Nothing Special   »   [go: up one dir, main page]

JP4629886B2 - Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid - Google Patents

Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid Download PDF

Info

Publication number
JP4629886B2
JP4629886B2 JP2001043577A JP2001043577A JP4629886B2 JP 4629886 B2 JP4629886 B2 JP 4629886B2 JP 2001043577 A JP2001043577 A JP 2001043577A JP 2001043577 A JP2001043577 A JP 2001043577A JP 4629886 B2 JP4629886 B2 JP 4629886B2
Authority
JP
Japan
Prior art keywords
component
catalyst
producing
methacrylic acid
methacrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001043577A
Other languages
Japanese (ja)
Other versions
JP2002239388A (en
Inventor
求 大北
祐一郎 永田
啓幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001043577A priority Critical patent/JP4629886B2/en
Publication of JP2002239388A publication Critical patent/JP2002239388A/en
Application granted granted Critical
Publication of JP4629886B2 publication Critical patent/JP4629886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イソブタンを気相接触酸化してメタクロレインおよび/またはメタクリル酸を製造するための触媒、その触媒の製造方法、および、その触媒を用いたメタクロレインおよび/またはメタクリル酸の製造方法に関するものである。
【0002】
【従来の技術】
イソブタンを気相接触酸化してメタクロレインおよび/またはメタクリル酸を製造する触媒としてリンモリブデン酸に代表されるヘテロポリ酸化合物が有効であることは従来から知られており、これまでに数多くの提案(特開昭55−62041号公報、特開平2−42032号公報、特開平4−128247号公報、特開平9−20700号公報など)がなされている。さらに、ヘテロポリ酸化合物を硫酸イオンで処理した酸化タンタル、酸化ニオブや酸化ジルコニウムに担持した触媒(特開平6−172250号公報)、タンタルやニオブとモリブデンとの複合酸化物触媒(特開平5−213799号公報)、金属イオン交換リン−バナジウム触媒(特開平9−295802号公報)なども提案されている。
【0003】
しかしながら、これまで提案されている触媒はいずれも反応成績が必ずしも十分ではなく、工業触媒としてはさらなる改良が望まれている。
【0004】
【発明が解決しようとする課題】
本発明は、イソブタンを気相接触酸化してメタクロレインおよび/またはメタクリル酸を高収率で製造し得る触媒、その触媒の製造方法、および、その触媒を用いるメタクロレインおよび/またはメタクリル酸の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の上記目的は以下の本発明により解決できる。
(I)イソブタンを気相接触酸化してメタクロレインおよび/またはメタクリル酸を製造するための触媒の製造方法であって、下記の成分(A)と成分(B)とを混合することを特徴とするメタクロレインおよび/またはメタクリル酸製造用触媒の製造方法。
成分(A):下記式(1)で表わされる固体酸
aMobcdefg (1)
(式(1)中、P、MoおよびOはそれぞれリン、モリブデンおよび酸素を示し、Aはバナジウムおよび銅からなる群より選ばれた少なくとも1種類の元素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、fおよびgは各元素の原子比率を表し、b=12のときa=0.1〜3、c=0〜3、d=0〜3、e=0〜3、f=0〜3であり、gは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
成分(B):下記式(2)で表わされる酸化物
Mohij (2)
(式(2)中、MoおよびOはそれぞれモリブデンおよび酸素を示し、Dはバナジウム、ニッケルおよびアンチモンからなる群より選ばれた少なくとも1種類の元素を示す。h、iおよびjは各元素の原子比率を表し、h=1のときi=0.01〜3であり、jは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
(II)前記成分(B)の量が、前記成分(A)100質量部に対して1〜60質量部である前記(I)に記載のメタクロレインおよび/またはメタクリル酸製造用触媒の製造方法。
(III)前記成分(A)の水溶液または水性スラリーと前記成分(B)とを混合し、この混合物を乾燥、焼成する前記(I)または(II)に記載のメタクロレインおよび/またはメタクリル酸製造用触媒の製造方法。
(IV)前記(I)から(III)のいずれかに記載の方法によりメタクロレインおよび/またはメタクリル酸製造用触媒を製造する工程と、該触媒の存在下でイソブタンを気相接触酸化する工程と、を含むことを特徴とするメタクロレインおよび/またはメタクリル酸の製造方法。
【0007】
【発明の実施の形態】
本発明のメタクロレインおよび/またはメタクリル酸製造用触媒は、イソブタンを分子状酸素で気相接触酸化してメタクロレインおよび/またはメタクリル酸を製造する際に用いられる触媒であって、上記の成分(A)および成分(B)を含むことを特徴とする。このような本発明の触媒の存在下でイソブタンを気相接触酸化すると、従来の各種触媒と比べて高収率でメタクロレインおよび/またはメタクリル酸を製造することができる。
【0008】
本発明のメタクロレインおよび/またはメタクリル酸製造用触媒が従来の各種触媒に比べて優れている理由は、イソブタンの酸化活性が高い酸化物とメタクロレインおよび/またはメタクリル酸の選択率が高いヘテロポリ酸化合物とを複合化した結果、相乗効果が達成されたものと推測される。
【0009】
本発明の触媒中の成分(A)は、下記式(1)で表わされる固体酸である。
【0010】
aMobcdefg (1)
ここで、式(1)中、P、MoおよびOはそれぞれリン、モリブデンおよび酸素を示し、Aはバナジウムおよび銅からなる群より選ばれた少なくとも1種類の元素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、fおよびgは各元素の原子比率を表し、b=12のときa=0.1〜3、c=0〜3、d=0〜3、e=0〜3、f=0〜3であり、gは前記各成分の原子価を満足するのに必要な酸素の原子比率である。
【0011】
成分(A)の固体酸の調製は、従来からよく知られている沈殿法、酸化物混合法など種々の方法を用いて行うことができる。具体的には、固体酸の構成元素を含む原料を用い、その所要量を水などの溶媒中に適宜溶解または懸濁させて得られる混合溶液または水性スラリーを蒸発乾固し、さらに必要により粉砕、成形した後、熱処理する方法が例示できる。また、混合溶液または水性スラリーを蒸発乾固せず、そこに成分(B)を添加して混合してもよい。
【0012】
混合溶液または水性スラリーの乾燥法としては、種々の方法を用いることが可能であり、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法などが挙げられる。
【0013】
成分(A)の熱処理温度は200〜500℃が好ましく、特に300〜450℃が好ましい。また、成分(A)の熱処理は、酸素流通下、空気流通下または窒素流通下で行なうことが好ましい。熱処理時間は特に限定されないが、通常、1〜40時間程度が好ましい。なお、成分(B)と混合した後に熱処理を行なう場合は、混合前に熱処理を行なわなくてもかまわない。
【0014】
成分(A)の調製に用いる原料は特に制限されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物などを組み合わせて使用することができる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸などを用いることができる。リン原料としては正リン酸、メタリン酸、五酸化リン、ピロリン酸、リン酸アンモニウムなどを用いることができる。また、モリブデンとリンの原料として、リンモリブデン酸、リンモリブデン酸アンモニウムなどのヘテロポリ酸化合物を用いることもできる。
【0015】
一方、本発明の触媒中の成分(B)は、下記式(2)で表わされる酸化物である。
【0016】
Mohij (2)
ここで、式(2)中、MoおよびOはそれぞれモリブデンおよび酸素を示し、Dはバナジウム、ニッケル、アンチモンおよびジルコニウムからなる群より選ばれた少なくとも1種類の元素を示す。h、iおよびjは各元素の原子比率を表し、h=1のときi=0.01〜3であり、jは前記各成分の原子価を満足するのに必要な酸素の原子比率である。iは、特に0.02以上が好ましく、また、2以下が好ましい。
【0017】
成分(B)の酸化物の調製は、従来からよく知られている沈殿法、酸化物混合法などの種々の方法を用いて行うことができる。具体的には、モリブデン原料とその他の各構成元素を含む原料を用い、その所要量を水などの溶媒中に適宜溶解または懸濁させて得られた混合溶液または水性スラリーを乾燥し、さらに必要により粉砕、成形した後、熱処理する方法が例示できる。
【0018】
混合溶液または水性スラリーの乾燥法としては、種々の方法を用いることが可能であり、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法などが挙げられる。
【0019】
成分(B)の熱処理温度は300〜800℃が好ましく、特に350〜700℃が好ましい。熱処理温度は高いほど各成分間での電子移動による主要成分の原子価の制御などが進行し、また、低いほど酸化物の溶融、分解、昇華などが少なくなる。熱処理の雰囲気は、空気、酸素、窒素などが好ましく用いられる。熱処理時間は特に限定されないが、通常、1〜40時間程度が好ましい。なお、成分(A)と混合した後に熱処理を行なう場合は、混合前に熱処理を行なわなくてもかまわない。
【0020】
成分(B)の調製に用いる原料は特に制限されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物などを組み合わせて使用することができる。モリブデン原料としては、例えば、パラモリブデン酸アンモニウム、三酸化モリブデン、二酸化モリブデン、モリブデン酸などが挙げられるが、中でもパラモリブデン酸アンモニウムを使用することが好ましい。
【0021】
本発明のメタクロレインおよび/またはメタクリル酸製造用触媒は、上記のような成分(A)および成分(B)を含むものである。本発明のメタクロレインおよび/またはメタクリル酸製造用触媒における成分(B)の量は、成分(A)100質量部に対して1質量部以上、特に5質量部以上が好ましく、また、60質量部以下、特に50質量部以下が好ましい。
【0022】
本発明のメタクロレインおよび/またはメタクリル酸製造用触媒の製造において、成分(A)と成分(B)を混合する方法は特に限定されず、混合する成分(A)と成分(B)の種類、性状および添加割合などによって適宜選択することができる。好ましい混合方法としては、成分(A)の水溶液または水性スラリーと成分(B)とを混合する方法、成分(A)と成分(B)とを混合する方法が挙げられる。いずれの方法で成分(A)と成分(B)とを混合する場合でも、できるだけ均一に十分混合することが好ましい。
【0023】
成分(A)の水溶液または水性スラリーと成分(B)とを混合する方法の場合、成分(A)の水溶液または水性スラリーに成分(B)の乾燥物もしくは焼成物を添加し、混合する。成分(A)の水溶液または水性スラリーは、成分(A)の乾燥物もしくは焼成物を水に溶解または懸濁させて調製してもよく、成分(A)調製時の混合溶液または水性スラリーを乾燥することなくそのまま用いてもよい。その後、成分(A)の調製を進めても、通常の調製条件では成分(B)の量、状態が変化することはない。また、成分(B)が変化するような条件の調製方法であっても、最終的な触媒が本発明の条件を満たすものであれば差し支えない。混合は、成分(A)、成分(B)の組成やその混合比などによって異なるが、通常、5〜200℃で0.01〜30時間行なうことが好ましい。成分(A)の水溶液または水性スラリーの水の量は特に限定されない。
【0024】
成分(A)の水溶液または水性スラリーと成分(B)との混合物(混合液状物)の乾燥方法としては、混合物の状態により種々の方法を用いることが可能であり、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法などを用いることができる。乾燥条件は適宜決めればよい。
【0025】
このようにして得られる乾燥物は、必要により粉砕した後、そのまま次の焼成を行ってもよいが、通常は成形してから焼成することが好ましい。
【0026】
成形方法は特に限定されず、例えば、打錠成型、プレス成型、押出成型、造粒成型などの乾式および湿式の種々の成形法が適用できる。成形体の形状については特に制限はなく、反応器の形式、条件などを考慮して、例えば、球、シリンダー、ペレット、リングなどの形状から最適なものを選ぶことができる。
【0027】
なお、成形に際しては、公知の添加剤、例えば、グラファイト、タルクなどを少量添加してもよい。
【0028】
このようにして得られた成形体の焼成方法は特に限定されず、公知の方法および条件を適用することができる。焼成の最適条件は、使用原料、組成、調製法などによって異なるが、通常、雰囲気は空気などの酸素含有ガス流通下および/または不活性ガス流通下で、焼成温度は200〜500℃、好ましくは300℃以上または450℃以下で、焼成時間は0.5時間以上、好ましくは1時間以上または40時間以下で行うことができる。
【0029】
一方、成分(A)と成分(B)とを混合する方法の場合、成分(A)の乾燥物もしくは焼成物と成分(B)の乾燥物もしくは焼成物とを混合すればよい。成分(A)と成分(B)とを混合した後、さらに必要により粉砕、成形、熱処理してもよい。成形、熱処理は、成分(A)の水溶液または水性スラリーと成分(B)とを混合する方法の場合と同様に行なえばよい。混合前に成分(A)および/または成分(B)を熱処理していない場合、つまり、成分(A)の乾燥物および/または成分(B)の乾燥物を混合した場合は、通常、混合後に熱処理することが好ましい。
【0030】
本発明の触媒はイソブタンを気相接触酸化してメタクロレインおよび/またはメタクリル酸を製造するためのものである。この反応の反応温度は230〜450℃が好ましく、特に250℃〜400℃が好ましい。反応圧力は常圧から数気圧までを使用することができる。空間速度は200〜3000hr-1が好ましい。
【0031】
原料ガス中のイソブタンの濃度は広い範囲で変えることができるが、容量で1〜40%、特に3〜30%が好ましい。
【0032】
反応に用いる分子状酸素源としては空気が経済的であるが、必要ならば純酸素で富化した空気なども用いることができる。原料ガス中の分子状酸素濃度はイソブタン1モルに対して0.4〜4モル、特に0.5〜3モルが好ましい。
【0033】
原料ガスは、イソブタンおよび分子状酸素源を、窒素、水蒸気、炭素ガスなどの不活性ガスで希釈したものであってもよい。
【0034】
また、反応の原料ガスには水蒸気を含めることが好ましい。水の存在下で反応を行なうと、高収率でメタクロレインおよび/またはメタクリル酸が得られる。原料ガス中の水蒸気の濃度は、容量で1〜30%、特に3〜25%が好ましい。
【0035】
反応は固定床でも流動床でも行うことができる。
【0036】
【実施例】
以下、本発明を実施例、比較例を挙げてさらに具体的に説明するが、本発明は実施例に限定されるものではない。
【0037】
下記の実施例および比較例中の「部」は質量部であり、原料ガスおよび生成物の分析はガスクロマトグラフィーを用いて行った。
【0038】
なお、イソブタンの反応率、生成するメタクロレインおよび/またはメタクリル酸の選択率は以下のように定義される。
【0039】
イソブタンの反応率(%)=(B/A)×100
メタクロレインの選択率(%)=(C/B)×100
メタクリル酸の選択率(%)=(D/B)×100
メタクロレインおよびメタクリル酸の収率(%)={(C+D)/A}×100
ここで、Aは供給したイソブタンのモル数、Bは反応したイソブタンのモル数、Cは生成したメタクロレインのモル数、Dは生成したメタクリル酸のモル数である。
【0040】
[参考例1]
1Mo12ヘテロポリ酸(日本無機化学工業製)を成形・破砕後、空気流通下380℃で5時間熱処理したものを触媒として用いた。
【0041】
本触媒を反応管に充填し、イソブタン25%、酸素25%、水15%および窒素35%(容量%)の混合ガスを、常圧下、反応温度350℃、空間速度1200hr-1で通じた。生成物を捕集し分析したところ、イソブタンの反応率4.6%、メタクロレインの選択率35.1%、メタクリル酸の選択率5.2%、メタクロレインおよびメタクリル酸の収率1.9%であった。その結果を表1に示す。
【0042】
[参考例2]
還流冷却器を付けた容器に純水400部、三酸化モリブデン100部、85%リン酸6.7部、五酸化バナジウム2.6部および硝酸銅4.2部を純水5部に溶解した溶液を入れ、100℃で2時間加熱した後50℃に冷却し、これに重炭酸セシウム14.6部を純水20部に溶解した溶液を加えた。この混合液を加熱撹拌しながら蒸発乾固した後、得られた固形物を130℃で16時間乾燥した。乾燥粉を成形・破砕後、参考例1と同様に熱処理したものを触媒として用いた。得られた触媒の酸素以外の元素の組成(以下同じ)は、P1Mo120.5Cu0.3Cs1.3であった。
【0043】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0044】
[参考例3]
パラモリブデン酸アンモニウム100部を純水200部に溶解した。これにメタバナジン酸アンモニウム13.3部を純水300部に溶解した溶液を加え、この混合液を加熱しながら蒸発乾固した後、得られた固形物を130℃で16時間乾燥した。乾燥粉を成形・破砕後、空気流通下300℃で8時間、さらに窒素流通下500℃で2時間熱処理したものを触媒として用いた。得られた触媒の組成は、Mo10.2であった。
【0045】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0046】
[参考例4]
パラモリブデン酸アンモニウム100部を純水200部に溶解した。これに硝酸ニッケル49.4部を純水200部に溶解した溶液を加え、さらに尿素15部を純水50部に溶解した溶液を加えた。この混合液を加熱しながら蒸発乾固した後、得られた固形物を130℃で16時間乾燥した。乾燥粉を成形・破砕後、空気流通下500℃で8時間熱処理したものを触媒として用いた。得られた触媒の組成は、Mo1Ni0.3であった。
【0047】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0048】
[参考例5]
パラモリブデン酸アンモニウム100部を純水200部に溶解した。これに三酸化アンチモン24.8部を加え、この混合液を加熱しながら蒸発乾固した後、得られた固形物を参考例4と同様に乾燥、成形・破砕、熱処理したものを触媒として用いた。得られた触媒の組成は、Mo1Sb0.3であった。
【0049】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0050】
[参考例6]
パラモリブデン酸アンモニウム100部を純水200部に溶解した。これに三酸化アンチモン8.3部および酸化ジルコニウム7.0部を加え、この混合液を加熱しながら蒸発乾固した後、得られた固形物を参考例4と同様に乾燥、成形・破砕、熱処理したものを触媒として用いた。得られた触媒の組成は、Mo1Sb0.1Zr0.1であった。
【0051】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0052】
[実施例1]
参考例1の触媒(P1Mo12)に参考例3の触媒(Mo10.2)を質量比で7対3の割合で混合粉砕した後、再び成形・破砕したものを触媒として用いた。
【0053】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0054】
[実施例2]
参考例1の触媒(P1Mo12)100部(空気流通下熱処理触媒)を純水100部に溶解した溶液に参考例3の触媒(Mo10.2)20部を加え、この混合液状物を加熱しながら蒸発乾固した。得られた固形物を参考例2と同様に乾燥、成形・破砕、熱処理したものを触媒として用いた。
【0055】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0056】
[実施例3]
参考例1の触媒(P1Mo12)に参考例4の触媒(Mo1Ni0.3)を質量比で7対3の割合で混合粉砕した後、再び成形・破砕したものを触媒として用いた。
【0057】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0058】
[実施例4]
参考例1の触媒(P1Mo12)に参考例5の触媒(Mo1Sb0.3)を質量比で4対1の割合で混合粉砕した後、再び成形・破砕したものを触媒として用いた。
【0059】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0060】
[実施例5]
参考例1の触媒(P1Mo12)に参考例6の触媒(Mo1Sb0.1Zr0.1)を質量比で4対1の割合で混合粉砕した後、再び成形・破砕したものを触媒として用いた。
【0061】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0062】
[実施例6]
参考例2の触媒(P1Mo120.5Cu0.3Cs1.3)に参考例3の触媒(Mo10.2)を質量比で7対3の割合で混合粉砕した後、再び成形・破砕したものを触媒として用いた。
【0063】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0064】
[実施例7]
参考例2の触媒(P1Mo120.5Cu0.3Cs1.3)100部(空気流通下熱処理触媒)に純水100部を加えた水性スラリ−に参考例3の触媒(Mo10.2)20部を加え、この混合液状物を加熱しながら蒸発乾固した。得られた固形物を参考例2と同様に乾燥、成形・破砕、熱処理したものを触媒として用いた。
【0065】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0066】
[実施例8]
還流冷却器を付けた容器に純水400部、三酸化モリブデン100部、85%リン酸6.7部、五酸化バナジウム2.6部および硝酸銅4.2部を純水5部に溶解した溶液を入れ、100℃で2時間加熱した後50℃に冷却し、これに重炭酸セシウム14.6部を純水20部に溶解した溶液を加えた。さらにこの混合液に参考例3の触媒(Mo10.2)20部を加え、この混合スラリ−を加熱撹拌しながら蒸発乾固した後、得られた固形物を参考例2と同様に乾燥、成形・破砕、熱処理したものを触媒として用いた。なお、本実施例では、参考例2の触媒(P1Mo120.5Cu0.3Cs1.3)と参考例3の触媒(Mo10.2)の混合割合は質量比で6.2対1に相当する。
【0067】
本触媒を反応管に充填し、参考例1と同じ方法で反応を行った。その結果を表1に示す。
【0068】
【表1】

Figure 0004629886
表1から明らかなように、本発明の触媒は参考例の触媒と比べて高収率であり、触媒の複合化による顕著な効果が得られた。
【0069】
【発明の効果】
本発明の触媒を用いることにより、イソブタンを気相接触酸化してメタクロレインおよび/またはメタクリル酸を高収率で製造することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for producing methacrolein and / or methacrylic acid by vapor-phase catalytic oxidation of isobutane, a method for producing the catalyst, and a method for producing methacrolein and / or methacrylic acid using the catalyst. Is.
[0002]
[Prior art]
It has been heretofore known that heteropoly acid compounds represented by phosphomolybdic acid are effective as catalysts for producing methacrolein and / or methacrylic acid by gas phase catalytic oxidation of isobutane. JP-A-55-62041, JP-A-2-42032, JP-A-4-128247, JP-A-9-20700, and the like. Further, a catalyst in which a heteropolyacid compound is supported on tantalum oxide, niobium oxide or zirconium oxide treated with sulfate ions (JP-A-6-172250), a composite oxide catalyst of tantalum, niobium and molybdenum (JP-A-5-213799). And metal ion-exchanged phosphorus-vanadium catalyst (Japanese Patent Laid-Open No. 9-295802) have been proposed.
[0003]
However, all of the catalysts proposed so far do not always have a satisfactory reaction result, and further improvements are desired as industrial catalysts.
[0004]
[Problems to be solved by the invention]
The present invention relates to a catalyst capable of producing methacrolein and / or methacrylic acid in high yield by gas phase catalytic oxidation of isobutane, a method for producing the catalyst, and production of methacrolein and / or methacrylic acid using the catalyst. It aims to provide a method.
[0005]
[Means for Solving the Problems]
The above object of the present invention can be solved by the following present invention.
(I) A method for producing a catalyst for producing methacrolein and / or methacrylic acid by gas phase catalytic oxidation of isobutane, characterized in that the following component (A) and component (B) are mixed: A method for producing a catalyst for producing methacrolein and / or methacrylic acid.
Component (A): Solid acid represented by the following formula (1) P a Mo b A c X d Y e Z f O g (1)
(In the formula (1), P, Mo and O represent phosphorus, molybdenum and oxygen, respectively, A represents at least one element selected from the group consisting of vanadium and copper, X represents antimony, bismuth, arsenic, Represents at least one element selected from the group consisting of germanium, tellurium, silver, selenium, silicon, tungsten and boron, Y represents iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, a, b, c, d, e, f and g represent the atomic ratio of each element, and when b = 12, a = 0.1-3, c = 0-3, d = 0-3 e = 0 to 3, a f = 0 to 3, g is the atomic ratio of oxygen required to satisfy the valence of each component.)
Component (B): Oxide represented by the following formula (2) Mo h D i O j (2)
(In Formula (2), Mo and O represent molybdenum and oxygen, respectively, D represents at least one element selected from the group consisting of vanadium, nickel, and antimony. H, i, and j are atoms of each element. Represents a ratio, i = 0.01 to 3 when h = 1, and j is an atomic ratio of oxygen necessary to satisfy the valence of each component.)
(II) The method for producing a methacrolein and / or methacrylic acid production catalyst according to (I), wherein the amount of the component (B) is 1 to 60 parts by mass with respect to 100 parts by mass of the component (A). .
(III) The aqueous solution or slurry of the component (A) and the component (B) are mixed, and the mixture is dried and fired. The methacrolein and / or methacrylic acid production according to the above (I) or (II) For producing a catalyst for use.
(IV) a step of producing by Increment Takurorein and / or methacrylic acid catalyst for producing the method according to any one of (I) from (III), gas-phase catalytic oxidation of isobutane in the presence of the catalyst A process for producing methacrolein and / or methacrylic acid.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst for producing methacrolein and / or methacrylic acid of the present invention is a catalyst used for producing methacrolein and / or methacrylic acid by vapor-phase catalytic oxidation of isobutane with molecular oxygen, and the above-mentioned components ( A) and component (B) are included. When gas-phase catalytic oxidation of isobutane in the presence of such a catalyst of the present invention, methacrolein and / or methacrylic acid can be produced in a higher yield than conventional various catalysts.
[0008]
The reason why the catalyst for producing methacrolein and / or methacrylic acid of the present invention is superior to the conventional various catalysts is that the oxide having high oxidation activity of isobutane and the heteropolyacid having high selectivity of methacrolein and / or methacrylic acid. It is presumed that a synergistic effect was achieved as a result of compounding with the compound.
[0009]
Component (A) in the catalyst of the present invention is a solid acid represented by the following formula (1).
[0010]
P a Mo b A c X d Y e Z f O g (1)
Here, in the formula (1), P, Mo and O represent phosphorus, molybdenum and oxygen, A represents at least one element selected from the group consisting of vanadium and copper, X represents antimony, bismuth, At least one element selected from the group consisting of arsenic, germanium, tellurium, silver, selenium, silicon, tungsten and boron; Y is iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and represents at least one element selected from the group consisting of cerium and lanthanum. a, b, c, d, e, f and g represent the atomic ratio of each element, and when b = 12, a = 0.1-1, c = 0-3, d = 0-3, e = 0. -3, f = 0-3, and g is an atomic ratio of oxygen necessary to satisfy the valence of each component.
[0011]
Preparation of the solid acid of component (A) can be carried out using various methods such as precipitation methods and oxide mixing methods that are well known in the art. Specifically, a mixed solution or aqueous slurry obtained by using a raw material containing a constituent element of a solid acid and appropriately dissolving or suspending the required amount in a solvent such as water is evaporated to dryness, and further pulverized if necessary. An example is a method of heat treatment after molding. In addition, the component solution (B) may be added and mixed without evaporating and drying the mixed solution or the aqueous slurry.
[0012]
Various methods can be used as a method for drying the mixed solution or the aqueous slurry, and examples thereof include an evaporation to dryness method, a spray drying method, a drum drying method, and an airflow drying method.
[0013]
200-500 degreeC is preferable and the heat processing temperature of a component (A) has especially preferable 300-450 degreeC. The heat treatment of component (A) is preferably performed under an oxygen flow, an air flow or a nitrogen flow. The heat treatment time is not particularly limited, but usually about 1 to 40 hours is preferable. In addition, when heat-processing after mixing with a component (B), it does not need to heat-process before mixing.
[0014]
The raw materials used for the preparation of component (A) are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, or the like can be used as the molybdenum raw material. As the phosphorus raw material, orthophosphoric acid, metaphosphoric acid, phosphorus pentoxide, pyrophosphoric acid, ammonium phosphate and the like can be used. In addition, a heteropolyacid compound such as phosphomolybdic acid or ammonium phosphomolybdate can be used as a raw material for molybdenum and phosphorus.
[0015]
On the other hand, the component (B) in the catalyst of the present invention is an oxide represented by the following formula (2).
[0016]
Mo h D i O j (2)
Here, in formula (2), Mo and O represent molybdenum and oxygen, respectively, and D represents at least one element selected from the group consisting of vanadium, nickel, antimony and zirconium. h, i, and j represent the atomic ratio of each element, i = 0.01 to 3 when h = 1, and j is the atomic ratio of oxygen necessary to satisfy the valence of each component. . i is particularly preferably 0.02 or more, and more preferably 2 or less.
[0017]
The preparation of the component (B) oxide can be carried out using various methods such as precipitation methods and oxide mixing methods that are well known in the art. Specifically, a raw material containing a molybdenum raw material and other constituent elements is used, and a mixed solution or aqueous slurry obtained by appropriately dissolving or suspending the required amount in a solvent such as water is dried and further required. The method of heat-treating after pulverizing and shaping by can be exemplified.
[0018]
Various methods can be used as a method for drying the mixed solution or the aqueous slurry, and examples thereof include an evaporation to dryness method, a spray drying method, a drum drying method, and an airflow drying method.
[0019]
The heat treatment temperature of component (B) is preferably 300 to 800 ° C, particularly preferably 350 to 700 ° C. The higher the heat treatment temperature, the more the control of the valence of the main component by electron transfer between the components proceeds, and the lower the heat treatment temperature, the less oxide melting, decomposition, sublimation and the like. As the atmosphere for the heat treatment, air, oxygen, nitrogen or the like is preferably used. The heat treatment time is not particularly limited, but usually about 1 to 40 hours is preferable. In addition, when heat-processing after mixing with a component (A), it does not need to heat-process before mixing.
[0020]
The raw material used for the preparation of component (B) is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, and the like of each element can be used in combination. Examples of the molybdenum raw material include ammonium paramolybdate, molybdenum trioxide, molybdenum dioxide, and molybdic acid. Among these, ammonium paramolybdate is preferably used.
[0021]
The catalyst for producing methacrolein and / or methacrylic acid of the present invention comprises the above component (A) and component (B). The amount of component (B) in the methacrolein and / or methacrylic acid production catalyst of the present invention is preferably 1 part by mass or more, particularly preferably 5 parts by mass or more, and 60 parts by mass with respect to 100 parts by mass of component (A). Hereinafter, 50 parts by mass or less is particularly preferable.
[0022]
In the production of the catalyst for producing methacrolein and / or methacrylic acid of the present invention, the method of mixing the component (A) and the component (B) is not particularly limited, and the types of the component (A) and the component (B) to be mixed, It can be appropriately selected depending on the properties and the addition ratio. Preferable mixing methods include a method of mixing an aqueous solution or slurry of component (A) and component (B), and a method of mixing component (A) and component (B). Even when the component (A) and the component (B) are mixed by any method, it is preferable to mix them as uniformly as possible.
[0023]
In the case of the method of mixing the aqueous solution or aqueous slurry of component (A) and component (B), the dried or fired product of component (B) is added to the aqueous solution or aqueous slurry of component (A) and mixed. The aqueous solution or aqueous slurry of component (A) may be prepared by dissolving or suspending the dried or fired product of component (A) in water, and drying the mixed solution or aqueous slurry at the time of preparing component (A). You may use as it is, without doing. Thereafter, even if the preparation of the component (A) proceeds, the amount and state of the component (B) do not change under normal preparation conditions. Moreover, even if it is the preparation method of the conditions that a component (B) changes, if a final catalyst satisfies the conditions of this invention, it does not interfere. The mixing is preferably carried out at 5 to 200 ° C. for 0.01 to 30 hours, although it varies depending on the composition of component (A) and component (B) and the mixing ratio thereof. The amount of the aqueous solution of component (A) or the water in the aqueous slurry is not particularly limited.
[0024]
As a drying method of the aqueous solution of the component (A) or the mixture of the aqueous slurry and the component (B) (mixed liquid material), various methods can be used depending on the state of the mixture. Spray drying, drum drying, airflow drying, and the like can be used. What is necessary is just to determine drying conditions suitably.
[0025]
The dried product thus obtained may be pulverized if necessary, and then subjected to the subsequent firing as it is, but it is usually preferable to form and then fire it.
[0026]
The molding method is not particularly limited, and various dry and wet molding methods such as tableting molding, press molding, extrusion molding, and granulation molding can be applied. There is no restriction | limiting in particular about the shape of a molded object, The optimal thing can be selected from shapes, such as a ball | bowl, a cylinder, a pellet, a ring, in consideration of the type | mold of a reactor, conditions, etc., for example.
[0027]
In molding, a small amount of known additives such as graphite and talc may be added.
[0028]
The firing method of the molded body thus obtained is not particularly limited, and known methods and conditions can be applied. The optimum conditions for firing differ depending on the raw materials used, composition, preparation method, etc., but usually the atmosphere is under the flow of an oxygen-containing gas such as air and / or under the flow of an inert gas, and the firing temperature is 200 to 500 ° C., preferably The baking can be performed at 300 ° C. or higher or 450 ° C. or lower and the baking time is 0.5 hour or longer, preferably 1 hour or longer or 40 hours or shorter.
[0029]
On the other hand, in the case of mixing the component (A) and the component (B), the dried product or fired product of the component (A) and the dried product or fired product of the component (B) may be mixed. After mixing a component (A) and a component (B), you may grind | pulverize, shape | mold, and heat-process as needed. Molding and heat treatment may be performed in the same manner as in the method of mixing the aqueous solution or slurry of component (A) and component (B). When component (A) and / or component (B) is not heat-treated before mixing, that is, when the dried product of component (A) and / or the dried product of component (B) are mixed, usually after mixing It is preferable to heat-treat.
[0030]
The catalyst of the present invention is for producing methacrolein and / or methacrylic acid by gas phase catalytic oxidation of isobutane. The reaction temperature of this reaction is preferably 230 to 450 ° C, particularly preferably 250 to 400 ° C. The reaction pressure can be from normal pressure to several atmospheres. The space velocity is preferably 200 to 3000 hr −1 .
[0031]
The concentration of isobutane in the raw material gas can be varied within a wide range, but it is preferably 1 to 40%, particularly 3 to 30% by volume.
[0032]
Air is economical as the molecular oxygen source used for the reaction, but if necessary, air enriched with pure oxygen can also be used. The molecular oxygen concentration in the raw material gas is preferably 0.4 to 4 mol, particularly 0.5 to 3 mol, with respect to 1 mol of isobutane.
[0033]
The source gas may be obtained by diluting isobutane and a molecular oxygen source with an inert gas such as nitrogen, water vapor, or carbon gas.
[0034]
The reaction source gas preferably contains water vapor. When the reaction is carried out in the presence of water, methacrolein and / or methacrylic acid is obtained in high yield. The concentration of water vapor in the raw material gas is preferably 1 to 30%, particularly 3 to 25% by volume.
[0035]
The reaction can be carried out in a fixed bed or a fluidized bed.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to an Example.
[0037]
In the following Examples and Comparative Examples, “part” is part by mass, and analysis of the raw material gas and the product was performed using gas chromatography.
[0038]
The reaction rate of isobutane and the selectivity of produced methacrolein and / or methacrylic acid are defined as follows.
[0039]
Isobutane reaction rate (%) = (B / A) × 100
Selectivity of methacrolein (%) = (C / B) × 100
Methacrylic acid selectivity (%) = (D / B) × 100
Yield of methacrolein and methacrylic acid (%) = {(C + D) / A} × 100
Here, A is the number of moles of isobutane supplied, B is the number of moles of reacted isobutane, C is the number of moles of methacrolein produced, and D is the number of moles of methacrylic acid produced.
[0040]
[Reference Example 1]
P 1 Mo 12 heteropolyacid (manufactured by Nippon Inorganic Chemical Industry) was molded and crushed and then heat-treated at 380 ° C. for 5 hours under air flow as a catalyst.
[0041]
The catalyst was charged in a reaction tube, and a mixed gas of 25% isobutane, 25% oxygen, 15% water and 35% (volume%) was passed under normal pressure at a reaction temperature of 350 ° C. and a space velocity of 1200 hr −1 . When the product was collected and analyzed, the reaction rate of isobutane was 4.6%, the selectivity of methacrolein was 35.1%, the selectivity of methacrylic acid was 5.2%, and the yield of methacrolein and methacrylic acid was 1.9. %Met. The results are shown in Table 1.
[0042]
[Reference Example 2]
In a vessel equipped with a reflux condenser, 400 parts of pure water, 100 parts of molybdenum trioxide, 6.7 parts of 85% phosphoric acid, 2.6 parts of vanadium pentoxide and 4.2 parts of copper nitrate were dissolved in 5 parts of pure water. The solution was added, heated at 100 ° C. for 2 hours, cooled to 50 ° C., and a solution prepared by dissolving 14.6 parts of cesium bicarbonate in 20 parts of pure water was added thereto. The mixture was evaporated to dryness with heating and stirring, and the obtained solid was dried at 130 ° C. for 16 hours. The dried powder was molded and crushed and then heat-treated in the same manner as in Reference Example 1 as a catalyst. The composition of elements other than oxygen (hereinafter the same) of the obtained catalyst was P 1 Mo 12 V 0.5 Cu 0.3 Cs 1.3 .
[0043]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0044]
[Reference Example 3]
100 parts of ammonium paramolybdate was dissolved in 200 parts of pure water. A solution obtained by dissolving 13.3 parts of ammonium metavanadate in 300 parts of pure water was added thereto, and the mixture was evaporated to dryness while heating. The obtained solid was dried at 130 ° C. for 16 hours. The dried powder was molded and crushed and then heat-treated at 300 ° C. for 8 hours under air flow and further at 500 ° C. for 2 hours under nitrogen flow was used as a catalyst. The composition of the obtained catalyst was Mo 1 V 0.2 .
[0045]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0046]
[Reference Example 4]
100 parts of ammonium paramolybdate was dissolved in 200 parts of pure water. To this was added a solution prepared by dissolving 49.4 parts of nickel nitrate in 200 parts of pure water, and further a solution prepared by dissolving 15 parts of urea in 50 parts of pure water. The mixture was evaporated to dryness with heating, and the obtained solid was dried at 130 ° C. for 16 hours. The dried powder was molded and crushed and then heat-treated at 500 ° C. for 8 hours under air flow as a catalyst. The composition of the obtained catalyst was Mo 1 Ni 0.3 .
[0047]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0048]
[Reference Example 5]
100 parts of ammonium paramolybdate was dissolved in 200 parts of pure water. To this was added 24.8 parts of antimony trioxide, this mixture was evaporated to dryness while heating, and the resulting solid was dried, molded, crushed and heat-treated as in Reference Example 4 as a catalyst. It was. The composition of the obtained catalyst was Mo 1 Sb 0.3 .
[0049]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0050]
[Reference Example 6]
100 parts of ammonium paramolybdate was dissolved in 200 parts of pure water. To this was added 8.3 parts of antimony trioxide and 7.0 parts of zirconium oxide, and this mixture was evaporated to dryness while heating, and the resulting solid was dried, molded and crushed in the same manner as in Reference Example 4. The heat-treated product was used as a catalyst. The composition of the obtained catalyst was Mo 1 Sb 0.1 Zr 0.1 .
[0051]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0052]
[Example 1]
The catalyst of Reference Example 1 (P 1 Mo 12 ) and the catalyst of Reference Example 3 (Mo 1 V 0.2 ) were mixed and pulverized at a mass ratio of 7: 3, and then molded and crushed again as a catalyst.
[0053]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0054]
[Example 2]
20 parts of the catalyst (Mo 1 V 0.2 ) of Reference Example 3 was added to a solution obtained by dissolving 100 parts of the catalyst (P 1 Mo 12 ) of Reference Example 1 (heat treatment catalyst under air flow) in 100 parts of pure water, and this mixed liquid Was evaporated to dryness while heating. The obtained solid was dried, molded, crushed and heat-treated in the same manner as in Reference Example 2 and used as a catalyst.
[0055]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0056]
[Example 3]
The catalyst of Reference Example 1 (P 1 Mo 12 ) and the catalyst of Reference Example 4 (Mo 1 Ni 0.3 ) were mixed and pulverized at a mass ratio of 7 to 3, and then molded and crushed again.
[0057]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0058]
[Example 4]
The catalyst of Reference Example 1 (P 1 Mo 12 ) and the catalyst of Reference Example 5 (Mo 1 Sb 0.3 ) were mixed and pulverized at a mass ratio of 4: 1, and then molded and crushed again as a catalyst.
[0059]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0060]
[Example 5]
The catalyst of Reference Example 1 (P 1 Mo 12 ) and the catalyst of Reference Example 6 (Mo 1 Sb 0.1 Zr 0.1 ) were mixed and pulverized at a mass ratio of 4 to 1, and then molded and crushed again. It was.
[0061]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0062]
[Example 6]
The catalyst of Reference Example 2 (P 1 Mo 12 V 0.5 Cu 0.3 Cs 1.3 ) and the catalyst of Reference Example 3 (Mo 1 V 0.2 ) were mixed and pulverized at a mass ratio of 7: 3, and then molded and crushed again Was used as a catalyst.
[0063]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0064]
[Example 7]
The catalyst (Mo 1 V 0.2 ) 20 of Reference Example 20 was added to an aqueous slurry in which 100 parts of pure water was added to 100 parts (P 1 Mo 12 V 0.5 Cu 0.3 Cs 1.3 ) of the catalyst of Reference Example 2 (heat treatment catalyst under air flow). And the mixed liquid was evaporated to dryness while heating. The obtained solid was dried, molded, crushed and heat-treated in the same manner as in Reference Example 2 and used as a catalyst.
[0065]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0066]
[Example 8]
In a vessel equipped with a reflux condenser, 400 parts of pure water, 100 parts of molybdenum trioxide, 6.7 parts of 85% phosphoric acid, 2.6 parts of vanadium pentoxide and 4.2 parts of copper nitrate were dissolved in 5 parts of pure water. The solution was added, heated at 100 ° C. for 2 hours, cooled to 50 ° C., and a solution prepared by dissolving 14.6 parts of cesium bicarbonate in 20 parts of pure water was added thereto. Further, 20 parts of the catalyst (Mo 1 V 0.2 ) of Reference Example 3 was added to this mixed solution, and the mixed slurry was evaporated to dryness while stirring with heating. What was molded, crushed and heat-treated was used as a catalyst. In this example, the mixing ratio of the catalyst of Reference Example 2 (P 1 Mo 12 V 0.5 Cu 0.3 Cs 1.3 ) and the catalyst of Reference Example 3 (Mo 1 V 0.2 ) corresponds to 6.2 to 1 in terms of mass ratio. To do.
[0067]
The catalyst was packed in a reaction tube and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.
[0068]
[Table 1]
Figure 0004629886
As is clear from Table 1, the catalyst of the present invention was higher in yield than the catalyst of the reference example, and a remarkable effect was obtained by combining the catalysts.
[0069]
【The invention's effect】
By using the catalyst of the present invention, it is possible to produce methacrolein and / or methacrylic acid in high yield by gas phase catalytic oxidation of isobutane.

Claims (4)

イソブタンを気相接触酸化してメタクロレインおよび/またはメタクリル酸を製造するための触媒の製造方法であって、
下記の成分(A)成分(B)とを混合することを特徴とするメタクロレインおよび/またはメタクリル酸製造用触媒の製造方法
成分(A):下記式(1)で表わされる固体酸
aMobcdefg (1)
(式(1)中、P、MoおよびOはそれぞれリン、モリブデンおよび酸素を示し、Aはバナジウムおよび銅からなる群より選ばれた少なくとも1種類の元素を示し、Xはアンチモン、ビスマス、砒素、ゲルマニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群より選ばれた少なくとも1種類の元素を示し、Yは鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を示し、Zはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種類の元素を示す。a、b、c、d、e、fおよびgは各元素の原子比率を表し、b=12のときa=0.1〜3、c=0〜3、d=0〜3、e=0〜3、f=0〜3であり、gは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
成分(B):下記式(2)で表わされる酸化物
Mohij (2)
(式(2)中、MoおよびOはそれぞれモリブデンおよび酸素を示し、Dはバナジウム、ニッケルおよびアンチモンからなる群より選ばれた少なくとも1種類の元素を示す。h、iおよびjは各元素の原子比率を表し、h=1のときi=0.01〜3であり、jは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
A process for producing a catalyst for producing methacrolein and / or methacrylic acid by gas phase catalytic oxidation of isobutane,
A method for producing a catalyst for producing methacrolein and / or methacrylic acid , comprising mixing the following component (A) and component (B).
Component (A): Solid acid represented by the following formula (1) P a Mo b A c X d Y e Z f O g (1)
(In the formula (1), P, Mo and O represent phosphorus, molybdenum and oxygen, respectively, A represents at least one element selected from the group consisting of vanadium and copper, X represents antimony, bismuth, arsenic, Represents at least one element selected from the group consisting of germanium, tellurium, silver, selenium, silicon, tungsten and boron, Y represents iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, a, b, c, d, e, f and g represent the atomic ratio of each element, and when b = 12, a = 0.1-3, c = 0-3, d = 0-3 e = 0 to 3, a f = 0 to 3, g is the atomic ratio of oxygen required to satisfy the valence of each component.)
Component (B): Oxide represented by the following formula (2) Mo h D i O j (2)
(In the formula (2), Mo and O each represents molybdenum and oxygen, D is vanadium, .h indicating at least one element selected from nickel and antimony or Ranaru group, i and j are the elements (When h = 1, i is from 0.01 to 1-3, and j is the atomic ratio of oxygen necessary to satisfy the valence of each component.)
前記成分(B)の量が、前記成分(A)100質量部に対して1〜60質量部である請求項1に記載のメタクロレインおよび/またはメタクリル酸製造用触媒の製造方法The method for producing a catalyst for producing methacrolein and / or methacrylic acid according to claim 1, wherein the amount of the component (B) is 1 to 60 parts by mass with respect to 100 parts by mass of the component (A). 前記成分(A)の水溶液または水性スラリーと前記成分(B)とを混合し、この混合物を乾燥、焼成する請求項1または2に記載のメタクロレインおよび/またはメタクリル酸製造用触媒の製造方法The method for producing a catalyst for producing methacrolein and / or methacrylic acid according to claim 1 or 2, wherein the aqueous solution or slurry of the component (A) is mixed with the component (B), and the mixture is dried and calcined. 請求項1から3のいずれか1項に記載の方法によりメタクロレインおよび/またはメタクリル酸製造用触媒を製造する工程と、該触媒の存在下でイソブタンを気相接触酸化する工程と、を含むことを特徴とするメタクロレインおよび/またはメタクリル酸の製造方法。 A step of producing by Increment Takurorein and / or methacrylic acid catalyst for producing the method according to any one of claims 1 to 3, a step of vapor-phase catalytic oxidation of isobutane in the presence of the catalyst, the A process for producing methacrolein and / or methacrylic acid, comprising:
JP2001043577A 2001-02-20 2001-02-20 Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid Expired - Lifetime JP4629886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001043577A JP4629886B2 (en) 2001-02-20 2001-02-20 Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001043577A JP4629886B2 (en) 2001-02-20 2001-02-20 Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid

Publications (2)

Publication Number Publication Date
JP2002239388A JP2002239388A (en) 2002-08-27
JP4629886B2 true JP4629886B2 (en) 2011-02-09

Family

ID=18905715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001043577A Expired - Lifetime JP4629886B2 (en) 2001-02-20 2001-02-20 Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid

Country Status (1)

Country Link
JP (1) JP4629886B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490973C (en) * 2004-11-26 2009-05-27 上海华谊丙烯酸有限公司 Catalyst for selectively oxidizing methyl acrylic aldehyde to synthesize methyl propenoic acid and its use
JP5008271B2 (en) * 2005-04-26 2012-08-22 旭化成ケミカルズ株式会社 Continuous production method of unsaturated carboxylic acid ester using alkane as raw material
KR101270191B1 (en) * 2005-08-15 2013-05-31 상하이 리서치 인스티튜트 오브 페트로케미칼 테크놀로지 시노펙 Method for preparation of ethylene and propylene by catalytic cracking using a fluid-bed catalyst
FR2897350B1 (en) * 2006-02-14 2008-05-16 Centre Nat Rech Scient PREPARATION OF A COMPOUND COMPRISING THE ASSOCIATION OF TWO CRYSTALLINE PHASES

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321536A (en) * 1993-03-09 1994-11-22 Basf Ag Combined metallic oxide composition
JPH07116071B2 (en) * 1988-04-12 1995-12-13 旭化成工業株式会社 Method for producing methacrylic acid and / or methacrolein
JPH09299803A (en) * 1996-05-16 1997-11-25 Mitsubishi Chem Corp Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP2001029790A (en) * 1999-07-22 2001-02-06 Mitsubishi Rayon Co Ltd Catalyst for producing methacrolein and methacrylic acid
JP2001079412A (en) * 1999-09-15 2001-03-27 Rohm & Haas Co Catalyst useful for oxidizing alkane
JP2001114726A (en) * 1999-10-12 2001-04-24 Nippon Shokubai Co Ltd Production process for methacrylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116071B2 (en) * 1988-04-12 1995-12-13 旭化成工業株式会社 Method for producing methacrylic acid and / or methacrolein
JPH06321536A (en) * 1993-03-09 1994-11-22 Basf Ag Combined metallic oxide composition
JPH09299803A (en) * 1996-05-16 1997-11-25 Mitsubishi Chem Corp Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP2001029790A (en) * 1999-07-22 2001-02-06 Mitsubishi Rayon Co Ltd Catalyst for producing methacrolein and methacrylic acid
JP2001079412A (en) * 1999-09-15 2001-03-27 Rohm & Haas Co Catalyst useful for oxidizing alkane
JP2001114726A (en) * 1999-10-12 2001-04-24 Nippon Shokubai Co Ltd Production process for methacrylic acid

Also Published As

Publication number Publication date
JP2002239388A (en) 2002-08-27

Similar Documents

Publication Publication Date Title
JP3142549B2 (en) Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same
JP4280797B2 (en) Method for producing composite oxide catalyst
KR950004031B1 (en) Method for preparing mettacrolein and method for preparing a catalyst for use in the preparation of methacrolein
JP2841324B2 (en) Method for producing methacrolein
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
KR100865654B1 (en) Catalysts for methacrylic acid production and process for producing methacrylic acid
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JPH0840969A (en) Production of acrolein and catalyst
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2002306970A (en) Catalyst for manufacturing methacrylic acid, method for manufacturing the catalyst and method for manufacturing methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JPH05331085A (en) Production of methacrolein and/or methacrylic acid
JPH0615178A (en) Preparation of catalyst for production of methacrylic acid
JP4273565B2 (en) Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP3859397B2 (en) Catalyst for production of methacrolein and methacrylic acid
JP7532841B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JPH0597761A (en) Production of methacrolein and catalyst used for producing methacrolein
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid
JP2003251187A (en) Catalyst for manufacturing metacrolein and/or methacrylic acid, manufacturing method therefor and manufacturing method for metacrolein and/or methacrylic acid
JPH0924277A (en) Catalyst and process for preparing methacrylic acid
JPS60150834A (en) Preparation for synthesizing catalyst of methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4629886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term