Nothing Special   »   [go: up one dir, main page]

JP4537191B2 - Electron gun - Google Patents

Electron gun Download PDF

Info

Publication number
JP4537191B2
JP4537191B2 JP2004367104A JP2004367104A JP4537191B2 JP 4537191 B2 JP4537191 B2 JP 4537191B2 JP 2004367104 A JP2004367104 A JP 2004367104A JP 2004367104 A JP2004367104 A JP 2004367104A JP 4537191 B2 JP4537191 B2 JP 4537191B2
Authority
JP
Japan
Prior art keywords
insulator
electron gun
wehnelt
filament
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004367104A
Other languages
Japanese (ja)
Other versions
JP2006173033A (en
Inventor
純一 片根
祐博 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004367104A priority Critical patent/JP4537191B2/en
Publication of JP2006173033A publication Critical patent/JP2006173033A/en
Application granted granted Critical
Publication of JP4537191B2 publication Critical patent/JP4537191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

本発明は、電子顕微鏡などの電子線利用装置に用いられる電子銃に関する。   The present invention relates to an electron gun used in an electron beam utilization apparatus such as an electron microscope.

電子顕微鏡などの電子線利用装置に用いられる電子銃においては、長時間安定して高電圧印加が可能な高電圧絶縁技術が必要とされている。真空を伴った高電圧絶縁技術は古くから存在し、さまざまな耐電圧絶縁方法が考案されてきた。その多くは経験的・実験的に見出されたものであり、それが現在でも高電圧絶縁設計に適用されている。ところで最近ではシミュレーション解析が可能となり、高電圧絶縁の最適化が進んでいる。その一例として特開2002−313269号公報には、高電圧をエミッタに印加した際の絶縁碍子及び電極形状の解析結果から、真空側の絶縁碍子表面にメタライズを施してそれを電極とし、放電を抑制する技術が開示されている。   In an electron gun used in an electron beam utilization apparatus such as an electron microscope, a high voltage insulation technique capable of stably applying a high voltage for a long time is required. High voltage insulation technology with vacuum has existed for a long time, and various withstand voltage insulation methods have been devised. Many of them have been found empirically and experimentally, and they are still applied to high voltage insulation designs. Recently, simulation analysis has become possible, and high-voltage insulation has been optimized. As an example, Japanese Patent Application Laid-Open No. 2002-313269 discloses an analysis result of an insulator and an electrode shape when a high voltage is applied to an emitter. Techniques for suppression are disclosed.

特開2002−313269号公報JP 2002-313269 A

高加速電圧で高輝度を必要とする電子線分析装置(EBSP,CL)や電子線描画装置等に用いられる電子銃において長時間、高加速電圧を印加するためには、電子銃室内が高真空に保たれていること、ウェネルトの汚れによって放電が起こらないようクリーニングを行うことなどが必要であるが、第一に絶縁碍子の形状設計と碍子沿面表面の電界の均一化によって、高電圧を印加しても放電が起こらないようにする必要がある。真空内に置かれた電子銃では、特に真空−絶縁碍子−金属(電極)が接する三重接合部(図1の13参照)の電界集中によって電子が飛び出すことが放電の種となり、飛び出した電子が絶縁碍子の表面の電界で電子なだれ現象を引き起こし、沿面放電経路(図1の14参照)を通ってアース方向へと移動する沿面放電が耐高電圧に対して支障をきたすと考えられている。このアース方向への電子の移動が多いほど、耐高電圧に弱い・放電しやすい電子銃になる。   In order to apply a high acceleration voltage for a long time in an electron gun used in an electron beam analyzer (EBSP, CL), an electron beam drawing apparatus, etc. that require high brightness with high acceleration voltage, the inside of the electron gun chamber is subjected to a high vacuum. It is necessary to perform cleaning to prevent discharge due to Wehnelt contamination, but first, a high voltage is applied by designing the shape of the insulator and homogenizing the electric field on the surface along the insulator. However, it is necessary to prevent discharge from occurring. In an electron gun placed in a vacuum, electrons jump out due to electric field concentration at the triple junction (see 13 in FIG. 1) where the vacuum-insulator-metal (electrode) is in contact. It is considered that creeping discharge that causes an avalanche phenomenon due to the electric field on the surface of the insulator and moves in the ground direction through the creeping discharge path (see 14 in FIG. 1) hinders the withstand voltage. The more electrons move in the direction of the earth, the weaker the withstand voltage and the easier to discharge.

三重接合部の電界緩和の手法としては、絶縁碍子の形状や電極の形状を細工して緩和する方法が一般的である。三重点を真空内の電極側から隠すような絶縁碍子形状にしたり、逆に電極の形状で三重点を真空内の電極側から隠すことで、絶縁碍子の径より電極の径を大きくして、電界強度を緩和させていた。また、飛び出した後の電子が絶縁碍子の表面電界によってアース方向へ移動する沿面放電を抑えるには、絶縁碍子の沿面距離を長くすること、碍子表面の電位勾配をゆるくして電界を均一にすること、絶縁碍子の材質がセラミックであれば真空脱ガス処理を行う等の手法がとられていた。ここで、一般的にセラミック製の絶縁碍子の沿面距離は表面電界1kV/mmで換算されている。   As a technique for relaxing the electric field of the triple junction, a method of crafting and relaxing the shape of the insulator and the shape of the electrode is generally used. By making the insulator shape to hide the triple point from the electrode side in the vacuum, or concealing the triple point from the electrode side in the vacuum by conversely the electrode shape, the diameter of the electrode is made larger than the diameter of the insulator, The electric field strength was relaxed. In addition, in order to suppress creeping discharge in which electrons after jumping out move toward the ground due to the surface electric field of the insulator, the creepage distance of the insulator is increased, and the electric potential gradient on the insulator surface is relaxed to make the electric field uniform. On the other hand, if the insulator is made of ceramic, a technique such as vacuum degassing has been employed. Here, the creeping distance of a ceramic insulator is generally converted by a surface electric field of 1 kV / mm.

これら放電の抑制については、ほぼ形状設計の段階で決まってしまうことが多いため、耐高電圧に対しては沿面距離を長くしておくのが一般的であり、一方で照射装置自体の大型化や絶縁碍子及び電極形状が複雑になることでコストアップが進む。従って、三重接合部の電界強度緩和と沿面放電の抑制を同時に考慮した絶縁碍子設計及び電極設計と、必要最小限の絶縁沿面距離で小型で且つ耐高電圧特性に優れた照射装置がより完成度の高い装置と考えられる。   Since suppression of these discharges is often determined almost at the stage of shape design, it is common to increase the creepage distance for high withstand voltage, while the irradiation device itself is increased in size. In addition, the cost increases due to the complexity of the insulator and electrode shape. Therefore, the insulator design and electrode design that take into account the relaxation of the electric field strength of the triple junction and the suppression of creeping discharge at the same time, and the irradiation device that is small and has excellent high voltage resistance characteristics with the minimum necessary insulation creepage distance. It is considered to be a high device.

本発明は、このような小型で且つ耐高電圧特性に優れた電子銃を提供することを目的とする。   An object of the present invention is to provide such an electron gun that is small in size and excellent in high voltage resistance.

前記目的を達成するため、本発明の電子銃は、真空チャンバと、内面が前記真空チャンバの真空側に面し外面が大気側に面する絶縁碍子と、熱電子放射用のフィラメントと、フィラメントに対して負の電圧にバイアスされるウェネルトと、ウェネルトに接続されてウェネルトの絶縁碍子側に位置するガードリングと、ウェネルトの外側に配置されたアノードと、絶縁碍子を貫通して設置され、フィラメントに給電する第1の高圧導入接続ピンと、絶縁碍子を貫通して設置され、ウェネルトに電位を与える第2の高圧導入接続ピンとを備え、絶縁碍子の外面に第2の高圧導入接続ピンと電気的に接続されたメタライズ電極を設けたことを特徴とする。この構成によって、絶縁碍子表面で局所的に電位勾配がきつくなるような場所を減少させることが可能となり、表面電界の均一化を図ることができる。   In order to achieve the above object, an electron gun of the present invention includes a vacuum chamber, an insulator having an inner surface facing the vacuum side of the vacuum chamber and an outer surface facing the atmosphere side, a filament for thermionic emission, and a filament. Wenelt, which is biased to a negative voltage, a guard ring connected to Wenelt and located on the insulator side of Wenelt, an anode placed outside Wenert, and an insulator placed through the insulator. A first high-voltage introduction connection pin that feeds power and a second high-voltage introduction connection pin that is installed through the insulator and applies a potential to Wehnelt are electrically connected to the second high-voltage introduction connection pin on the outer surface of the insulator A metallized electrode is provided. With this configuration, it is possible to reduce the location where the potential gradient is locally localized on the surface of the insulator, and the surface electric field can be made uniform.

ガードリングは真空側の三重接合部を覆うような形状とするのが好ましい。三重点(真空/電極/絶縁碍子の接合部)の電界を緩和させるために碍子を包み込むような形状にする。また、絶縁碍子大気側のメタライズ電極の径と真空側電極(ガードリング電極)の径を同じ径にすることで絶縁碍子表面の電位勾配均一化することができる。   The guard ring is preferably shaped so as to cover the triple junction on the vacuum side. In order to relieve the electric field at the triple point (vacuum / electrode / insulator junction), the insulator is encased. Further, by making the diameter of the metallized electrode on the insulator atmosphere side and the diameter of the vacuum side electrode (guard ring electrode) the same, the potential gradient on the insulator surface can be made uniform.

特許文献1と本発明との大きな違いは、特許文献1では真空側にメタライズしているのに対し、本発明では大気側にメタライズしていることである。特許文献1では最も重要な真空側の絶縁碍子沿面部分に直接メタライズしているため、部品の配置構成が窮屈になりやすく、メタライズの出来不出来(特に鋭利な突起など)によって鋭利な突起部からのFE電子による放電が発生しやすいなどの問題があるが、本発明にはそのような技術的な難しさはない。   The major difference between Patent Document 1 and the present invention is that metallization is performed on the vacuum side in Patent Document 1 whereas metallization is performed on the atmosphere side in the present invention. In Patent Document 1, since the metallization is directly performed on the creeping portion of the insulator on the vacuum side, which is the most important, the arrangement configuration of the components tends to be tight, and the metallization cannot be performed (particularly sharp projections) from sharp projections. However, there is no such technical difficulty in the present invention.

本発明によると、電子銃の耐電圧性能向上と小型化設計の両立を図ることができる。   According to the present invention, it is possible to achieve both improvement of the withstand voltage performance and miniaturization design of the electron gun.

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明による電子銃の一実施例を示す概略断面図、図2はその絶縁碍子の上面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of an electron gun according to the present invention, and FIG. 2 is a top view of the insulator.

排気口11から真空排気される真空チャンバ15は電子銃室6を構成する。高真空に維持された電子銃室6に設置されたフィラメント1は約2700Kに加熱されて熱電子を放射し、放射された電子は負の電位にバイアスされるウェネルト2に溜まる。ウェネルト2の外側にはアース電位のアノード3が配置されている。磁器・セラミックなどの硬質な絶縁材料からなる高電圧絶縁碍子4には、フィラメント1に給電するための高圧導入接続ピン7a,7b及びウェネルト2に給電するための高圧導入接続ピン8が貫通し、高圧導入ケーブル10を介して大気側から真空側へと高電圧が印加される。ガードリング5と呼ばれる電極は、高電圧絶縁碍子の真空側沿面の電界分布を均一化させる作用をする。なお、ガードリング5はウェネルト2と一体に形成してもよい。   The vacuum chamber 15 evacuated from the exhaust port 11 constitutes the electron gun chamber 6. The filament 1 installed in the electron gun chamber 6 maintained at a high vacuum is heated to about 2700 K to emit thermoelectrons, and the emitted electrons accumulate in the Wehnelt 2 biased to a negative potential. An anode 3 having a ground potential is disposed outside the Wehnelt 2. The high-voltage insulator 4 made of a hard insulating material such as porcelain or ceramic is penetrated by high-voltage introduction connection pins 7a and 7b for feeding the filament 1 and a high-voltage introduction connection pin 8 for feeding the Wehnelt 2, A high voltage is applied from the atmosphere side to the vacuum side via the high-pressure introduction cable 10. The electrode called the guard ring 5 acts to make the electric field distribution on the vacuum side creeping surface of the high voltage insulator uniform. The guard ring 5 may be formed integrally with the Wehnelt 2.

図3に、フィラメント1、ウェネルト2、アノード3と電源との接続関係を示す。フィラメント1には約3Aの電流と最大−30kVの加速電圧が印加され、熱電子が放出される。エミッション電流はフィラメント電流と比例関係にあるが、ウェネルト2の約数百V電位差の負電位によってある条件で飽和状態になる(セルフバイアス効果又は可変バイアス)。この飽和はフィラメント1とウェネルト2との間の距離やウェネルト2の穴径、またフィラメント電流によって左右されるが、特に分解能観察などの高倍率観察時や、長時間、高加速電圧で高輝度を必要とする分析(EBSP,CL)や電子線描画では、フィラメント電流に対してエミッション電流が飽和するようにフィラメント電流を調整する。 電子銃室6は高真空(10-3から10-4Pa程度)に保たれており、高圧導入ケーブル10から最大加速電圧−30kVが印加され、ウェネルト2の電位は約−29.5kV〜−29.9kV程度となる。これはほぼフィラメント1に印加された加速電圧−30kVと同電位として考えてよい。 FIG. 3 shows the connection relationship between the filament 1, Wehnelt 2, anode 3 and the power source. The filament 1 is applied with a current of about 3 A and an acceleration voltage of a maximum of −30 kV, and thermoelectrons are emitted. The emission current is proportional to the filament current, but becomes saturated under certain conditions (self-bias effect or variable bias) due to the negative potential of about several hundred V of the Wehnelt 2 potential difference. This saturation depends on the distance between the filament 1 and the Wehnelt 2, the hole diameter of the Wehnelt 2, and the filament current. In the required analysis (EBSP, CL) and electron beam drawing, the filament current is adjusted so that the emission current is saturated with respect to the filament current. The electron gun chamber 6 is maintained in a high vacuum (about 10 −3 to 10 −4 Pa), a maximum acceleration voltage of −30 kV is applied from the high voltage introduction cable 10, and the potential of the Wehnelt 2 is about −29.5 kV to −− It becomes about 29.9 kV. This may be considered as substantially the same potential as the acceleration voltage −30 kV applied to the filament 1.

本発明の電子銃は、絶縁碍子4表面の電位勾配をゆるくして表面電界を均一にする手段として、絶縁碍子4の大気側に高圧導入接続ピン8と電気的に接続されたメタライズ電極16を設ける。メタライズ電極16とウェネルト2とは、高圧導入接続ピン8を介して同電位となる。メタライズ電極16の外径は、ガードリング5の外径とほぼ同じにする。フィラメント1に給電する高圧導入接続ピン7a,7bは、メタライズ電極16に電気接続されていない。メタライズは絶縁碍子に金属を固定するために用いられる既知のMo−Mn法などにより形成することができ、形成したメタライズを電極として使用する。メタライズ電極16の周囲の電位からして、メタライズ電極16の設置によって放電が起きる可能性はない。更に、メタライズが大気側であることでメタライズの出来不出来(特に鋭利な突起など)が、真空側で起こる放電を誘発する心配もない。大気側の沿面不足による放電の可能性は、メタライズ電極16や高圧導入ケーブル10、絶縁碍子4のケーブル接続ピンなどの大気側一体を真空脱気によるシリコンゴムモールド9で絶縁することで回避できる。図中、20は電子銃カバー(アース電位)、12は真空シール(Oリング)である。   The electron gun according to the present invention has a metallized electrode 16 electrically connected to the high-voltage introduction connection pin 8 on the atmosphere side of the insulator 4 as means for relaxing the potential gradient on the surface of the insulator 4 and making the surface electric field uniform. Provide. The metallized electrode 16 and the Wehnelt 2 are at the same potential via the high voltage introduction connection pin 8. The outer diameter of the metallized electrode 16 is made substantially the same as the outer diameter of the guard ring 5. The high-voltage introduction connection pins 7 a and 7 b that supply power to the filament 1 are not electrically connected to the metallized electrode 16. The metallization can be formed by a known Mo-Mn method used for fixing a metal to an insulator, and the formed metallization is used as an electrode. In view of the potential around the metallized electrode 16, there is no possibility of discharge due to the installation of the metallized electrode 16. Further, since the metallization is on the atmosphere side, the metallization failure (especially sharp protrusions, etc.) does not cause the discharge that occurs on the vacuum side. The possibility of discharge due to insufficient creepage on the atmosphere side can be avoided by insulating the atmosphere side integration such as the metallized electrode 16, the high voltage introduction cable 10, the cable connection pin of the insulator 4 with the silicon rubber mold 9 by vacuum deaeration. In the figure, 20 is an electron gun cover (ground potential), and 12 is a vacuum seal (O-ring).

図4は、本発明による電子銃の他の実施例を示す概略断面図である。図1に示した実施例と異なるのは、ウェネルト2と同電位のガードリング17の形状のみである。本実施例の電子銃では、ガードリング17として三重接合部13を覆うような形状を採用した。ガードリング17によって三重接合部13を覆うことにより、三重接合部13での電界集中を緩和させることができる。沿面放電の起因が三重接合部の電界集中であることを考えれば、三重接合部の表面電界を小さくできることによる効果は大きいと考えられる。   FIG. 4 is a schematic sectional view showing another embodiment of the electron gun according to the present invention. The only difference from the embodiment shown in FIG. 1 is the shape of the guard ring 17 having the same potential as the Wehnelt 2. In the electron gun of this example, a shape that covers the triple junction 13 as the guard ring 17 was adopted. By covering the triple junction 13 with the guard ring 17, electric field concentration at the triple junction 13 can be reduced. Considering that the cause of creeping discharge is the electric field concentration at the triple junction, it is considered that the effect of reducing the surface electric field at the triple junction is great.

図1及び図4に示した本発明の電子銃について、電位分布をシミュレーションした。あわせて、絶縁碍子にメタライズ電極を設けない電子銃の電位分布もシミュレーションした。条件は加速電圧30kV印加時で、絶縁碍子はセラミックス製とし、誘電率を9.0とした。結果を図5に示す。図5(a)が図1に示した電子銃の電位分布、図5(b)が図4に示した電子銃の電位分布である。図5(c)は図1と同じ構造でメタライズ電極を設けなかった電子銃の電位分布、図5(d)は図4と同じ構造でメタライズ電極を設けなかった電子銃の電位分布である。破線の矢印は電位線の向きを表す。   A potential distribution was simulated for the electron gun of the present invention shown in FIGS. In addition, the potential distribution of an electron gun without a metallized electrode on the insulator was also simulated. The condition was that an acceleration voltage of 30 kV was applied, the insulator was made of ceramics, and the dielectric constant was 9.0. The results are shown in FIG. FIG. 5A shows the potential distribution of the electron gun shown in FIG. 1, and FIG. 5B shows the potential distribution of the electron gun shown in FIG. FIG. 5C shows the potential distribution of an electron gun having the same structure as in FIG. 1 and no metallized electrode, and FIG. 5D shows the potential distribution of an electron gun having the same structure as in FIG. 4 and no metallized electrode. The broken arrow represents the direction of the potential line.

図5(c)、図5(d)を見ると、絶縁碍子4の高圧導入部のピン8の方向に電位線が向かっており、図中丸で囲んだ真空側の絶縁碍子表面の領域19ではこの電位線が密になっていることがわかる。これから表面電界が局所的にでも1.5〜2.0kV/mm程度になると、電子なだれ現象を促進させてしまい、放電を活発化させてしまうことが推測できる。これに対して図5(a)、図5(b)に示すように、絶縁碍子4の大気側表面にメタライズ電極16を設けた本発明の電子銃の場合には、領域19における電位線の集中が緩和されている。このように、絶縁碍子4の大気側にウェネルト2と同電位にしたメタライズ電極16を設け、そのメタライズ電極16の外径とガードリング5,17の外径をほぼ同じにすることで、絶縁碍子4表面の電位線が密になるようなところをより少なくすることが可能となる。これは、三重接合部13の電界緩和と碍子表面の電界均一化の両者を考慮した絶縁碍子設計が可能であることを示している。   5 (c) and 5 (d), the potential line is directed in the direction of the pin 8 of the high voltage introduction portion of the insulator 4, and in the region 19 on the vacuum insulator surface surrounded by a circle in the figure, It can be seen that the potential lines are dense. From this, it can be inferred that when the surface electric field is locally about 1.5 to 2.0 kV / mm, the avalanche phenomenon is promoted and the discharge is activated. On the other hand, in the case of the electron gun of the present invention in which the metallized electrode 16 is provided on the atmosphere side surface of the insulator 4 as shown in FIGS. Concentration has been relaxed. As described above, the metallized electrode 16 having the same potential as the Wehnelt 2 is provided on the atmosphere side of the insulator 4, and the outer diameter of the metallized electrode 16 and the outer diameter of the guard rings 5 and 17 are made substantially the same. It is possible to reduce the number of places where the potential lines on the four surfaces are dense. This indicates that the insulator design can be performed in consideration of both the electric field relaxation of the triple junction 13 and the electric field uniformity of the insulator surface.

図6に、三重接合部13から領域19までの絶縁碍子の表面電界を示す。図6にA点として示した位置は三重接合部13に対応し、B点として示した位置は電位勾配が高くなりやすい領域19に対応する。図5(a)はA点からB点まで均一な電界分布をしているが、図5(b)や図5(d)のA点(三重接合部)で電界強度を比較すると、図5(b)及び図5(d)が0.01kV/mmに対し、図5(a)はその約10倍の0.1kV/mmと大きい値となっている。これは沿面放電の始まりである電子が約10倍飛び出しやすいということが考えられる。従って、ガードリングの形状による効果で図5(b)及び図5(d)のA点(三重接合部)の電界集中を緩和させる効果が現れていることがわかる。   FIG. 6 shows the surface electric field of the insulator from the triple junction 13 to the region 19. The position indicated as point A in FIG. 6 corresponds to the triple junction 13, and the position indicated as point B corresponds to the region 19 where the potential gradient tends to be high. 5A shows a uniform electric field distribution from the point A to the point B. When the electric field strength is compared at the point A (triple junction) in FIGS. 5B and 5D, FIG. 5 (d) and FIG. 5 (d) are 0.01 kV / mm, whereas FIG. 5 (a) is about 10 times as large as 0.1 kV / mm. This is considered to be because electrons, which are the beginning of creeping discharge, are likely to jump out about 10 times. Therefore, it can be seen that the effect of relaxing the electric field concentration at the point A (triple junction) in FIGS. 5B and 5D appears due to the effect of the shape of the guard ring.

また、図5の結果が示すように、図5(c)あるいは図5(d)に示した従来型の電子銃には、碍子沿面に電位線が密集しているところ(電位勾配がきついところ)が存在し、その点での表面電界は1.5kV/mmを大きく超えている。例えば、図5(c)に示した従来型の電子銃と図5(b)に示した本発明の電子銃において、A点及びB点の絶縁碍子表面電界を比較すると、明らかに従来型の方が大きい値を示している。特に碍子表面B点では従来型の表面電界の値は本発明の場合の約2倍となっている。以上から明らかなように、絶縁碍子の大気側にウェネルトと同電位のメタライズ電極を設ける本発明の構造は耐電圧特性に対して効果的な構造である。   Further, as shown in the results of FIG. 5, in the conventional electron gun shown in FIG. 5C or FIG. 5D, the potential lines are dense along the insulator (where the potential gradient is tight). ) And the surface electric field at that point greatly exceeds 1.5 kV / mm. For example, in the conventional electron gun shown in FIG. 5C and the electron gun of the present invention shown in FIG. Indicates a larger value. In particular, at the surface B of the insulator, the value of the conventional surface electric field is about twice that of the present invention. As is clear from the above, the structure of the present invention in which the metallized electrode having the same potential as Wehnelt is provided on the atmosphere side of the insulator is an effective structure for withstand voltage characteristics.

実際に図5(b)に示す本発明の構造の電子銃と、図5(c)に示す従来型の構造の電子銃を試作して実力値を測定した。A点からB点までの沿面距離は24mmである。印加可能な最大加速電圧(実験ではAC電圧)で耐高電圧特性を評価する実験では、従来型の電子銃が約36kV相当で短絡したのに対して本発明の電子銃では約45kV相当でも短絡していなかった。本発明の構造が従来の構造よりも約1.25倍の耐圧効果があることが実証できた。また、絶縁碍子の大きさを比較すると、量産されている現行型電子銃の絶縁碍子が外径φ108mm高さ35mm(相当)に対し、本発明の構成にすることによって外径φ90mm高さ36mm(相当)となり、ほぼ同じ高さで径が約17%小さくなった。このように本発明によると、耐高電圧性能向上と装置の小型化を実現できる。   Actually, an electron gun having the structure of the present invention shown in FIG. 5B and an electron gun having a conventional structure shown in FIG. The creepage distance from point A to point B is 24 mm. In an experiment to evaluate the high voltage resistance characteristics with the maximum accelerating voltage that can be applied (AC voltage in the experiment), the conventional electron gun is short-circuited at about 36 kV, whereas the electron gun of the present invention is short-circuited at about 45 kV. I did not. It was proved that the structure of the present invention has a pressure resistance effect about 1.25 times that of the conventional structure. In addition, when comparing the size of the insulator, the insulator of the current type electron gun that is mass-produced has an outer diameter of φ108 mm and a height of 35 mm (equivalent). The diameter was about 17% smaller at almost the same height. As described above, according to the present invention, it is possible to realize high voltage resistance improvement and downsizing of the apparatus.

本発明による電子銃の一実施例を示す概略断面図。1 is a schematic sectional view showing an embodiment of an electron gun according to the present invention. 絶縁碍子の上面図。The top view of an insulator. フィラメント、ウェネルト、アノードと電源との接続関係を示す図。The figure which shows the connection relation of a filament, Wehnelt, an anode, and a power supply. 本発明による電子銃の他の実施例を示す概略断面図。FIG. 6 is a schematic sectional view showing another embodiment of the electron gun according to the present invention. 電位分布のシミュレーション図。The potential distribution simulation diagram. 三重接合部(A点)から電位勾配が高くなりやすいB点までの絶縁碍子の表面電界を示す図。The figure which shows the surface electric field of the insulator from a triple junction part (A point) to the B point where an electric potential gradient tends to become high.

符号の説明Explanation of symbols

1:フィラメント、2:ウェネルト、3:アノード(アース電位)、4:絶縁碍子(セラミック製)、5:電極(ガードリング)、6:電子銃室(高真空側)、7:高圧導入接続ピン(フィラメント側)、8:高圧導入接続ピン(ウェネルト側)、9:シリコンゴムモールド(大気側)、10:高圧導入ケーブル、11:電子銃室排気口、13:三重接合部(A点)、14:沿面放電経路、15:電子銃室チャンバ、20:電子銃カバー(アース電位)、16:メタライズ電極、19:B点(電位勾配が高くなりやすい点)、17:ガードリング 1: Filament, 2: Wehnelt, 3: Anode (ground potential), 4: Insulator (made of ceramic), 5: Electrode (guard ring), 6: Electron gun chamber (high vacuum side), 7: High-pressure introduction connection pin (Filament side), 8: high-pressure introduction connection pin (Welner side), 9: silicon rubber mold (atmosphere side), 10: high-pressure introduction cable, 11: electron gun chamber exhaust port, 13: triple junction (point A), 14: Creeping discharge path, 15: Electron gun chamber, 20: Electron gun cover (ground potential), 16: Metallized electrode, 19: Point B (point where potential gradient tends to increase), 17: Guard ring

Claims (2)

真空チャンバと、
内面が前記真空チャンバの真空側に面し外面が大気側に面する絶縁碍子と、
前記絶縁碍子の真空側下部に保持される熱電子放射用のフィラメントと、
前記絶縁碍子の下部であって前記フィラメントの周囲に設けられ、当該フィラメントに対して負の電圧にバイアスされるウェネルトと、
前記絶縁碍子とウェネルトとの間に配置されたガードリングと、
前記ウェネルトの下部に配置されたアノードと、
前記絶縁碍子を上下に貫通して設置され、前記フィラメントに給電する第1の高圧導入接続ピンと、
前記絶縁碍子を上下に貫通して設置され、前記ウェネルトに電位を与える第2の高圧導入接続ピンと
前記絶縁碍子の外面上部に、前記第2の高圧導入接続ピンと電気的に接続され、かつ当該絶縁碍子を介して前記ガードリングと対向するように配置されたメタライズ電極とを有し、
前記メタライズ電極と前記ガードリングとが同じ外径を有することを特徴とする電子銃。
A vacuum chamber;
An insulator having an inner surface facing the vacuum side of the vacuum chamber and an outer surface facing the atmosphere;
A filament for thermionic emission held at the lower vacuum side of the insulator ;
Wehnelt below the insulator and around the filament, biased to a negative voltage with respect to the filament;
A guard ring disposed between the insulator and Wehnelt ;
An anode located at the bottom of the Wehnelt;
A first high-pressure introduction connecting pin that is installed vertically through the insulator and feeds power to the filament;
A second high-voltage introduction connection pin that is installed vertically through the insulator and applies a potential to the Wehnelt ;
Wherein the outer surface upper portion of the insulator, the second is the high-pressure supply connection pin is electrically connected, and has a arranged metallized electrodes so as to face the guard ring through the insulator,
The electron gun, wherein the metallized electrode and the guard ring have the same outer diameter .
請求項1記載の電子銃において、
前記ガードリングは真空側の三重接合部を覆うような形状を有することを特徴とする電子銃。
The electron gun according to claim 1,
The guard gun has a shape that covers a triple junction on the vacuum side.
JP2004367104A 2004-12-20 2004-12-20 Electron gun Expired - Fee Related JP4537191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367104A JP4537191B2 (en) 2004-12-20 2004-12-20 Electron gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367104A JP4537191B2 (en) 2004-12-20 2004-12-20 Electron gun

Publications (2)

Publication Number Publication Date
JP2006173033A JP2006173033A (en) 2006-06-29
JP4537191B2 true JP4537191B2 (en) 2010-09-01

Family

ID=36673537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367104A Expired - Fee Related JP4537191B2 (en) 2004-12-20 2004-12-20 Electron gun

Country Status (1)

Country Link
JP (1) JP4537191B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940053B2 (en) * 2007-08-16 2012-05-30 株式会社日立ハイテクノロジーズ Charged particle beam equipment
JP2009217944A (en) * 2008-03-07 2009-09-24 Toshiba Corp Image intensifier
US7783012B2 (en) * 2008-09-15 2010-08-24 General Electric Company Apparatus for a surface graded x-ray tube insulator and method of assembling same
US8675818B2 (en) * 2011-04-12 2014-03-18 Varian Medical Systems, Inc. Ceramic metallization in an x-ray tube
JP6809809B2 (en) * 2016-05-09 2021-01-06 松定プレシジョン株式会社 Insulated structure, charged particle gun and charged particle beam application device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313269A (en) * 2001-04-10 2002-10-25 Jeol Ltd Field-emission type electron gun

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362977A (en) * 1976-11-17 1978-06-05 Hitachi Ltd Plane face pressure insulated electron gun
JPH03116632A (en) * 1989-09-28 1991-05-17 Nec Corp Electron gun of microwave tube
JPH06187932A (en) * 1992-12-18 1994-07-08 Hitachi Ltd Electron gun device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313269A (en) * 2001-04-10 2002-10-25 Jeol Ltd Field-emission type electron gun

Also Published As

Publication number Publication date
JP2006173033A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5534608B2 (en) High-pressure insulator to prevent instability in ion implanter due to triple junction breakdown
US8796649B2 (en) Ion implanter
KR102524433B1 (en) active gas generator
JP4537191B2 (en) Electron gun
US6661014B2 (en) Methods and apparatus for oxygen implantation
JP2008226683A (en) Charged particle beam device
US8766209B2 (en) Current limiter for high voltage power supply used with ion implantation system
US11147148B2 (en) X-ray generator
JP2005183382A (en) Ion source and ion implanting device having the same
KR100375644B1 (en) ARC suppressive protection of field emission devices
RU2586628C1 (en) Source of electrons with field-emission emitters
US9721760B2 (en) Electron beam plasma source with reduced metal contamination
RU2654494C1 (en) Vacuum spark discharger
US3823335A (en) Electrode arrangement serving to accelerate a charge carrier beam in a vacuum
US20240242918A1 (en) Structure for Particle Acceleration And Charged Particle Beam Apparatus
KR100548930B1 (en) Ion source
CN111180298B (en) Radio frequency ion source starts filament device
US4697085A (en) Apparatus and method for producing ions
JP2002313269A (en) Field-emission type electron gun
JPH08124514A (en) High voltage isolator
JP6595734B1 (en) Ion implanter, ion source
EP4372782A2 (en) Ion source cathode
JPS5871546A (en) Ion implantation device
JP2000208091A (en) Ion implanter
CN209880534U (en) X-ray tube and ceramic element for an X-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees