016-03-31 Nissan Motor Co., Ltd. Control system for a hybrid vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988778A (en) * 1995-07-17 1997-03-31 Denso Corp Starter generator
JPH09247856A (en) * 1996-03-13 1997-09-19 Fuji Heavy Ind Ltd Power supply with electric double layer capacitor for vehicle
JP3624334B2 (en) * 1996-03-14 2005-03-02 富士重工業株式会社 Deceleration energy regeneration device for vehicles
JP3980690B2 (en) * 1996-12-27 2007-09-26 富士重工業株式会社 Vehicle power supply device using electric double layer capacitor
JP3896258B2 (en) * 2001-04-25 2007-03-22 株式会社日立製作所 Automotive power supply
JP2004108226A (en) * 2002-09-18 2004-04-08 Nissan Motor Co Ltd Engine idle stop device and engine idle stop method
JP2006230132A (en) * 2005-02-18 2006-08-31 Honda Motor Co Ltd Current supply method, starting method of internal combustion engine, power supply and vehicle
JP4325635B2 (en) * 2006-03-31 2009-09-02 三菱自動車工業株式会社 Vehicle power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10749217B2 (en) 2016-04-27 2020-08-18 Autonetworks Technologies, Ltd. Power source device

Also Published As

Publication number Publication date
JP2011074828A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5867483B2 (en) Power storage system
JP4572168B2 (en) Method and apparatus for detecting welding of relay contacts
EP3354511B1 (en) Driving circuit for electric vehicle and control method therefor
CN103633784B (en) Electric rotating machine with load dump protector
JP6414460B2 (en) Battery deterioration state determination device and deterioration state determination method
CN103660961B (en) The control setup of vehicle power and control method
JP5104648B2 (en) Vehicle power supply apparatus and control method thereof
RU2006115864A (en) SYSTEM AND METHOD FOR REMOVING THE SHORT-CIRCUIT MODE ON THE EARTH THAT MAY APPEAR IN THE ELECTRIC MOTOR SYSTEM
JP5728877B2 (en) Battery failure judgment device
CN105450139B (en) Motor drive
CN104914382B (en) A kind of detection method of accumulator capacity
KR20150081331A (en) Electricity storage system
CN103779887A (en) Double source battery charger
JP2013145175A (en) Battery system and short circuit detection method
JP2010182579A (en) Electric power source device for vehicle
JP4862074B2 (en) How to start the engine
JP6717388B2 (en) Relay device
JP2015077036A (en) Electrical power system of vehicle and power supply unit
JP2014176269A (en) Vehicular power supply device
JP2018115971A (en) Power supply device
TW200941794A (en) Activation device for lead-acid battery
JP2011079399A (en) Power supply control device for vehicle and power supply device for vehicle
CN107957550A (en) The identification of failure in generator unit
JP2015165219A (en) Device for determining state of lead-acid battery and method for determining state of vehicle and lead-acid battery
JP2018127085A (en) Ground fault detector and power source system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R151 Written notification of patent or utility model registration

Ref document number: 4862074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees