Nothing Special   »   [go: up one dir, main page]

JP4617625B2 - Winding core - Google Patents

Winding core Download PDF

Info

Publication number
JP4617625B2
JP4617625B2 JP2001262776A JP2001262776A JP4617625B2 JP 4617625 B2 JP4617625 B2 JP 4617625B2 JP 2001262776 A JP2001262776 A JP 2001262776A JP 2001262776 A JP2001262776 A JP 2001262776A JP 4617625 B2 JP4617625 B2 JP 4617625B2
Authority
JP
Japan
Prior art keywords
core
friction coefficient
surface roughness
load
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001262776A
Other languages
Japanese (ja)
Other versions
JP2003073036A (en
Inventor
哲夫 赤澤
寿孝 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001262776A priority Critical patent/JP4617625B2/en
Publication of JP2003073036A publication Critical patent/JP2003073036A/en
Application granted granted Critical
Publication of JP4617625B2 publication Critical patent/JP4617625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Storage Of Web-Like Or Filamentary Materials (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シート状材料を巻き取るための巻芯に関する。特に、本発明の巻芯は電池製造時に用いられる電池用巻芯として好適に使用される。
【0002】
【従来の技術】
リチウム二次電池のような円筒電池は、一般に電極とセパレータとを交互に挟み込む形で巻芯に巻き付けられて捲回された後、捲回された電極素子から巻芯を抜き取って渦巻状の電極体を作製し、これを電池缶内に挿入することにより製造されている。
【0003】
ところが、前記捲回後に巻芯を電極体から抜き取る際に、ピン(巻芯)抜け不良や成形時のセンターピン(巻芯)挿入不良による素子形状異常等があり、電池の歩留まりの低下の大きな要因となっていた。そこで、ピン抜け性を改良するために、捲回用ピン(巻芯)として、従来の鉄製の巻芯に代えて、巻芯の表面をクロムメッキ処理鏡面加工されたものが使用されているが、いまだ十分とはいえず、巻芯の抜き取り時の滑りが悪いため、巻芯を抜き取った際に、電極素子の形状が竹の子状態になったり、抜けなかったりすることが起こっていた。これらの原因は、捲回後のセパレータと巻芯との滑りの悪さ、すなわちセパレータが巻芯に比較的強く巻かれるため、捲回後に巻芯を抜き取る際のセパレータと巻芯との摩擦係数に起因するものと考えられる。
【0004】
そこで、摩擦係数の数値を下げる試みがいくつか提案されている。例えば、巻芯表面にシリコン離型剤を塗布する方法が提案されているが、この方法の場合には、電極体を巻き取る毎に、巻芯にシリコン離型剤を塗布する必要があり、製造工程が複雑になり、生産効率も悪い。また、特開平6−251774号公報には、巻芯表面のクロムメッキ処理鏡面加工の代わりに、カーボンをエポキシ樹脂等と混合し、これを巻芯の芯体表面に塗布して摩擦係数を低減させる方法が提案されている。
しかしながら、電極素子を形成する場合、比較的大きなテンションをかけて捲回されるため、前記特開平6−251774号公報の場合には、巻芯の耐久性に難点があり、巻芯の交換の頻度が高くなり、長期間連続した製造を行うことが困難であり、生産効率の面で難点を有しており、しかも、ピン抜け性も未だ十分とは言えなかった。そこで、巻芯表面をさらに改良したものとして、クロムめっきの耐磨耗性と4フッ化樹脂の低摩擦係数の特性を複合して有する巻芯として、自己潤滑性クロムめっきした巻芯が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、自己潤滑性クロムめっきした巻芯は、比較的低い摩擦係数を有しているが耐久性の面では未だ十分ではなく、さらに優れた特性を有する巻芯の提供が望まれている。
【0006】
【課題を解決するための手段】
本発明者は、前記課題を解決するために鋭意検討の結果、巻芯の表面粗さRzを特定の範囲とし、さらに巻芯表面の切断レベルの負荷長さ率tpを特定の範囲とすることによって、低摩擦係数を有し、しかも耐久性に優れた巻芯が得られることを見出し、本発明に至った。
すなわち本発明は、シート状材料を巻き取るための巻芯において、前記巻芯表面の表面粗さRzが0.4〜5μmであって、且つ切断レベル40%におけるtpが20〜95%であることを特徴とする巻芯に関する。
【0007】
また本発明において、前記巻芯表面がセラミック被覆された巻芯であることが好ましい。
本発明の巻芯は、シート状材料として比較的柔軟なフィルムが使用されるリチウム二次電池の電極体製造時の巻芯として好適に使用することができる。
【0008】
【発明の実施の形態】
本発明において、巻芯のフィルムが当接する主表面部における表面粗さ(十点平均粗さ)Rzが過度に小さい場合には、摩擦抵抗が大きくなり、巻芯抜き取り時に、ピン抜け不良となり易く、一方、Rzが過度に大きい場合には、フィルムの損傷が起こり易くなる。したがって、表面粗さ(十点平均粗さ)Rzは0.4〜5μm、特に1〜3.5μmとするのが好ましい。また、切断レベル40%における負荷長さ率tpが過度に小さい場合には、使用されるフィルムが柔らかいために摩擦抵抗が大きくなり、巻芯抜き取り時に、ピン抜け不良となり易い。したがって、負荷長さ率tpは大きい方が好ましいが、表面粗さ(十点平均粗さ)Rzが上記の範囲の場合には、過度に大きくすることは製造上、困難な面があり通常tpは最大85%程度である。したがって、切断レベル40%の負荷長さ率tpは25〜85%とするのがよい。
特に本発明において、巻芯表面にセラミック被膜を形成させた巻芯は、低摩擦係数を有し、しかも耐久性に優れており好ましい。
【0009】
本発明において、セラミック被膜はマグネトロンスパッタ−イオンプレーティング法(SIP法)により形成される。セラミック被膜としては、Ti、Al、Cr等の炭化物、窒化物、酸窒化物が挙げられ、具体的には、TiC、TiN、TiCN、TiAlN、TiAlNO、TiAlNC、CrN、TiCrN等が挙げられる。
セラミック被膜の形成は、マグネトロンスパッタイオンプレーティングSIP処理装置Z700(ドイツ、ライボルト社製)を用いて行うのが好ましい。以下にセラミック被覆法の一例を示す。
被体(巻芯本体)を予めガラス粒子♯120〜♯200、Al♯80〜♯220等を用いてサンドブラスト処理を行った後、サンドペーパー♯400で軽く研磨し、鋭い突起を除去する。
前記被体をマグネトロンスパッタイオンプレーティングSIP処理装置Z700を用いてTiN等のセラミック被膜を約2μm形成する。セラミック被膜を形成した被体の表面を軽く、研磨材入りナイロンタワシ等を用いて研磨し、鋭い突起を除去し、セラミック被膜を形成した巻芯を製作する。
【0010】
本発明において、表面粗さ(十点平均粗さ)RzはJIS B0601に記載された方法により求めた。また、切断レベル40%の負荷長さ率tpもJIS B0601に記載された方法により求めた。
表面粗さの測定方法を以下に示す。
(1)測定はJIS B0601 表面粗さ−定義および表示、JIS B0651 触針式表面粗さ測定器に準拠した。
測定機器:表面粗さ計(小坂研究所製 型式:SE−2300、 ダイヤモンド触針 先端R 5μm、接触圧 4mN)
研削面に対して直角方向に測定した。
(2)Rzの求め方
Rzは粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜取り部分の平均線から縦倍率方向に測定した最も高い山頂から5番目までの山頂の標高の絶対値の平均値と最も低い谷底から5番目までの谷底の標高(深さ)の絶対値の平均値との和を求め、この値をμmで表した。
(3)tpの求め方
tpは粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜取り部分の粗さ曲線を山頂線に平行な切断レベルで切断したときに得られる切断長さの和の基準長さに対する比を百分率で表した。基準長さは0.25mm、切断レベルは40%とし、その時のtpを用いて評価項目とした
【0011】
摩擦係数は、プラスチックフィルム及びシートの摩擦係数試験方法JIS K7125に準拠した方法により測定した。図1に摩擦係数測定の概略図を示す。
摩擦係数の測定方法を以下に示す。
(1)測定機器:スリップテスター(理学工業製 No.3780)
(2)捲回時の巻芯を想定して、従来の荷重(200g)、面積(39.69cm)よりも高い荷重(390g)、小さい面積(1.76cm)とした。
(3)フィルム試験片は23±2℃、相対湿度65±5%に調整された雰囲気で24時間コンディショニングを行う。
(4)滑り片表面(φ15mm円柱)にフィルム試験片をセロハンテープで貼り付ける。
(5)表面粗し加工された試験板を測定器の試験テーブルにテープで固定する。
(6)表面粗し加工された試験板上に滑り片を乗せ、フックをロードセルのリングにかける。
(7)試験テーブルを150mm/minの速度で移動させる。
(8)ロードセルで移動時の荷重をチャート上に記録する。
静摩擦係数μs=A/B
動摩擦係数μk=C/B
但し、A:動き始めた時の荷重
B:滑り片および重りの総重量 390g
C:動き途中の最大、最小の荷重の平均値
【0012】
磨耗試験はJIS K7204に準拠して測定した。測定方法を以下に示す。
回転する試験片上に1対の磨耗輪を規定荷重の下で圧着させ、磨耗輪によって試験片を磨耗させ、磨耗質量を測定した。
測定機器 :テーバー式磨耗試験機(東洋精機製)
磨耗輪 :CS10F
速度 :60rpm
荷重 :750gf
磨耗回数 :1000回
試験片 :100mm角×3t
【0013】
ピン抜け性評価は以下の方法で行った。図2にピン抜け性測定の概略図を示す。図中、1はセパレータ、2は金属棒(巻芯)を示す。
多孔フィルムの捲回時のピン抜け性を評価する方法として半月状の金属棒1対の間にセパレータを2枚挟み込み、もう一方の端にそれぞれ荷重による張力をかけながら数周巻きつけた。そして、巻き状態のセパレータから金属棒を引き抜きその時の引き抜き力を測定した。
金属棒 :φ8mm 半割り形状
多孔フィルム幅:60mm、 セパレータ長さ:800mm
荷重 :300g/1枚
【0014】
本発明における巻芯の形状としては、特に限定されず、円柱状、円筒状、楕円形状、三角形状、多角形状、板状等が挙げられ、前記形状のスリットを有する巻芯が好適に使用される。さらに摩擦係数を軽減するために巻芯の縦方向に溝を形成して摩擦を軽減したもの、巻芯スリットをテーパ状として巻芯寸法を可変としたもの、あるいは巻芯外形寸法を可変に調整するもの等を使用することができる。
【0015】
【実施例】
以下に実施例及び比較例を示し、本発明についてさらに詳細に説明する。
参考例1
金属板(材質:SUS304)にガラス粒子(粒度♯200)を縦横方向にショットブラストして表面を粗し下地加工を行った。次に、この金属板の表面粗さと滑り性を確認するために表面粗さと摩擦係数を前記した方法により測定した。表面粗さ(十点平均粗さ)Rz及び40%切断レベルにおける負荷長さ率tpを測定した。基準長さを0.25mm、評価長さを1mmとしたときのRzは1.75μm、また40%切断レベルにおける負荷長さ率tpは23%であった。摩擦係数を前記した方法により測定した。PP・PE複層セパレータ25μm(宇部興産(株)製、ユーポア(R)UP3025)の静摩擦係数μsは0.43、動摩擦係数μkは0.25であった。また、PP・PE複層セパレータ25μm(宇部興産(株)製、ユーポア(R)UP3045、高分子量グレード)の静摩擦係数μsは0.47、動摩擦係数μkは0.34であった。
【0016】
参考例2
参考例1と同様にしてガラス粒子で表面粗し加工し、さらにサンドペーパー(♯400)で軽く表面研磨して鋭い突起を取り除いた。表面特性は参考例1と同様に表面粗さと摩擦係数を測定した。Rzは1.23μm、tpは34%であり、参考例1と比較して、表面粗さが小さくなり接触面積も増加した。摩擦係数はユーポア(R)UP3025のとき、静摩擦係数μsは0.26、動摩擦係数μkは0.14であった。また、ユーポア(R)UP3045のとき、静摩擦係数μsは0.31、動摩擦係数μkは0.17であった。表面の鋭い突起を取り除くことでtpが大きくなり参考例1と比較して摩擦係数は低減された。
【0017】
実施例
参考例1と同様にガラス粒子で金属表面を粗し下地加工をし、磨耗性を向上させるためマグネトロンスパッタリングによるセラミック被膜処理を行った。セラミック被膜はマグネトロンスパッタイオンプレーティングSIP処理装置Z700(ドイツ、ライボルト社製)を用いTiAlCN(4元組成)の被膜を形成した。膜厚は約2μmであり、密着力はCSEMスクラッチ試験で100Nまで被膜の破壊は観測されず、密着強度は他法(アーク放電法、ホローカソード法)と同等で優れている。被膜は最終仕上げに研磨材入りナイロンタワシで軽く研磨して鋭い突起を除去した。表面特性は参考例1と同様に表面粗さと摩擦係数を測定した。表面粗さRzは1.58μm、tpは51%であった。摩擦係数はユーポア(R)UP3025のとき、静摩擦係数μsは0.25、動摩擦係数μkは0.20であった。また、ユーポア(R)UP3045のとき、静摩擦係数μsは0.32、動摩擦係数μkは0.29であった。セラミック被覆後の表面の鋭い突起を取り除くことにより摩擦係数は低かった。セラミック被覆の摩擦係数への影響は少なかった。
【0018】
実施例
参考例2と同様にしてガラス粒子で表面加工した後、さらにサンドペーパー(♯400)で軽く表面研磨して鋭い突起を取り除いた。次いで実施例と同様にしてセラミック被膜を形成した。表面特性は参考例1と同様に表面粗さと摩擦係数を測定した。表面粗さRzは1.30μm、tpは66%であった。摩擦係数はユーポア(R)UP3025のとき、静摩擦係数μsは0.27、動摩擦係数μkは0.22であった。また、ユーポア(R)UP3045のとき、静摩擦係数μsは0.31、動摩擦係数μkは0.23であった。実施例の場合と同様に、セラミック被膜の摩擦係数への影響は少なく、セラミック被覆後の表面の鋭い突起を取り除くことによりtpの上昇は見られるが摩擦係数は安定して低かった。参考例1〜2、実施例1〜2の処理条件を表1に、また表面粗さと摩擦係数の測定結果を表2に示す。
【0019】
【表1】

Figure 0004617625
【0020】
【表2】
Figure 0004617625
【0021】
参考例3
金属板(材質:SUS304)にガラス粒子(粒度♯120)を縦横方向にショットブラストして表面を粗し下地加工した。次に、この金属板の表面粗さと滑り性を確認するために表面粗さと摩擦係数を測定した。その測定結果を表3に示す。
【0022】
参考例4
参考例3と同様にしてガラス粒子で表面を粗し下地加工した。さらにサンドペーパー(♯400)で軽く表面研磨して鋭い突起を取り除いた。次に、この金属板の表面粗さと滑り性を確認するために表面粗さと摩擦係数を測定した。その測定結果を表3に示す。
【0023】
比較例1
金属板(材質:SUS304)にアルミナ粒子(粒度♯80)を縦横方向にショットブラストして表面を粗し下地加工した。次に、この金属板の表面粗さと滑り性を確認するために表面粗さと摩擦係数を測定した。その測定結果を表3に示す。
【0024】
参考例5
比較例1と同様にしてアルミナ粒子で表面を粗し下地加工した。さらにサンドペーパー(♯400)で軽く表面研磨して鋭い突起を取り除いた。次に、この金属板の表面粗さと滑り性を確認するために表面粗さと摩擦係数を測定した。その測定結果を表3に示す。
【0025】
参考例6
金属板(材質:SUS304)にアルミナ粒子(粒度♯220)を縦横方向にショットブラストして表面を粗し下地加工した。さらにサンドペーパー(♯400)で軽く表面研磨して鋭い突起を取り除いた。次に、この金属板の表面粗さと滑り性を確認するために表面粗さと摩擦係数を測定した。その測定結果を表3に示す。
【0026】
【表3】
Figure 0004617625
【0027】
実施例
金属板(材質:SS400)にアルミナ粒子(粒度♯220)を縦横方向にショットブラストして表面を粗し下地加工した。さらにサンドペーパー(♯400)で軽く表面研磨して鋭い突起を取り除いた。次に、この金属板の表面にTiCrCN被覆、TiCrN被覆、TiAlN被覆、TiAlCN被覆を形成した。その後、最終仕上げとして研磨材で軽く研磨して鋭い突起を取り除いた。次に、この金属板の磨耗特性と滑り耐久特性の変化を調べた。すなわち、セラミック被覆表面の場合の磨耗特性と、被覆なし(比較例2)、クロムめっき(比較例3)、潤滑性クロムめっき(比較例4)の場合の磨耗特性の比較を行った。磨耗試験は磨耗輪による前記した磨耗試験方法により行った。その後磨耗表面の摩擦係数の変化を測定した。セパレータとしては、ユーポア(R)UP3025を使用した。その結果を表4に示す。
【0028】
比較例2
セラミック被覆処理を行わなかったほかは、実施例と同様にして磨耗特性と滑り耐久特性の変化(摩擦係数の変化)を測定した。その結果を表4に示す。
【0029】
比較例3
実施例におけるセラミック被覆処理の代わりに、金属板(材質:SS400)に約70μmの硬質クロムめっきを行った後、実施例と同様にして磨耗特性と滑り耐久特性の変化(摩擦係数の変化)を測定した。その結果を表4に示す。
【0030】
比較例4
実施例におけるセラミック被覆処理の代わりに、クロムめっきの耐磨耗性と4フッ化樹脂の低摩擦係数等の特性を複合して持つとされる自己潤滑性クロムめっきを金属板(材質:SS400)に約30μm被覆した後、実施例と同様にして磨耗特性と滑り耐久特性の変化(摩擦係数の変化)を測定した。その結果を表4に示す。
【0031】
【表4】
Figure 0004617625
【0032】
表4から、比較例2〜4に見られるように金属表面のままや、潤滑性クロムめっき(テフロン(R)被覆材)では研磨材入りの磨耗輪による磨耗試験では磨耗減量が大きい。一方、表面に硬質のクロムめっきやセラミック被覆を行うと、磨耗が低く抑えられ、効果が顕著に現れている。磨耗後の摩擦係数の変化はクロムめっきとセラミック被覆はほとんど変化がないのに対し、磨耗の激しい自己潤滑性クロムめっきや金属表面のままの場合には、摩擦係数が著しく変化して、大きくなっており、リチウム二次電池の連続製造を続けるとピン抜け性が悪くなることを示している。
【0033】
実施例
実施例と同様の処理を金属棒に加工した。すなわち、金属棒(SKH51)をアルミナ粒子♯220で表面加工した後、セラミック(TiAlCN)を約2μm被膜した。その後、軽い研磨により表面突起を除いた。セパレータの捲回時のピン抜け性を評価する方法として金属棒引き抜き時の引張り荷重を測定した。金属棒はφ8mm半割形状で一対の間の隙間に2枚のセパレータを挟み込み、もう一方の端に荷重による張力をかけながら数回巻き付けた。そして巻き状態のセパレータから金属棒を引き抜く時の荷重を測定した。セパレータの長さは800mm、それぞれ1枚毎に荷重300gの張力をかけた。セパレータとして、ユーポア(R)UP3025(PP・PE複層25μm)、ユーポア(R)UP3045(PP・PE複層25μm、高分子量グレード)、PE単層25μm、PP・PE複層16μmの4種について測定を行った。その測定結果を表5に示す。
【0034】
比較例5
金属棒(SKH51)にクロムめっき約50〜70μm被膜をした。その後実施例と同様に表面粗さ、引き抜き荷重(N)を測定した。その測定結果を表5に示す。
【0035】
比較例6
金属棒(SKH51)に潤滑性クロムめっき約30μm被覆をした。その後実施例と同様に表面粗さ、引き抜き荷重(N)を測定した。その測定結果を表5に示す。
【0036】
【表5】
Figure 0004617625
【0037】
セラミック被膜を有する金属棒の引き抜き時の引張り荷重を、クロムめっきした場合(比較例5)、潤滑性クロムめっきした場合(比較例6)と比較すると、適度な表面粗し加工した後にセラミック被膜を有する金属棒は低摩擦係数でピン抜け性に効果があるとされる潤滑性クロムめっきと同等の滑り特性が確認された。しかしながら、潤滑性クロムめっきは前記したように磨耗試験からも分るように耐久性に難点があり、一方耐磨耗性があるクロムめっきは引き抜き荷重が高い。したがって、適度な表面粗さを有するセラミック被膜金属が耐久性、低摩擦係数でピン抜け性に優れた良好な表面被膜手段であることを示している。
【0038】
【発明の効果】
本発明の巻芯は、巻芯表面の摩擦係数が小さいのでシート状材料を巻き取った後に巻芯を抜き取る際の滑り特性が良く、シート材料を傷つけることがない。また、耐磨耗特性に優れており、長期間にわたり連続製造することができる。
【図面の簡単な説明】
【図1】本発明における摩擦係数測定の概略図を示す。
【図2】本発明におけるピン抜け性測定の概略図を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a core for winding up a sheet-like material. In particular, the core of the present invention is suitably used as a battery core used during battery production.
[0002]
[Prior art]
Cylindrical batteries such as lithium secondary batteries are generally wound and wound around a winding core with electrodes and separators alternately sandwiched, and then the winding core is removed from the wound electrode element. It is manufactured by making a body and inserting it into a battery can.
[0003]
However, when the core is pulled out from the electrode body after the winding, there is an element shape abnormality due to a pin (core) missing defect or a center pin (core) improper insertion at the time of molding, which greatly reduces the yield of the battery. It was a factor. Therefore, in order to improve the pin pull-out property, as the winding pin (core), instead of the conventional iron core, the surface of the core is chrome-plated and mirror-finished is used. However, it is still not sufficient, and slipping at the time of extracting the core is poor, so that when the core is extracted, the shape of the electrode element becomes a bamboo shoot state or cannot be removed. These causes are due to the poor sliding between the separator and the core after winding, i.e., because the separator is wound relatively strongly around the core, and the friction coefficient between the separator and the core when the core is removed after winding. It is thought to be caused.
[0004]
Thus, several attempts have been proposed to lower the friction coefficient. For example, a method of applying a silicon release agent to the surface of the core has been proposed, but in this method, it is necessary to apply a silicon release agent to the core every time the electrode body is wound up. The manufacturing process becomes complicated and the production efficiency is poor. Japanese Patent Laid-Open No. 6-251774 discloses a technique for reducing the friction coefficient by mixing carbon with an epoxy resin or the like and applying this to the core surface of the core instead of chrome plating mirror surface processing on the surface of the core. There is a proposed method.
However, when forming an electrode element, since it is wound with a relatively large tension, in the case of the above-mentioned JP-A-6-251774, there is a difficulty in the durability of the core, and the replacement of the core is difficult. The frequency is high, it is difficult to carry out continuous production for a long period of time, and there are difficulties in terms of production efficiency. Moreover, the pin pull-out property has not been sufficient. Therefore, a self-lubricating chrome-plated core has been proposed as a core that combines the wear resistance of chrome plating and the low friction coefficient characteristics of tetrafluororesin as a further improved core surface. ing.
[0005]
[Problems to be solved by the invention]
However, the self-lubricating chrome-plated core has a relatively low coefficient of friction, but is still not sufficient in terms of durability, and it is desired to provide a core having further excellent characteristics.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor sets the surface roughness Rz of the core to a specific range, and further sets the load length ratio tp of the cutting level of the core surface to a specific range. Thus, it was found that a core having a low coefficient of friction and excellent durability was obtained, and the present invention was achieved.
That is, according to the present invention, in the core for winding the sheet-like material, the surface roughness Rz of the surface of the core is 0.4 to 5 μm, and tp at a cutting level of 40% is 20 to 95%. It is related with the winding core characterized by this.
[0007]
In the present invention, the core surface is preferably a core coated with a ceramic.
The core of the present invention can be suitably used as a core when manufacturing an electrode body of a lithium secondary battery in which a relatively flexible film is used as a sheet-like material.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, when the surface roughness (ten-point average roughness) Rz in the main surface portion with which the film of the core is in contact is excessively small, the frictional resistance is increased, and pin pull-out failure is likely to occur when the core is removed. On the other hand, when Rz is excessively large, the film is easily damaged. Therefore, the surface roughness (ten-point average roughness) Rz is preferably 0.4 to 5 μm, particularly preferably 1 to 3.5 μm. In addition, when the load length ratio tp at a cutting level of 40% is excessively small, the film used is soft, so that the frictional resistance increases, and pin pull-out failure tends to occur when the core is removed. Accordingly, it is preferable that the load length ratio tp is large. However, when the surface roughness (ten-point average roughness) Rz is in the above range, it is difficult to make it excessively large because it is difficult to manufacture. Is about 85% at maximum. Therefore, the load length ratio tp at the cutting level of 40% is preferably 25 to 85%.
In particular, in the present invention, a core having a ceramic film formed on the surface of the core has a low coefficient of friction and is excellent in durability.
[0009]
In the present invention, the ceramic coating is formed by a magnetron sputtering-ion plating method (SIP method). Examples of the ceramic coating include carbides such as Ti, Al, and Cr, nitrides, and oxynitrides. Specific examples include TiC, TiN, TiCN, TiAlN, TiAlNO, TiAlNC, CrN, and TiCrN.
The ceramic coating is preferably formed using a magnetron sputter ion plating SIP processing apparatus Z700 (manufactured by Leibold, Germany). An example of the ceramic coating method is shown below.
The body (core body) is pre-sandblasted with glass particles # 120 to # 200, Al 2 O 3 # 80 to # 220, etc., and then lightly polished with sandpaper # 400 to remove sharp protrusions. To do.
About 2 μm of a ceramic film such as TiN is formed on the object using a magnetron sputter ion plating SIP processing apparatus Z700. The surface of the substrate on which the ceramic coating has been formed is lightly polished using a nylon scrubber with abrasives, etc., and sharp protrusions are removed to produce a winding core on which the ceramic coating is formed.
[0010]
In the present invention, the surface roughness (ten-point average roughness) Rz was determined by the method described in JIS B0601. Further, the load length ratio tp at a cutting level of 40% was also determined by the method described in JIS B0601.
The method for measuring the surface roughness is shown below.
(1) The measurement was based on JIS B0601 surface roughness-definition and display, JIS B0601 stylus type surface roughness measuring instrument.
Measuring instrument: Surface roughness meter (manufactured by Kosaka Laboratory Model: SE-2300, diamond stylus tip R 5 μm, contact pressure 4 mN)
Measurements were made at right angles to the ground surface.
(2) Rz calculation method Rz is extracted from the roughness curve by the reference length in the direction of the average line, and measured from the average line of this extracted part in the vertical magnification direction to the highest peak height from the highest peak to the fifth peak. The sum of the average value of the absolute values and the average value of the absolute values of the altitudes (depths) of the bottom valley from the lowest valley bottom to the fifth was obtained, and this value was expressed in μm.
(3) How to obtain tp is a cutting length obtained when a reference length is extracted from the roughness curve in the direction of the average line, and the roughness curve of this extracted portion is cut at a cutting level parallel to the peak line. The ratio of the sum of to the reference length is expressed as a percentage. The reference length was 0.25 mm, the cutting level was 40%, and tp was used as an evaluation item.
The coefficient of friction was measured by a method based on JIS K7125, a coefficient of friction test method for plastic films and sheets. FIG. 1 shows a schematic diagram of friction coefficient measurement.
The method for measuring the friction coefficient is shown below.
(1) Measuring instrument: Slip tester (No. 3780, manufactured by Rigaku Corporation)
(2) Assuming the winding core during winding, the load (390 g) and the area (1.76 cm 2 ) higher than the conventional load (200 g), area (39.69 cm 2 ) were set.
(3) The film test piece is conditioned for 24 hours in an atmosphere adjusted to 23 ± 2 ° C. and relative humidity 65 ± 5%.
(4) A film test piece is affixed to the surface of the sliding piece (φ15 mm cylinder) with a cellophane tape.
(5) Fix the surface-roughened test plate to the test table of the measuring instrument with tape.
(6) Place a sliding piece on the test plate having a roughened surface and place the hook on the ring of the load cell.
(7) The test table is moved at a speed of 150 mm / min.
(8) Record the load when moving with the load cell on the chart.
Static friction coefficient μs = A / B
Coefficient of dynamic friction μk = C / B
However, A: Load at the start of movement B: Total weight of sliding piece and weight 390 g
C: Average value of maximum and minimum load during movement
The abrasion test was measured according to JIS K7204. The measuring method is shown below.
A pair of wear wheels were pressed onto the rotating test piece under a specified load, the test piece was worn by the wear ring, and the wear mass was measured.
Measuring equipment: Taber type abrasion tester (manufactured by Toyo Seiki)
Wear wheel: CS10F
Speed: 60rpm
Load: 750gf
Number of wears: 1000 times Test piece: 100 mm square x 3 t
[0013]
The pin pull-out evaluation was performed by the following method. FIG. 2 shows a schematic diagram of pin-out property measurement. In the figure, 1 is a separator, and 2 is a metal rod (core).
As a method for evaluating the pin pull-out property at the time of winding the porous film, two separators were sandwiched between a pair of half-moon shaped metal rods and wound around the other end while applying tension by a load. Then, the metal rod was pulled out from the rolled separator, and the pulling force at that time was measured.
Metal rod: φ8mm Half-divided porous film width: 60mm, Separator length: 800mm
Load: 300g / sheet [0014]
The shape of the core in the present invention is not particularly limited, and examples thereof include a columnar shape, a cylindrical shape, an elliptical shape, a triangular shape, a polygonal shape, a plate shape, and the like, and a core having a slit of the above shape is preferably used. The In order to further reduce the friction coefficient, the friction is reduced by forming a groove in the longitudinal direction of the core, the core slit is tapered and the core dimension is variable, or the core outer dimension is variably adjusted. Can be used.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Reference example 1
A glass plate (particle size: # 200) was shot blasted in a vertical and horizontal direction on a metal plate (material: SUS304) to roughen the surface and perform a base processing. Next, in order to confirm the surface roughness and slipperiness of the metal plate, the surface roughness and the friction coefficient were measured by the above-described methods. The surface roughness (ten-point average roughness) Rz and the load length ratio tp at a 40% cutting level were measured. When the reference length was 0.25 mm and the evaluation length was 1 mm, Rz was 1.75 μm, and the load length ratio tp at the 40% cutting level was 23%. The coefficient of friction was measured by the method described above. PP / PE multilayer separator 25 μm (manufactured by Ube Industries, Ltd., UPORE (R) UP3025) had a static friction coefficient μs of 0.43 and a dynamic friction coefficient μk of 0.25. The PP / PE multilayer separator 25 μm (manufactured by Ube Industries, Ltd., UPORE® UP3045, high molecular weight grade) had a static friction coefficient μs of 0.47 and a dynamic friction coefficient μk of 0.34.
[0016]
Reference example 2
The surface was roughened with glass particles in the same manner as in Reference Example 1, and the surface was lightly polished with sandpaper (# 400) to remove sharp protrusions. As for the surface characteristics, the surface roughness and the coefficient of friction were measured in the same manner as in Reference Example 1 . Rz was 1.23 μm and tp was 34%. Compared to Reference Example 1 , the surface roughness was reduced and the contact area was also increased. When the friction coefficient was UPORE (R) UP3025, the static friction coefficient μs was 0.26, and the dynamic friction coefficient μk was 0.14. When UPORE (R) UP3045, the static friction coefficient μs was 0.31, and the dynamic friction coefficient μk was 0.17. By removing sharp protrusions on the surface, tp was increased, and the friction coefficient was reduced as compared with Reference Example 1 .
[0017]
Example 1
In the same manner as in Reference Example 1 , the metal surface was roughened with glass particles and the base was processed, and a ceramic coating treatment by magnetron sputtering was performed to improve the wear resistance. As the ceramic coating, a TiAlCN (quaternary composition) coating was formed using a magnetron sputter ion plating SIP processing device Z700 (manufactured by Leibold, Germany). The film thickness is about 2 μm, and the adhesion strength is not observed up to 100 N in the CSEM scratch test, and the adhesion strength is equal to and superior to other methods (arc discharge method, hollow cathode method). The coating was lightly polished with a nylon scrubbing abrasive for final finishing to remove sharp protrusions. As for the surface characteristics, the surface roughness and the coefficient of friction were measured in the same manner as in Reference Example 1 . The surface roughness Rz was 1.58 μm and tp was 51%. When the friction coefficient was UPORE (UP) UP3025, the static friction coefficient μs was 0.25, and the dynamic friction coefficient μk was 0.20. When UPORE (R) UP3045, the static friction coefficient μs was 0.32, and the dynamic friction coefficient μk was 0.29. The coefficient of friction was low by removing the sharp protrusions on the surface after ceramic coating. The effect of the ceramic coating on the friction coefficient was small.
[0018]
Example 2
After surface treatment with glass particles in the same manner as in Reference Example 2 , the surface was further lightly polished with sandpaper (# 400) to remove sharp protrusions. Next, a ceramic coating was formed in the same manner as in Example 1 . As for the surface characteristics, the surface roughness and the coefficient of friction were measured in the same manner as in Reference Example 1 . The surface roughness Rz was 1.30 μm and tp was 66%. When the friction coefficient was UPORE (R) UP3025, the static friction coefficient μs was 0.27 and the dynamic friction coefficient μk was 0.22. When UPORE (R) UP3045, the static friction coefficient μs was 0.31, and the dynamic friction coefficient μk was 0.23. As in Example 1 , the influence of the ceramic coating on the friction coefficient was small, and by removing sharp protrusions on the surface after the ceramic coating, an increase in tp was observed, but the friction coefficient was stable and low. Table 1 shows the treatment conditions of Reference Examples 1 and 2 and Examples 1 and 2, and Table 2 shows the measurement results of the surface roughness and the friction coefficient.
[0019]
[Table 1]
Figure 0004617625
[0020]
[Table 2]
Figure 0004617625
[0021]
Reference example 3
Glass particles (particle size # 120) were shot blasted in a vertical and horizontal direction on a metal plate (material: SUS304) to roughen the surface and perform a base processing. Next, in order to confirm the surface roughness and slipperiness of this metal plate, the surface roughness and the friction coefficient were measured. The measurement results are shown in Table 3.
[0022]
Reference example 4
In the same manner as in Reference Example 3 , the surface was roughened with glass particles and the substrate was processed. Further, the surface was lightly polished with sandpaper (# 400) to remove sharp protrusions. Next, in order to confirm the surface roughness and slipperiness of this metal plate, the surface roughness and the friction coefficient were measured. The measurement results are shown in Table 3.
[0023]
Comparative Example 1
Alumina particles (particle size # 80) were shot blasted in the vertical and horizontal directions on a metal plate (material: SUS304), and the surface was roughened and ground. Next, in order to confirm the surface roughness and slipperiness of this metal plate, the surface roughness and the friction coefficient were measured. The measurement results are shown in Table 3.
[0024]
Reference Example 5
In the same manner as in Comparative Example 1, the surface was roughened with alumina particles and the substrate was processed. Further, the surface was lightly polished with sandpaper (# 400) to remove sharp protrusions. Next, in order to confirm the surface roughness and slipperiness of this metal plate, the surface roughness and the friction coefficient were measured. The measurement results are shown in Table 3.
[0025]
Reference Example 6
Alumina particles (particle size # 220) were shot blasted in the vertical and horizontal directions on a metal plate (material: SUS304), and the surface was roughened and ground. Further, the surface was lightly polished with sandpaper (# 400) to remove sharp protrusions. Next, in order to confirm the surface roughness and slipperiness of this metal plate, the surface roughness and the friction coefficient were measured. The measurement results are shown in Table 3.
[0026]
[Table 3]
Figure 0004617625
[0027]
Example 3
Alumina particles (particle size # 220) were shot blasted in the vertical and horizontal directions on a metal plate (material: SS400) to roughen the surface and perform the base processing. Further, the surface was lightly polished with sandpaper (# 400) to remove sharp protrusions. Next, TiCrCN coating, TiCrN coating, TiAlN coating, and TiAlCN coating were formed on the surface of the metal plate. Thereafter, the sharp finish was removed by lightly polishing with an abrasive as the final finish. Next, changes in the wear characteristics and sliding durability characteristics of the metal plate were examined. That is, the wear characteristics in the case of the ceramic coated surface were compared with the wear characteristics in the case of no coating (Comparative Example 2), chromium plating (Comparative Example 3), and lubricious chromium plating (Comparative Example 4). The abrasion test was performed by the above-described abrasion test method using an abrasion wheel. Thereafter, the change in the friction coefficient of the worn surface was measured. As a separator, UPORE (R) UP3025 was used. The results are shown in Table 4.
[0028]
Comparative Example 2
Except that the ceramic coating treatment was not performed, changes in wear characteristics and sliding durability characteristics (changes in friction coefficient) were measured in the same manner as in Example 3 . The results are shown in Table 4.
[0029]
Comparative Example 3
Instead of the ceramic coating treatment in Example 3, after applying a hard chromium plating of about 70 μm to a metal plate (material: SS400), changes in wear characteristics and sliding durability characteristics (changes in friction coefficient) were performed in the same manner as in Example 3. ) Was measured. The results are shown in Table 4.
[0030]
Comparative Example 4
Instead of the ceramic coating treatment in Example 3, a self-lubricating chromium plating, which is said to have a combination of wear resistance of chromium plating and low friction coefficient of tetrafluororesin, is applied to a metal plate (material: SS400). After coating with about 30 μm, the changes in the wear characteristics and the sliding durability characteristics (changes in the friction coefficient) were measured in the same manner as in Example 3 . The results are shown in Table 4.
[0031]
[Table 4]
Figure 0004617625
[0032]
From Table 4, as seen in Comparative Examples 2 to 4, the wear loss is large in the wear test with the wear ring containing the abrasive in the case of the metal surface as it is or in the lubricating chrome plating (Teflon (R) coating material). On the other hand, when hard chrome plating or ceramic coating is applied to the surface, wear is suppressed to a low level, and the effect is remarkable. The change in the coefficient of friction after wear is almost the same for chrome plating and ceramic coating, whereas the friction coefficient changes drastically and increases when the self-lubricating chrome plating or metal surface with severe wear remains. This shows that the continuous removal of the lithium secondary battery continues to deteriorate the pin pull-out property.
[0033]
Example 4
The same treatment as in Example 3 was processed into a metal bar. That is, after a metal rod (SKH51) was surface-treated with alumina particles # 220, a ceramic (TiAlCN) film was coated by about 2 μm. Thereafter, surface protrusions were removed by light polishing. As a method for evaluating the pin pull-out property during winding of the separator, the tensile load at the time of pulling out the metal rod was measured. The metal bar had a half-diameter shape of φ8 mm, and two separators were sandwiched between a pair of gaps, and the other end was wound several times while applying tension due to a load. Then, the load when the metal rod was pulled out from the rolled separator was measured. The length of the separator was 800 mm, and a tension of 300 g load was applied to each separator. As separators, 4 types of Eupore (R) UP3025 (PP / PE multilayer 25 μm), Eupore (R) UP3045 (PP / PE multilayer 25 μm, high molecular weight grade), PE single layer 25 μm, PP / PE multilayer 16 μm Measurements were made. The measurement results are shown in Table 5.
[0034]
Comparative Example 5
A metal rod (SKH51) was coated with a chrome plating of about 50 to 70 μm. Thereafter, the surface roughness and the drawing load (N) were measured in the same manner as in Example 4 . The measurement results are shown in Table 5.
[0035]
Comparative Example 6
A metal rod (SKH51) was coated with about 30 μm of lubricious chromium plating. Thereafter, the surface roughness and the drawing load (N) were measured in the same manner as in Example 4 . The measurement results are shown in Table 5.
[0036]
[Table 5]
Figure 0004617625
[0037]
Compared with the case of chrome plating (Comparative Example 5) and the case of lubricating chrome plating (Comparative Example 6), the tensile load at the time of pulling out the metal rod having the ceramic coating was compared with the case where the ceramic coating was applied after moderate surface roughening. It was confirmed that the metal rods had the same sliding characteristics as the lubricious chrome plating, which is said to have a low coefficient of friction and an effective pin-removability. However, as described above, the lubricating chrome plating has a drawback in durability as seen from the wear test, while the chrome plating having wear resistance has a high pulling load. Therefore, it has been shown that a ceramic coating metal having an appropriate surface roughness is a good surface coating means having durability, a low friction coefficient and excellent pin pull-out property.
[0038]
【The invention's effect】
Since the core of the present invention has a small coefficient of friction on the surface of the core, it has good sliding characteristics when the core is removed after winding the sheet-like material, and does not damage the sheet material. Moreover, it is excellent in wear resistance and can be continuously produced over a long period of time.
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of friction coefficient measurement in the present invention.
FIG. 2 shows a schematic diagram of pin-out measurement in the present invention.

Claims (2)

シート状材料を巻き取った後に抜き取られる巻芯であって前記巻芯表面がセラミック被膜されており、該巻芯表面の表面粗さ(十点平均粗さ)Rzが1〜3.5μmであって、且つ切断レベル40%における負荷長さ率tpが25〜85%であることを特徴とする巻芯。 A core which is withdrawn after Tsu taken up the sheet material, the core surface are ceramic coating, the surface roughness of the core surface (ten-point average roughness) Rz is 1~3.5μm The load length ratio tp at a cutting level of 40% is 25 to 85% . 前記巻芯表面はショットブラスト処理が施されていることを特徴とする請求項1記載の巻芯。The core according to claim 1, wherein the surface of the core is subjected to shot blasting.
JP2001262776A 2001-08-31 2001-08-31 Winding core Expired - Lifetime JP4617625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262776A JP4617625B2 (en) 2001-08-31 2001-08-31 Winding core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262776A JP4617625B2 (en) 2001-08-31 2001-08-31 Winding core

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010138545A Division JP2010265118A (en) 2010-06-17 2010-06-17 Core

Publications (2)

Publication Number Publication Date
JP2003073036A JP2003073036A (en) 2003-03-12
JP4617625B2 true JP4617625B2 (en) 2011-01-26

Family

ID=19089620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262776A Expired - Lifetime JP4617625B2 (en) 2001-08-31 2001-08-31 Winding core

Country Status (1)

Country Link
JP (1) JP4617625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2588160C2 (en) * 2011-03-24 2016-06-27 Но.Эл. С.Р.Л. Spindle for winding coils without cores from polymer film

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797769B2 (en) * 2006-04-20 2011-10-19 株式会社日立製作所 Elevators and elevator sheaves
JP2009070726A (en) * 2007-09-14 2009-04-02 Teijin Ltd Method for manufacturing nonaqueous electrolyte battery
KR101147604B1 (en) * 2007-10-12 2012-05-23 주식회사 엘지화학 Preparation Process for Preventing Deformation of Jelly-roll Type Electrode Assembly
JP5481330B2 (en) * 2009-09-11 2014-04-23 帝人株式会社 Non-aqueous electrolyte battery manufacturing method, core used for manufacturing non-aqueous electrolyte battery
ITMI20110467A1 (en) * 2011-03-24 2012-09-25 No El Srl SPINDLE FOR THE WINDING OF REELS WITH THE SOUL OF A PLASTIC FILM
KR101334625B1 (en) * 2011-03-31 2013-11-29 주식회사 엘지화학 Mandrel for Preparation of Jelly-roll Type Electrode Assembly
EP2897199B1 (en) * 2012-09-12 2024-06-26 AESC Japan Ltd. Electrode roll and method for producing electrode roll
KR101790638B1 (en) * 2013-10-30 2017-10-26 주식회사 엘지화학 Winding apparatus for fabricating electrode assembly of cylinderical secondary battery
KR101684301B1 (en) * 2015-01-02 2016-12-08 주식회사 엘지화학 Non-contact type Reform pin
KR101750799B1 (en) 2015-08-13 2017-06-26 주식회사 엘지화학 Mandrel for preparation of jelly-roll type electrode assembly
JP6105776B1 (en) 2016-02-24 2017-03-29 住友化学株式会社 Core, separator winding body, and method of manufacturing separator winding body
KR101895159B1 (en) * 2016-06-30 2018-09-04 스미또모 가가꾸 가부시키가이샤 Separator winding core, separator roll, and method of producing separator roll

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178353A (en) * 1985-01-31 1986-08-11 Diafoil Co Ltd Winding of film
JPS62222976A (en) * 1986-03-25 1987-09-30 Toray Ind Inc Core for winding plastic film
JPS63220491A (en) * 1987-03-10 1988-09-13 Fuji Photo Film Co Ltd Hub for tape
JPH0651438A (en) * 1992-07-28 1994-02-25 Fuji Photo Film Co Ltd Silver halide photographic sensitive material
JPH06251774A (en) * 1993-02-26 1994-09-09 Sanyo Electric Co Ltd Core for cylindrical battery
JPH07215795A (en) * 1994-01-31 1995-08-15 Kyocera Corp Hard carbon film, hard carbon film-coated member and forming method of hard carbon film
JPH07322796A (en) * 1994-05-31 1995-12-12 Daiwa Seiko Inc Fishing tool
JP2001351669A (en) * 2000-06-08 2001-12-21 Toshiba Tungaloy Co Ltd Take-up spool for strip-shaped member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178353A (en) * 1985-01-31 1986-08-11 Diafoil Co Ltd Winding of film
JPS62222976A (en) * 1986-03-25 1987-09-30 Toray Ind Inc Core for winding plastic film
JPS63220491A (en) * 1987-03-10 1988-09-13 Fuji Photo Film Co Ltd Hub for tape
JPH0651438A (en) * 1992-07-28 1994-02-25 Fuji Photo Film Co Ltd Silver halide photographic sensitive material
JPH06251774A (en) * 1993-02-26 1994-09-09 Sanyo Electric Co Ltd Core for cylindrical battery
JPH07215795A (en) * 1994-01-31 1995-08-15 Kyocera Corp Hard carbon film, hard carbon film-coated member and forming method of hard carbon film
JPH07322796A (en) * 1994-05-31 1995-12-12 Daiwa Seiko Inc Fishing tool
JP2001351669A (en) * 2000-06-08 2001-12-21 Toshiba Tungaloy Co Ltd Take-up spool for strip-shaped member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2588160C2 (en) * 2011-03-24 2016-06-27 Но.Эл. С.Р.Л. Spindle for winding coils without cores from polymer film

Also Published As

Publication number Publication date
JP2003073036A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP4617625B2 (en) Winding core
JP2010265118A (en) Core
JP5483384B2 (en) DLC film and DLC coated mold
JP5351875B2 (en) Mold for plastic working, method for producing the same, and method for forging aluminum material
US9303322B2 (en) Metallic articles with hydrophobic surfaces
Hirvonen et al. Tribological characteristics of diamond-like films deposited with an are-discharge method
KR101589392B1 (en) Copper foil for graphene production and production method therefor, and graphene production method
EP3287544B1 (en) Coated metal mold and method for manufacturing same
JP2014062326A (en) Method for manufacturing dlc film
CN103334082B (en) Ti/TiN/TiAlN composite deposite of a kind of cutting tool material surface and preparation method thereof
US20100201088A1 (en) Compressive coatings for ice skate blades and methods for applying the same
JP5713362B2 (en) DLC film and DLC coated mold
JP2016036829A (en) Rolled copper foil, and secondary battery power collector using the same
Shaha et al. Influence of hardness and roughness on the tribological performance of TiC/aC nanocomposite coatings
CN105886997B (en) A kind of printing machine anilox roll preparation method based on plasma spray technology
Vitu et al. Structure and tribology of biocompatible Ti–C: H coatings
JP2009127059A (en) Method for forming diamond-like carbon film
Yamauchi et al. Effect of peening as pretreatment for DLC coatings on magnesium alloy
JP6308298B2 (en) Manufacturing method of coated tool
WO2012060023A1 (en) Protective film, magnetic recording medium comprising said protective film, and production method for protective film
Podgursky et al. Comparative study of surface roughness and tribological behavior during running-in period of hard coatings deposited by lateral rotating cathode arc
CN203360554U (en) Composite coating on surface of cutting tool material
Donnelly et al. The effect of refractive index on the friction coefficient of DLC coated polymer substrates
Jean et al. Tribological Behaviors of DLC Films and their Application in Micro-Deep Drawability.
JP4581861B2 (en) Hard carbon thin film and method for producing the thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term