JP4696570B2 - Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance - Google Patents
Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance Download PDFInfo
- Publication number
- JP4696570B2 JP4696570B2 JP2005018597A JP2005018597A JP4696570B2 JP 4696570 B2 JP4696570 B2 JP 4696570B2 JP 2005018597 A JP2005018597 A JP 2005018597A JP 2005018597 A JP2005018597 A JP 2005018597A JP 4696570 B2 JP4696570 B2 JP 4696570B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- temperature
- steel
- hydrogen embrittlement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 57
- 239000010959 steel Substances 0.000 title claims description 57
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 36
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 36
- 239000001257 hydrogen Substances 0.000 title claims description 36
- 239000000463 material Substances 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000005496 tempering Methods 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 19
- 238000010791 quenching Methods 0.000 claims description 14
- 230000000171 quenching effect Effects 0.000 claims description 14
- 230000009466 transformation Effects 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- -1 by mass% Substances 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 229910001567 cementite Inorganic materials 0.000 description 13
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 239000010953 base metal Substances 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000204914 Salmonella enterica subsp. enterica serovar Give Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、遅れ破壊や溶接遅れ割れ、硫化物腐食割れ等の水素脆性を生じにくい、耐水素脆性特性に優れた高張力鋼材の製造方法に関し、特に引張強度が600MPa以上の高張力鋼材の製造を好適なものにする。 The present invention relates to a method for producing a high-tensile steel material excellent in hydrogen embrittlement resistance, which is unlikely to cause hydrogen embrittlement such as delayed fracture, weld delayed cracking, and sulfide corrosion cracking. Is suitable.
近年、建設産業機械・タンク・ペンストック・ラインパイプ等の鋼材使用分野では、構造物の大型化を背景として、使用する鋼材の高強度化が指向されると共に、鋼材使用環境の苛酷化が進んでいる。 In recent years, in the field of steel materials such as construction industry machinery, tanks, penstock, and line pipes, the strength of steel materials to be used has been increasing due to the increase in size of structures, and the environment for using steel materials has become increasingly severe. It is out.
しかし、このような鋼材の高強度化および使用環境の苛酷化は、一般的に鋼材の水素脆性感受性を高めることが知られており、例えば高力ボルトの分野ではJIS B 1186にてF11T級ボルト(引張強さ1100〜1300N/mm2)についてはなるべく使用しないとの記載がなされている等、高強度鋼材の使用は限定的である。 However, it is known that such high strength of steel materials and severe usage environment generally increase the sensitivity of steel materials to hydrogen embrittlement. For example, in the field of high strength bolts, F11T class bolts in JIS B 1186 With regard to (tensile strength 1100 to 1300 N / mm 2 ), the use of high-strength steel is limited, for example, it is described that it should not be used as much as possible.
このため、特許文献1、特許文献2、特許文献3、特許文献4等で、成分の適正化、粒界強化、結晶粒の微細化、水素トラップサイトの活用、組織形態制御、炭化物の微細分散化等の様々な技術を利用する、耐水素脆性特性に優れた鋼板の製造方法が提案されてきた。
しかしながら、上記特許文献1〜4等に記載されている方法によっても、強度レベルが高くなると厳しい腐食環境下で使用される場合に要求される耐水素脆性特性を得ることは困難であり、より耐水素脆性特性に優れた高張力鋼材の製造方法が求められていた。 However, even by the methods described in Patent Documents 1 to 4 and the like, it is difficult to obtain the hydrogen embrittlement resistance required when used in a severe corrosive environment when the strength level is high. There has been a demand for a method for producing a high-strength steel material having excellent hydrogen embrittlement characteristics.
そこで本発明は、強度が600MPa以上で、従来より耐水素脆性特性に優れた高張力鋼材の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a high-tensile steel material having a strength of 600 MPa or more and excellent in hydrogen embrittlement resistance than before.
本発明は、従来技術における上記問題点を克服すべく、特に焼入れ・焼戻し材の焼戻し処理時における鋼材の板厚方向中心部の昇温速度を成分系に応じて規定することによって、セメンタイトの均一微細分散化を達成し、従来材よりも耐水素脆性特性に優れた高張力鋼材の製造方法を提供するものであり、その要旨とするところは次の通りである。 In order to overcome the above-mentioned problems in the prior art, the present invention provides uniform cementite by defining the rate of temperature rise in the center part in the plate thickness direction of the steel material according to the component system, especially during the tempering treatment of the quenched / tempered material. The present invention provides a method for producing a high-strength steel material that achieves fine dispersion and is more excellent in hydrogen embrittlement resistance than conventional materials. The gist of the method is as follows.
1 質量%で、C:0.02〜0.25%、Si:0.01〜0.8%、Mn:0.5〜2.0%、Al:0.005〜0.1%、N:0.0005〜0.008%、P:0.03%以下、S:0.03%以下、残部がFeおよび不可避的不純物からなる鋼片をAr3変態点以上からSi(mass%)×700+Cr(mass%)×50+250(℃)以下の温度まで焼入れ後、焼戻し開始温度からSi(mass%)×700+Cr(mass%)×50+250(℃)までの鋼材中心部の平均昇温速度を1℃/s未満で、且つSi(mass%)×700+Cr(mass%)×50+250(℃)からSi(mass%)×700+Cr(mass%)×50+370(℃)までの鋼材中心部の平均昇温速度を1℃/s以上として焼戻すことを特徴とする、耐水素脆性特性に優れた高張力鋼材の製造方法。 1% by mass, C: 0.02 to 0.25%, Si: 0.01 to 0.8%, Mn: 0.5 to 2.0%, Al: 0.005 to 0.1%, N : 0.0005~0.008%, P: 0.03% or less, S: 0.03% or less, Si (mass%) of the billet and the balance being Fe and unavoidable impurities from the Ar 3 transformation point or more × After quenching to a temperature of 700 + Cr (mass%) × 50 + 250 (° C.) or less, the average heating rate at the center of the steel material from the tempering start temperature to Si (mass%) × 700 + Cr (mass%) × 50 + 250 (° C.) is 1 ° C. / S and the average rate of temperature rise at the center of the steel material from Si (mass%) × 700 + Cr (mass%) × 50 + 250 (° C.) to Si (mass%) × 700 + Cr (mass%) × 50 + 370 (° C.) Tempering at 1 ° C / s or higher It characterized the door, the method of producing a high tensile steel having excellent hydrogen embrittlement resistance characteristics.
2 更に、鋼組成が、質量%で、Cu:2%以下、Ni:4%以下、Cr:2%以下、Mo:1%以下の1種または2種以上を含有することを特徴とする、1に記載の耐水素脆性特性に優れた高張力鋼材の製造方法。 2 Further, the steel composition is characterized by containing, in mass%, one or more of Cu: 2% or less, Ni: 4% or less, Cr: 2% or less, Mo: 1% or less, A method for producing a high-tensile steel material having excellent hydrogen embrittlement resistance according to 1 .
3 更に、鋼組成が、質量%で、Nb:0.05%以下、V:0.5%以下、Ti:0.03%以下の1種または2種以上を含有することを特徴とする、1または2に記載の耐水素脆性特性に優れた高張力鋼材の製造方法。 3 Further, the steel composition is characterized by containing, by mass%, one or more of Nb: 0.05% or less, V: 0.5% or less, Ti: 0.03% or less, A method for producing a high-tensile steel material having excellent hydrogen embrittlement resistance as described in 1 or 2 .
4 更に、鋼組成が、質量%で、B:0.003%以下、Ca:0.01%以下、REM:0.02%以下、Mg:0.01%以下の1種または2種以上を含有することを特徴とする、1乃至3の何れか1つに記載の耐水素脆性特性に優れた高張力鋼材の製造方法。 4 Further, the steel composition is one or more of mass%, B: 0.003% or less, Ca: 0.01% or less, REM: 0.02% or less, Mg: 0.01% or less. The method for producing a high-tensile steel material having excellent hydrogen embrittlement resistance according to any one of 1 to 3 , wherein the high-tensile steel material is contained.
本発明によれば、引張強度が600MPa以上の、耐水素脆性特性に極めて優れた高張力鋼材の製造が可能となる。 According to the present invention, it is possible to produce a high-tensile steel material having a tensile strength of 600 MPa or more and extremely excellent hydrogen brittleness resistance.
本発明における成分の限定理由について述べる。化学成分組成を示す%は、何れも質量%である。
C:0.02〜0.25%
Cは、強度を確保するために含有するが、0.02%未満ではその効果が不十分であり、一方、0.25%を超えると母材および溶接熱影響部の靭性が劣化するとともに、溶接性が著しく劣化する。従って、C含有量を0.02〜0.25%に限定する。
The reasons for limiting the components in the present invention will be described. All the percentages indicating the chemical composition are mass%.
C: 0.02-0.25%
C is included to ensure strength, but if it is less than 0.02%, its effect is insufficient.On the other hand, if it exceeds 0.25%, the toughness of the base metal and the weld heat-affected zone deteriorates, and the weldability is remarkably high. to degrade. Therefore, the C content is limited to 0.02 to 0.25%.
Si:0.01〜0.8%
Siは、製鋼段階の脱酸材および強度向上元素として含有するが、0.01%未満ではその効果が不十分であり、一方、0.8%を超えると粒界が脆化し、遅れ破壊の発生を促進する。従って、Si含有量を0.01〜0.8%に限定する。
Si: 0.01-0.8%
Si is contained as a deoxidizer and strength improving element in the steelmaking stage, but if it is less than 0.01%, its effect is insufficient, while if it exceeds 0.8%, the grain boundary becomes brittle and promotes the occurrence of delayed fracture. . Therefore, the Si content is limited to 0.01 to 0.8%.
Mn:0.5〜2.0%
Mnは、強度を確保するために含有するが、0.5%未満ではその効果が不十分であり、一方、2.0%を超えると溶接熱影響部の靭性が劣化するとともに、溶接性が著しく劣化する。従って、Mn含有量を0.5〜2.0%に限定する。
Mn: 0.5-2.0%
Mn is contained to ensure the strength, but if it is less than 0.5%, its effect is insufficient. On the other hand, if it exceeds 2.0%, the toughness of the weld heat affected zone deteriorates and the weldability deteriorates remarkably. Therefore, the Mn content is limited to 0.5 to 2.0%.
Al:0.005〜0.1%
Alは、脱酸材として添加されると同時に、結晶粒径の微細化にも効果があるが、0.005%未満の場合にはその効果が十分でなく、一方、0.1%を超えて含有すると、鋼板の表面疵が発生し易くなる。従って、Al含有量を0.005〜0.1%に限定する。
Al: 0.005-0.1%
Al is added as a deoxidizing material, and at the same time, is effective in reducing the crystal grain size, but if it is less than 0.005%, the effect is not sufficient, while if it exceeds 0.1%, Surface flaws of the steel sheet are likely to occur. Therefore, the Al content is limited to 0.005 to 0.1%.
N:0.0005〜0.008%
Nは、Tiなどと窒化物を形成することによって組織を微細化し、母材ならびに溶接熱影響部の靭性を向上させる効果を有するために添加する。0.0005%未満の添加では組織の微細化効果が充分にもたらされず、一方、0.008%を超える添加は固溶N量が増加するために母材および溶接熱影響部の靭性を損なう。従って、N含有量を0.0005〜0.008%に限定する。
N: 0.0005-0.008%
N is added in order to refine the structure by forming a nitride with Ti or the like and to improve the toughness of the base material and the weld heat affected zone. If the addition is less than 0.0005%, the effect of refining the structure is not sufficiently brought about. On the other hand, the addition exceeding 0.008% impairs the toughness of the base metal and the weld heat-affected zone because the amount of solute N increases. Therefore, the N content is limited to 0.0005 to 0.008%.
P:0.03%以下、S:0.03%以下
P、Sは、いずれも不純物元素であり、0.03%を超えると健全な母材および溶接継手を得ることができなくなる。従って、P、S含有量をそれぞれ0.03%以下に限定する。
P: 0.03% or less, S: 0.03% or less
P and S are both impurity elements, and when it exceeds 0.03%, it becomes impossible to obtain a sound base material and a welded joint. Therefore, the P and S contents are limited to 0.03% or less, respectively.
本発明では、所望の特性に応じてさらに以下の成分を含有することができる。
Cu:2%以下
Cuは、固溶強化および析出強化により強度を向上する作用を有している。しかしながら、Cu含有量が2%を超えると、鋼片加熱時や溶接時に熱間での割れを生じやすくする。従って、Cuを添加する場合には、その含有量を2%以下に限定する。
In the present invention, the following components can be further contained according to desired properties.
Cu: 2% or less
Cu has the effect of improving strength by solid solution strengthening and precipitation strengthening. However, if the Cu content exceeds 2%, hot cracking is likely to occur during steel piece heating or welding. Therefore, when adding Cu, the content is limited to 2% or less.
Ni:4%以下
Niは、靭性および焼入れ性を向上する作用を有している。しかしながら、Ni含有量が4%を超えると、経済性が劣る。従って、Niを添加する場合には、その含有量を4%以下に限定する。
Ni: 4% or less
Ni has an effect of improving toughness and hardenability. However, if the Ni content exceeds 4%, the economy is inferior. Therefore, when Ni is added, its content is limited to 4% or less.
Cr:2%以下
Crは、強度および靭性を向上する作用を有しており、また高温強度特性に優れる。しかしながら、Cr含有量が2%を超えると、溶接性が劣化する。従って、Crを添加する場合には、その含有量を2%以下に限定する。
Cr: 2% or less
Cr has an effect of improving strength and toughness, and is excellent in high-temperature strength characteristics. However, when the Cr content exceeds 2%, the weldability deteriorates. Therefore, when adding Cr, the content is limited to 2% or less.
Mo:1%以下
Moは、焼入れ性および強度を向上する作用を有しており、また高温強度特性に優れる。しかしながら、Mo含有量が1%を超えると、経済性が劣る。従って、Moを添加する場合には、その含有量を1%以下に限定する。
Mo: 1% or less
Mo has an effect of improving hardenability and strength, and is excellent in high-temperature strength characteristics. However, if the Mo content exceeds 1%, the economy is inferior. Therefore, when adding Mo, the content is limited to 1% or less.
Nb:0.05%以下
Nbは、マイクロアロイング元素として強度を向上させるために添加する。しかしながら、0.05%を超えると溶接熱影響部の靭性を劣化させる。従って、Nbを添加する場合には、その含有量を0.05%以下に限定する。
Nb: 0.05% or less
Nb is added as a microalloying element to improve the strength. However, if it exceeds 0.05%, the toughness of the heat affected zone is deteriorated. Therefore, when Nb is added, its content is limited to 0.05% or less.
V:0.5%以下
Vは、マイクロアロイング元素として強度を向上させるために添加する。しかしながら、0.5%を超えると溶接熱影響部の靭性を劣化させる。従って、Vを添加する場合には、その含有量を0.5%以下に限定する。
V: 0.5% or less
V is added to improve the strength as a microalloying element. However, if it exceeds 0.5%, the toughness of the heat affected zone is deteriorated. Therefore, when V is added, its content is limited to 0.5% or less.
Ti:0.03%以下
Tiは、圧延加熱時あるいは溶接時にTiNを生成し、オーステナイト粒の成長を抑制し、母材ならびに溶接熱影響部の靭性を向上させる。しかしながら、その含有量が0.03%を超えると溶接熱影響部の靭性を劣化させる。従って、Tiを添加する場合には、その含有量を0.03%以下に限定する。
Ti: 0.03% or less
Ti produces TiN during rolling and heating, suppresses the growth of austenite grains, and improves the toughness of the base metal and the weld heat affected zone. However, if the content exceeds 0.03%, the toughness of the heat affected zone is deteriorated. Therefore, when adding Ti, the content is limited to 0.03% or less.
B:0.003%以下
Bは、焼入れ性を向上する作用を有している。しかしながら、0.003%を超えると、靭性を劣化させる。従って、Bを添加する場合には、その含有量を0.003%以下に限定する。
B: 0.003% or less
B has the effect | action which improves hardenability. However, if it exceeds 0.003%, the toughness is deteriorated. Therefore, when adding B, the content is limited to 0.003% or less.
Ca:0.01%以下
Caは、硫化物系介在物の形態制御に不可欠な元素である。しかしながら、0.01%を超える添加は、清浄度の低下を招く。従って、Caを添加する場合には、その含有量を0.01%以下に限定する。
Ca: 0.01% or less
Ca is an element indispensable for the morphology control of sulfide inclusions. However, addition exceeding 0.01% causes a decrease in cleanliness. Therefore, when adding Ca, the content is limited to 0.01% or less.
REM:0.02%以下
REMは、鋼中でREM(O、S)として硫化物を生成することによって結晶粒界の固溶S量を低減して耐SR割れ特性を改善する。しかしながら、0.02%を超える添加は、沈殿晶帯にREM硫化物が著しく集積し、材質の劣化を招く。従って、REMを添加する場合には、その添加量を0.02%以下に限定する。
REM: 0.02% or less
REM improves the SR cracking resistance by reducing the amount of solute S at the grain boundaries by producing sulfide as REM (O, S) in steel. However, addition exceeding 0.02% causes REM sulfide to accumulate significantly in the precipitated crystal zone, leading to deterioration of the material. Therefore, when adding REM, the addition amount is limited to 0.02% or less.
Mg:0.01%以下
Mgは、溶銑脱硫材として使用する場合がある。しかしながら、0.01%を超える添加は、清浄度の低下を招く。従って、Mgを添加する場合には、その添加量を0.01%以下に限定する。
Mg: 0.01% or less
Mg may be used as a hot metal desulfurization material. However, addition exceeding 0.01% causes a decrease in cleanliness. Therefore, when adding Mg, the addition amount is limited to 0.01% or less.
次に、本発明における製造条件の限定理由について述べる。
焼入れ
母材強度および母材靭性を確保するため、Ar3変態点以上の温度からSi(mass%)×700+Cr(mass%)×50+250(℃)以下の温度まで焼入れを行う。焼入れは0.5℃/s以上、好ましくは1℃/s以上の速度で冷却する。
Next, the reasons for limiting the manufacturing conditions in the present invention will be described.
In order to ensure the strength of the quenched base metal and the toughness of the base metal, quenching is performed from a temperature not lower than the Ar 3 transformation point to a temperature not higher than Si (mass%) × 700 + Cr (mass%) × 50 + 250 (° C.). Quenching is performed at a rate of 0.5 ° C./s or higher, preferably 1 ° C./s or higher.
オーステナイトからマルテンサイトもしくはベイナイトへの変態を完了させて母材を強化すると共に、焼戻し処理時にセメンタイトの均一微細分散化を達成するため規定する。 It is specified to complete the transformation from austenite to martensite or bainite to strengthen the base material and to achieve uniform fine dispersion of cementite during tempering.
本発明ではAr3変態点を求める式は特に規定しないが、例えばAr3=910-310C(mass%)-80Mn(mass%)-20Cu(mass%)-15Cr(mass%)-55Ni(mass%)-80Mo(mass%)とする。 In the present invention, the formula for obtaining the Ar 3 transformation point is not particularly specified. For example, Ar 3 = 910-310C (mass%)-80Mn (mass%)-20Cu (mass%)-15Cr (mass%)-55Ni (mass%) ) -80Mo (mass%).
焼戻し条件
焼戻し時、Si(mass%)×700+Cr(mass%)×50+250(℃)からSi(mass%)×700+Cr(mass%)×50+370(℃)の温度域を1℃/s以上、好ましくは2℃/s以上にする。
Tempering conditions When tempering, the temperature range from Si (mass%) x 700 + Cr (mass%) x 50 + 250 (° C) to Si (mass%) x 700 + Cr (mass%) x 50 + 370 (° C) 1 ° C / s or more, preferably 2 ° C / s or more.
焼戻し時に生じるセメンタイトの生成・成長挙動には添加元素が影響を及ぼし、特にSiおよびCrは、セメンタイトの生成・成長を遅らせる作用を有する。セメンタイトの生成・成長は、Si(mass%)×700+Cr(mass%)×50+250(℃)からSi(mass%)×700+Cr(mass%)×50+370(℃)の温度域で特に生じ、これらの温度域における板厚中心部の平均昇温速度を1℃/s以上、好ましくは2℃/s以上とした場合、セメンタイトが旧オーステナイト粒界やラス境界のみではなく粒内にも生成して、均一微細分散析出する。 The additive element has an effect on the formation / growth behavior of cementite produced during tempering. In particular, Si and Cr have the effect of delaying the formation / growth of cementite. The formation and growth of cementite is from Si (mass%) x 700 + Cr (mass%) x 50 + 250 (° C) to Si (mass%) x 700 + Cr (mass%) x 50 + 370 (° C) When the average rate of temperature rise at the center of the plate thickness in these temperature ranges is 1 ° C / s or higher, preferably 2 ° C / s or higher, cementite is not only grains of old austenite grain boundaries and lath boundaries. It is also formed inside and precipitates uniformly and finely.
その結果、耐水素脆性特性が劣化する主な要因である旧オーステナイト粒界やラス境界におけるセメンタイトの凝集・粗大化が抑制されるため、耐水素脆性特性が従来材よりも向上すると共に靭性が向上する。 As a result, the agglomeration and coarsening of cementite at the prior austenite grain boundaries and lath boundaries, which are the main causes of deterioration of hydrogen embrittlement resistance, are suppressed, resulting in improved hydrogen embrittlement resistance and improved toughness. To do.
更に、焼戻し開始温度からSi(mass%)×700+Cr(mass%)×50+250(℃)までの板厚中心部の平均昇温速度を1℃/s未満と低速に規定すると耐水素脆性特性と共に靭性がより向上して好ましい。 Furthermore, if the average heating rate at the center of the plate thickness from the tempering start temperature to Si (mass%) x 700 + Cr (mass%) x 50 + 250 (° C) is defined as low, less than 1 ° C / s, hydrogen resistance It is preferable because the toughness is further improved together with the brittle properties.
焼入れ時には、変態完了後に自動焼戻しによってセメンタイトが若干量生成する。焼戻し処理開始からSi(mass%)×700+Cr(mass%)×50+250(℃)までは自動焼戻しによって生じたセメンタイトの溶解が生じ、Si(mass%)×700+Cr(mass%)×50+250(℃)を超えるとセメンタイトの生成が生じる。 At the time of quenching, a small amount of cementite is generated by automatic tempering after the transformation is completed. From the start of tempering treatment to Si (mass%) × 700 + Cr (mass%) × 50 + 250 (° C), the dissolution of cementite generated by automatic tempering occurs, Si (mass%) × 700 + Cr (mass%) When it exceeds x50 + 250 (° C), cementite is produced.
焼戻し開始温度からSi(mass%)×700+Cr(mass%)×50+250(℃)までの板厚中心部の平均昇温速度を1℃/s未満と低速にすることで、焼入れ時に自動焼戻しによって生成したセメンタイトが充分に溶解する時間を与える。 During quenching, the average temperature rise rate from the tempering start temperature to Si (mass%) x 700 + Cr (mass%) x 50 + 250 (° C) is reduced to less than 1 ° C / s. Gives enough time for the cementite produced by automatic tempering to dissolve.
その後、セメンタイトの生成・成長が特に生じるSi(mass%)×700+Cr(mass%)×50+250(℃)からSi(mass%)×700+Cr(mass%)×50+370(℃)までの板厚中心部の平均昇温速度を1℃/s以上、好ましくは2℃/s以上と高速にすると、焼戻し開始温度からSi(mass%)×700+Cr(mass%)×50+250(℃)までの板厚中心部の平均昇温速度を1℃/s以上とした場合と比較して、更に均一微細なセメンタイトの分散析出状態が得られ、耐水素脆性特性と靭性が向上する。 After that, the formation and growth of cementite occurs particularly Si (mass%) × 700 + Cr (mass%) × 50 + 250 (℃) to Si (mass%) × 700 + Cr (mass%) × 50 + 370 (℃ ) When the average temperature rise rate at the center of the plate thickness up to 1 ° C / s or higher, preferably 2 ° C / s or higher, from the tempering start temperature, Si (mass%) × 700 + Cr (mass%) × 50 Compared with the case where the average heating rate at the center of the plate thickness up to +250 (° C) is 1 ° C / s or more, a more uniform and fine cementite dispersion state is obtained, and the hydrogen brittleness resistance and toughness are improved. improves.
本発明においてはAr3変態点以上から焼入れが可能なように鋼片を製造すれば良く、溶鋼から鋳片を製造する方法や、鋳片を圧延して鋼片を製造する方法は特に規定しない。転炉法・電気炉法等で溶製された鋼や、連続鋳造・造塊法等で製造されたスラブが利用できる。 In the present invention, a steel slab may be manufactured so that quenching can be performed from the Ar 3 transformation point or higher, and a method for manufacturing a slab from molten steel and a method for manufacturing a slab by rolling the slab are not particularly specified. . Steel melted by a converter method, an electric furnace method, or a slab manufactured by a continuous casting / ingot-making method can be used.
鋳片を圧延して鋼片を製造する際、Ar3変態点以下に冷却することなく、そのまま熱間圧延を開始しても、一度冷却した鋳片をAc3変態点以上に再加熱した後に熱間圧延を開始しても良い。 When rolled to form a steel slab to slab, without cooling below Ar 3 transformation point, even if it starts to hot rolling, the slab was once cooled after re-heating above Ac 3 transformation point Hot rolling may be started.
Ar3変態点以上で圧延を終了すれば、その他の圧延条件に関して特に規定するものではない。Ar3変態点以上の温度の圧延であれば、再結晶域で圧延を行っても未再結晶域で圧延を行って良い。 If the rolling is completed at the Ar 3 transformation point or higher, there are no particular restrictions on other rolling conditions. As long as the rolling is performed at a temperature equal to or higher than the Ar 3 transformation point, rolling may be performed in the non-recrystallized region even if rolling is performed in the recrystallized region.
本発明は、Ar3変態点以上のオーステナイト単相組織の状態から焼入れを開始すれば、熱間圧延後に直接焼入れを行っても、熱間圧延材を再加熱後に焼入れを行っても良い。 In the present invention, if quenching is started from the state of an austenite single phase structure at or above the Ar 3 transformation point, direct quenching may be performed after hot rolling, or quenching may be performed after reheating the hot rolled material.
焼戻し時の加熱方式は、誘導加熱、通電加熱、赤外線輻射加熱、雰囲気加熱等、所要の昇温速度が達成される方式で良い。焼戻し時における平均昇温速度の規定は、板厚中心部にて行ったが、板厚中心部近傍はほぼ同様の温度履歴となる。 The heating method at the time of tempering may be a method that achieves a required temperature increase rate, such as induction heating, energization heating, infrared radiation heating, and atmosphere heating. Although the regulation of the average rate of temperature increase during tempering was performed at the center of the plate thickness, the temperature history near the center of the plate thickness is almost the same.
また、焼戻し時の昇温過程は、所定の平均昇温速度が得られれば良く、直線的な温度履歴を取っても、途中温度で滞留するような温度履歴を取っても良く、特に規定しない。 Further, the temperature raising process during tempering is not particularly limited as long as a predetermined average temperature rising rate is obtained, and either a linear temperature history or a temperature history that stays at an intermediate temperature may be obtained. .
焼戻し温度における保持時間は、生産性や析出物の粗大化に起因する耐水素脆性特性の劣化を防止すべく、60s以下とすることが望ましい。焼戻し後の冷却速度については、冷却中における析出物の粗大化を防止すべく、焼戻し温度〜200℃までにおける板厚中心部の平均冷却速度を0.05℃/s以上とすることが望ましい。なお、本発明において規定する焼入れ温度、焼戻し開始温度などの温度は、板厚中心部での温度とする。 The holding time at the tempering temperature is desirably 60 s or less in order to prevent deterioration of the hydrogen embrittlement resistance attributed to productivity and coarsening of precipitates. As for the cooling rate after tempering, it is desirable that the average cooling rate at the central part of the plate thickness from the tempering temperature to 200 ° C. is 0.05 ° C./s or more in order to prevent coarsening of precipitates during cooling. Note that the temperatures such as quenching temperature and tempering start temperature defined in the present invention are the temperatures at the center of the plate thickness.
以上、本発明を、鋼板に適用した場合について説明したが、本発明は鋼板に限定されるものでなく、形鋼、棒鋼など種々の形状の鋼材に適用可能である。 As mentioned above, although the case where this invention was applied to the steel plate was demonstrated, this invention is not limited to a steel plate, It is applicable to steel materials of various shapes, such as a shape steel and a bar steel.
本発明の有効性を実施例によって説明する。表1に示す化学成分の鋼A〜Lを溶製してスラブに鋳造し、加熱炉で加熱後、圧延を行い鋼板とした。圧延後、引続き直接焼入れし、次いで、直列に設置した2台のソレノイド型誘導加熱装置を用いて、焼戻し開始からSi(mass%)×700+Cr(mass%)×50+250(℃)までは1台目の誘導加熱装置にて、Si(mass%)×700+Cr(mass%)×50+250(℃)から所定の焼戻し温度までは2台目の誘導加熱装置にて連続的に焼戻し処理を行った。 The effectiveness of the present invention will be described by way of examples. Steels A to L having chemical components shown in Table 1 were melted and cast into slabs, heated in a heating furnace, and then rolled into a steel plate. After rolling, it is directly quenched, and then from the start of tempering to Si (mass%) x 700 + Cr (mass%) x 50 + 250 (° C) using two solenoid type induction heating devices installed in series Is the first induction heating device. From the Si (mass%) × 700 + Cr (mass%) × 50 + 250 (℃) to the specified tempering temperature, the second induction heating device continuously A tempering treatment was performed.
また、板厚中心部の平均昇温速度は、鋼板の通板速度によって管理した。なお、焼戻し温度にて保持する場合には、鋼板を往復させて加熱することによって、±5℃の範囲内で保持を行った。また、加熱後の冷却は空冷とした。焼き戻し温度や焼入れ温度などの板厚中心部での温度は、表面の逐次における温度測定結果から、計算で求めた。 Moreover, the average temperature increase rate in the center portion of the plate thickness was controlled by the plate passing rate of the steel plate. In addition, when hold | maintaining at the tempering temperature, it hold | maintained within the range of +/- 5 degreeC by reciprocating and heating a steel plate. The cooling after heating was air cooling. The temperature at the center of the plate thickness, such as the tempering temperature and the quenching temperature, was calculated from the temperature measurement results at the surface sequentially.
表2に鋼板製造条件を、表3に得られた鋼板の引張強度・破面遷移温度(vTrs)・限界拡散性水素量を示す。引張強度は、全厚引張試験片により測定し、靭性は、板厚中心部より採取した試験片を用いたシャルピー衝撃試験によって得られるvTrsで評価した。 Table 2 shows the steel sheet production conditions, and Table 3 shows the tensile strength, fracture surface transition temperature (vTrs), and critical diffusible hydrogen content of the steel sheet obtained. Tensile strength was measured with a full thickness tensile test piece, and toughness was evaluated with vTrs obtained by a Charpy impact test using a test piece taken from the center of the plate thickness.
また、限界拡散性水素量は、引張強さの90%の定荷重負荷下において100h以内に遅れ破壊を生じない上限の拡散性水素量と定義し、試験片は環状ノッチ付き丸棒引張試験片を用い、拡散性水素量はガスクロマトグラフ法により測定した。材料特性の目標は、鋼A〜Fに関しては、vTrs:-40℃以下、限界拡散性水素量:0.3mass ppm以上とし、鋼G〜Lに関しては、vTrs:-40℃以下、限界拡散性水素量:0.2mass ppm以上とした。 The critical diffusible hydrogen amount is defined as the upper limit diffusible hydrogen amount that does not cause delayed fracture within 100h under a constant load of 90% of the tensile strength. The amount of diffusible hydrogen was measured by gas chromatography. The target of the material properties is vTrs: -40 ° C or less for steels A to F, limit diffusible hydrogen content: 0.3 mass ppm or more, and for steels G to L, vTrs: -40 ° C or less, limit diffusible hydrogen Amount: 0.2 mass ppm or more.
表3から明らかなように、本発明法により製造した鋼板No.1〜14(本発明例)の靭性および限界拡散性水素量は、目標値を満足している。 As is apparent from Table 3, the toughness and critical diffusible hydrogen content of steel plates Nos. 1 to 14 (invention examples) produced by the method of the present invention satisfy the target values.
これに対して、比較鋼板No.15〜26(比較例)は、靭性および限界拡散性水素量の何れかもしくは何れもが上記目標範囲を外れている。以下、これらの比較例を個別に説明する。 On the other hand, in comparative steel plates No. 15 to 26 (comparative example), either or both of toughness and critical diffusible hydrogen amount are out of the target range. Hereinafter, these comparative examples will be described individually.
直接焼入れ開始温度が本発明範囲から外れている鋼板No.15およびNo.16は、限界拡散性水素量が目標値に達していない。 Steel plates No. 15 and No. 16 whose direct quenching start temperatures are outside the scope of the present invention do not reach the target diffusible hydrogen content.
直接焼入れ停止温度が本発明範囲から外れている鋼板No.17は、靭性および限界拡散性水素量の何れもが目標値に達していない。 Steel plate No. 17 whose direct quenching stop temperature is out of the range of the present invention has neither the toughness nor the limit diffusible hydrogen amount reaching the target value.
Si(mass%)×700+Cr(mass%)×50+250(℃)からSi(mass%)×700+Cr(mass%)×50+370(℃)までの板厚中心部の平均昇温速度が本発明範囲から外れている鋼板No.18〜26は、靭性および限界拡散性水素量の何れかもしくは何れもが目標値に達していない。 Average rise in the center of the plate thickness from Si (mass%) × 700 + Cr (mass%) × 50 + 250 (℃) to Si (mass%) × 700 + Cr (mass%) × 50 + 370 (℃) In steel plates Nos. 18 to 26 whose temperature speed is out of the scope of the present invention, either or both of toughness and critical diffusible hydrogen amount do not reach the target value.
また、焼戻し開始温度からSi(mass%)×700+Cr(mass%)×50+250(℃)までの板厚中心部の平均昇温速度が異なるNo.9とNo.10またはNo.11とNo.12を比較すると、焼戻し開始温度からSi(mass%)×700+Cr(mass%)×50+250(℃)までの板厚中心部の平均昇温速度が1℃/s未満のNo.9、11に対し、1℃/s以上のNo.10、12は、靭性が向上し、かつ、限界拡散性水素量が高くなっている。 In addition, No. 9 and No. 10 or No. 11 differ in the average rate of temperature rise at the center of the thickness from tempering start temperature to Si (mass%) × 700 + Cr (mass%) × 50 + 250 (° C) And No.12, the average heating rate at the center of the thickness from tempering start temperature to Si (mass%) x 700 + Cr (mass%) x 50 + 250 (° C) is less than 1 ° C / s. In contrast to Nos. 9 and 11, Nos. 10 and 12 of 1 ° C./s or more have improved toughness and a high critical diffusible hydrogen content.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005018597A JP4696570B2 (en) | 2005-01-26 | 2005-01-26 | Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005018597A JP4696570B2 (en) | 2005-01-26 | 2005-01-26 | Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006206942A JP2006206942A (en) | 2006-08-10 |
JP4696570B2 true JP4696570B2 (en) | 2011-06-08 |
Family
ID=36964115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005018597A Active JP4696570B2 (en) | 2005-01-26 | 2005-01-26 | Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4696570B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5277648B2 (en) * | 2007-01-31 | 2013-08-28 | Jfeスチール株式会社 | High strength steel sheet with excellent delayed fracture resistance and method for producing the same |
EP2128288B1 (en) * | 2007-01-31 | 2013-10-09 | JFE Steel Corporation | High tensile steel products excellent in the resistance to delayed fracture and process for production of the same |
JP5277672B2 (en) * | 2007-03-29 | 2013-08-28 | Jfeスチール株式会社 | High strength steel plate with excellent delayed fracture resistance and method for producing the same |
JP5094272B2 (en) | 2007-08-21 | 2012-12-12 | 株式会社日本製鋼所 | Low alloy high strength steel with excellent high pressure hydrogen environment embrittlement resistance and method for producing the same |
JP5201625B2 (en) * | 2008-05-13 | 2013-06-05 | 株式会社日本製鋼所 | High strength low alloy steel with excellent high pressure hydrogen environment embrittlement resistance and method for producing the same |
JP5604849B2 (en) * | 2009-10-22 | 2014-10-15 | Jfeスチール株式会社 | High-tensile thick steel plate with excellent hydrogen penetration inhibition characteristics and method for producing the same |
JP5713152B2 (en) * | 2013-03-29 | 2015-05-07 | Jfeスチール株式会社 | Steel structure for hydrogen, pressure accumulator for hydrogen and method for producing hydrogen line pipe |
HUE052103T2 (en) * | 2018-01-23 | 2021-04-28 | Ssab Technology Ab | Hot-rolled steel & method for manufacturing hot-rolled steel |
CN112011727A (en) | 2019-05-28 | 2020-12-01 | 宝山钢铁股份有限公司 | Ultrahigh-strength low-temperature-toughness steel, ultrahigh-strength low-temperature-toughness bar and manufacturing method thereof |
KR102280641B1 (en) * | 2019-10-22 | 2021-07-22 | 주식회사 포스코 | Steel plate for pressure vessel having excellent resistance for high-temperature post weld heat treatment, and method for manufacturing thereof |
US12110566B2 (en) | 2020-03-27 | 2024-10-08 | Motp Llc | Steel material and method for producing same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04358023A (en) * | 1991-06-04 | 1992-12-11 | Nippon Steel Corp | Production of high strength steel |
JPH04358022A (en) * | 1991-06-04 | 1992-12-11 | Nippon Steel Corp | Production of high strength steel |
JP2002241837A (en) * | 2001-02-14 | 2002-08-28 | Nkk Corp | Method for producing high toughness and high tensile strength steel |
-
2005
- 2005-01-26 JP JP2005018597A patent/JP4696570B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04358023A (en) * | 1991-06-04 | 1992-12-11 | Nippon Steel Corp | Production of high strength steel |
JPH04358022A (en) * | 1991-06-04 | 1992-12-11 | Nippon Steel Corp | Production of high strength steel |
JP2002241837A (en) * | 2001-02-14 | 2002-08-28 | Nkk Corp | Method for producing high toughness and high tensile strength steel |
Also Published As
Publication number | Publication date |
---|---|
JP2006206942A (en) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108463340B (en) | High strength steel sheet having excellent formability and method of manufacturing the same | |
JP5277648B2 (en) | High strength steel sheet with excellent delayed fracture resistance and method for producing the same | |
JP5124988B2 (en) | High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same | |
JP5055774B2 (en) | A steel plate for line pipe having high deformation performance and a method for producing the same. | |
JP5433964B2 (en) | Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness | |
JP5303856B2 (en) | Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy | |
JP5439973B2 (en) | High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same | |
JP5659758B2 (en) | TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability | |
JP5181775B2 (en) | High strength steel material excellent in bending workability and low temperature toughness and method for producing the same | |
JP7339339B2 (en) | Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same | |
JP2007009325A (en) | High strength steel product having excellent low temperature crack resistance, and method for producing the same | |
JP2010222680A (en) | Method for manufacturing high strength high toughness steel excellent in workability | |
JP5477089B2 (en) | Manufacturing method of high strength and high toughness steel | |
JP5287553B2 (en) | Non-tempered high-tensile steel plate with yield strength of 885 MPa or more and method for producing the same | |
JP4696570B2 (en) | Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance | |
JP5089224B2 (en) | Manufacturing method of on-line cooling type high strength steel sheet | |
JP6684353B2 (en) | Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same | |
JP5151693B2 (en) | Manufacturing method of high-strength steel | |
JP4718866B2 (en) | High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same | |
JP4310591B2 (en) | Method for producing high-strength steel sheet with excellent weldability | |
JP5151034B2 (en) | Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe | |
JP2001123222A (en) | Manufacturing method of high-toughness and high-tensile steel | |
JP4344919B2 (en) | High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure | |
JP4311226B2 (en) | Manufacturing method of high-tensile steel sheet | |
JP4824142B2 (en) | Steel for line pipe with good strength and ductility and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4696570 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |