Nothing Special   »   [go: up one dir, main page]

JP4631561B2 - Microbubble generator - Google Patents

Microbubble generator Download PDF

Info

Publication number
JP4631561B2
JP4631561B2 JP2005187271A JP2005187271A JP4631561B2 JP 4631561 B2 JP4631561 B2 JP 4631561B2 JP 2005187271 A JP2005187271 A JP 2005187271A JP 2005187271 A JP2005187271 A JP 2005187271A JP 4631561 B2 JP4631561 B2 JP 4631561B2
Authority
JP
Japan
Prior art keywords
gas
liquid
dissolution tank
flow path
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005187271A
Other languages
Japanese (ja)
Other versions
JP2007000846A (en
Inventor
重行 山口
一雅 六嶋
範行 北地
康成 前田
尚紀 柴田
仁史 北村
良泰 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005187271A priority Critical patent/JP4631561B2/en
Publication of JP2007000846A publication Critical patent/JP2007000846A/en
Application granted granted Critical
Publication of JP4631561B2 publication Critical patent/JP4631561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は、微細気泡発生装置に関するものである。   The present invention relates to a microbubble generator.

従来から、液体に気体を一旦溶解させてその後液中から気体を析出させて微細気泡を発生させる微細気泡発生装置は、液体が流れる流路に、流路を流れる液体に気体を混入させて気体混合液体を得る気体混入部、気体混合液体を加圧して流路に流すポンプ、気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部を設けて構成されている。   2. Description of the Related Art Conventionally, a fine bubble generating device that generates a fine bubble by once dissolving a gas in a liquid and then depositing the gas from the liquid is mixed with the liquid flowing in the flow path into the flow path of the liquid. A gas mixing part that obtains a mixed liquid, a pump that pressurizes and flows the gas mixed liquid to the flow path, a gas liquid dissolving tank that is supplied with the gas mixed liquid and dissolves the gas in the liquid to obtain the gas dissolved liquid, A fine bubble generating unit that precipitates gas to generate fine bubbles is provided.

ここで、微細気泡の効果を得るためには多量の微細気泡を発生させる必要があり、これは気体溶解液体における液体への気体の溶解量に負うところが大きく、つまり気液溶解タンクでの気体の液体への溶解効率が、微細気泡発生装置において重要な要素となっている。たとえば特許文献1にある微細気泡発生装置では、気液溶解タンクに設けた1つの噴射口から気体混合液体を気液溶解タンク内に噴射させ、気液溶解タンク内で気体と液体とを混合させて気体を液体に溶解させることが行われているが、気体の液体への溶解効率は充分なものではなく、その改善が期待されるものであった。なお、気体の液体への溶解はたとえば高い圧力下で行われるほどより多量の気体を液体に溶解できることが知られており、しかして、気体混合液体を気液溶解タンクに送るポンプに高い出力のものを用いることで気液溶解タンクでの気体の液体への溶解効率を向上できるのではあるが、この場合、高い出力のポンプにて微細気泡発生装置が大型化してしまうという弊害を伴うものであった。
特開2002−346351号公報
Here, in order to obtain the effect of fine bubbles, it is necessary to generate a large amount of fine bubbles, which is largely dependent on the amount of gas dissolved in the liquid in the gas-dissolved liquid, that is, the gas in the gas-liquid dissolution tank. The dissolution efficiency in the liquid is an important factor in the microbubble generator. For example, in the fine bubble generating device disclosed in Patent Document 1, a gas mixture liquid is injected into a gas-liquid dissolution tank from one injection port provided in the gas-liquid dissolution tank, and the gas and the liquid are mixed in the gas-liquid dissolution tank. However, the gas is dissolved in the liquid, but the efficiency of dissolving the gas in the liquid is not sufficient, and the improvement is expected. In addition, it is known that dissolution of a gas into a liquid, for example, can dissolve a larger amount of gas into a liquid as it is performed at a higher pressure. However, a pump that sends a gas mixture to a gas-liquid dissolution tank has a higher output. Although it is possible to improve the efficiency of gas-liquid dissolution in the gas-liquid dissolution tank, in this case, there is an adverse effect that the fine bubble generating device is enlarged by a high output pump. there were.
JP 2002-346351 A

本発明は上記の従来の問題点に鑑みて為したものであって、装置の小型化を図りながらも気液溶解タンクでの気体の液体への溶解効率を向上できる微細気泡発生装置を提供することを課題とするものである。   The present invention has been made in view of the above-described conventional problems, and provides a microbubble generator capable of improving the efficiency of gas dissolution in a gas-liquid dissolution tank while reducing the size of the apparatus. This is a problem.

上記課題を解決するために請求項に係る微細気泡発生装置は、液体が流れる流路2に、流路2を流れる液体に気体を混入させて気体混合液体を得る気体混入部3、気体混合液体を加圧して流路2に流すポンプ4、気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク5、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部6を設けてなる微細気泡発生装置1であって、気液溶解タンク5の内部に液層8と未溶解気体の気層9とを設け、気体混合液体を噴射させる噴射口7を気液溶解タンク5の上面壁に複数設けると共に、当該噴射口7の噴射方向を、気体混合液体の噴射流10同士を気液界面11で衝突させる方向に設定したことを特徴とする。これによると、各噴射流10同士を衝突させることで各噴射流10に衝突圧を付与でき、つまり各噴射流10に局所的な高圧部分をつくることができてこの高圧部分では気体混合液体に混合している気体の液体への溶解が行われ易くなるから、気体の液体への溶解効率を向上できるのであり、また、各噴射流10同士の衝突箇所が気液界面11であるから、各噴射流10同士の衝突の衝撃で気液界面11を大きく波立たせることができてこの波立ちによって気液界面11の面積を増加できるのであり、この点でも気体の液体への溶解効率を向上できる。
また気液溶解タンク5に噴射口7を単数設けたものに比べ、気液溶解タンク5内での液体と気体との混合度合いを高めて液体と気体との接触面積を増加させることができて気液溶解タンク5内での気液の溶解効率を向上できるのであり、しかして、従来一般に行われるように気体の液体への溶解効率を向上させるために高出力のポンプ4を用いるといった必要が無くなり、低出力のポンプ4を用いることができて微細気泡発生装置1の小型化を図ることができる。
In order to solve the above-mentioned problem, a microbubble generator according to claim 1 includes a gas mixing unit 3 for obtaining a gas mixed liquid by mixing a gas into a liquid flowing through the flow channel 2 into the flow channel 2 through which the liquid flows. A pump 4 that pressurizes the liquid and flows it into the flow path 2; a gas-liquid dissolution tank 5 that supplies a gas-mixed liquid to dissolve the gas in the liquid to obtain a gas-dissolved liquid; and deposits the gas in the gas-dissolved liquid to form fine bubbles Is a microbubble generator 1 provided with a microbubble generator 6 for generating a gas, a liquid layer 8 and an undissolved gas layer 9 are provided inside a gas-liquid dissolution tank 5, and a gas mixed liquid is ejected. A plurality of injection ports 7 are provided on the upper surface wall of the gas-liquid dissolution tank 5, and the injection direction of the injection ports 7 is set to a direction in which the jet streams 10 of the gas mixture liquid collide at the gas-liquid interface 11. To do. According to this, it is possible to apply a collision pressure to each jet 10 by causing the jets 10 to collide with each other, that is, it is possible to create a local high-pressure portion in each jet 10, and in this high-pressure portion, the gas mixture liquid Since dissolution of the mixed gas into the liquid is facilitated, the dissolution efficiency of the gas into the liquid can be improved, and the collision point between the jets 10 is the gas-liquid interface 11. The gas-liquid interface 11 can be greatly swelled by the impact of the collision between the jets 10, and the area of the gas-liquid interface 11 can be increased by this swell, and also in this respect, the dissolution efficiency of the gas in the liquid can be improved. .
Moreover, compared with what provided the single injection port 7 in the gas-liquid dissolution tank 5, the mixing degree of the liquid and gas in the gas-liquid dissolution tank 5 can be raised, and the contact area of a liquid and gas can be increased. It is possible to improve the gas-liquid dissolution efficiency in the gas-liquid dissolution tank 5, and it is necessary to use a high-output pump 4 in order to improve the gas-liquid dissolution efficiency as is conventionally done. As a result, the low-power pump 4 can be used, and the microbubble generator 1 can be downsized.

また、請求項に係る微細気泡発生装置は、液体が流れる流路2に、流路2を流れる液体に気体を混入させて気体混合液体を得る気体混入部3、気体混合液体を加圧して流路2に流すポンプ4、気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク5、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部6を設けてなる微細気泡発生装置1であって、気液溶解タンク5の内部に液層8と未溶解気体の気層9とを設け、気体混合液体を噴射させる噴射口7を気液溶解タンク5の上面壁に複数設けると共に、当該噴射口7の噴射方向を、気体混合液体の噴射流10同士を液層8内で衝突させる方向に設定したことを特徴とする。これによると、各噴射流10同士を衝突させることで各噴射流10に衝突圧を付与でき、つまり各噴射流10に局所的な高圧部分をつくることができてこの高圧部分では気体混合液体に混合している気体の液体への溶解が行われ易くなるから、気体の液体への溶解効率を向上できるのであり、また、各噴射流10同士の衝突箇所が液層8内であるから、各噴射流10同士の衝突の衝撃で液層8内を大きく攪拌する攪拌流18を形成できて液層8内での気体と液体との混合度合いを高めて液体と気体との接触面積を増加できるのであり、この点でも気液溶解タンク5内での気液の溶解効率を向上できる。 Further, the fine bubble generating device according to claim 2 is configured to pressurize the gas mixture liquid into the flow path 2 in which the liquid flows, the gas mixing section 3 for obtaining a gas mixed liquid by mixing the gas into the liquid flowing in the flow path 2. A pump 4 that flows through the flow path 2, a gas-liquid dissolution tank 5 that supplies a gas-mixed liquid to dissolve the gas in the liquid to obtain a gas-dissolved liquid, and a fine bubble that precipitates the gas in the gas-dissolved liquid and generates fine bubbles a generation unit 6 a fine bubble generating device 1 formed by providing, provided a liquid layer 8 and the undissolved gas in the gas layer 9 inside the gas-liquid mixing tank 5, air injection port 7 to inject the gas liquid mixture A plurality of liquid dissolution tanks 5 are provided on the upper surface wall, and the injection direction of the injection port 7 is set to a direction in which the jet streams 10 of the gas mixture liquid collide with each other in the liquid layer 8. According to this, it is possible to apply a collision pressure to each jet 10 by causing the jets 10 to collide with each other, that is, it is possible to create a local high-pressure portion in each jet 10, and in this high-pressure portion, the gas mixture liquid Since dissolution of the mixed gas into the liquid is facilitated, it is possible to improve the efficiency of dissolution of the gas into the liquid, and since the collision point between the jets 10 is in the liquid layer 8, each The stirring flow 18 that greatly stirs the liquid layer 8 by the impact of the collision between the jets 10 can be formed, and the degree of mixing of the gas and the liquid in the liquid layer 8 can be increased to increase the contact area between the liquid and the gas. In this respect, the gas-liquid dissolution efficiency in the gas-liquid dissolution tank 5 can be improved.

本発明は、気液溶解タンク内での気体の液体への溶解効率を高めることができたことから、従来一般に行われるように気体の液体への溶解効率を向上させるために高出力のポンプを用いるといった必要が無くなり、低出力のポンプを用いることができて微細気泡発生装置の小型化を図ることができる、といった利点を有する。   Since the present invention has been able to increase the dissolution efficiency of a gas in a gas-liquid dissolution tank, a high-output pump is used in order to improve the dissolution efficiency of a gas in a liquid as is conventionally performed. This eliminates the need for use, has the advantage that a low-power pump can be used, and the microbubble generator can be miniaturized.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

実施形態における微細気泡発生装置1は、図4のように浴槽12に微細気泡を供給するようにした装置であって、具体的には、浴槽12に吸入口13と吐出口14とを設け、吸入口13から吐出口14に至る流路2である循環流路2aを形成し、この循環流路2aに吸入口13側から順に、液体である浴水に気体を混入させて気体混合液体を得る気体混入部3、吸入口13から循環流路2aを介して吐出口14に浴水を搬送するポンプ4、ポンプ4にて気体混合液体が供給されて気体を浴水に溶解させて気体溶解液体を得る気液溶解タンク5、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部6を設けたことで形成されている。ここで、気体混入部3は、本例では循環流路2aを流れる浴水によるエゼクター効果によって空気が吸引されて浴水内に混入される構造とされているが、これに限らず強制的に空気を浴水内に混入させる構造でもよい。なお、浴水内に混入される気体としては空気以外のもの、たとえば酸素成分が高い空気等を用いることもできる。また、気液溶解タンク5は、中空内部の下部が液層8で上部が未溶解空気の気層9となっており、気液溶解タンク5の上面壁にはポンプ4から至る循環流路2aが接続されて気体混合液体が気液溶解タンク5内に噴射される噴射口7が設けられ、気液溶解タンク5の底壁には微細気泡発生部6に至る循環流路2aが接続されていて気体溶解液体が吐出される出口15が設けられている。また、微細気泡発生部6は循環流路2aの径を絞った絞り部にて構成され、絞り部で気体溶解液体の圧力降下を行って気体を析出するようにしている。ところで、本発明では、気液溶解タンク5の噴射口7を複数設け、各噴射口7からそれぞれ気体混合液体を噴射流10として気液溶解タンク5内に向けて噴射させたことに大きな特徴があり、これによると、従来一般の微細気泡発生装置1のように気液溶解タンク5に噴射口7を単数設けたものに比べ、気液溶解タンク5内での液体と気体との混合度合いを高めて液体と気体との接触面積を増加させることができ、気液溶解タンク5内での気液の溶解効率の向上が図られているのである。以下、本発明の実施形態の各例に基き、詳述する。   The fine bubble generating device 1 in the embodiment is a device that supplies fine bubbles to the bathtub 12 as shown in FIG. 4, specifically, the suction port 13 and the discharge port 14 are provided in the bathtub 12, A circulation channel 2a, which is a channel 2 from the suction port 13 to the discharge port 14, is formed, and gas is mixed into the bath water, which is a liquid, in this order from the suction port 13 side to the circulation channel 2a. A gas mixed liquid is supplied by the pump 4 and the pump 4 for transporting bath water from the gas mixing unit 3 and the suction port 13 to the discharge port 14 through the circulation channel 2a, and the gas is dissolved in the bath water to dissolve the gas. It is formed by providing a gas-liquid dissolution tank 5 for obtaining a liquid and a fine bubble generating section 6 for generating fine bubbles by precipitating a gas in the gas-dissolved liquid. Here, in this example, the gas mixing unit 3 has a structure in which air is sucked and mixed into the bath water by the ejector effect of the bath water flowing through the circulation flow path 2a. A structure in which air is mixed into the bath water may be used. In addition, as gas mixed in bath water, things other than air, for example, air with a high oxygen component, etc. can also be used. Further, the gas-liquid dissolution tank 5 has a liquid layer 8 at the lower part of the hollow interior and a gas layer 9 of the undissolved air at the upper part, and a circulation flow path 2a extending from the pump 4 to the upper wall of the gas-liquid dissolution tank 5 Are connected to each other, and an injection port 7 through which the gas-mixed liquid is injected into the gas-liquid dissolution tank 5 is provided. An outlet 15 through which the gas-dissolved liquid is discharged is provided. Further, the fine bubble generating unit 6 is configured by a constricted portion with a reduced diameter of the circulation flow path 2a, and the gas is precipitated by performing a pressure drop of the gas-dissolved liquid at the constricted portion. By the way, the present invention is characterized in that a plurality of injection ports 7 of the gas-liquid dissolution tank 5 are provided and the gas mixture liquid is injected from each of the injection ports 7 into the gas-liquid dissolution tank 5 as an injection flow 10. According to this, the degree of mixing of the liquid and the gas in the gas-liquid dissolution tank 5 is higher than that in the conventional fine bubble generator 1 in which the gas-liquid dissolution tank 5 is provided with a single injection port 7. It is possible to increase the contact area between the liquid and the gas, so that the gas-liquid dissolution efficiency in the gas-liquid dissolution tank 5 is improved. Hereinafter, it explains in full detail based on each example of an embodiment of the present invention.

図1の例では、ポンプ4から至る循環流路2aが気液溶解タンク5に至る手前部分で二又に分岐され、上記分岐された循環流路2aが気液溶解タンク5の上面壁にそれぞれ至って2つの噴射口7が形成されている。ここで、各噴射口7には気体混合液体を噴射流10にして所定方向に噴射するためのノズル16が形成されており、そして本例では、各噴射流10同士を気層9内で衝突させる方向に各噴射口7の噴射方向が設定されている。このように、各噴射口7からの各噴射流10同士を衝突させたことで、各噴射流10に衝突圧を付与できるのであり、つまり各噴射流10に局所的な高圧部分をつくることができるのであり、ここで、この高圧部分では気体混合液体に混合している気体の液体への溶解が行われ易くなっているから、気体の液体への溶解効率が向上されているのである。なお、各噴射流10同士が衝突することによると、各噴射流10同士が衝突しないものに比べて、気液溶解タンク5内での気液の混合度合いを高めることができて気液の接触面積を増やすこともできるから、この点でも気体の液体への溶解効率が向上されている。また、本例では各噴射流10同士の衝突箇所が気層9内に設定されていることから、各噴射流10同士の衝突の衝撃で気層9内に気体混合液体を飛散させることができ、飛散した気体混合液体17は気層9の気体との接触面積が増加するのであって、つまり気液の接触面積を増やすことが有効に為されており、この点でも気体の液体への溶解効率が向上されているのである。   In the example of FIG. 1, the circulation flow path 2 a leading from the pump 4 is bifurcated at a portion before the gas-liquid dissolution tank 5, and the branched circulation flow path 2 a is formed on the upper wall of the gas-liquid dissolution tank 5. Two injection ports 7 are formed. Here, each injection port 7 is formed with a nozzle 16 for injecting the gas mixture into the injection flow 10 in a predetermined direction, and in this example, the injection flows 10 collide with each other in the gas layer 9. The injection direction of each injection port 7 is set in the direction to be caused. In this way, the collision pressures can be applied to the injection flows 10 by causing the injection flows 10 from the injection ports 7 to collide with each other, that is, a local high-pressure portion can be created in each injection flow 10. Here, since the gas mixed in the gas mixed liquid is easily dissolved in the high-pressure portion, the efficiency of dissolving the gas in the liquid is improved. In addition, according to each jet stream 10 colliding, compared with what each jet stream 10 does not collide, the mixing degree of the gas-liquid in the gas-liquid dissolution tank 5 can be raised, and a gas-liquid contact is carried out. Since the area can also be increased, the dissolution efficiency of the gas in the liquid is also improved in this respect. In addition, in this example, the collision point between the jets 10 is set in the gas layer 9, so that the gas mixture liquid can be scattered in the gas layer 9 by the impact of the collision between the jets 10. The scattered gas mixture liquid 17 increases the contact area of the gas layer 9 with the gas, that is, it is effective to increase the contact area of the gas and liquid, and also in this respect, dissolution of the gas into the liquid Efficiency is improved.

また、図2の例では、ポンプ4から至る循環流路2aが気液溶解タンク5に至る手前部分で二又に分岐され、上記分岐された循環流路2aが気液溶解タンク5の上面壁にそれぞれ至って2つの噴射口7が形成されている。ここで、各噴射口7には気体混合液体を噴射流10にして所定方向に噴射するためのノズル16が形成されており、そして本例では、各噴射流10同士を気液界面11で衝突させる方向に各噴射口7の噴射方向が設定されている。各噴射流10が衝突することでの、気液溶解タンク5内での気液の混合度合いを向上できるといった作用や、各噴射流10に局所的な高圧部分を形成できるといった作用に基く、気体の液体への溶解効率の向上効果は先例と同様であるが、本例では、特に各噴射流10同士の衝突箇所が気液界面11に設定されていることから、各噴射流10同士の衝突の衝撃で気液界面11を大きく波立たせることができ、この波立ちによって気液界面11の面積を略平面状態にある気液界面11よりも大幅に増加させることができ、つまり気液の接触面積を増やすことが有効に為されており、この点でも気体の液体への溶解効率が向上されているのである。   In the example of FIG. 2, the circulation flow path 2 a leading from the pump 4 is bifurcated at a portion before the gas-liquid dissolution tank 5, and the branched circulation flow path 2 a is the upper wall of the gas-liquid dissolution tank 5. Each of the two nozzles 7 is formed. Here, each injection port 7 is formed with a nozzle 16 for injecting a gas mixture into the injection flow 10 in a predetermined direction, and in this example, the injection flows 10 collide with each other at the gas-liquid interface 11. The injection direction of each injection port 7 is set in the direction to be caused. Gas based on the action of improving the degree of gas-liquid mixing in the gas-liquid dissolution tank 5 due to the collision of each jet stream 10 and the action of forming a local high-pressure portion in each jet stream 10 The effect of improving the dissolution efficiency of the liquid in the liquid is the same as in the previous example, but in this example, the collision point between the jets 10 is set at the gas-liquid interface 11, so that the jets 10 collide with each other. The gas-liquid interface 11 can be greatly swelled by this shock, and the area of the gas-liquid interface 11 can be significantly increased by this swell compared to the gas-liquid interface 11 in a substantially planar state, that is, contact between the gas and liquid. Increasing the area is effective, and also in this respect, the efficiency of dissolving the gas in the liquid is improved.

また、図3の例では、ポンプ4から至る循環流路2aが気液溶解タンク5に至る手前部分で二又に分岐され、上記分岐された循環流路2aが気液溶解タンク5の上面壁にそれぞれ至って2つの噴射口7が形成されている。ここで、各噴射口7には気体混合液体を噴射流10にして所定方向に噴射するためのノズル16が形成されており、そして本例では、各噴射流10同士を液層8内で衝突させる方向に各噴射口7の噴射方向が設定されている。各噴射流10が衝突することでの、気液溶解タンク5内での気液の混合度合いを向上できるといった作用や、各噴射流10に局所的な高圧部分を形成できるといった作用に基く、気体の液体への溶解効率の向上効果は先例と同様であるが、本例では、特に各噴射流10同士の衝突箇所が液層8内に設定されていることから、各噴射流10同士の衝突の衝撃で液層8内を大きく攪拌する攪拌流18を生じさせることができて気体と液体との混合度合いを高めることができ、つまり液層8内の液体と気体との接触面積を有効に増加させることができたものであり、この点でも気液溶解タンク5内での気液の溶解効率が向上されているのである。   In the example of FIG. 3, the circulation flow path 2 a leading from the pump 4 is bifurcated at a portion before the gas-liquid dissolution tank 5, and the branched circulation flow path 2 a is the upper wall of the gas-liquid dissolution tank 5. Each of the two nozzles 7 is formed. Here, nozzles 16 for injecting the gas mixed liquid into the jet flow 10 in a predetermined direction are formed in the jet ports 7, and in this example, the jet flows 10 collide with each other in the liquid layer 8. The injection direction of each injection port 7 is set in the direction to be caused. Gas based on the action of improving the degree of gas-liquid mixing in the gas-liquid dissolution tank 5 due to the collision of each jet stream 10 and the action of forming a local high-pressure portion in each jet stream 10 The effect of improving the dissolution efficiency of the liquid in the liquid is the same as in the previous example. However, in this example, since the collision point between the jet streams 10 is set in the liquid layer 8, the collision between the jet streams 10 is caused. It is possible to generate a stirring flow 18 that greatly stirs the inside of the liquid layer 8 by the impact of the pressure, and to increase the degree of mixing of the gas and the liquid, that is, to effectively increase the contact area between the liquid and the gas in the liquid layer 8 The gas-liquid dissolution efficiency in the gas-liquid dissolution tank 5 is also improved in this respect.

このように実施形態にある微細気泡発生装置1では、気液溶解タンク5において気体と液体との溶解効率が高められているために、従来一般に行われている気液溶解タンク5の溶解効率を高めるために高出力のポンプ4を用いるといったことを行わずに済むものとなっており、しかして、高出力のポンプ4を用いることに伴う微細気泡発生装置1の大型化を回避することができたものである。これは、浴槽12に微細気泡を供給する微細気泡発生装置1のように、浴室内といった限られた空間内に微細気泡発生装置1を設置せねばならない場合に特に有用である。無論、微細気泡発生装置1で発生される微細気泡は、浮上速度が低くて液体中に長く滞留でき、液体内に微細気泡が含有した状態ではあたかも温泉水のように白濁した外観を得られる効果に加えて、体積当たりの表面積が大きくて液体中の汚れを吸着して浮上させて水質浄化ができるなどの効果もあるから、浴槽12に限らず浄化槽やいけす等に微細気泡を供給するようにしてもよく、この場合も微細気泡発生装置1の小型化による設置スペースの省スペース化という恩恵を享受できるのは言うまでもない。   As described above, in the fine bubble generating apparatus 1 according to the embodiment, since the gas-liquid dissolution tank 5 has improved dissolution efficiency of gas and liquid, the dissolution efficiency of the gas-liquid dissolution tank 5 that has been generally performed conventionally is improved. Therefore, it is not necessary to use the high-output pump 4 to increase the size, and it is possible to avoid the increase in size of the microbubble generator 1 associated with the use of the high-output pump 4. It is a thing. This is particularly useful when the fine bubble generating device 1 must be installed in a limited space such as in a bathroom, such as the fine bubble generating device 1 that supplies fine bubbles to the bathtub 12. Of course, the microbubbles generated by the microbubble generator 1 have a low ascent rate and can stay in the liquid for a long time, and when the microbubbles are contained in the liquid, it is possible to obtain a white turbid appearance like hot spring water. In addition, since the surface area per volume is large and the dirt in the liquid is adsorbed and floated, the water quality can be purified, so that fine bubbles are supplied not only to the bathtub 12 but also to the septic tank and the skein. Of course, in this case, it is needless to say that the advantage of space saving of the installation space due to the miniaturization of the fine bubble generating device 1 can be enjoyed.

なお、上記実施形態では噴射口7を2個設けたものを例示したが、噴射口7の設置数はこれに限らず複数個であればよく、噴射口7の設置数の増加によると気液溶解タンク5内での気液の混合度合いを向上できて好ましいものである。また、上記実施形態では噴射口7を気層9に臨ませて設けたものを例示したが、噴射口7は液層8に臨むようにして設けるのも良く、これによっても複数の噴射口7による気液溶解タンク5内での気液の混合度合いの向上効果を得ることができるのである。更に言うと、上記実施形態では気液溶解タンク5での気体の液体への溶解効率を高めて微細気泡発生装置1の小型化を図っているが、気液溶解タンク5自体の小型化を図る下記の技術を併用して更なる微細気泡発生装置1の小型化を図っても好ましい。すなわち、各実施形態の例では、気体混入部3の取込み気体量が気液溶解タンク5内の気体の溶解能力を超える場合には余剰気体によって気液溶解タンク5内の内圧が高まると共に気層9の容積が拡張されていくが、この気層9の容積の拡張を防止するべく、気液溶解タンク5の内圧が一定の圧力になったときに開くような定圧弁の空気抜き弁19を気層9に臨ませるように設ける技術を併用している。このように空気抜き弁19を設けて気層9の容積拡大を防止したことで気液溶解タンク5の上下長さが低減されて気液溶解タンク5自体の小型化が図られるのである。またこの場合、気層9の容積拡大によって出口15と気層9とが近づくことで気層9の気体が溶解されずにそのまま出口15から気液溶解タンク5外に排出されてしまう恐れも回避できるといった利点も有することができる。   In addition, although the thing which provided the two injection nozzles 7 was illustrated in the said embodiment, the number of installation of the injection opening 7 is not restricted to this, A plurality may be sufficient, and according to the increase in the number of installation of the injection opening 7, gas-liquid This is preferable because the degree of gas-liquid mixing in the dissolution tank 5 can be improved. In the above embodiment, the injection port 7 is provided so as to face the gas layer 9. However, the injection port 7 may be provided so as to face the liquid layer 8. The effect of improving the degree of gas-liquid mixing in the liquid dissolution tank 5 can be obtained. Furthermore, in the above-described embodiment, the gas bubble dissolution apparatus 5 is improved in the efficiency of gas dissolution in the liquid to reduce the size of the fine bubble generating device 1, but the gas liquid dissolution tank 5 itself is reduced in size. It is also preferable to further reduce the size of the fine bubble generating apparatus 1 by using the following techniques in combination. That is, in the example of each embodiment, when the amount of gas taken in the gas mixing unit 3 exceeds the gas dissolving capacity in the gas-liquid dissolution tank 5, the excess pressure increases the internal pressure in the gas-liquid dissolution tank 5 and the gas layer. In order to prevent the expansion of the volume of the gas layer 9, the air vent valve 19 of a constant pressure valve that opens when the internal pressure of the gas-liquid dissolution tank 5 reaches a constant pressure is removed. The technique of providing it so that it may face the layer 9 is used together. Since the air vent valve 19 is thus provided to prevent the volume of the gas layer 9 from expanding, the vertical length of the gas-liquid dissolution tank 5 is reduced and the gas-liquid dissolution tank 5 itself can be downsized. Further, in this case, the possibility that the gas in the gas layer 9 is not dissolved but is directly discharged out of the gas-liquid dissolution tank 5 without being dissolved because the outlet 15 and the gas layer 9 approach each other due to the volume expansion of the gas layer 9 is avoided. It can also have the advantage of being able to.

本発明の実施の形態の例の微細気泡発生装置の要部の断面図である。It is sectional drawing of the principal part of the microbubble generator of the example of embodiment of this invention. 同上の他例の微細気泡発生装置の要部の断面図である。It is sectional drawing of the principal part of the fine bubble generator of the other example same as the above. 同上の更に他例の微細気泡発生装置の要部の断面図である。It is sectional drawing of the principal part of the fine bubble generator of the other example same as the above. 本発明の実施形態の微細気泡発生装置の概略構成図である。It is a schematic block diagram of the fine bubble generator of embodiment of this invention.

符号の説明Explanation of symbols

1 微細気泡発生装置
2 流路
2a 循環流路
3 気体混入部
4 ポンプ
5 気液溶解タンク
6 微細気泡発生部
7 噴射口
8 液層
9 気層
10 噴射流
11 気液界面
DESCRIPTION OF SYMBOLS 1 Fine bubble generator 2 Flow path 2a Circulation flow path 3 Gas mixing part 4 Pump 5 Gas-liquid dissolution tank 6 Fine bubble generation part 7 Injection port 8 Liquid layer 9 Gas layer 10 Injection flow 11 Gas-liquid interface

Claims (2)

液体が流れる流路に、流路を流れる液体に気体を混入させて気体混合液体を得る気体混入部、気体混合液体を加圧して流路に流すポンプ、気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部を設けてなる微細気泡発生装置であって、
気液溶解タンクの内部に液層と未溶解気体の気層とを設け、
気体混合液体を噴射させる噴射口を気液溶解タンクの上面壁に複数設けると共に、
当該噴射口の噴射方向を、気体混合液体の噴射流同士を気液界面で衝突させる方向に設定した
ことを特徴とする微細気泡発生装置。
A gas mixing unit that obtains a gas mixed liquid by mixing gas into the liquid flowing through the flow path, a pump that pressurizes the gas mixed liquid and flows the flow into the flow path, and a gas mixed liquid is supplied to the flow path through which the liquid flows. A gas-liquid dissolution tank for obtaining a gas-dissolved liquid by dissolving the gas-dissolved liquid in the gas-dissolved liquid;
Provide a liquid layer and an undissolved gas layer inside the gas-liquid dissolution tank,
While providing a plurality of injection ports for injecting the gas mixture liquid on the upper surface wall of the gas-liquid dissolution tank,
The fine bubble generating device characterized in that the jet direction of the jet port is set to a direction in which jet streams of the gas mixture liquid collide at the gas-liquid interface .
液体が流れる流路に、流路を流れる液体に気体を混入させて気体混合液体を得る気体混入部、気体混合液体を加圧して流路に流すポンプ、気体混合液体が供給されて気体を液体に溶解させて気体溶解液体を得る気液溶解タンク、気体溶解液体中の気体を析出させて微細気泡を発生させる微細気泡発生部を設けてなる微細気泡発生装置であって、
気液溶解タンクの内部に液層と未溶解気体の気層とを設け、
気体混合液体を噴射させる噴射口を気液溶解タンクの上面壁に複数設けると共に、
当該噴射口の噴射方向を、気体混合液体の噴射流同士を液層内で衝突させる方向に設定した
ことを特徴とする微細気泡発生装置。
A gas mixing unit that obtains a gas mixed liquid by mixing gas into the liquid flowing through the flow path, a pump that pressurizes the gas mixed liquid and flows the flow into the flow path, and a gas mixed liquid is supplied to the flow path through which the liquid flows. A gas-liquid dissolution tank for obtaining a gas-dissolved liquid by dissolving the gas-dissolved liquid in the gas-dissolved liquid;
Provide a liquid layer and an undissolved gas layer inside the gas-liquid dissolution tank,
While providing a plurality of injection ports for injecting the gas mixture liquid on the upper surface wall of the gas-liquid dissolution tank,
The fine bubble generating device, wherein the jet direction of the jet port is set to a direction in which jet streams of the gas mixture liquid collide in the liquid layer .
JP2005187271A 2005-06-27 2005-06-27 Microbubble generator Expired - Fee Related JP4631561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005187271A JP4631561B2 (en) 2005-06-27 2005-06-27 Microbubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187271A JP4631561B2 (en) 2005-06-27 2005-06-27 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2007000846A JP2007000846A (en) 2007-01-11
JP4631561B2 true JP4631561B2 (en) 2011-02-16

Family

ID=37686919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187271A Expired - Fee Related JP4631561B2 (en) 2005-06-27 2005-06-27 Microbubble generator

Country Status (1)

Country Link
JP (1) JP4631561B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272722A (en) * 2007-04-26 2008-11-13 Miike Iron Works Co Ltd Manufacturing method and manufacturing apparatus of high concentration gas-dissolved water, and application method of manufactured high concentration gas-dissolved water
JP5024144B2 (en) * 2008-03-24 2012-09-12 ダイキン工業株式会社 Gas dissolver
JP5086216B2 (en) * 2008-09-25 2012-11-28 パナソニック株式会社 Gas dissolved water supply device
WO2017000253A1 (en) * 2015-06-30 2017-01-05 Kechuang Lin Bubble-generation apparatus and system
KR101945919B1 (en) * 2017-04-28 2019-02-11 안양대학교 산학협력단 Fine bubble production apparatus of capsulation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547125A (en) * 1978-09-20 1980-04-03 Envirotech Corp Tank for gassliquid dissolution
JPS55102429A (en) * 1979-02-01 1980-08-05 Sumitomo Metal Ind Ltd Generating method for minute bubble in liquid
JPS63171694A (en) * 1986-12-29 1988-07-15 Katsumi Takao Ozonized water feeder
JPH07163914A (en) * 1993-09-11 1995-06-27 Uk Atomic Energy Authority Spray generator
JPH0885000A (en) * 1994-09-16 1996-04-02 Shiyoutarou Mahiko Portable aerator
JPH09173804A (en) * 1995-10-26 1997-07-08 Idec Izumi Corp Method for dissolving and mixing gas and liquid and device therefor
JPH09299930A (en) * 1996-05-13 1997-11-25 Maezawa Ind Inc Gas-liquid contacting device
JPH10165792A (en) * 1996-12-06 1998-06-23 Yoshiyuki Sawada Gas-liquid mixing device and waste water purifying device using the same
JPH11300183A (en) * 1998-04-16 1999-11-02 Mayekawa Mfg Co Ltd Gas-liquid dispersing gas absorber
JP2000325767A (en) * 1999-03-15 2000-11-28 Shin Nippon Techno Kk Apparatus for generating gas-liquid mixed stream and gas-liquid mixing unit pipe
JP2001179241A (en) * 1999-12-22 2001-07-03 Noritz Corp Fine air bubble generator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547125A (en) * 1978-09-20 1980-04-03 Envirotech Corp Tank for gassliquid dissolution
JPS55102429A (en) * 1979-02-01 1980-08-05 Sumitomo Metal Ind Ltd Generating method for minute bubble in liquid
JPS63171694A (en) * 1986-12-29 1988-07-15 Katsumi Takao Ozonized water feeder
JPH07163914A (en) * 1993-09-11 1995-06-27 Uk Atomic Energy Authority Spray generator
JPH0885000A (en) * 1994-09-16 1996-04-02 Shiyoutarou Mahiko Portable aerator
JPH09173804A (en) * 1995-10-26 1997-07-08 Idec Izumi Corp Method for dissolving and mixing gas and liquid and device therefor
JPH09299930A (en) * 1996-05-13 1997-11-25 Maezawa Ind Inc Gas-liquid contacting device
JPH10165792A (en) * 1996-12-06 1998-06-23 Yoshiyuki Sawada Gas-liquid mixing device and waste water purifying device using the same
JPH11300183A (en) * 1998-04-16 1999-11-02 Mayekawa Mfg Co Ltd Gas-liquid dispersing gas absorber
JP2000325767A (en) * 1999-03-15 2000-11-28 Shin Nippon Techno Kk Apparatus for generating gas-liquid mixed stream and gas-liquid mixing unit pipe
JP2001179241A (en) * 1999-12-22 2001-07-03 Noritz Corp Fine air bubble generator

Also Published As

Publication number Publication date
JP2007000846A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP3197149U (en) Generator for dissolving gas in liquid and fluid spray nozzle
JP4759553B2 (en) Gas-liquid dissolution tank in microbubble generator
KR101483412B1 (en) Micro bubble nozzle
JP4631561B2 (en) Microbubble generator
JP2008212788A (en) Cleaning apparatus and cleaning method
JP5022415B2 (en) Gas dissolving device and bathtub with microbubble generation function
JP4715335B2 (en) Microbubble generator
JP5017305B2 (en) Gas dissolving device
JP2003190750A (en) Gas dissolution apparatus
JP5024144B2 (en) Gas dissolver
JP2007313465A (en) Gas dissolving apparatus
KR101166457B1 (en) Apparatus for generating micro bubbles with two stage complex structure including vortex generating part and vortex removing part and method for generating micro bubbles using that
JP2009255039A (en) Gas dissolving vessel
JP2010227784A (en) Gas dissolving apparatus
JP2011235200A (en) Gas-liquid dissolution tank
JPH1176780A (en) Fine foam supply device
JP4872459B2 (en) Gas dissolving device
JP4931008B2 (en) Microbubble production equipment
JP5081801B2 (en) Gas-liquid dissolution tank in microbubble generator
JP4830867B2 (en) Microbubble generator
JP2010029754A (en) Gas dissolving apparatus
JP5001327B2 (en) Gas dissolving device
JP2008178780A (en) Microbubble generating apparatus
JP5075230B2 (en) Microbubble generator
JP5054507B2 (en) Bathtub with microbubble generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees