JP4639216B2 - Magnetic sensor - Google Patents
Magnetic sensor Download PDFInfo
- Publication number
- JP4639216B2 JP4639216B2 JP2007151755A JP2007151755A JP4639216B2 JP 4639216 B2 JP4639216 B2 JP 4639216B2 JP 2007151755 A JP2007151755 A JP 2007151755A JP 2007151755 A JP2007151755 A JP 2007151755A JP 4639216 B2 JP4639216 B2 JP 4639216B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- magnetic field
- magnetoresistive effect
- magnetoresistive
- magnetization direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 187
- 230000000694 effects Effects 0.000 claims description 119
- 230000005415 magnetization Effects 0.000 claims description 81
- 101100176188 Onchocerca volvulus gmr-1 gene Proteins 0.000 description 52
- 239000000758 substrate Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/965—Switches controlled by moving an element forming part of the switch
- H03K17/97—Switches controlled by moving an element forming part of the switch using a magnetic movable element
Landscapes
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
- Measuring Magnetic Variables (AREA)
- Hall/Mr Elements (AREA)
Description
本発明は、磁気センサに関する。 The present invention relates to a magnetic sensor.
従来、磁気抵抗効果素子を用いて非接触式の磁気スイッチを構成したものがある。この従来例に係る非接触式の磁気スイッチは、磁気抵抗効果を有する磁気抵抗効果素子の近傍に永久磁石を配置し、この永久磁石による磁界が磁気抵抗効果素子に作用されていた。さらに磁気抵抗効果素子に作用する永久磁石の磁界を遮蔽する遮蔽板が、磁気抵抗効果素子と永久磁石との間に移動可能に配置されていた。 Conventionally, a non-contact type magnetic switch is configured using a magnetoresistive element. In the non-contact type magnetic switch according to this conventional example, a permanent magnet is disposed in the vicinity of a magnetoresistive element having a magnetoresistive effect, and a magnetic field generated by the permanent magnet is applied to the magnetoresistive element. Further, a shielding plate that shields the magnetic field of the permanent magnet that acts on the magnetoresistive effect element is movably disposed between the magnetoresistive effect element and the permanent magnet.
前記磁気抵抗効果素子は基本的には、自由層(フリー磁性層)と、非磁性層と、固定層(ピン止め磁性層)と、交換バイアス層(反強磁性層)との積層構造体から構成されている。 The magnetoresistive element basically comprises a laminated structure of a free layer (free magnetic layer), a nonmagnetic layer, a fixed layer (pinned magnetic layer), and an exchange bias layer (antiferromagnetic layer). It is configured.
そして、固定層に交換バイアス層からバイアス磁界が作用されて、固定層が交換バイアス層で磁化され、その磁化方向が特定方向に固定されている。一方、自由層は、外部磁界によって磁化方向が変化される。 A bias magnetic field is applied to the fixed layer from the exchange bias layer, the fixed layer is magnetized by the exchange bias layer, and the magnetization direction is fixed in a specific direction. On the other hand, the magnetization direction of the free layer is changed by an external magnetic field.
そこで、上述した従来の、磁気抵抗効果素子を用いた非接触式の磁気スイッチは、この自由層に外部磁界を作用させる磁石として前記永久磁石を用い、この永久磁石で自由層の磁化方向を所望の方向に変化させて、永久磁石による自由層の磁化方向を固定層の磁化方向に対して角回転させていた。 Therefore, the above-described conventional non-contact type magnetic switch using a magnetoresistive effect element uses the permanent magnet as a magnet for applying an external magnetic field to the free layer, and the magnetization direction of the free layer is desired by the permanent magnet. Thus, the magnetization direction of the free layer by the permanent magnet is angularly rotated with respect to the magnetization direction of the fixed layer.
そして、磁気抵抗効果素子に作用する永久磁石の磁界を遮断する遮蔽板を、磁気抵抗効果素子と永久磁石との間に出入させることにより、磁気抵抗効果素子に作用する永久磁石の磁界の強さを強弱に変化させ、その抵抗値を大小に変化させていた。この磁気抵抗効果素子の抵抗値の変化による出力信号でスイッチ動作の切替が行なわれる。 Then, the strength of the magnetic field of the permanent magnet that acts on the magnetoresistive effect element is obtained by moving a shield plate that blocks the magnetic field of the permanent magnet that acts on the magnetoresistive effect element between the magnetoresistive effect element and the permanent magnet. Was changed to strength, and the resistance value was changed to large or small. The switching operation is switched by an output signal resulting from a change in the resistance value of the magnetoresistive element.
しかしながら、従来の非接触式スイッチは、磁界の強弱、すなわち遮蔽板の出入によって磁気抵抗効果素子の抵抗値が変化するものであるため、遮蔽板が近づく、すなわち遮蔽板が磁気抵抗効果素子と永久磁石との間に進入する、又は遮蔽板が遠ざかる、すなわち遮蔽板が磁気抵抗効果素子と永久磁石との間から退出する動作に従い、磁気抵抗効果素子の抵抗値が徐々に変化する。つまり、スイッチ切替時における磁気抵抗効果素子からの出力信号(抵抗値の変化)は緩やかに変化することになる。 However, in the conventional non-contact type switch, the resistance value of the magnetoresistive effect element changes depending on the strength of the magnetic field, that is, the entrance / exit of the shield plate, so that the shield plate approaches, that is, the shield plate becomes permanent with the magnetoresistive effect element. The resistance value of the magnetoresistive effect element gradually changes in accordance with the operation of entering between the magnets or moving away from the shield plate, that is, the shield plate withdraws from between the magnetoresistive effect element and the permanent magnet. That is, the output signal (change in resistance value) from the magnetoresistive element at the time of switching the switch changes gently.
そのため、従来の、磁気抵抗効果素子を用いた非接触式の磁気スイッチは、ONとOFFを瞬時に切替えるもの、或いは被検知部材の動きを瞬時に検出するもの等のスイッチ動作には適さないものであった。 Therefore, conventional non-contact type magnetic switches using magnetoresistive effect elements are not suitable for switch operations such as those that instantaneously switch between ON and OFF, or those that instantaneously detect the movement of the detected member. Met.
上記非接触式スイッチの遮蔽板を、磁界遮蔽作用を有する被検知部材として用い、この被検知部材を検知するようにした構成の非接触式磁気センサにおいても、同様の課題が生じている。 A similar problem occurs in a non-contact type magnetic sensor configured to detect the detected member using the shield plate of the non-contact type switch as a detected member having a magnetic field shielding action.
本発明の目的は、磁界の向きで磁気抵抗効果素子の抵抗値を瞬時に変化させることにより、磁気抵抗効果素子からの出力信号を瞬時に切替える磁気センサを得ることにある。 An object of the present invention is to obtain a magnetic sensor that instantaneously switches an output signal from a magnetoresistive effect element by instantaneously changing the resistance value of the magnetoresistive effect element according to the direction of the magnetic field.
本発明者等は、少なくとも2個の磁気抵抗効果素子における固定層の磁化方向を反対方向に向けて2つの磁石で該各磁気抵抗効果素子を磁化することにより、磁界の強さが徐々に変化する構成であっても、磁気抵抗効果素子の抵抗値を急激に変化させることにより、出力信号を瞬時に切替える磁気センサを得ることに至った。 The inventors of the present invention gradually change the strength of the magnetic field by magnetizing each magnetoresistive effect element with two magnets with the magnetization direction of the fixed layer in at least two magnetoresistive effect elements being opposite to each other. Even in such a configuration, a magnetic sensor that instantaneously switches the output signal can be obtained by abruptly changing the resistance value of the magnetoresistive element.
すなわち、本発明は、磁化方向が固定された固定層及び外部磁界によって磁化方向が変化する自由層を有する磁気抵抗効果素子が直列接続された一対の磁気抵抗効果素子を用いて、第1の位置と第2の位置に移動する磁界遮蔽機能を有する被検知部材の移動位置を検出する磁気センサであって、前記一対の磁気抵抗効果素子への外部磁界として作用する第1の磁石及び第2の磁石を備え、前記一対の磁気抵抗効果素子において、互いの固定層の磁化方向は180°をなす反対向きに固定され、互いの自由層の磁化方向は、前記第2の磁石によって、同一方向に揃えられていて、前記第1の磁石の磁界の向きは、前記第2の磁石の磁界の向きとは180°をなす反対向きであり、かつ前記第1の磁石の磁界の大きさは、前記第2の磁石の磁界の大きさより大きく、前記被検知部材が第1の位置にあるときは、前記第1の磁石の磁界及び第2の磁石の磁界の双方が外部磁界として前記一対の磁気抵抗効果素子に作用し、前記一対の磁気抵抗効果素子の前記自由層の磁化方向が前記第1の磁石の磁界の向きによって決まり、前記第1の磁石による一方の自由層の磁化方向が該一方の固定層の磁化方向と同一方向に向き、前記第1の磁石による他方の自由層の磁化方向が該他方の固定層の磁化方向と180°をなす反対方向に向いて、前記被検知部材が第2の位置にあるときは、該被検知部材によって前記第1の磁石の磁界は遮蔽されて前記第2の磁石の磁界のみが前記一対の磁気抵抗効果素子に作用し、前記一対の磁気抵抗効果素子の前記自由層の磁化方向が前記第2の磁石の磁界の向きによって決まり、前記第2の磁石による前記一方の自由層の磁化方向が前記一方の固定層の磁化方向と180°をなす反対方向に向き、前記第2の磁石による前記他方の自由層の磁化方向が前記他方の固定層の磁化方向と同一方向に向くこと、を特徴としている。
That is, the present invention uses a pair of magnetoresistive effect elements in which a magnetoresistive effect element having a fixed layer whose magnetization direction is fixed and a free layer whose magnetization direction is changed by an external magnetic field is connected in series. And a magnetic sensor for detecting a moving position of a detected member having a magnetic field shielding function that moves to a second position, wherein the first magnet and the second magnet act as an external magnetic field to the pair of magnetoresistive elements. In the pair of magnetoresistive elements, the magnetization directions of the fixed layers of each other are fixed in opposite directions of 180 °, and the magnetization directions of the free layers are set in the same direction by the second magnet. The direction of the magnetic field of the first magnet is opposite to the direction of the magnetic field of the second magnet, and the magnitude of the magnetic field of the first magnet is Large magnetic field of the second magnet When the detected member is in the first position, both the magnetic field of the first magnet and the magnetic field of the second magnet act on the pair of magnetoresistive effect elements as external magnetic fields, The magnetization direction of the free layer of the pair of magnetoresistive elements is determined by the direction of the magnetic field of the first magnet, and the magnetization direction of one free layer by the first magnet is the same as the magnetization direction of the one fixed layer When the detected member is in the second position, the magnetization direction of the other free layer by the first magnet is opposite to the magnetization direction of the other pinned layer by 180 °. The magnetic field of the first magnet is shielded by the detected member, and only the magnetic field of the second magnet acts on the pair of magnetoresistive effect elements, and the magnetization of the free layer of the pair of magnetoresistive effect elements The direction is the direction of the magnetic field of the second magnet The magnetization direction of the one free layer by the second magnet is opposite to the magnetization direction of the one fixed layer by 180 °, and the magnetization of the other free layer by the second magnet. The direction is the same as the magnetization direction of the other fixed layer .
本発明によれば、磁界の向きで磁気抵抗効果素子の抵抗値を瞬時に変化させることにより、磁気抵抗効果素子からの出力信号を瞬時に切替える磁気センサが得られる。 According to the present invention, it is possible to obtain a magnetic sensor that instantaneously switches the output signal from the magnetoresistive effect element by instantaneously changing the resistance value of the magnetoresistive effect element according to the direction of the magnetic field.
以下、本発明の実施の形態を図示例と共に説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1、図2及び図4に示すように、磁気スイッチのホルダー1は、ベース2の両端部に対をなすアーム3、4を平行に対向して設けた逆門型形状に形成されている。そして、対をなす一方のアーム3には磁気抵抗効果素子5及び第2の永久磁石(以下、第2の磁石という)6が、他方のアーム4には第1の永久磁石(以下、第1の磁石という)7がそれぞれ設けられている。 As shown in FIGS. 1, 2, and 4, the magnetic switch holder 1 is formed in an inverted portal shape in which arms 3, 4 that are paired at both ends of a base 2 are provided in parallel to face each other. . A pair of arms 3 includes a magnetoresistive element 5 and a second permanent magnet (hereinafter referred to as a second magnet) 6, and the other arm 4 includes a first permanent magnet (hereinafter referred to as a first magnet). 7) are provided.
磁気抵抗効果素子5は、ICパッケージ或いは樹脂封止等を用いて気密構造に形成されて基板8上に搭載され、基板8を介して一方のアーム3の内側面に取付けられている。 The magnetoresistive effect element 5 is formed in an airtight structure using an IC package or resin sealing, is mounted on the substrate 8, and is attached to the inner surface of one arm 3 via the substrate 8.
第2の磁石6は、磁気抵抗効果素子5の自由層5d(図5参照)を磁界で磁化する磁界作用位置で一方のアーム3に取付けられている。ここに、磁界作用位置は、第2の磁石6の磁力線6aが磁気抵抗効果素子5の自由層5dに作用し、第2の磁石6の磁界(外部磁界)で磁気抵抗効果素子5の自由層5dを磁化可能な位置に設定される。図1、図2及び図4に示す第2の磁石6は、磁気抵抗効果素子5と別体に設けたが、磁気抵抗効果素子5内に一体に設けるように構成してもよい。 The second magnet 6 is attached to one arm 3 at a magnetic field action position that magnetizes the free layer 5d (see FIG. 5) of the magnetoresistive element 5 with a magnetic field. Here, the magnetic field action position is such that the magnetic lines of force 6a of the second magnet 6 act on the free layer 5d of the magnetoresistive effect element 5, and the free layer of the magnetoresistive effect element 5 by the magnetic field (external magnetic field) of the second magnet 6 5d is set to a magnetizable position. The second magnet 6 shown in FIGS. 1, 2, and 4 is provided separately from the magnetoresistive element 5, but may be configured to be provided integrally in the magnetoresistive element 5.
第1の磁石7は、その磁界(外部磁界)が磁気抵抗効果素子5の自由層5d(図5参照)に作用して、該自由層5dを磁化可能な位置(磁界作用位置)に配置し、かつ磁力線(磁界の向き)7aを第2の磁石6の磁力線(磁界の向き)6aと180°をなす反対方向に向けて他方のアーム4に取付けている。第1の磁石7には、第2の磁石6の磁力より数百ガウス大きな磁力をもつ磁石を用いている。 The first magnet 7 is disposed at a position where the magnetic layer (external magnetic field) acts on the free layer 5d (see FIG. 5) of the magnetoresistive element 5 and the free layer 5d can be magnetized (magnetic field acting position). The magnetic field lines (direction of the magnetic field) 7a are attached to the other arm 4 so that the magnetic field lines (direction of the magnetic field) 6a of the second magnet 6 are opposite to each other at 180 °. As the first magnet 7, a magnet having a magnetic force several hundred gauss larger than the magnetic force of the second magnet 6 is used.
次に、磁気スイッチに用いる磁気抵抗効果素子5を図5に基いて具体的に説明する。この磁気抵抗効果素子5は、第2の磁石6を別体に設けた構造の例を示すものである。この磁気抵抗効果素子5は基本的構成として、交換バイアス層(反強磁性体層)5aと、固定層(ピン止め磁性層)5bと、非磁性層5cと、自由層(フリー磁性層)5dとを積層して形成し、巨大磁気抵抗効果を利用したGMR(Giant Magneto Resistance)素子の一種である磁気抵抗効果素子として構成されている。 Next, the magnetoresistive effect element 5 used for the magnetic switch will be specifically described with reference to FIG. This magnetoresistive effect element 5 shows an example of a structure in which the second magnet 6 is provided separately. The magnetoresistive effect element 5 basically has an exchange bias layer (antiferromagnetic layer) 5a, a fixed layer (pinned magnetic layer) 5b, a nonmagnetic layer 5c, and a free layer (free magnetic layer) 5d. Are formed as a magnetoresistive effect element which is a kind of GMR (Giant Magneto Resistance) element using a giant magnetoresistive effect.
磁気抵抗効果素子5が巨大磁気抵抗効果を発揮するためには、例えば交換バイアス層5aがα−Fe2O3層、固定層5bがNiFe層、非磁性層5cがCu層、自由層5dがNiFe層から形成されるが、これらのものに限定されるものではなく、巨大磁気抵抗効果を発揮するものであれば、いずれのものであってもよい。また、磁気抵抗効果素子5は、巨大磁気抵抗効果を発揮するものであれば、上記の積層構造のものに限定されるものではない。 In order for the magnetoresistive element 5 to exhibit the giant magnetoresistive effect, for example, the exchange bias layer 5a is an α-Fe 2 O 3 layer, the fixed layer 5b is a NiFe layer, the nonmagnetic layer 5c is a Cu layer, and the free layer 5d is Although formed from a NiFe layer, it is not limited to these, and any material can be used as long as it exhibits a giant magnetoresistance effect. Further, the magnetoresistive effect element 5 is not limited to the one having the laminated structure as long as it exhibits a giant magnetoresistive effect.
図5に示す磁気抵抗効果素子5の固定層5bは、交換バイアス層5aで磁化され、該交換バイアス層5aによって磁化方向が特定方向に固定(ピン止め)されている。自由層5dは、固定層5bの磁化方向に対する磁化方向が磁石6及び7の磁界(外部磁界)によって変化する。磁気抵抗効果素子5の両端には端子層9が接合されている。そして、固定層5bの固定された磁化方向に対する外部磁界による自由層5dの磁化方向の向きにより、2つの端子層9間での抵抗値の変化が出力される。 The fixed layer 5b of the magnetoresistive element 5 shown in FIG. 5 is magnetized by the exchange bias layer 5a, and the magnetization direction is fixed (pinned) in a specific direction by the exchange bias layer 5a. In the free layer 5d, the magnetization direction with respect to the magnetization direction of the fixed layer 5b is changed by the magnetic field (external magnetic field) of the magnets 6 and 7. Terminal layers 9 are bonded to both ends of the magnetoresistive element 5. Then, a change in resistance value between the two terminal layers 9 is output depending on the direction of the magnetization direction of the free layer 5d by the external magnetic field with respect to the magnetization direction fixed to the fixed layer 5b.
磁気抵抗効果素子5の固定層5bが特定方向に固定して磁化され、第1の磁石7に、第2の磁石6のそれよりも大きい磁力の磁石が用いられ、磁気抵抗効果素子5の自由層5dの磁化方向が180°をなす反対方向に向けられて、磁気抵抗効果素子5の自由層5dが第1の磁石7と第2の磁石6で磁化される。この実施形態では、第2の磁石6による自由層5dの磁化方向を、固定層5bの磁化方向と同一方向(又は180°をなす反対方向)へ向けている。 The fixed layer 5 b of the magnetoresistive effect element 5 is fixed and magnetized in a specific direction, and a magnet having a magnetic force larger than that of the second magnet 6 is used for the first magnet 7. The free layer 5d of the magnetoresistive effect element 5 is magnetized by the first magnet 7 and the second magnet 6 with the magnetization direction of the layer 5d oriented in the opposite direction of 180 °. In this embodiment, the magnetization direction of the free layer 5d by the second magnet 6 is directed in the same direction as the magnetization direction of the fixed layer 5b (or the opposite direction forming 180 °).
さらに、第1、第2の磁石7、6に対する相対位置が変化する、強磁性体からなる磁界遮蔽部材10を有している。この磁界遮蔽部材10は、第1、第2の磁石7、6の磁界の双方を磁気抵抗効果素子5に作用させて自由層5dの磁化方向を第1の方向とする第1の位置と、第1、第2の磁石7、6の磁界の一方を磁気抵抗効果素子5に作用させて自由層5dの磁化方向を第1の方向と反対の第2の方向とする第2の位置とに移動する。 Furthermore, it has the magnetic field shielding member 10 which consists of a ferromagnetic material from which the relative position with respect to the 1st, 2nd magnets 7 and 6 changes. The magnetic field shielding member 10 has a first position in which both the magnetic fields of the first and second magnets 7 and 6 act on the magnetoresistive element 5 so that the magnetization direction of the free layer 5d is the first direction; One of the magnetic fields of the first and second magnets 7 and 6 is caused to act on the magnetoresistive element 5 so that the magnetization direction of the free layer 5d is set to the second position opposite to the first direction. Moving.
図2、図3及び図4の場合には、平行に配置した対をなすアーム3、4間を通して、第1の磁石7と磁気抵抗効果素子5との間に、磁界遮蔽部材10を出入可能に配置している。この実施形態では、板状の磁界遮蔽部材10を図示しないガイドに案内させて、磁気抵抗効果素子5と第1の磁石7との間を横切るように直線運動させ、これにより磁界遮蔽部材10を第1の磁石7と磁気抵抗効果素子5との間に出入させているが、磁界遮蔽部材10を扇状に形成し、これを回転運動させて磁気抵抗効果素子5と第1の磁石7との間を横切るように出入させてもよい。 In the case of FIGS. 2, 3, and 4, the magnetic field shielding member 10 can be moved in and out between the first magnet 7 and the magnetoresistive element 5 through the pair of arms 3 and 4 arranged in parallel. Is arranged. In this embodiment, the plate-like magnetic shielding member 10 is guided by a guide (not shown) and linearly moved across the magnetoresistive effect element 5 and the first magnet 7, thereby causing the magnetic shielding member 10 to move. The magnetic field shielding member 10 is formed in a fan shape and is rotated to move the magnetoresistive element 5 and the first magnet 7 between the first magnet 7 and the magnetoresistive element 5. You may move in and out across the space.
この実施形態では、前記第1の位置は、磁界遮蔽部材10が第1の磁石7と磁気抵抗効果素子5との間から退出した位置に設定している。一方、第2の位置は、磁界遮蔽部材10が第1の磁石7と磁気抵抗効果素子5との間に進入した位置に設定している。 In this embodiment, the first position is set to a position where the magnetic field shielding member 10 is retracted from between the first magnet 7 and the magnetoresistive element 5. On the other hand, the second position is set to a position where the magnetic field shielding member 10 enters between the first magnet 7 and the magnetoresistive element 5.
磁界遮蔽部材10が図示しない駆動手段により第2の位置まで移動されると、第2の位置に移動した磁界遮蔽部材10は、第1の磁石7の磁力線7aを磁気抵抗効果素子5の自由層5dから引離して第1の磁石7の磁界を遮蔽し、第2の磁石6の磁界のみを外部磁界として磁気抵抗効果素子5に作用させる。したがって、磁気抵抗効果素子5の自由層5dには、第1の磁石7よりも磁力が小さい第2の磁石6の磁界のみが外部磁界として磁気抵抗効果素子5に作用する。 When the magnetic field shielding member 10 is moved to the second position by a driving means (not shown), the magnetic field shielding member 10 that has moved to the second position causes the magnetic force lines 7a of the first magnet 7 to pass through the free layer of the magnetoresistive effect element 5. The magnetic field of the first magnet 7 is shielded away from 5d, and only the magnetic field of the second magnet 6 acts on the magnetoresistive effect element 5 as an external magnetic field. Therefore, only the magnetic field of the second magnet 6 having a smaller magnetic force than the first magnet 7 acts on the magnetoresistive element 5 as an external magnetic field in the free layer 5 d of the magnetoresistive element 5.
一方、磁界遮蔽部材10が第1の位置に移動すると、磁気抵抗効果素子5には、第1、第2の磁石6の磁界の双方が外部磁界として作用する。この場合、第1の磁石7の磁力は第2の磁石6よりも大きく、しかも磁気抵抗効果素子5の自由層5dに対する第1の磁石7と第2の磁石6とによる磁化方向が180°をなす反対方向に向けられている。 On the other hand, when the magnetic field shielding member 10 moves to the first position, both the magnetic fields of the first and second magnets 6 act on the magnetoresistive element 5 as external magnetic fields. In this case, the magnetic force of the first magnet 7 is greater than that of the second magnet 6, and the magnetization direction of the first magnet 7 and the second magnet 6 with respect to the free layer 5 d of the magnetoresistive effect element 5 is 180 °. It is directed in the opposite direction.
したがって、第2の磁石6による磁力が第1の磁石7による磁力で打消され、磁気抵抗効果素子5の自由層5dに第1の磁石7の磁界が作用し、該磁気抵抗効果素子5の自由層5dの磁化方向が第2の磁石6による磁化方向と180°をなす反対方向に反転切替えられる。 Accordingly, the magnetic force of the second magnet 6 is canceled by the magnetic force of the first magnet 7, the magnetic field of the first magnet 7 acts on the free layer 5 d of the magnetoresistive effect element 5, and the free resistance of the magnetoresistive effect element 5 The magnetization direction of the layer 5d is reversed and switched to the opposite direction that forms 180 ° with the magnetization direction of the second magnet 6.
この第1の磁石7と第2の磁石6とによる磁気抵抗効果素子5の自由層5dの磁化方向の反転切替に基いて、磁気抵抗効果素子5の抵抗値が変化する。ここで、自由層5dの磁化方向が反転される場合、磁気抵抗効果素子5の固定層5bに対して磁化方向が180°をなす反対方向に向けられるため、その抵抗値の変化が瞬時に行なわれる。 Based on the reversal switching of the magnetization direction of the free layer 5d of the magnetoresistive effect element 5 by the first magnet 7 and the second magnet 6, the resistance value of the magnetoresistive effect element 5 changes. Here, when the magnetization direction of the free layer 5d is reversed, the magnetization direction is directed in the opposite direction of 180 ° with respect to the fixed layer 5b of the magnetoresistive effect element 5, so that the resistance value changes instantaneously. It is.
この実施形態では、図5に示す磁気抵抗効果素子5を少なくとも2個用いることにより、磁界の向きで瞬時に変化する磁気抵抗効果素子5の抵抗値を出力信号として出力する。この2個の磁気抵抗効果素子5は図6(A)に示すように基板8上に横方向に並べて形成する、或いは図6(B)に示すように基板8上に縦方向に並べて形成する。 In this embodiment, by using at least two magnetoresistive effect elements 5 shown in FIG. 5, the resistance value of the magnetoresistive effect element 5 that instantaneously changes in the direction of the magnetic field is output as an output signal. The two magnetoresistive elements 5 are formed side by side on the substrate 8 as shown in FIG. 6A, or are formed side by side on the substrate 8 as shown in FIG. 6B. .
基板8上に形成された2個の磁気抵抗効果素子5は、固定層5bの磁化方向H2が互いに180°をなす反対方向に向けられ、第2の磁石6によって自由層5dの磁化方向H1が同一方向に揃えられている。図6に示す例では、一方の磁気抵抗効果素子(GMR1)の自由層5dの磁化方向H1が固定層5bの磁化方向H2と180°をなす反対方向に向けられ、他方の磁気抵抗効果素子(GMR2)の自由層5dの磁化方向H1が固定層5bの磁化方向H2と同一方向に向けられている。 The two magnetoresistive elements 5 formed on the substrate 8 are oriented in opposite directions in which the magnetization direction H2 of the fixed layer 5b forms 180 ° with each other, and the magnetization direction H1 of the free layer 5d is set by the second magnet 6. They are aligned in the same direction. In the example shown in FIG. 6, the magnetization direction H1 of the free layer 5d of one magnetoresistive effect element (GMR1) is directed in the opposite direction that forms 180 ° with the magnetization direction H2 of the fixed layer 5b, and the other magnetoresistive effect element ( The magnetization direction H1 of the free layer 5d of GMR2) is oriented in the same direction as the magnetization direction H2 of the fixed layer 5b.
図7では磁気抵抗効果素子5の両端に形成される一方の端子層を9a、他方の端子層を9b、それぞれの磁気抵抗効果素子をGMR1、GMR2として表記して説明する。一方の磁気抵抗効果素子GMR1の端子層9bに他方の磁気抵抗効果素子GMR2の端子層9aを結合して2個の磁気抵抗効果素子GMR1、GMR2(5)を直列に接続している。 In FIG. 7, one terminal layer formed at both ends of the magnetoresistive element 5 is denoted by 9a, the other terminal layer is denoted by 9b, and the respective magnetoresistive elements are denoted by GMR1 and GMR2. The terminal layer 9b of the other magnetoresistive effect element GMR2 is coupled to the terminal layer 9b of one magnetoresistive effect element GMR1, and the two magnetoresistive effect elements GMR1 and GMR2 (5) are connected in series.
図7に示すブリッジ回路では、2辺に2個の磁気抵抗効果素子GMR1、GMR2を用い、残りの2辺に2個の固定抵抗11、12を用いてブリッジ回路を形成している。すなわち、一方の磁気抵抗効果素子GMR1の一方の端子層9aと一方の固定抵抗11の一方の端子11aを接続し、その接続点A1に電源の一方の端子(Vdd)を接続している。他方の磁気抵抗効果素子GMR2の他方の端子層9bと他方の固定抵抗12の他方の端子12bを接続し、その接続点A2に電源の他方の端子を接続している。なお、2個の固定抵抗11、12を2個の磁気抵抗効果素子GMR1、GMR2に置換えてもよい。 In the bridge circuit shown in FIG. 7, a bridge circuit is formed using two magnetoresistive elements GMR1 and GMR2 on two sides and two fixed resistors 11 and 12 on the remaining two sides. That is, one terminal layer 9a of one magnetoresistive element GMR1 and one terminal 11a of one fixed resistor 11 are connected, and one terminal (Vdd) of the power source is connected to the connection point A1. The other terminal layer 9b of the other magnetoresistive effect element GMR2 and the other terminal 12b of the other fixed resistor 12 are connected, and the other terminal of the power source is connected to the connection point A2. Note that the two fixed resistors 11 and 12 may be replaced with two magnetoresistive elements GMR1 and GMR2.
一方の磁気抵抗効果素子GMR1の他方の端子層9bと他方の磁気抵抗効果素子GMR2の一方の端子層9aを接続し、その接続点B1を固定抵抗R1を介してコンパレータ13の一方の入力端子に接続している。一方の固定抵抗11の他方の端子11bと他方の固定抵抗12の一方の端子12aを接続し、その接続点B2を固定抵抗R2を介してコンパレータ13の他方の入力端子に接続している。 The other terminal layer 9b of one magnetoresistive effect element GMR1 is connected to one terminal layer 9a of the other magnetoresistive effect element GMR2, and the connection point B1 is connected to one input terminal of the comparator 13 via a fixed resistor R1. Connected. The other terminal 11b of one fixed resistor 11 and one terminal 12a of the other fixed resistor 12 are connected, and the connection point B2 is connected to the other input terminal of the comparator 13 via the fixed resistor R2.
コンパレータ13の出力端子と一方の入力端子の間にフィードバック用の固定抵抗R3が接続されている。コンパレータ13の他方の入力端子には電源の一方の端子(Vdd)が可変抵抗R4、固定抵抗R5を介して接続されている。 A fixed resistor R3 for feedback is connected between the output terminal of the comparator 13 and one input terminal. One terminal (Vdd) of the power source is connected to the other input terminal of the comparator 13 via a variable resistor R4 and a fixed resistor R5.
コンパレータ13の出力端子がコンパレータ14の一方の入力端子に接続されている。コンパレータ14の他方の入力端子には分圧抵抗R6、固定抵抗R7を介して電源の一方の端子(Vφc)が接続され、コンパレータ14の他方の入力端子の電圧が基準電圧(Ref)に設定されている。実施形態では、この基準電圧を2.5Vに設定している。コンパレータ14の出力端子と他方の入力端子の間にフィードバック用の固定抵抗R8が接続されている。 The output terminal of the comparator 13 is connected to one input terminal of the comparator 14. The other input terminal of the comparator 14 is connected to one terminal (Vφc) of the power supply via the voltage dividing resistor R6 and the fixed resistor R7, and the voltage of the other input terminal of the comparator 14 is set to the reference voltage (Ref). ing. In the embodiment, this reference voltage is set to 2.5V. A fixed feedback resistor R8 is connected between the output terminal of the comparator 14 and the other input terminal.
磁界遮蔽部材10が磁気抵抗効果素子GMR1、GMR2(5)と第1の磁石7との間に進入した場合(図2)をスイッチがオン(ON)、磁界遮蔽部材10が磁気抵抗効果素子GMR1、GMR2(5)と第1の磁石7との間から退出した場合(図1)をスイッチがオフ(OFF)として、磁気スイッチの動作を説明する。この場合、2個の磁気抵抗効果素子GMR1、GMR2のそれぞれの固定層5bの磁化方向と自由層5dの磁化方向は図6(A)に示す関係にあるものとする。 When the magnetic field shielding member 10 enters between the magnetoresistive effect elements GMR1, GMR2 (5) and the first magnet 7 (FIG. 2), the switch is turned on (ON), and the magnetic field shielding member 10 becomes the magnetoresistive effect element GMR1. The operation of the magnetic switch will be described assuming that the switch is off (OFF) when leaving from between the GMR 2 (5) and the first magnet 7 (FIG. 1). In this case, it is assumed that the magnetization directions of the fixed layers 5b and the magnetization directions of the free layers 5d of the two magnetoresistive elements GMR1 and GMR2 have the relationship shown in FIG.
スイッチオフの場合、図1に示すように磁界遮蔽部材10が磁気抵抗効果素子GMR1、GMR2と第1の磁石7との間から退出するため、第1の磁石7からの磁界が2個の磁気抵抗効果素子GMR1、GMR2にそれぞれ作用する。この場合、第1の磁石7の磁界の大きさが第2の磁石6の磁界の大きさより大きいため、磁気抵抗効果素子GMR1及びGMR2の自由層の磁化方向が第1の磁石7の磁力線7aの向きと同一となる。したがって、一方の磁気抵抗効果素子GMR1は、自由層の磁化方向が固定層の磁化方向と同一向きとなり、他方の磁気抵抗効果素子GMR2は、自由層の磁化方向が固定層の磁化方向と180°をなす反対向きとなり、磁気抵抗効果素子GMR1の抵抗値RGMR1より磁気抵抗効果素子GMR2の抵抗値RGMR2が大きくなり(RGMR1<RGMR2)、2個の磁気抵抗効果素子GMR1とGMR2の接続点B1の電圧は図8(A)に示すように2.5Vより大きくなる。 In the case of switch-off, the magnetic field shielding member 10 retreats from between the magnetoresistive effect elements GMR1, GMR2 and the first magnet 7 as shown in FIG. 1, so that the magnetic field from the first magnet 7 has two magnetic fields. It acts on the resistance effect elements GMR1 and GMR2. In this case, since the magnitude of the magnetic field of the first magnet 7 is larger than the magnitude of the magnetic field of the second magnet 6, the magnetization directions of the free layers of the magnetoresistive effect elements GMR 1 and GMR 2 are the magnetic lines of force 7 a of the first magnet 7. It becomes the same as the direction. Therefore, in one magnetoresistive element GMR1, the magnetization direction of the free layer is the same as the magnetization direction of the fixed layer, and in the other magnetoresistive element GMR2, the magnetization direction of the free layer is 180 ° with respect to the magnetization direction of the fixed layer. The resistance value R GMR2 of the magnetoresistive effect element GMR2 becomes larger than the resistance value R GMR1 of the magnetoresistive effect element GMR1 (R GMR1 <R GMR2 ), and the two magnetoresistive effect elements GMR1 and GMR2 are connected. The voltage at the point B1 becomes larger than 2.5V as shown in FIG.
スイッチオンの場合、図2に示すように磁界遮蔽部材10が磁気抵抗効果素子GMR1、GMR2と第1の磁石7との間に進入するため、第1の磁石7から2個の磁気抵抗効果素子GMR1、GMR2への磁界が遮断され、第2の磁石6のみの磁界が2個の磁気抵抗効果素子GMR1、GMR2に作用する。この場合、磁気抵抗効果素子GMR1、GMR2の自由層の磁化方向は、第2の磁石6の磁力線6aの向きと同一方向となる。したがって、一方の磁気抵抗効果素子GMR1は、自由層の磁化方向と固定層の磁化方向とが180°をなす反対方向となり、他方の磁気抵抗効果素子GMR2は、自由層の磁化方向と固定層の磁化方向とが同一方向となり、磁気抵抗効果素子GMR2の抵抗値RGMR2より磁気抵抗効果素子GMR1の抵抗値RGMR1が大きくなり(RGMR2<RGMR1)、2個の磁気抵抗効果素子GMR1とGMR2の接続点B1の電圧は図8(A)に示すように2.5Vより小さくなる。 When the switch is turned on, the magnetic field shielding member 10 enters between the magnetoresistive elements GMR1 and GMR2 and the first magnet 7 as shown in FIG. The magnetic field to GMR1 and GMR2 is interrupted, and the magnetic field of only the second magnet 6 acts on the two magnetoresistive elements GMR1 and GMR2. In this case, the magnetization directions of the free layers of the magnetoresistive effect elements GMR 1 and GMR 2 are the same as the direction of the magnetic force lines 6 a of the second magnet 6. Therefore, one magnetoresistive effect element GMR1 has an opposite direction in which the magnetization direction of the free layer and the magnetization direction of the fixed layer form 180 °, and the other magnetoresistive effect element GMR2 has the magnetization direction of the free layer and the fixed layer The magnetization direction becomes the same direction, and the resistance value R GMR1 of the magnetoresistive effect element GMR1 becomes larger than the resistance value R GMR2 of the magnetoresistive effect element GMR2 (R GMR2 <R GMR1 ), and the two magnetoresistive effect elements GMR1 and GMR2 The voltage at the connection point B1 is smaller than 2.5V as shown in FIG.
これらの接続点B1の電圧は図8(B)に示すように、コンパレータ13の出力側に増幅される。さらにコンパレータ14の基準電圧と比較処理される。そして、図8(C)に示すようにコンパレータ14の出力側には、スイッチオフの場合に5Vの出力信号が出力され、スイッチオンの場合に0Vの出力信号が出力される。これは、磁気抵抗効果素子GMR1、GMR2の抵抗値の変化が電圧値の変化として出力される。 The voltages at these connection points B1 are amplified to the output side of the comparator 13, as shown in FIG. Further, a comparison process is performed with the reference voltage of the comparator 14. As shown in FIG. 8C, an output signal of 5V is output to the output side of the comparator 14 when the switch is off, and an output signal of 0V is output when the switch is on. This is because a change in resistance value of the magnetoresistive effect elements GMR1 and GMR2 is output as a change in voltage value.
この実施形態に係る磁気スイッチによれば、スイッチの切替動作に対応して、磁界の向きが反対でかつ大きさが異なる第1の磁石7と第2の磁石6の磁界を外部磁界として磁気抵抗効果素子5に選択的に作用し、該磁気抵抗効果素子5からスイッチ動作の切替信号を出力し、その出力信号に基いてスイッチの切替を行なうものであり、磁界遮蔽部材10の移動により磁気抵抗効果素子5に対する磁界の向き(磁気抵抗効果素子の磁化方向)を180°をなす反対方向に変化させることができる。したがって、磁界の強さが徐々に変化する構成であっても、磁気抵抗効果素子の抵抗値を急激に変化させることができ、その急激な抵抗値の変化に基いてスイッチ動作を迅速に行なうことができる。 According to the magnetic switch according to this embodiment, in response to the switching operation of the switch, the magnetic resistance of the first magnet 7 and the second magnet 6 having opposite magnetic fields and different magnitudes is set as an external magnetic field. It selectively acts on the effect element 5, outputs a switching signal of the switch operation from the magnetoresistive effect element 5, and switches the switch based on the output signal. The direction of the magnetic field with respect to the effect element 5 (the magnetization direction of the magnetoresistive effect element) can be changed to the opposite direction of 180 °. Therefore, even if the magnetic field strength gradually changes, the resistance value of the magnetoresistive element can be changed abruptly, and the switch operation can be quickly performed based on the abrupt change in resistance value. Can do.
また図7に示すように少なくとも2個の磁気抵抗効果素子を直列接続してブリッジ回路に組み込んだため、外部の雑音磁界或いは周辺の環境磁界等によるノイズを除去して、精度よく、かつ確実にスイッチ動作の切替を行なうことができる。 In addition, as shown in FIG. 7, since at least two magnetoresistive elements are connected in series and incorporated in the bridge circuit, noise due to external noise magnetic field or ambient environmental magnetic field is removed to ensure accurate and reliable. The switch operation can be switched.
図7では、少なくとも2個の磁気抵抗効果素子を直列接続して、これらをブリッジ回路に組み付けたが、これに限定されるものではない。図9に示すように、直列接続した磁気抵抗効果素子GMR1、GMR2を分圧回路に組み込むようにしてもよい。 In FIG. 7, at least two magnetoresistive elements are connected in series and assembled in a bridge circuit. However, the present invention is not limited to this. As shown in FIG. 9, magnetoresistive elements GMR1 and GMR2 connected in series may be incorporated in a voltage dividing circuit.
直列接続した磁気抵抗効果素子GMR1、GMR2を分圧回路に組み込むには、一方の磁気抵抗効果素子GMR1の一方の端子層9aに電源の一方の端子(Vdd)を接続し、他方の磁気抵抗効果素子GMR2の他方の端子層9bに電源の他方の端子を接続する。一方の磁気抵抗効果素子GMR1の他方の端子層9bと他方の磁気抵抗効果素子GMR2の一方の端子層9aを接続し、その接続点B1を固定抵抗R1を介してコンパレータ13の一方の入力端子に接続する。その他のコンパレータ13、14の構成については図7に示すものと同様である。 In order to incorporate the magnetoresistive effect elements GMR1 and GMR2 connected in series into the voltage dividing circuit, one terminal (Vdd) of the power source is connected to one terminal layer 9a of one magnetoresistive effect element GMR1, and the other magnetoresistive effect is obtained. The other terminal of the power source is connected to the other terminal layer 9b of the element GMR2. The other terminal layer 9b of one magnetoresistive effect element GMR1 is connected to one terminal layer 9a of the other magnetoresistive effect element GMR2, and the connection point B1 is connected to one input terminal of the comparator 13 via a fixed resistor R1. Connecting. The other configurations of the comparators 13 and 14 are the same as those shown in FIG.
スイッチオフの場合、図1に示すように磁界遮蔽部材10が磁気抵抗効果素子GMR1、GMR2と第1の磁石7との間から退出するため、第1の磁石7からの磁界が2個の磁気抵抗効果素子GMR1、GMR2にそれぞれ作用する。この場合、第1の磁石7の磁界の大きさが第2の磁石6の磁界の大きさより大きいため、磁気抵抗効果素子GMR1及びGMR2の自由層の磁化方向が第1の磁石7の磁力線7aの向きと同一となる。したがって、一方の磁気抵抗効果素子GMR1は、自由層の磁化方向が固定層の磁化方向と同一向きとなり、他方の磁気抵抗効果素子GMR2は、自由層の磁化方向が固定層の磁化方向と180°をなす反対向きとなり、磁気抵抗効果素子GMR1の抵抗値RGMR1より磁気抵抗効果素子GMR2の抵抗値RGMR2が大きくなり(RGMR1<RGMR2)、2個の磁気抵抗効果素子GMR1とGMR2の接続点B1の電圧は図8(A)に示すように2.5Vより大きくなる。 In the case of switch-off, the magnetic field shielding member 10 retreats from between the magnetoresistive effect elements GMR1, GMR2 and the first magnet 7 as shown in FIG. 1, so that the magnetic field from the first magnet 7 has two magnetic fields. It acts on the resistance effect elements GMR1 and GMR2. In this case, since the magnitude of the magnetic field of the first magnet 7 is larger than the magnitude of the magnetic field of the second magnet 6, the magnetization directions of the free layers of the magnetoresistive effect elements GMR 1 and GMR 2 are the magnetic lines of force 7 a of the first magnet 7. It becomes the same as the direction. Therefore, in one magnetoresistive element GMR1, the magnetization direction of the free layer is the same as the magnetization direction of the fixed layer, and in the other magnetoresistive element GMR2, the magnetization direction of the free layer is 180 ° with respect to the magnetization direction of the fixed layer. The resistance value R GMR2 of the magnetoresistive effect element GMR2 becomes larger than the resistance value R GMR1 of the magnetoresistive effect element GMR1 (R GMR1 <R GMR2 ), and the two magnetoresistive effect elements GMR1 and GMR2 are connected. The voltage at the point B1 becomes larger than 2.5V as shown in FIG.
スイッチオンの場合、図2に示すように磁界遮蔽部材10が磁気抵抗効果素子GMR1、GMR2と第1の磁石7との間に進入するため、第1の磁石7から2個の磁気抵抗効果素子GMR1、GMR2への磁界が遮断され、第2の磁石6のみの磁界が2個の磁気抵抗効果素子GMR1、GMR2に作用する。この場合、磁気抵抗効果素子GMR1、GMR2の自由層の磁化方向は、第2の磁石6の磁力線6aの向きと同一方向となる。したがって、一方の磁気抵抗効果素子GMR1は、自由層の磁化方向と固定層の磁化方向とが180°をなす反対方向となり、他方の磁気抵抗効果素子GMR2は、自由層の磁化方向と固定層の磁化方向とが同一方向となり、磁気抵抗効果素子GMR2の抵抗値RGMR2より磁気抵抗効果素子GMR1の抵抗値RGMR1が大きくなり(RGMR2<RGMR1)、2個の磁気抵抗効果素子GMR1とGMR2の接続点B1の電圧は図8(A)に示すように2.5Vより小さくなる。 When the switch is turned on, the magnetic field shielding member 10 enters between the magnetoresistive elements GMR1 and GMR2 and the first magnet 7 as shown in FIG. The magnetic field to GMR1 and GMR2 is interrupted, and the magnetic field of only the second magnet 6 acts on the two magnetoresistive elements GMR1 and GMR2. In this case, the magnetization directions of the free layers of the magnetoresistive effect elements GMR 1 and GMR 2 are the same as the direction of the magnetic force lines 6 a of the second magnet 6. Therefore, one magnetoresistive effect element GMR1 has an opposite direction in which the magnetization direction of the free layer and the magnetization direction of the fixed layer form 180 °, and the other magnetoresistive effect element GMR2 has the magnetization direction of the free layer and the fixed layer The magnetization direction becomes the same direction, and the resistance value R GMR1 of the magnetoresistive effect element GMR1 becomes larger than the resistance value R GMR2 of the magnetoresistive effect element GMR2 (R GMR2 <R GMR1 ), and the two magnetoresistive effect elements GMR1 and GMR2 The voltage at the connection point B1 is smaller than 2.5V as shown in FIG.
これらの接続点B1の電圧は図8(B)に示すように、コンパレータ13の出力側に増幅される。さらにコンパレータ14の基準電圧と比較処理される。そして、図8(C)に示すようにコンパレータ14の出力側には、スイッチオフの場合に5Vの出力信号が出力され、スイッチオンの場合に0Vの出力信号が出力される。これは、磁気抵抗効果素子GMR1、GMR2の抵抗値の変化が電圧値の変化として出力される。 The voltages at these connection points B1 are amplified to the output side of the comparator 13, as shown in FIG. Further, a comparison process is performed with the reference voltage of the comparator 14. As shown in FIG. 8C, an output signal of 5V is output to the output side of the comparator 14 when the switch is off, and an output signal of 0V is output when the switch is on. This is because a change in resistance value of the magnetoresistive effect elements GMR1 and GMR2 is output as a change in voltage value.
この実施形態に係る磁気スイッチによれば、直列接続した磁気抵抗効果素子が分圧回路を形成するため、磁気抵抗効果素子の抵抗値の変化を電圧値の変化としてピックアップする回路の構成を簡素化することができる。 According to the magnetic switch of this embodiment, since the magnetoresistive effect elements connected in series form a voltage dividing circuit, the configuration of the circuit that picks up the change in the resistance value of the magnetoresistive effect element as the change in the voltage value is simplified. can do.
この分圧回路とブリッジ回路とはスイッチ動作する対象により使い分ければよい。 The voltage dividing circuit and the bridge circuit may be properly used depending on the object to be switched.
以上の説明では、磁気スイッチとして構成したが、これに限定されるものではなく、磁界遮蔽作用を有する被検知部材を検知する、外部磁界によって磁化方向が変化する自由層を有する磁気抵抗効果素子を用いた磁気センサとしても構成することができる。 In the above description, although configured as a magnetic switch, the present invention is not limited to this, and a magnetoresistive element having a free layer whose magnetization direction is changed by an external magnetic field, which detects a detected member having a magnetic field shielding action. It can also be configured as the magnetic sensor used.
この磁気センサは、磁気スイッチの磁界遮蔽部材10を、磁界遮蔽作用を有する被検知部材として用い、この被検知部材(10)を検知するようにした構成が磁気スイッチと相違している。その他の構成は磁気スイッチと同様である。 This magnetic sensor is different from the magnetic switch in that the magnetic shielding member 10 of the magnetic switch is used as a member to be detected having a magnetic field shielding action and the member to be detected (10) is detected. Other configurations are the same as those of the magnetic switch.
上記被検知部材(10)は、第1、第2の磁石7、6に対する相対位置が変化するように移動する。この被検知部材(10)の第1、第2の磁石7、6に対する相対位置の変化によって、第1、第2の磁石7、6の磁界(外部磁界)の双方を磁気抵抗効果素子5に作用させる第1の状態と、第1、第2の磁石7、6の磁界(外部磁界)の一方を磁気抵抗効果素子5に作用させる第2の状態とを生じさせて被検知部材(10)を検知する。 The detected member (10) moves so that the relative position with respect to the first and second magnets 7 and 6 changes. By changing the relative position of the detected member (10) with respect to the first and second magnets 7 and 6, both the magnetic fields (external magnetic fields) of the first and second magnets 7 and 6 are applied to the magnetoresistive effect element 5. The first member to be actuated and the second state in which one of the magnetic fields (external magnetic field) of the first and second magnets 7 and 6 is caused to act on the magnetoresistive effect element 5 are generated, and the member to be detected (10). Is detected.
前記第1の状態は、磁界遮蔽部材10が第1の磁石7と磁気抵抗効果素子5との間から退出した状態に設定する。一方、第2の状態は、磁界遮蔽部材10が第1の磁石7と磁気抵抗効果素子5との間に進入した状態に設定する。そして、第2の状態での被検知部材(10)は、第2の磁石6よりも磁力が大きい第1の磁石7の磁界を遮蔽し、第2の磁石6の磁界のみが外部磁界として磁気抵抗効果素子5に作用する。 The first state is set to a state in which the magnetic field shielding member 10 is withdrawn from between the first magnet 7 and the magnetoresistive element 5. On the other hand, the second state is set to a state in which the magnetic field shielding member 10 has entered between the first magnet 7 and the magnetoresistive element 5. And the to-be-detected member (10) in a 2nd state shields the magnetic field of the 1st magnet 7 with larger magnetic force than the 2nd magnet 6, and only the magnetic field of the 2nd magnet 6 becomes a magnetic field as an external magnetic field. It acts on the resistive element 5.
この磁気センサによれば、被検知部材(10)の移動に対応して、磁界の向きが反対でかつ大きさが異なる第1の磁石7と第2の磁石6の磁界を外部磁界として磁気抵抗効果素子5に選択的に作用し、該磁気抵抗効果素子5から被検知部材(10)の検知信号を出力し、その出力信号に基いて被検知部材(10)を検知するものであり、被検知部材(10)の移動により磁気抵抗効果素子5に対する磁界の向き(磁気抵抗効果素子の磁化方向)を180°をなす反対方向に変化させることができる。したがって、磁界の強さが徐々に変化する構成であっても、磁気抵抗効果素子の抵抗値を急激に変化させることができ、その急激な抵抗値の変化に基いて被検知部材(10)を迅速に検知することができる。 According to this magnetic sensor, in response to the movement of the member to be detected (10), the magnetic field of the first magnet 7 and the second magnet 6 having opposite magnetic field directions and different magnitudes is used as the magnetic field. It selectively acts on the effect element 5, outputs a detection signal of the detected member (10) from the magnetoresistive effect element 5, and detects the detected member (10) based on the output signal. By moving the detection member (10), the direction of the magnetic field with respect to the magnetoresistive effect element 5 (the magnetization direction of the magnetoresistive effect element) can be changed to the opposite direction of 180 °. Therefore, even if the strength of the magnetic field changes gradually, the resistance value of the magnetoresistive element can be changed abruptly, and the member to be detected (10) can be changed based on the abrupt change in resistance value. It can be detected quickly.
以上説明したように本発明によれば、磁界の向きが反対でかつ大きさが異なる第1の磁石と第2の磁石の磁界を外部磁界として磁気抵抗効果素子に選択的に作用し、該磁気抵抗効果素子の急激な抵抗値の変化に対応する出力信号を出力し、その出力信号に基いて、スイッチ動作、被検知部材の検知を迅速に行なうことができる。 As described above, according to the present invention, the magnetic field of the first magnet and the second magnet having opposite magnetic fields and different magnitudes is selectively applied to the magnetoresistive element as an external magnetic field, and the magnetic field An output signal corresponding to a sudden change in the resistance value of the resistance effect element is output, and based on the output signal, the switch operation and the detection of the member to be detected can be performed quickly.
1 ホルダー
2 ベース
3 アーム
4 アーム
5 磁気抵抗効果素子(GMR1 GMR2)
6 第2の永久磁石
7 第1の永久磁石
8 基板
9 端子層
10 磁界遮蔽部材(被検知部材)
11 固定抵抗
12 固定抵抗
13 コンパレータ
14 コンパレータ
1 Holder 2 Base 3 Arm 4 Arm 5 Magnetoresistive Element (GMR1 GMR2)
6 Second permanent magnet 7 First permanent magnet 8 Substrate 9 Terminal layer 10 Magnetic shielding member (detected member)
11 Fixed resistor 12 Fixed resistor 13 Comparator 14 Comparator
Claims (4)
前記一対の磁気抵抗効果素子への外部磁界として作用する第1の磁石及び第2の磁石を備え、 A first magnet and a second magnet acting as an external magnetic field to the pair of magnetoresistive elements;
前記一対の磁気抵抗効果素子において、互いの固定層の磁化方向は180°をなす反対向きに固定され、互いの自由層の磁化方向は、前記第2の磁石によって、同一方向に揃えられていて、 In the pair of magnetoresistive effect elements, the magnetization directions of the fixed layers are fixed in opposite directions of 180 °, and the magnetization directions of the free layers are aligned in the same direction by the second magnet. ,
前記第1の磁石の磁界の向きは、前記第2の磁石の磁界の向きとは180°をなす反対向きであり、かつ前記第1の磁石の磁界の大きさは、前記第2の磁石の磁界の大きさより大きく、 The direction of the magnetic field of the first magnet is opposite to the direction of the magnetic field of the second magnet, which is 180 °, and the magnitude of the magnetic field of the first magnet is the same as that of the second magnet. Larger than the magnitude of the magnetic field,
前記被検知部材が第1の位置にあるときは、前記第1の磁石の磁界及び第2の磁石の磁界の双方が外部磁界として前記一対の磁気抵抗効果素子に作用し、前記一対の磁気抵抗効果素子の前記自由層の磁化方向が前記第1の磁石の磁界の向きによって決まり、前記第1の磁石による一方の自由層の磁化方向が該一方の固定層の磁化方向と同一方向に向き、前記第1の磁石による他方の自由層の磁化方向が該他方の固定層の磁化方向と180°をなす反対方向に向いて、 When the detected member is in the first position, both the magnetic field of the first magnet and the magnetic field of the second magnet act on the pair of magnetoresistance effect elements as external magnetic fields, and the pair of magnetoresistances The magnetization direction of the free layer of the effect element is determined by the direction of the magnetic field of the first magnet, and the magnetization direction of one free layer by the first magnet is oriented in the same direction as the magnetization direction of the one fixed layer; The magnetization direction of the other free layer by the first magnet is directed to the opposite direction of 180 ° with the magnetization direction of the other fixed layer,
前記被検知部材が第2の位置にあるときは、該被検知部材によって前記第1の磁石の磁界は遮蔽されて前記第2の磁石の磁界のみが外部磁界として前記一対の磁気抵抗効果素子に作用し、前記一対の磁気抵抗効果素子の前記自由層の磁化方向が前記第2の磁石の磁界の向きによって決まり、前記第2の磁石による前記一方の自由層の磁化方向が前記一方の固定層の磁化方向と180°をなす反対方向に向き、前記第2の磁石による前記他方の自由層の磁化方向が前記他方の固定層の磁化方向と同一方向に向くこと、 When the detected member is in the second position, the magnetic field of the first magnet is shielded by the detected member, and only the magnetic field of the second magnet serves as an external magnetic field to the pair of magnetoresistive effect elements. The magnetization direction of the free layer of the pair of magnetoresistive effect elements is determined by the direction of the magnetic field of the second magnet, and the magnetization direction of the one free layer by the second magnet is the one fixed layer The magnetization direction of the other free layer by the second magnet is oriented in the same direction as the magnetization direction of the other fixed layer,
を特徴とする磁気センサ。Magnetic sensor characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007151755A JP4639216B2 (en) | 2007-06-07 | 2007-06-07 | Magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007151755A JP4639216B2 (en) | 2007-06-07 | 2007-06-07 | Magnetic sensor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001245487A Division JP4500472B2 (en) | 2001-08-13 | 2001-08-13 | Magnetic switch and magnetic sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007305594A JP2007305594A (en) | 2007-11-22 |
JP4639216B2 true JP4639216B2 (en) | 2011-02-23 |
Family
ID=38839316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007151755A Expired - Fee Related JP4639216B2 (en) | 2007-06-07 | 2007-06-07 | Magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4639216B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6103640B2 (en) * | 2013-07-16 | 2017-03-29 | アルプス電気株式会社 | Position detection device |
JP6697144B2 (en) * | 2016-01-27 | 2020-05-20 | アルプスアルパイン株式会社 | Magnetic sensor |
CN114061629A (en) * | 2020-08-05 | 2022-02-18 | 台湾东电化股份有限公司 | Motion sensing device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0322339U (en) * | 1989-07-15 | 1991-03-07 | ||
JPH0676706A (en) * | 1992-08-27 | 1994-03-18 | Nippon Autom Kk | Proximity switch for magnetic body detection |
JPH09306313A (en) * | 1996-05-17 | 1997-11-28 | Jiamu Hanbai Kk | Steel ball detecting device |
JPH11513128A (en) * | 1996-08-08 | 1999-11-09 | コミッサリア タ レネルジー アトミーク | Magnetic field sensor with magnetoresistive bridge |
JP2000056001A (en) * | 1998-07-31 | 2000-02-25 | Noboru Masuda | Detecting method for nonmagnetic metal material by magnetoresistive element |
US6060969A (en) * | 1997-08-21 | 2000-05-09 | Siemens Aktiengesellschaft | Contactless proximity switch |
JP2003060256A (en) * | 2001-08-13 | 2003-02-28 | Alps Electric Co Ltd | Magnetic switch and magnetic sensor |
-
2007
- 2007-06-07 JP JP2007151755A patent/JP4639216B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0322339U (en) * | 1989-07-15 | 1991-03-07 | ||
JPH0676706A (en) * | 1992-08-27 | 1994-03-18 | Nippon Autom Kk | Proximity switch for magnetic body detection |
JPH09306313A (en) * | 1996-05-17 | 1997-11-28 | Jiamu Hanbai Kk | Steel ball detecting device |
JPH11513128A (en) * | 1996-08-08 | 1999-11-09 | コミッサリア タ レネルジー アトミーク | Magnetic field sensor with magnetoresistive bridge |
US6060969A (en) * | 1997-08-21 | 2000-05-09 | Siemens Aktiengesellschaft | Contactless proximity switch |
JP2000056001A (en) * | 1998-07-31 | 2000-02-25 | Noboru Masuda | Detecting method for nonmagnetic metal material by magnetoresistive element |
JP2003060256A (en) * | 2001-08-13 | 2003-02-28 | Alps Electric Co Ltd | Magnetic switch and magnetic sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2007305594A (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4500472B2 (en) | Magnetic switch and magnetic sensor | |
US9644994B2 (en) | Magnetic sensor | |
US20220260651A1 (en) | Bipolar chopping for 1/f noise and offset reduction in magnetic field sensors | |
CN102628696B (en) | Sensor | |
JPWO2008072610A1 (en) | Magnetic sensor and magnetic encoder using the same | |
CN104422386A (en) | Rotation detector | |
KR20090121288A (en) | Magnetic sensor module and piston position detecting device | |
JP4832358B2 (en) | Position detection device | |
JP4639216B2 (en) | Magnetic sensor | |
JP4973869B2 (en) | Moving body detection device | |
JP2008151759A (en) | Magnetic sensor, and magnetic encoder using the same | |
US9574906B2 (en) | Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium | |
JP2015133377A (en) | Magnetic detection element and rotation detection device | |
US9347550B2 (en) | Shift lever device using magnetism detection switch | |
US7800356B2 (en) | Position detection apparatus using magnetoresistive effect element | |
JP5497621B2 (en) | Rotation angle detector | |
JP2008170273A (en) | Position detector using magnetoresistance effect element | |
JP2010019552A (en) | Motion sensor | |
JP5956955B2 (en) | Magnetic detection switch | |
JP2011007685A (en) | Magnetic sensor | |
Hornak et al. | Reentrant-loop magnetic-effect proximity sensor for robotics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20100420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101129 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4639216 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |