JP4852310B2 - Optical transmission module - Google Patents
Optical transmission module Download PDFInfo
- Publication number
- JP4852310B2 JP4852310B2 JP2006001307A JP2006001307A JP4852310B2 JP 4852310 B2 JP4852310 B2 JP 4852310B2 JP 2006001307 A JP2006001307 A JP 2006001307A JP 2006001307 A JP2006001307 A JP 2006001307A JP 4852310 B2 JP4852310 B2 JP 4852310B2
- Authority
- JP
- Japan
- Prior art keywords
- underfill
- optical transmission
- ceramic substrate
- solder balls
- transmission module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims description 50
- 230000003287 optical effect Effects 0.000 title claims description 50
- 239000000919 ceramic Substances 0.000 claims description 59
- 239000000758 substrate Substances 0.000 claims description 31
- 229910000679 solder Inorganic materials 0.000 claims description 30
- 230000002265 prevention Effects 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 239000013307 optical fiber Substances 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/2612—Auxiliary members for layer connectors, e.g. spacers
- H01L2224/26152—Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
- H01L2224/26175—Flow barriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
Landscapes
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
Description
本発明は、光信号を電気信号に変換するもしくは電気信号を光信号に変換する光伝送モジュールおよび半導体装置に関する。 The present invention relates to an optical transmission module and a semiconductor device that convert an optical signal into an electrical signal or convert an electrical signal into an optical signal.
光伝送モジュールには、通信量の増大に伴い、光伝送速度の高速化の要求が高い。この理由は、既施設済みの光ファイバをそのまま利用して伝送量を増大させることにより、新たな光ファイバの敷設という高額な投資を抑えることができる点にある。現状、主流の光伝送速度は2.5Gb/sから10Gb/sに移ってきている。次の世代として40Gb/sの伝送のニーズが高まっている。 Optical transmission modules are highly demanded to increase the optical transmission speed as the amount of communication increases. The reason for this is that by using the existing optical fiber as it is and increasing the amount of transmission, it is possible to suppress the expensive investment of laying a new optical fiber. At present, the mainstream optical transmission speed has shifted from 2.5 Gb / s to 10 Gb / s. The need for 40 Gb / s transmission is increasing as the next generation.
図1を参照して、伝送速度10Gbit/sの光伝送モジュールの構成を説明する。ここで、図1は伝送速度10Gbit/sの光伝送モジュールのブロック図である。図1において、光の受信側では、光ファイバ14から送られた光を、光電気変換モジュール(ホトダイオードモジュール:PDM)19で電気信号に切り替え、さらにデマルチプレクサー(DMUX)IC22により、16本のパラレル信号に置き換えられ電気信号として処理されている。
With reference to FIG. 1, the configuration of an optical transmission module having a transmission rate of 10 Gbit / s will be described. Here, FIG. 1 is a block diagram of an optical transmission module having a transmission rate of 10 Gbit / s. In FIG. 1, on the light receiving side, the light transmitted from the
逆に、光の送信側では、16本のパラレル電気信号がマルチプレクサー(MUX)IC20により1信号に集約され、電気光変換モジュール(レーザーダイオードモジュール:LDM)21により光信号として光ファイバ15に送信される。
10Gb/sの光伝送モジュールでは、300ピンMSAに示されるように、電気信号部分は622MHzX16本により構成されている。光伝送モジュール50の電気信号はコネクタ23を用いて送受信される。PDM19、DMUXIC22、LDM21、MUX20、コネクタ23はそれぞれプリント基板27に実装されて、光伝送モジュール50を構成する。
On the other hand, on the light transmission side, 16 parallel electrical signals are aggregated into one signal by a multiplexer (MUX)
In the 10 Gb / s optical transmission module, as indicated by the 300-pin MSA, the electrical signal portion is composed of 16 622 MHz × 16 lines. The electrical signal of the
光伝送モジュールの送受信に於いて、高信頼度の伝送のために光の伝送波形の維持に高精度の設計がおこなわれている。具体的には、10Gb/sの信号が通る受信側では、PDMからDMUXの間の、送信側ではMUXからLDMの間では、外部からのクロストークノイズや、信号伝播に於ける損失の増大や反射の発生を極力抑える工夫をプリント基板上の配線設計でなされている。 In transmission / reception of an optical transmission module, high-precision design is performed to maintain a transmission waveform of light for highly reliable transmission. Specifically, on the receiving side through which a 10 Gb / s signal passes, between the PDM and DMUX on the transmitting side, between MUX and LDM on the transmitting side, crosstalk noise from the outside, an increase in loss in signal propagation, Ingenuity to suppress the occurrence of reflection as much as possible has been made in the wiring design on the printed circuit board.
特許文献1には、フリップチップ実装されたチップと基板との間に、弾性係数が小さく、熱膨張率がはんだの熱膨張率とほぼ同じ樹脂を、充填する半導体装置が記載されている。
しかし、10Gb/sで実現できたプリント基板上の設計工夫では、40Gb/sの信号を所定の信号晶質を保って伝送することが困難であることが判明している。
そこで、40Gb/sの電気信号を低減衰でノイズに対する耐性の高い同軸ケーブルを用いて直接PDM−DMUX間、およびLDM−MUX間を繋ぐ方法が有望な手法である。これにより40Gb/sの信号波形品質を大幅に低下させずに伝送させることが可能になってきている。
However, it has been found that it is difficult to transmit a 40 Gb / s signal while maintaining a predetermined signal crystal quality by the design device on the printed circuit board that can be realized at 10 Gb / s.
Therefore, a promising technique is to connect a 40 Gb / s electrical signal directly between PDM and DMUX and between LDM and MUX using a coaxial cable with low attenuation and high noise resistance. As a result, it has become possible to transmit the signal without significantly reducing the signal waveform quality of 40 Gb / s.
ところで、同軸ケーブルをMUXICやDMUXICに設置するためには、通常セラミックPKG(package)となり、PKGサイズ(基板平面と高さ)が大型化する。従来は、同軸ケーブルを具備してなるセラミックPKGの基板への実装形態はPGA(ビングリッドアレイ)が主であった。これは、接続部の信顛性を保つことを優先させたことにある。しかし、電気信号として622MHzの電気信号を高品質で伝送するためには、ICPKGとプリント基板間の接続は接続距離をPGAに比較して短くできるBGA(ボールグリッドアレイ)とならざるを得ない。 By the way, in order to install the coaxial cable in the MUXIC or DMUXIC, it is usually a ceramic PKG (package), and the PKG size (substrate plane and height) is increased. Conventionally, PGA (bin grid array) has been mainly used for mounting a ceramic PKG having a coaxial cable on a substrate. This is because priority is given to maintaining the authenticity of the connection. However, in order to transmit a 622 MHz electrical signal as an electrical signal with high quality, the connection between ICPKG and the printed circuit board must be a BGA (ball grid array) that can shorten the connection distance compared to PGA.
一方、セラミックPKGBGAについては、接続部信頼性の問題が常に有る。これは、通常使われるアルミナセラミックの熱膨張係数(約7ppm/℃)がプリント基板の熱膨張係数(14〜16ppm/℃)と大きく異なり、稼動中のBGAはんだに大きなストレスが発生しはんだが熱疲労を起こし接続寿命が短くなることにある。 On the other hand, ceramic PKGBGA always has a problem of connection reliability. This is because the thermal expansion coefficient (about 7ppm / ° C) of the alumina ceramic that is usually used is very different from the thermal expansion coefficient (14-16ppm / ° C) of the printed circuit board. This is to cause fatigue and shorten the connection life.
通信機器は10年以上の信頼性を要求されており、これを満足する手段として大形のセラミックBGAPEGでは、アンダーフィルが必要とされている。しかし、同軸ケーブルを具備したセラミックBGAPKGについてこれまで、信頼性の高い実装手段が開示されていない。 Communication equipment is required to have a reliability of more than 10 years, and large ceramic BGAPEG requires underfill as a means to satisfy this requirement. However, no reliable mounting means has been disclosed so far for ceramic BGAPKG equipped with a coaxial cable.
本発明では、セラミックBGAパッケージはんだ接続部の高信頼度実装方法について解決する。本発明によれば、信頼性の高いセラミックBGAパッケージICを有する光伝送モジュールおよび半導体装置を得ることができる。 The present invention solves a highly reliable mounting method for a ceramic BGA package solder joint. According to the present invention, an optical transmission module and a semiconductor device having a highly reliable ceramic BGA package IC can be obtained.
上記課題は、複数の電気信号を多重してシリアル電気信号を生成するマルチプレクサーICと、シリアル電気信号を光信号に変換して光ファイバに送出する電気光変換モジュールとをプリント基板に実装され、マルチプレクサーICと電気光変換モジュールとは同軸ケーブルで接続されてシリアル電気信号を伝送し、マルチプレクサーICはプリント基板と複数のはんだボールで接続され、複数のはんだボールはアンダーフィル流動防止枠で囲われ、複数のはんだボールの周囲は、マルチプレクサーICの側面とアンダーフィル流動防止枠の内側面との間で概ね懸垂線状のプロファイルを有するようにアンダーフィルによって充填された光伝送モジュールにより、達成できる。 The above-described problem is implemented by mounting a multiplexer IC that multiplexes a plurality of electrical signals to generate a serial electrical signal, and an electro-optical conversion module that converts the serial electrical signal into an optical signal and sends the optical signal to an optical fiber. The multiplexer IC and the electro-optic conversion module are connected by a coaxial cable to transmit serial electrical signals. The multiplexer IC is connected to the printed circuit board by a plurality of solder balls, and the plurality of solder balls are surrounded by an underfill flow prevention frame. The periphery of the plurality of solder balls is achieved by the optical transmission module filled with the underfill so as to have a generally catenary profile between the side surface of the multiplexer IC and the inner surface of the underfill flow prevention frame. it can.
また、光ファイバから受信した光信号を電気信号に変換する光電気変換モジュールと、電気信号を分離して複数のパラレル電気信号を生成するデマルチプレクサーICとをプリント基板に実装され、光電気変換モジュールとデマルチプレクサーICとは同軸ケーブルで接続されて電気信号を伝送し、デマルチプレクサーICはプリント基板と複数のはんだボールで接続され、複数のはんだボールはアンダーフィル流動防止枠で囲われ、複数のはんだボールの周囲は、デマルチプレクサーICの側面とアンダーフィル流動防止枠の内側面との間で概ね懸垂線状のプロファイルを有するようにアンダーフィルによって充填された光伝送モジュールにより、達成できる。 In addition, a photoelectric conversion module that converts an optical signal received from an optical fiber into an electrical signal and a demultiplexer IC that separates the electrical signal and generates a plurality of parallel electrical signals are mounted on a printed circuit board, and the photoelectric conversion is performed. module and the demultiplexer IC are connected by a coaxial cable to transmit electrical signals, the demultiplexer IC are connected with a printed circuit board and a plurality of solder balls, the plurality of solder balls surrounded by underfill flow prevention frame, around the plurality of solder balls by an optical transmission module that is filled by the underfill to have a generally catenary-shaped profile between the side surface and the underfill inner surface of the movement preventing frame demultiplexer IC, can be achieved .
さらに、半導体をセラミックキャリアに搭載し、セラミックキャリアの底面に複数のはんだボールを形成して半導体と接続され、底面の全周に0.5mm以上のC面取りまたは0.2mm以上のR面取りを設けた半導体装置により、達成できる。 Furthermore, a semiconductor is mounted on a ceramic carrier, a plurality of solder balls are formed on the bottom surface of the ceramic carrier and connected to the semiconductor, and a C chamfer of 0.5 mm or more or an R chamfer of 0.2 mm or more is provided on the entire circumference of the bottom surface. This can be achieved by a semiconductor device.
本発明により、信頼性の高いセラミックBGAパッケージICを有する光伝送モジュールおよびセラミックBGAパッケージICを得ることができる。 According to the present invention, an optical transmission module having a highly reliable ceramic BGA package IC and a ceramic BGA package IC can be obtained.
以下、本発明の実施の形態に付いて、実施例を用いて図面を参照しながら説明する。なお、同一部位には同じ参照番号を振り、説明は繰り返さない。
実施例を図2ないし図4を用いて説明する。ここで、図2は光伝送モジュールのブロック図である。図3は光伝送モジュールの同軸ケーブル付きセラミックBGA部の部分断面図である。図4は光伝送モジュールの同軸ケーブル付きセラミックBGA部の平面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings using examples. Note that the same reference numerals are assigned to the same parts, and description thereof is not repeated.
An embodiment will be described with reference to FIGS. Here, FIG. 2 is a block diagram of the optical transmission module. FIG. 3 is a partial cross-sectional view of a ceramic BGA portion with a coaxial cable of an optical transmission module. FIG. 4 is a plan view of a ceramic BGA portion with a coaxial cable of the optical transmission module.
図2において、光ファイバ14からの伝送速度40Gbit/sの入力光は、光電気変換モジュール(PDM:Photo Diode Module)9で受信される。PDM9は、光信号を電気信号に変換し、40Gbit/sの正相信号と逆相信号とをそれぞれ同軸ケーブル8でデマルチプレクサーIC(DMUX)12に送信する。DMUX12は40Gbit/s電気信号を、622MHzX64本に変換して、300ピンコネクター13から出力する。
In FIG. 2, input light having a transmission rate of 40 Gbit / s from the
一方、外部から300ピンコネクター13に入力される622MHzX64本の電気信号は、マルチプレクサーIC(MUX)10で受信される。MUX10は622MHzX64本の電気信号を40Gbit/sの正相信号と逆相信号に変換し、2本の同軸ケーブル8を経由して、電気光変換モジュール(LDM:Laser Diode Module)11に送信する。LDM11は40Gbit/sの電気信号を、40Gbit/sの光信号に変換して、光ファイバ15から出力する。光伝送モジュール100の入出力電気信号は、コネクタ13を用いて入出力する。PDM9、DMUXIC12、コネクタ13、LDM11、MUXIC10は、プリント基板7に実装し、光伝送モジュール100を構成する。
On the other hand, 622 MHz × 64 electrical signals input from the outside to the 300-
なお、図2に示す光伝送モジュール100は、PDM9とLDM11とをともに備える。しかし、本明細書において、光伝送モジュールとは、PDMとLDMとの一方のみを備える光伝送モジュールを含む。PDMのみを含む光伝送モジュールは、光受信モジュールであるLDMのみを含む光伝送モジュールは、光送信モジュールである。
The
図3は、図2を用いて説明した光伝送モジュールのMUX10、DMUX12の実装状態を示したものである。MUX10およびDMUX12は、図3に示すセラミック基板部1と金属部2から構成され、該当金属部の一部側面に同軸コネクタ一部3が構成され、さらに同軸ケーブル8が同軸コネクタ一部3に装着された構成である。さらにMUX10およびDMUX12のセラミック基板1の下部にははんだボール4が設置してあり、プリント基板7との間の電気的接続を実施する。セラミック基板の周辺のプリント基板上にはあらかじめ設けたアンダーフィル流れ防止枠5が設置してあり、セラミック基板1とアンダーフィル防止枠との間にアンダーフィル材料を充填・固化してある。ここで、アンダーフィル6は、はんだボール4をセラミック基板1の側面とアンダーフィル流れ防止枠5の内側面との間で概ね懸垂線状のプロファイルを有して、形成されている。ここで懸垂線状とは、下に凸の2次曲線状とも表現できる。
Figure 3 is a diagram showing a mounting state of MUX10, DMUX12 of the optical transmission module described with reference to FIG. The
以下、具体的な数値を用いて説明する。図3において、同軸ケーブルを伝わる信号の伝送速度は40Gbit/sで有り、セラミック基板のサイズは20mm×20mm×2.5mm厚、金属部のサイズは幅22mm×長さ25mm×厚さ3.0mm、はんだボールは1mmピッチで19×19のエリアアレイで合計361個からなる。アンダーフィル流れ防止枠の外形は、25×25×2mm高さ(同軸コネクタ下部は高さ1mm)で枠の厚みは1mmとし材質はプリント基板と同一材料である。図3において、セラミック基板1とアンダーフィル流動防止枠5との間隔を2.5mmとした。ここで、アンダーフィル流れ防止枠は、PKGに同軸ケーブルを設置部分については流れ防止枠をPKG構造物の直下に設置し、それ以外の部分はPKGとアンダーフィル流れ防止枠にすき間を設けた。
Hereinafter, description will be made using specific numerical values. In FIG. 3, the transmission speed of the signal transmitted through the coaxial cable is 40 Gbit / s, the size of the ceramic substrate is 20 mm × 20 mm × 2.5 mm, and the size of the metal part is 22 mm wide × 25 mm long × 3.0 mm thick. A total of 361 solder balls are arranged in a 19 × 19 area array at a pitch of 1 mm. The underfill flow prevention frame has an outer shape of 25 × 25 × 2 mm (the height of the lower part of the coaxial connector is 1 mm), the thickness of the frame is 1 mm, and the material is the same as that of the printed board. In FIG. 3, the distance between the
アンダーフィル流動防止枠5とセラミック基板1との間隔およびアンダーフィル流動防止枠5の高さを決めるに当たって、以下の検討を行った。
まず、高周波伝送の点からMUXIC10およびDMUXIC12からコネクターヘの配線距離はできるだけ短くする必要が有り、アンダーフィル流動防止枠のようなデッドスペースを無くするのが配線の原則である。しかし、MUX10およびDMUX12の周辺にはコンデンサーなどの受動部品が設置されるが、これらの部品がアンダーフィルに部分的に覆われる場合に、アンダーフィルの硬化収縮応力が加わりはんだ接続部にダメージを加える。
In determining the distance between the underfill
First, from the viewpoint of high-frequency transmission, the wiring distance from the
一方、アンダーフィルは、後述のようにセラミック基板の側面から滑らかなフィレットを形成していないとセラミックとアンダーフィルの界面の応力が大きくなり剥がれる可能性が高い。また、アンダーフィルがセラミック側面に掛からないと応力集中部がアンダーフィルとセラミック基板の接続点に発生し、この場合にも剥がれが発生する可能性が高い。従って、アンダーフィルを、セラミック基板の側面から滑らかなスロープを形成させて形成することがはんだボールの温度サイクル信頼性を確保するためには必須である。その場合、1mmピッチBGAの場合でセラミック基板の底面から1mmの側面部分にアンダーフィル開始点を設けると、アンダーフィルの裾野がセラミックの端部から10mm程度に広がる。この場合、セラミック基板サイズ20×20mmの周辺40×40mmに部品が置けないエリア(セラミック基板の床面積の4倍の床面積が必要)が発生し、送受信モジュールの特性からすると非常に不利な設計を強いられることになる。図3では、アンダーフィル流動防止枠により部品実装禁止領域が25×25mm(セラミック基板の床面積の1.6倍の床面積)と大幅に縮減できる。
On the other hand, if the underfill does not form a smooth fillet from the side surface of the ceramic substrate as will be described later, the stress at the interface between the ceramic and the underfill increases and the possibility of peeling is high. Further, if the underfill is not applied to the side surface of the ceramic, a stress concentration portion is generated at a connection point between the underfill and the ceramic substrate, and in this case, there is a high possibility that peeling occurs. Accordingly, it is essential to form the underfill by forming a smooth slope from the side surface of the ceramic substrate in order to ensure the temperature cycle reliability of the solder balls. In that case, if an underfill start point is provided in the
また、アンダーフィルについて、シュリンジを用いて塗布する際に、図5に示すようにアンダーフィル充填量が過少の場合には、アンダーフィルのセラミック基板の側面に濡れ上がりにくくなる。その結果温度サイクル試験時にセラミックの角からクラックが入りアンダーフィルを破断させる。さらに、その結果アンダーフィルとセラミック基板との界面のアンダーフィルが剥がれ始めてBGAはんだの温度サイクル寿命が短くなる問題が発生している。この場合には、はがれ面が逆にBGAはんだに応力集中を引き起こしアンダーフィルが無い場合より温度サイクル寿命が短くなることも発生する。 In addition, when the underfill is applied using a shrunk, if the underfill filling amount is too small as shown in FIG. 5, it is difficult to wet the side surface of the ceramic substrate of the underfill. As a result, cracks enter from the corners of the ceramic during the temperature cycle test and break the underfill. Furthermore, as a result, the underfill at the interface between the underfill and the ceramic substrate starts to peel off, causing a problem that the temperature cycle life of the BGA solder is shortened. In this case, the peeled surface reversely causes stress concentration in the BGA solder, and the temperature cycle life may be shortened compared with the case where there is no underfill.
逆にアンダーフィル充填量が過多の場合には、図6に示すようにフィレット形状が無くなり、セラミック基板から直角に近い状態でアンダーフィルが形成されてしまう問題がある。図6のような場合には、温度サイクル試験時にアンダーフィルとセラミック基板の間に発生する熱収縮応力がほぼ接続界面に垂直となる。この結果、アンダーフィルをセラミックから剥がす応力が最大となり、これにより温度サイクル時にアンダーフィルがセラミック基板の側面から剥がれ始め順次セラミック基板底面側に剥がれが進行する。最終的には、BGAはんだに応力集中が発生し図5と類似のモードとなって、アンダーフィルが無い場合より温度サイクル寿命が短くなる場合がある。 On the contrary, when the underfill filling amount is excessive, the fillet shape disappears as shown in FIG. 6, and there is a problem that the underfill is formed in a state close to a right angle from the ceramic substrate. In the case as shown in FIG. 6, the heat shrinkage stress generated between the underfill and the ceramic substrate during the temperature cycle test is almost perpendicular to the connection interface. As a result, the stress that peels the underfill from the ceramic is maximized. As a result, the underfill begins to peel from the side surface of the ceramic substrate during the temperature cycle, and the peeling progresses toward the bottom surface side of the ceramic substrate. Eventually, stress concentration occurs in the BGA solder, resulting in a mode similar to that shown in FIG. 5, and the temperature cycle life may be shorter than when there is no underfill.
上記のようにアンダーフィルのフィレット形状は、セラミックBGA接続部の実稼動信頼性に大きな影響を及ぼすことが判明した。一方、特許文献1に示すようにアンダーフィル材質(ヤング率(縦弾性係数)、熱膨張係数)がセラミックBGA接続部の実稼動信頼性に大きな影響を及ぼすことが知られている。しかし、アンダーフィルのフィレット形状とアンダーフィル材質を統一的に、具体的な数値で示した情報は開示されておらず実際の信頼性の高いセラミックBGAの実装を実現した例は無い。図3の構成とするに当たって、表1の条件で数値シミュレーションを実施し、アンダーフィルの材質と発生応力および発生ひずみの関係を把握した。表1は、アンダーフィルを2水準(大、中)とし、アンダーフィル材料のヤング率を7.9GPaと4.0GPa、熱膨張係数を30ppm/℃と60ppm/℃として解析し、その結果を発生応力とひずみの相対比較で示した。
As described above, it has been found that the fillet shape of the underfill has a great influence on the actual operation reliability of the ceramic BGA connection portion. On the other hand, as shown in
表1
アンダー 熱膨張係数 ヤング率 A点応力 B点応力 C点ひずみ
フィル α E △σA △σB |△εC|
水 準 (ppm) (GPa) (MPa)(MPa) (ppm)
------------------------------------------------------------------
大 60 7.9 175 849 1100
大 30 7.9 75 469 675
大 60 4.0 86 459 433
大 30 4.0 44 257 64
中 60 7.9 169 349 1159
中 30 7.9 77 163 649
中 60 4.0 83 177 410
中 30 4.0 46 82 90
表1の発生応力と発生ひずみの代表値は、図5において温度サイクル時に発生するアンダーフィルの剥がれの基点となるセラミックの角A点の応力、アンダーフィル・フィレット開始点であるB点の応力とBGAはんだのC点のひずみとした。A点、B点での応力は、アンダーフィルの剥がれが対象であるので、アンダーフィルの応力を代表値とし、また、C点ははんだの疲労寿命が対象となるのではんだのひずみを代表値とした。
Table 1
Under coefficient of thermal expansion Young's modulus A point stress B point stress C point strain Fill α E △ σA △ σB | △ εC |
Level (ppm) (GPa) (MPa) (MPa) (ppm)
-------------------------------------------------- ----------------
Large 60 7.9 175 849 1100
Large 30 7.9 75 469 675
Large 60 4.0 86 459 433
Large 30 4.0 44 257 64
The representative values of the generated stress and generated strain in Table 1 are the stress at the corner A of the ceramic that is the base point of the underfill peeling that occurs during the temperature cycle in FIG. 5, and the stress at the B point that is the start point of the underfill fillet. It was set as the strain of C point of BGA solder. Since the stress at points A and B is subject to underfill peeling, the underfill stress is the representative value, and the stress at point C is the solder fatigue life, so the solder strain is the representative value. did.
表1より、アンダーフィルのフィレットが中となることにより同一材料構成でもB点(アンダーフィルの開始点)の応力が下がり剥がれにくくなることが判明した。セラミックの角部A点の応力およびBGAはんだC点のひずみには差が無い。このことより、アンダーフィルの塗布量が中となる塗布によりアンダーフィル・フィレットの形成が重要であることが判明した。次に、セラミックの角部A点の応力に着目すると、表1よりアンダーフィルのヤング率が小さいか、熱膨張係数が小さいほうが応力が小さくなることが判明した。また、同一割合でヤング率と熱膨張係数が変化した場合に、応力の低減にはヤング率の変化の方が効果的であることが判明した。 From Table 1, it was found that the stress at the point B (underfill start point) is lowered and hardly peeled even if the underfill fillet is inside even in the same material structure. There is no difference between the stress at the corner A of the ceramic and the strain at the BGA solder C point. From this, it has been found that the formation of the underfill fillet is important by the coating with the underfill coating amount being medium. Next, focusing on the stress at the corner A of the ceramic, it has been found that the stress becomes smaller as the Young's modulus of the underfill is smaller than in Table 1 or the thermal expansion coefficient is smaller. It was also found that when the Young's modulus and the thermal expansion coefficient change at the same rate, the change in Young's modulus is more effective for reducing the stress.
さらに、BGAはんだC点のひずみに着目するとヤング率と熱膨張係数の両者ともに小さくなるとはんだのひずみは小さくなる。その度合いは、熱膨張係数の方が効果が大きいことが判明した。これらを、より材料選定を明確に判定するために、図7、図8、図9を作成した。ここで、図7はアンダーフィル大の場合のA点の応力を説明する図である。図8はアンダーフィル大の場合のB点の応力を説明する図である。図9はアンダーフィル大の場合のC点のひずみを説明する図である。 Furthermore, when attention is paid to the strain at the BGA solder C point, when both the Young's modulus and the thermal expansion coefficient are reduced, the solder strain is reduced. The degree of thermal expansion coefficient was found to be more effective. In order to more clearly determine the material selection, FIG. 7, FIG. 8, and FIG. 9 were created. Here, FIG. 7 is a diagram for explaining the stress at the point A when the underfill is large. FIG. 8 is a diagram for explaining the stress at point B when the underfill is large. FIG. 9 is a diagram for explaining the distortion at the point C when the underfill is large.
図7ないし図9では、材料選定のパラメータであるアンダーフィルの熱膨張係数とヤング率をそれぞれx軸、y軸とし、A点、B点の応力値とC点のひずみを等高線として示す。各図には、これまでの小型セラミックBGAのアンダーフィル塗布部品における信頼性データから目標許容値を太線で示す。この目標値は、A点の応力では380MPa以下、B点の応力では175MPa以下、C点のひずみでは0.4ppm以下である。信頼性判定基準は、光伝送モジュールが満足すべきtelcordia GR−468−CORE基準の−40〜85℃の温度サイクル試験で500サイクルを合格する条件である。 7 to 9, the thermal expansion coefficient and Young's modulus of the underfill, which are the material selection parameters, are shown as x-axis and y-axis, respectively, and the stress values at points A and B and the strain at point C are shown as contour lines. In each figure, the target allowable value is indicated by a bold line from the reliability data of the underfill coated part of the small ceramic BGA so far. This target value is 380 MPa or less for point A stress, 175 MPa or less for point B stress, and 0.4 ppm or less for point C strain. The reliability criterion is a condition that passes 500 cycles in the temperature cycle test of −40 to 85 ° C. of the telcordia GR-468-CORE standard that the optical transmission module should satisfy.
これらの結果から、アンダーフィル材料のヤング率と熱膨張係数の最大値は、C点のひずみで決まり、ヤング率5GPa、熱膨張係数35ppm/℃程度が適当と発明者等は、判断した。一方、アンダーフィル材料のヤング率と熱膨張係数の最小値は発明者等の知見により、ヤング率2GPa、熱膨張係数20ppm/℃程度である。したがって、アンダーフィル材料のヤング率2〜5GPa、熱膨張係数20〜35ppm/℃が好適である。なお、アンダーフィル材料のヤング率と熱膨張係数の最大値は、ヤング率6GPa、熱膨張係数40ppm/℃程度であっても良い。 From these results, the inventors determined that the maximum Young's modulus and thermal expansion coefficient of the underfill material are determined by the strain at the point C, and that the Young's modulus is 5 GPa and the thermal expansion coefficient is about 35 ppm / ° C. On the other hand, the minimum values of Young's modulus and thermal expansion coefficient of the underfill material are Young's modulus of 2 GPa and thermal expansion coefficient of about 20 ppm / ° C. based on the knowledge of the inventors. Therefore, the Young's modulus of the underfill material is 2 to 5 GPa and the thermal expansion coefficient is 20 to 35 ppm / ° C. The maximum value of the Young's modulus and the thermal expansion coefficient of the underfill material may be a Young's modulus of 6 GPa and a thermal expansion coefficient of about 40 ppm / ° C.
さらに、図3において、通常のセラミックの切断加工では角の面取りは0.05以下と極めて小さい。この場合、A点のアンダーフィルに応力集中が発生し、数値計算上の応力値より数倍大きくなる。このため温度サイクル試験時に、アンダーフィルA点にクラックが入り易く温度サイクル寿命が短いと言う問題があった。 Further, in FIG. 3, the corner chamfering is as small as 0.05 or less in normal ceramic cutting. In this case, stress concentration occurs in the underfill at point A, which is several times larger than the stress value in numerical calculation. For this reason, there was a problem that the temperature cycle life was short during the temperature cycle test because cracks were likely to occur at the underfill A point.
これに対してセラミックの角部にR0.2以上の面取りをつけることによりA点に発生するアンダーフィルの応力集中を避けることが出来る。また、面取りとしてはC0.5以上のC面取りにて、R面取りR0.2とほぼ同等の効果が得られている。 On the other hand, stress concentration of the underfill generated at point A can be avoided by chamfering R0.2 or more at the corner of the ceramic. Further, as chamfering, C chamfering of C0.5 or higher has the same effect as R chamfering R0.2.
ここで、C面取りとは、交差する面部分を45°でカットする加工である。例えば、それぞれ1mmずつの場所で45°カットの場合C1である。R面取りとは、交差する面部分を丸形状にする加工である。丸形状の半径が1mmであればR1である。 Here, C chamfering is a process of cutting intersecting surface portions at 45 °. For example, it is C1 in the case of 45 ° cut at a location of 1 mm each. R chamfering is a process of rounding intersecting surface portions. If the radius of the round shape is 1 mm, it is R1.
1…セラミック基板、2…PEGフレーム、3…同軸コネクタ部、4…BGAボール、5…アンダーフィル流動防止枠、6…アンダーフィル、7…プリント基板、8…同軸ケーブル、9…光電気変換モジュール(PDM)、10…マルチプレクサーIC(MUX)、11…電気光変換モジュール(LDM)、12…デマルチプレクサーIC(DMUX)、13…コネクタ、14…入力用光ファイバ、15…出力用光ファイバ、19…光電気変換モジュール(PDM)、20…マルチプレクサーIC(MUX)、21…電気光変換モジュール(LDM)、22…デマルチプレクサーIC(DMUX)、23…コネクタ。
DESCRIPTION OF
Claims (3)
前記マルチプレクサーICと前記電気光変換モジュールとは同軸ケーブルで接続されて前記シリアル電気信号を伝送し、
前記マルチプレクサーICは、セラミック基板部と金属部とから構成され、前記金属部の一部側面に前記同軸ケーブルが装着される同軸コネクタ部を有し、
前記マルチプレクサーICは、前記セラミック基板部の下部に設けた複数のはんだボールによって前記プリント基板と接続され、
前記複数のはんだボールは、アンダーフィル流動防止枠で囲われ、
前記セラミック基板のサイズは、20mm×20mm×2.5mm厚であり、
前記アンダーフィル流動防止枠のサイズは、25mm×25mm×2mm高さであり、かつ、その前記同軸コネクタ部の下部は、1mm高さであり、
前記複数のはんだボールの周囲は、前記マルチプレクサーICの側面と前記アンダーフィル流動防止枠の内側面との間で概ね懸垂線状のプロファイルを有するようにアンダーフィルによって充填されており、
前記アンダーフィルは、ヤング率が2〜5GPa、かつ、熱膨張率が20〜35ppm/℃であることを特徴とする光伝送モジュール。 An optical transmission module in which a multiplexer IC that multiplexes a plurality of electrical signals to generate a serial electrical signal and an electro-optical conversion module that converts the serial electrical signal into an optical signal and sends it to an optical fiber are mounted on a printed circuit board. In
The multiplexer IC and the electro-optic conversion module are connected by a coaxial cable to transmit the serial electric signal,
The multiplexer IC is composed of a ceramic substrate part and a metal part, and has a coaxial connector part to which the coaxial cable is attached on a side surface of the metal part,
The multiplexer IC, the printed circuit board and are connected by a plurality of solder balls disposed in the lower portion of the ceramic substrate portion,
Wherein the plurality of solder balls, surrounded by underfill flow prevention frame,
The size of the ceramic substrate is 20 mm × 20 mm × 2.5 mm thick,
The size of the underfill flow prevention frame is 25 mm × 25 mm × 2 mm height, and the lower part of the coaxial connector part is 1 mm high,
The periphery of the plurality of solder balls is filled with underfill so as to have a generally catenary profile between the side surface of the multiplexer IC and the inner side surface of the underfill flow prevention frame ,
The underfill has a Young's modulus of 2 to 5 GPa and a thermal expansion coefficient of 20 to 35 ppm / ° C.
前記光電気変換モジュールと前記デマルチプレクサーICとは同軸ケーブルで接続されて前記電気信号を伝送し、
前記デマルチプレクサーICは、セラミック基板部と金属部とから構成され、前記金属部の一部側面に前記同軸ケーブルが装着される同軸コネクタ部を有し、
前記デマルチプレクサーICは、前記セラミック基板部の下部に設けた複数のはんだボールによって前記プリント基板と接続され、
前記複数のはんだボールは、アンダーフィル流動防止枠で囲われ、
前記セラミック基板のサイズは、20mm×20mm×2.5mm厚であり、
前記アンダーフィル流動防止枠のサイズは、25mm×25mm×2mm高さであり、かつ、その前記同軸コネクタ部の下部は、1mm高さであり、
前記複数のはんだボールの周囲は、前記デマルチプレクサーICの側面と前記アンダーフィル流動防止枠の内側面との間で概ね懸垂線状のプロファイルを有するようにアンダーフィルによって充填されており、
前記アンダーフィルは、ヤング率が2〜5GPa、かつ、熱膨張率が20〜35ppm/℃であることを特徴とする光伝送モジュール。 An optical transmission module in which a photoelectric conversion module that converts an optical signal received from an optical fiber into an electrical signal and a demultiplexer IC that generates a plurality of parallel electrical signals by separating the electrical signal are mounted on a printed circuit board ,
The photoelectric conversion module and the demultiplexer IC are connected by a coaxial cable to transmit the electrical signal,
The demultiplexer IC is composed of a ceramic substrate part and a metal part, and has a coaxial connector part to which the coaxial cable is attached on a side surface of the metal part,
The demultiplexer IC, the printed circuit board and are connected by a plurality of solder balls disposed in the lower portion of the ceramic substrate portion,
Wherein the plurality of solder balls, surrounded by underfill flow prevention frame,
The size of the ceramic substrate is 20 mm × 20 mm × 2.5 mm thick,
The size of the underfill flow prevention frame is 25 mm × 25 mm × 2 mm height, and the lower part of the coaxial connector part is 1 mm high,
Around the plurality of solder balls is filled substantially by underfill to have a catenary profile between the inner surface of the the side of the demultiplexer IC underfill flow prevention frame,
The underfill has a Young's modulus of 2 to 5 GPa and a thermal expansion coefficient of 20 to 35 ppm / ° C.
前記複数のはんだボールを形成された接続面の全周に0.5mm以上の面取りまたは0.2mm以上のR面取りを設けたことを特徴とする光伝送モジュール。 The optical transmission module according to claim 1 or 2, wherein
An optical transmission module, wherein a chamfer of 0.5 mm or more or an R chamfer of 0.2 mm or more is provided on the entire circumference of the connection surface on which the plurality of solder balls are formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006001307A JP4852310B2 (en) | 2006-01-06 | 2006-01-06 | Optical transmission module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006001307A JP4852310B2 (en) | 2006-01-06 | 2006-01-06 | Optical transmission module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007184400A JP2007184400A (en) | 2007-07-19 |
JP4852310B2 true JP4852310B2 (en) | 2012-01-11 |
Family
ID=38340232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006001307A Active JP4852310B2 (en) | 2006-01-06 | 2006-01-06 | Optical transmission module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4852310B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400812A (en) * | 2013-07-03 | 2013-11-20 | 华天科技(西安)有限公司 | FCQFN packaging part filled by underfill material and production process thereof |
DE112013007722T5 (en) * | 2013-12-27 | 2016-09-15 | Intel Corporation | Optoelectronic package assemblies |
KR101670894B1 (en) | 2015-05-27 | 2016-10-31 | (주)파트론 | Manufacturing method of semiconductor package |
KR101661919B1 (en) * | 2015-06-23 | 2016-10-04 | (주)파트론 | Manufacturing method of semiconductor package |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1050770A (en) * | 1996-08-05 | 1998-02-20 | Hitachi Ltd | Semiconductor device and its manufacture |
JP3432749B2 (en) * | 1998-07-23 | 2003-08-04 | 富士通株式会社 | Semiconductor device and manufacturing method thereof |
JP3576910B2 (en) * | 1998-11-09 | 2004-10-13 | 埼玉日本電気株式会社 | IC package reinforcement structure |
JP2002261190A (en) * | 2001-02-28 | 2002-09-13 | Sony Corp | Semiconductor device, method for manufacturing the same and electronic equipment |
JP3929250B2 (en) * | 2001-03-08 | 2007-06-13 | 株式会社ルネサステクノロジ | Semiconductor device |
JP2003051568A (en) * | 2001-08-08 | 2003-02-21 | Nec Corp | Semiconductor device |
JP2003100960A (en) * | 2001-09-19 | 2003-04-04 | Keihin Corp | Bga package mounting structure and its manufacturing method |
JP3946975B2 (en) * | 2001-10-09 | 2007-07-18 | 富士通株式会社 | Cooling system |
JP2003224226A (en) * | 2002-01-30 | 2003-08-08 | Opnext Japan Inc | Optical transmitter, bga package for optical transmission used therein, semiconductor package for optical transmission and its producing method |
JP2004022870A (en) * | 2002-06-18 | 2004-01-22 | Fujitsu Ltd | Flip-chip electronic device and chip module electronic device equipment |
JP4015497B2 (en) * | 2002-07-30 | 2007-11-28 | 日本オプネクスト株式会社 | Optical communication device |
-
2006
- 2006-01-06 JP JP2006001307A patent/JP4852310B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007184400A (en) | 2007-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4929784B2 (en) | Multilayer wiring board, semiconductor device and solder resist | |
US7427804B2 (en) | Optoelectronic semiconductor device and light signal input/output device | |
JP4697077B2 (en) | Optical module | |
JP4187681B2 (en) | Integrated light converter assembly and method of forming the same | |
US8457450B2 (en) | Printed circuit board and manufacturing method thereof | |
KR101287117B1 (en) | Photoelectric composite wiring module and method for manufacturing same | |
JP4852310B2 (en) | Optical transmission module | |
WO2016210335A1 (en) | Optical module and optical module package incorporating a high-thermal-expansion ceramic substrate | |
US8258617B2 (en) | Semiconductor device, semiconductor package, interposer, semiconductor device manufacturing method and interposer manufacturing method | |
US20030122228A1 (en) | IC package, optical transmitter, and optical receiver | |
US20130182394A1 (en) | Electronic module packages and assemblies for electrical systems | |
US20180175113A1 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP5632479B2 (en) | Optical printed circuit board and manufacturing method thereof | |
TWI590723B (en) | Package framework for photoelectric conversion module | |
WO2014141458A1 (en) | Optical module and transmitting device | |
TW569053B (en) | Techniques for attaching rotated photonic devices to an optical sub-assembly in an optoelectronic package | |
JP2702385B2 (en) | Clocking method for integrated circuit chips | |
US10681811B2 (en) | Connecting optical sub-assembly to main printed circuit board | |
US20190067260A1 (en) | Semiconductor device and method for manufacturing the same | |
US20070165979A1 (en) | Optical input substrate, optical output substrate, optical input/output substrate, a fabrication method for these substrates, and an optical element integrated semiconductor integrated circuit | |
US7786579B2 (en) | Apparatus for crack prevention in integrated circuit packages | |
JP7300625B2 (en) | Semiconductor device mounting structure, optical module, and method for manufacturing semiconductor device mounting structure | |
JP7265460B2 (en) | optical module | |
US6639302B2 (en) | Stress reduction in flip-chip PBGA packaging by utilizing segmented chip carries | |
US20240282722A1 (en) | Ball grid array rf package configurations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111018 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111024 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4852310 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |