Nothing Special   »   [go: up one dir, main page]

JP4508343B2 - Oil-based lubricant - Google Patents

Oil-based lubricant Download PDF

Info

Publication number
JP4508343B2
JP4508343B2 JP2000055911A JP2000055911A JP4508343B2 JP 4508343 B2 JP4508343 B2 JP 4508343B2 JP 2000055911 A JP2000055911 A JP 2000055911A JP 2000055911 A JP2000055911 A JP 2000055911A JP 4508343 B2 JP4508343 B2 JP 4508343B2
Authority
JP
Japan
Prior art keywords
graphite
particle size
oil
weight
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000055911A
Other languages
Japanese (ja)
Other versions
JP2001240887A (en
Inventor
禎 土肥
忠雄 大倉
博之 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Original Assignee
NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GRAPHITE INDUSTRIES,CO.,LTD. filed Critical NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Priority to JP2000055911A priority Critical patent/JP4508343B2/en
Publication of JP2001240887A publication Critical patent/JP2001240887A/en
Application granted granted Critical
Publication of JP4508343B2 publication Critical patent/JP4508343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高温の金型温度において、高硬度の金属材料を熱間押し出し鍛造により成型する場合に使用する、油性潤滑剤の提供に関するものである。
【0002】
【従来の技術】
熱間押し出し鍛造に使用する油性潤滑剤は、一般に、鉱物油に極圧添加剤(金属石鹸等)を溶解し、これに黒鉛等の固体潤滑剤を配合懸濁されたものが使用されている。
【0003】
【発明が解決しようとする課題】
本発明者は、かかる油性潤滑剤が、Ni合金やTi合金等の高硬度材質の材料の熱間押し出し鍛造の際、金型の摩耗を招き易く、また、鍛造時の押し出し荷重も増加しがちで、鍛造物の型の損耗も大きくなることを見出した。
【0004】
本発明は、Ni合金やTi合金等の高硬度材質の材料の熱間押し出し鍛造に用いる高温の金型内において用いることができる、熱安定性及び塗膜形成性に優れた油性潤滑剤を得ることを課題とする。
【0005】
【課題を解決するための手段】
本発明は、高硬度材質の材料を熱間押し出し鍛造するために、300〜600℃の高温金型内に供給される、油性潤滑剤であって、100重量部の前記油性潤滑剤中に、25〜35重量部の固体潤滑剤、5〜15重量部のノニオン系活性剤及び15〜25重量部の変性シリコンオイルが含有されている、油性潤滑剤に係るものであり、特に、前記高硬度材質の材料はNi合金又はTi合金であり、前記固体潤滑剤が黒鉛粉末であり、前記黒鉛粉末が低粒度黒鉛及び高粒度黒鉛の混合物であり、前記低粒度黒鉛が1〜5μmの平均粒子径を有しており、前記低粒度黒鉛が、0.5μm以下の粒子径の黒鉛粒子と10μm以上の粒子径の黒鉛粒子とをそれぞれ5重量%以下含有する粒度分布を有しており、前記低粒度黒鉛が99.5%以上の純度を有しており、前記高粒度黒鉛が10〜50μmの平均粒径を有しており、前記高粒度黒鉛が、5μm以下の粒子径の黒鉛粒子と100μm以上の粒子径の黒鉛粒子とをそれぞれ5重量%以下含有する粒度分布を有しており、前記高粒度黒鉛が95%以上の純度を有しており、前記低粒度黒鉛と前記高粒度黒鉛とが、重量比2:1〜1:1で混合されていることを特徴とする、油性潤滑剤に係るものである
【0006】
本発明者は、金型の摩耗を防ぎ、鍛造時の押し出し荷重を低く抑え、鍛造物の型の損耗を防止できる油性潤滑剤を得るため、種々の油性潤滑剤を試作し、検討した。
【0007】
その結果、本発明者は、従来の油性潤滑剤が高温の金型内に供給されたとき、固体潤滑剤の分散性及び接着性が悪く、固体潤滑剤が金型内に留まらず、潤滑が必要な金型内に、固体潤滑剤の十分な塗膜が形成されないことを見出した。
【0008】
本発明者は、300〜600℃の高温の金型を用いて高硬度材質の材料を熱間押し出し鍛造する場合、従来の熱間押し出し鍛造では、固体潤滑剤の安定した塗膜が、かかる高温の金型内に形成されないため、金型の摩耗が多くなり、鍛造時の押し出し荷重も増加し、鍛造物の型の損耗も大きくなることを解明した。
【0009】
かかる知見の下、本発明者は、Ni合金やTi合金等の鍛造に使用する高温の金型内でも熱安定性及び塗膜形成性に優れる油性潤滑剤を得るため、更に詳細に研究した。
【0010】
その結果、本発明者は、耐熱性の固体潤滑剤を、ノニオン系活性剤と変性シリコンオイルとを含有する分散媒中に均一に分散させることによって、油性潤滑剤の塗膜形成性が著しく向上し、高温の金型内においても、固体潤滑剤の塗膜を十分に形成させることができることを突き止め、本発明に到達した。
【0011】
本発明者の研究によれば、100重量部の油性潤滑剤中に、25〜35重量部の固体潤滑剤、5〜15重量部のノニオン系活性剤及び15〜25重量部の変性シリコンオイルとを混合することにより、固体潤滑剤の分散性及び接着性が著しく改善されることがわかった。
【0012】
25重量部未満の固体潤滑剤は、潤滑剤の塗膜厚がうすすぎるために、膜切れを起こし、押し出し荷重が上昇する。一方、35重量部を超える固体潤滑剤を混合すると、粘度の上昇が著しく、金型内での塗料の流れが悪化し、潤滑剤の供給ができなくなる。
【0013】
5重量部未満のノニオン系活性剤は、分散効果が悪く、均一な潤滑塗膜が形成されない。一方、15重量部を超えるノニオン系活性剤を添加しても、分散の状態は向上せず、塗膜性の向上がみられない。
【0014】
15重量部未満の変性シリコンオイルは、ベースオイルの潤滑性及び耐熱性が向上できず、油分の蒸発が早すぎ、潤滑剤の供給が深部までいきとどかない。一方、25重量部を超える変性シリコンオイルは、ベースオイルの耐熱性が向上しずぎ、油分の蒸発が遅くなり、潤滑剤が流れすぎ、必要な部分への潤滑剤の供給ができない。
【0015】
かかる固体潤滑剤の分散性及び接着性が改善された油性潤滑剤は、その中で、固体潤滑剤と分散媒との分離が抑えられ、固体潤滑剤の塗膜が適正な厚みを保持することができる。
【0016】
本発明によれば、高温熱間押し出し鍛造において、黒鉛等の耐熱性の固体潤滑剤の塗膜が、均一に金型内に形成され、かかる固体潤滑剤が、均一にNi合金やTi合金等の高硬度材質の材料の表面を覆うので、金型の摩耗が防止され、鍛造時の押し出し荷重を低く抑えることができ、鍛造物の損耗を著しく低減することができる。
【0017】
【発明の実施の形態】
本発明の実施の形態を説明する。
本発明は、従来の油性潤滑剤の塗膜形成性の問題点を解決するもので、特に、高硬度材質の材料を高温の金型温度で成型する際に用いる油性潤滑剤を提供するものである。
【0018】
本発明では、かかる高硬度材質の材料の熱間押し出し鍛造時に、金型表面に潤滑剤を確実に供給するために、黒鉛等の固体潤滑剤を、油中に熱安定性に優れた状態で分散させ、この固体潤滑剤を均一に金型内に供給し、かかる固体潤滑剤の安定した塗膜を金型と高硬度材質の材料との間に形成するものである。
【0019】
本発明の油性潤滑剤は、高温(300〜600℃に保たれた)の金型内にスプレー又はシャワー方式等で供給し、その潤滑性・接着力の良さにより、特に、潤滑性が必要な金型表面部分に、40〜120μmの黒鉛等の固体潤滑剤の塗膜を形成することができる。
【0020】
かかる固体潤滑剤の塗膜は、その潤滑性能による効果で、高硬度材質の材料の成型時の押し出し荷重を低減し、鍛造物の損耗が低減し、金型の磨耗を防止し、金型の型寿命を向上させることができる。
【0021】
本発明にかかる高硬度材質の材料としては、高温の金型内で熱間押し出し鍛造される種々の硬質材料が用いられる。かかる高硬度材質としては、例えば、Ni合金、Ti合金等を挙げることができる。
【0022】
本発明にかかる固体潤滑剤としては、耐熱性を有し、油性潤滑剤に均一に分散し、固体潤滑剤の塗膜の形成性が害されない限り、種々の材質のものを用いることができる。
【0023】
かかる固体潤滑剤としては、窒化ホウ素、黒鉛粉末等を用いることができる。黒鉛粉末としては、天然黒鉛粉末を用いることができる。
【0024】
本発明では、かかる固体潤滑剤を、変性シリコンオイルとノニオン系活性剤とを含有する分散媒中に分散させる。固体潤滑剤の分散割合は、100重量部の油性潤滑剤中、25〜35重量部である。
【0025】
本発明では、油性潤滑剤の分散性及び塗膜形成性を改善するため、油性潤滑剤中に、ノニオン系活性剤及び変性シリコンオイルを含有させる。
【0026】
かかるノニオン系活性剤としては、種々のものを用いることができ、例えば、アルキルベンゼンスルフォン酸塩、ポリオキシエチレンアルキルエーテル、ポリオキシエシレンアルキルフェノールエーテル、ソルビタン酸エステル等を挙げることができる。
【0027】
かかる変性シリコンオイルには、種々のものを用いることができ、例えば、ジメチルポリシロキサン、アルキル変性シリコン、メチルフェニルシリコン等を挙げることができる。
【0028】
本発明にかかるノニオン系活性剤は、100重量部の油性潤滑剤中に、5〜15重量部含有させる。
【0029】
本発明にかかる変性シリコンオイルは、100重量部の油性潤滑剤中、15〜25重量部含有させる。
【0030】
また、本発明では、固体潤滑剤の黒鉛粉末として、低粒度黒鉛と高粒度黒鉛との混合物を用いるのが好ましい。かかる黒鉛粉末の混合物では、高粒度黒鉛が耐熱性を高め、低粒度黒鉛が塗膜の形成性を高めるからである。
【0031】
かかる黒鉛粉末の混合物には、平均粒子径の異なる2種以上の黒鉛粉末を用いることができる。本発明では、例えば、1〜5μmの平均粒子径を有する低粒度黒鉛と、10〜50μmの平均粒子径を有する高粒度黒鉛との混合物を用いるこができる。
【0032】
また、本発明では、かかる黒鉛粉末の混合物中、1〜5μmの平均粒子径を有する低粒度黒鉛が、0.5μm以下の粒子径の黒鉛粒子と10μm以上の粒子径の黒鉛粒子とをそれぞれ5重量%以下含有する粒度分布を有しており、99.5%以上の純度を有しており、10〜50μmの平均粒子径を有する高粒度黒鉛が、5μm以下の粒子径の黒鉛粒子と100μm以上の粒子径の黒鉛粒子とをそれれ5重量%以下含有する粒度分布を有しており、95%以上の純度を有しており、かかる低粒度黒鉛とかかる高粒度黒鉛とが、重量比2:1〜1:1で混合されているのが好ましい。
【0033】
低粒度黒鉛は、微粒子(0.5μm)部分が多いと、酸化消耗が早く、潤滑性が継続しない。最密充填された塗膜を形成するためには、粒度分布のシャープな粒子径を有する黒鉛の配合が最適である。2:1〜1:1の範囲外では、最密充填できない。高粒度黒鉛の周囲に低粒度黒鉛がとりまくために、低粒度黒鉛は、純度が高い程潤滑性の向上がある。99.5%以上高純度の黒鉛を利用することにより、不純物による潤滑性を損なうことの防止ができる。
【0034】
さらに、本発明では、天然黒鉛粉末を粒度配合することによって、最密充填させることができ、黒鉛塗膜の緻密性を向上させることができる。かかる固体潤滑剤は、油性潤滑剤中の油分が蒸発した後、特に、200℃以上の温度域での潤滑性を維持するのに有用である。
【0035】
また、本発明では、油性潤滑剤中に、接着剤、食物油、鉱物油等の、通常用いられる成分を、固体潤滑剤の分散性及び塗膜形成性に悪影響を与えない範囲において含有させることができる。
【0036】
本発明の油性潤滑剤は、分散剤の添加と、分散機による分散技術の導入、高温時における接着力を向上させる接着剤の添加によって、耐熱性のある柔らかい被膜で、適度な付着性があり、鍛造される新生面への追従性に優れ、摩擦係数の安定した固体潤滑剤の塗膜を形成することができる。
【0037】
【実施例】
本発明を、図面を参照し、実施例及び比較例に基づいて説明する。
図1は、水平面での塗膜形成性を示す図面代用写真である。図2は、図1の説明図である。図3は、30°の角度での塗膜形成性を示す図面代用写真である。図4は、図3の説明図である。図5は、往復運動潤滑試験機の側面図である。図6は、油性潤滑剤の摩擦係数を示すグラフである。図7は、本発明の実施例で用いた高硬度材質の材料の正面図である。図8は、本発明の実施例で製造した鍛造物の正面図である。
【0038】
実施例
本例の油性潤滑剤は、
(a)平均粒子径が1〜5μmの範囲内にあって、粒子径が0.5μm以下の粒子が5重量%以下で、かつ、粒子径が10μm以上の粒子が5重量%以下の粒度布を有する、99.5%以上の純度の天然黒鉛粉末と、平均粒子径10〜50μmの範囲内にあって、粒子径が5μm以下の粒子が5重量%以下で、かつ、粒子径が100μm以上の粒子が5重量%以下の粒度分布、95%以上の純度の黒鉛粉末とを3:2の比で混合したものを、25〜35重量部、
(b)精製された植物油を15〜25重量部、
(c)石油系ロジンを5〜10重量部、
(d)変性されたシリコンオイルを15〜25重量部、
(e)ノニオン系活性剤を5〜15重量部(広がりを止める)、
(f)精製された鉱物油を10〜20重量部
で構成される。
【0039】
上述したように、本例の油性潤滑剤では、油分の潤滑性・耐熱性の向上のため、精製された植物油と、合成油としてのシリコンオイルを配合した。油分が蒸発した後、特に200℃以上の温度域での潤滑性を維持するため、天然黒鉛粉末を粒度配合し最密充填させ黒鉛塗膜の緻密性を向上させた。特に、潤滑の必要な高温(300〜600℃)の金型表面(30〜60mmの縦方向表面)に潤滑被膜を形成するために、ノニオン系活性剤を配合して、黒鉛粒子の分散状態を改善し、石油系ロジンを接着剤として使用した。
【0040】
比較例
この例の油性潤滑剤は、精製鉱物油100重量部に対し、極圧添加剤5〜10重量部、金属石鹸5〜10重量部、平均粒子径30μmの黒鉛粉末25〜30重量部混合した潤滑剤で構成した。
【0041】
塗膜形成性試験
実施例及び比較例の油性潤滑剤を、水平及び30°の角度に設定した500℃の温度の鉄板の表面に滴下(1cc)した。結果を図1〜図4に示す。図1及び図2は、水平の鉄板に滴下したようす、図3及び図4は、30°の角度の鉄板に滴下した後のようすを示す。
【0042】
図1〜図4に示すように、実施例の本開発品の油性潤滑剤1は、広がることがなく、45mmの流れを示した。また、実施例の本開発品の油性潤滑剤1は、固体潤滑剤と油成分の分離がなく、必要以上に流れないため、塗膜の適正な厚みが保持された。一方、図1〜図4に示すように、比較例の従来品の油性潤滑剤2は、著しく広がり、100mm流れ、塗膜の適正な厚みが維持されなかった。
【0043】
往復運動潤滑試験
実施例及び比較例の油性潤滑剤について、図5に示す往復運動潤滑試験機によって50〜600℃の温度での摩擦係数を測定した。図5に示すように、往復運動潤滑試験機3は、鋼板4とアルミ製ロッド5との間の滑り面6に、試験すべき油性潤滑剤を塗布し、所定の荷重7の下に、この油性潤滑剤の摩擦係数をスプリングバランス8で測定するものである。なお、鋼板4の下には、図示していないが、鋼板4を所定の温度に制御するヒータが設けられている。
【0044】
図6に示すように、実施例の油性潤滑剤は、耐熱性のある柔らかい塗膜を形成し、この塗膜は、適度な付着性があるため、比較例の油性潤滑剤に比べて、摩擦係数が極めて低く、鍛造される新生面への追従性に優れることがわかる。
【0045】
鍛造物の製造
実施例及び比較例の油性潤滑剤を用いて、図7に示すような丸棒状の高硬度材質の材料から、図8に示すような段付きシャフトの鍛造物を製造した。
【0046】
製造条件は、
使用プレス:ナックルプレス400t、
被加工剤:チタン合金・耐熱鋼等、
押し出し条件:ビレット加熱温度、900〜1200℃、
型温度:400〜600℃、
潤滑剤供給量:1〜3cc/回
である。
【0047】
実施例の油性潤滑剤では、問題なく段付きシャフトが製造できた。一方、比較例の油瀬潤滑剤では、焼き付きが発生した。
【0048】
【発明の効果】
本発明の油性潤滑剤によれば、高温熱間押し出し鍛造において、黒鉛等の耐熱性の固体潤滑剤の塗膜が、均一に金型内に形成され、かかる固体潤滑剤が、均一にNi合金やTi合金等の高硬度材質の材料の表面を覆うので、金型の摩耗が防止され、鍛造時の押し出し荷重を低く抑えることができ、鍛造物の損耗を著しく低減することができる。
【図面の簡単な説明】
【図1】 水平面での塗膜形成性を示す図面代用写真である。
【図2】 図1の説明図である。
【図3】 30°の角度での塗膜形成性を示す図面代用写真である。
【図4】 図3の説明図である。
【図5】 往復運動潤滑試験機の側面図である。
【図6】 油性潤滑剤の摩擦係数を示すグラフである。
【図7】 本発明の実施例で用いた高硬度材質の材料の正面図である。
【図8】 本発明の実施例で製造した鍛造物の正面図である。
【符号の説明】
1 実施例の油性潤滑剤
2 比較例の油性潤滑剤
3 往復運動潤滑試験機
4 鋼板
5 アルミ製ロッド
6 滑り面
7 荷重
8 スプリングバランス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the provision of an oil-based lubricant that is used when a hard metal material is molded by hot extrusion forging at a high mold temperature.
[0002]
[Prior art]
Generally, oil-based lubricants used for hot extrusion forging are prepared by dissolving an extreme pressure additive (metal soap, etc.) in mineral oil and mixing and suspending it with a solid lubricant such as graphite. .
[0003]
[Problems to be solved by the invention]
The present inventor has found that such oil-based lubricants tend to cause wear of the mold during hot extrusion forging of materials of high hardness such as Ni alloy and Ti alloy, and the extrusion load during forging tends to increase. Thus, it has been found that the wear of the die of the forging is also increased.
[0004]
The present invention provides an oil-based lubricant that can be used in a high-temperature mold used for hot extrusion forging of a material with high hardness such as a Ni alloy or a Ti alloy, and has excellent thermal stability and coating film formability. This is the issue.
[0005]
[Means for Solving the Problems]
The present invention is an oil-based lubricant that is supplied into a high-temperature mold of 300 to 600 ° C. in order to hot-extrusion forge a material of high hardness material, and in 100 parts by weight of the oil-based lubricant, The present invention relates to an oil-based lubricant containing 25 to 35 parts by weight of a solid lubricant, 5 to 15 parts by weight of a nonionic activator and 15 to 25 parts by weight of a modified silicone oil. The material of the material is Ni alloy or Ti alloy, the solid lubricant is graphite powder, the graphite powder is a mixture of low particle size graphite and high particle size graphite, and the low particle size graphite has an average particle diameter of 1 to 5 μm. And the low particle size graphite has a particle size distribution containing 5% by weight or less of graphite particles having a particle size of 0.5 μm or less and graphite particles having a particle size of 10 μm or more, Granular graphite has a purity of 99.5% or more The high particle size graphite has an average particle size of 10 to 50 μm, and the high particle size graphite has 5 wt% each of graphite particles having a particle size of 5 μm or less and graphite particles having a particle size of 100 μm or more. % Of the particle size distribution, the high particle size graphite has a purity of 95% or more, and the low particle size graphite and the high particle size graphite are in a weight ratio of 2: 1 to 1: 1. characterized in that it is mixed, but according to the oil type lubricant.
[0006]
In order to obtain an oil-based lubricant that can prevent wear of a mold, suppress an extrusion load during forging, and prevent wear of a forged product, the present inventor made and studied various oil-based lubricants.
[0007]
As a result, when the conventional oil-based lubricant is supplied into a high-temperature mold, the inventor has poor dispersibility and adhesiveness of the solid lubricant, and the solid lubricant does not stay in the mold and lubrication is possible. It has been found that a sufficient coating film of a solid lubricant cannot be formed in the necessary mold.
[0008]
In the case where the present inventor hot forges a material of high hardness using a high temperature mold of 300 to 600 ° C., in the conventional hot extrusion forging, a stable coating film of a solid lubricant is subjected to such a high temperature. It was elucidated that the wear of the mold increases, the extrusion load during forging increases, and the wear of the forged mold increases.
[0009]
Based on this knowledge, the present inventor conducted further studies in order to obtain an oil-based lubricant that is excellent in thermal stability and film-forming property even in a high-temperature mold used for forging Ni alloy, Ti alloy and the like.
[0010]
As a result, the inventor of the present invention significantly improved the film-forming property of the oil-based lubricant by uniformly dispersing the heat-resistant solid lubricant in the dispersion medium containing the nonionic activator and the modified silicone oil. However, the present inventors have found that a solid lubricant film can be sufficiently formed even in a high-temperature mold, and reached the present invention.
[0011]
According to the inventor's research, 25 to 35 parts by weight of a solid lubricant, 5 to 15 parts by weight of a nonionic activator and 15 to 25 parts by weight of a modified silicone oil in 100 parts by weight of an oily lubricant, It has been found that the dispersibility and adhesiveness of the solid lubricant are remarkably improved by mixing.
[0012]
If the solid lubricant is less than 25 parts by weight, the film thickness of the lubricant is too thin, causing film breakage and increasing the extrusion load. On the other hand, when a solid lubricant exceeding 35 parts by weight is mixed, the viscosity is remarkably increased, the flow of the paint in the mold is deteriorated, and the lubricant cannot be supplied.
[0013]
A nonionic activator of less than 5 parts by weight has a poor dispersion effect, and a uniform lubricating coating film is not formed. On the other hand, even when a nonionic activator exceeding 15 parts by weight is added, the state of dispersion does not improve, and no improvement in coating properties is observed.
[0014]
The modified silicone oil of less than 15 parts by weight cannot improve the lubricity and heat resistance of the base oil, the oil component evaporates too quickly, and the supply of the lubricant does not reach deeper. On the other hand, the modified silicone oil exceeding 25 parts by weight does not improve the heat resistance of the base oil, slows the evaporation of the oil, flows too much lubricant, and cannot supply the lubricant to the necessary part.
[0015]
The oil-based lubricant with improved dispersibility and adhesiveness of such a solid lubricant has the separation of the solid lubricant and the dispersion medium suppressed, and the coating film of the solid lubricant maintains an appropriate thickness. Can do.
[0016]
According to the present invention, in high-temperature hot extrusion forging, a coating film of a heat-resistant solid lubricant such as graphite is uniformly formed in a mold, and such solid lubricant is uniformly Ni alloy, Ti alloy or the like. Since the surface of the high hardness material is covered, the wear of the mold is prevented, the extrusion load during forging can be kept low, and the wear of the forged product can be remarkably reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described.
The present invention solves the problem of coating properties of conventional oil-based lubricants, and particularly provides an oil-based lubricant used when molding a material of high hardness at a high mold temperature. is there.
[0018]
In the present invention, in order to reliably supply the lubricant to the mold surface during the hot extrusion forging of such a high-hardness material, a solid lubricant such as graphite is used in the oil with excellent thermal stability. The solid lubricant is dispersed and uniformly supplied into the mold, and a stable coating film of the solid lubricant is formed between the mold and the material of high hardness material.
[0019]
The oil-based lubricant of the present invention is supplied to a high-temperature mold (maintained at 300 to 600 ° C.) by a spray or shower method, and lubricity is particularly required due to its good lubricity and adhesive strength. A coating film of a solid lubricant such as 40 to 120 μm of graphite can be formed on the mold surface.
[0020]
The coating film of such a solid lubricant reduces the extrusion load when molding a material with high hardness, reduces the wear of the forging, prevents the mold from being worn, and prevents the mold from being worn. The mold life can be improved.
[0021]
As the material of the high hardness material according to the present invention, various hard materials that are hot forged in a high temperature mold are used. Examples of such high hardness materials include Ni alloys and Ti alloys.
[0022]
As the solid lubricant according to the present invention, various materials can be used as long as they have heat resistance, are uniformly dispersed in the oil-based lubricant, and the formability of the solid lubricant coating is not impaired.
[0023]
As such a solid lubricant, boron nitride, graphite powder or the like can be used. Natural graphite powder can be used as the graphite powder.
[0024]
In the present invention, such a solid lubricant is dispersed in a dispersion medium containing a modified silicone oil and a nonionic activator. The dispersion ratio of the solid lubricant is 25 to 35 parts by weight in 100 parts by weight of the oil-based lubricant.
[0025]
In the present invention, a nonionic activator and a modified silicone oil are contained in the oil lubricant in order to improve the dispersibility of the oil lubricant and the coating film formability.
[0026]
Various nonionic activators can be used, and examples thereof include alkylbenzene sulfonates, polyoxyethylene alkyl ethers, polyoxyesylene alkylphenol ethers, sorbitan acid esters, and the like.
[0027]
Various modified silicone oils can be used, and examples thereof include dimethylpolysiloxane, alkyl-modified silicone, and methylphenyl silicone.
[0028]
The nonionic activator according to the present invention is contained in 5 to 15 parts by weight in 100 parts by weight of an oil-based lubricant.
[0029]
The modified silicone oil according to the present invention is contained in 15 to 25 parts by weight in 100 parts by weight of an oil-based lubricant.
[0030]
Further, in the present invention, it is preferable to use a mixture of low particle size graphite and high particle size graphite as the graphite powder of the solid lubricant. This is because, in such a mixture of graphite powders, high particle size graphite increases heat resistance, and low particle size graphite increases the formability of the coating film.
[0031]
Two or more types of graphite powders having different average particle diameters can be used in the graphite powder mixture. In the present invention, for example, a mixture of low particle size graphite having an average particle size of 1 to 5 μm and high particle size graphite having an average particle size of 10 to 50 μm can be used.
[0032]
Further, in the present invention, in the graphite powder mixture, the low particle size graphite having an average particle size of 1 to 5 μm contains 5 graphite particles having a particle size of 0.5 μm or less and 5 graphite particles having a particle size of 10 μm or more. The high particle size graphite having a particle size distribution containing not more than% by weight, having a purity of not less than 99.5%, and having an average particle size of 10 to 50 μm is composed of graphite particles having a particle size of 5 μm or less and 100 μm. It has a particle size distribution containing 5% by weight or less of graphite particles having the above particle diameter, and has a purity of 95% or more. The weight ratio of the low particle size graphite and the high particle size graphite is It is preferable to be mixed at 2: 1 to 1: 1.
[0033]
When there are many fine particle (0.5 μm) portions of low particle size graphite, oxidation consumption is quick and lubricity does not continue. In order to form a close-packed coating film, graphite having a sharp particle size distribution is optimal. Outside the range of 2: 1 to 1: 1, close packing is impossible. Since the low particle size graphite is surrounded around the high particle size graphite, the lower the particle size graphite, the better the lubricity. By using 99.5% or more high-purity graphite, it is possible to prevent impairing lubricity due to impurities.
[0034]
Furthermore, in the present invention, the natural graphite powder can be packed most closely by blending with the particle size, and the denseness of the graphite coating can be improved. Such a solid lubricant is particularly useful for maintaining lubricity in a temperature range of 200 ° C. or higher after the oil in the oil-based lubricant has evaporated.
[0035]
In the present invention, the oil-based lubricant contains commonly used components such as adhesives, dietary oils, mineral oils and the like in a range that does not adversely affect the dispersibility and film-forming properties of the solid lubricant. Can do.
[0036]
The oil-based lubricant of the present invention is a soft heat-resistant film with moderate adhesion due to the addition of a dispersant, the introduction of a dispersion technique using a disperser, and the addition of an adhesive that improves adhesive strength at high temperatures. Thus, it is possible to form a coating film of a solid lubricant having excellent followability to a forged new surface and having a stable friction coefficient.
[0037]
【Example】
The present invention will be described based on examples and comparative examples with reference to the drawings.
FIG. 1 is a drawing-substituting photograph showing the film forming property on a horizontal plane. FIG. 2 is an explanatory diagram of FIG. FIG. 3 is a drawing-substituting photograph showing the film-forming property at an angle of 30 °. FIG. 4 is an explanatory diagram of FIG. FIG. 5 is a side view of the reciprocating lubrication tester. FIG. 6 is a graph showing the friction coefficient of the oil-based lubricant. FIG. 7 is a front view of a high-hardness material used in the example of the present invention. FIG. 8 is a front view of the forging manufactured in the example of the present invention.
[0038]
Oil type lubricant of Example <br/> this example,
(A) Particle size cloth having an average particle size in the range of 1 to 5 μm, particles having a particle size of 0.5 μm or less are 5% by weight or less, and particles having a particle size of 10 μm or more are 5% by weight or less Natural graphite powder having a purity of 99.5% or more having an average particle diameter of 10 to 50 μm, particles having a particle diameter of 5 μm or less and 5% by weight or less, and a particle diameter of 100 μm or more 25 to 35 parts by weight of a mixture of particles having a particle size distribution of 5% by weight or less and graphite powder having a purity of 95% or more in a ratio of 3: 2.
(B) 15-25 parts by weight of refined vegetable oil,
(C) 5 to 10 parts by weight of petroleum rosin,
(D) 15 to 25 parts by weight of modified silicone oil,
(E) 5 to 15 parts by weight of nonionic active agent (stops spreading),
(F) The refined mineral oil is composed of 10 to 20 parts by weight.
[0039]
As described above, in the oily lubricant of this example, refined vegetable oil and silicon oil as a synthetic oil were blended in order to improve the lubricity and heat resistance of the oil. In order to maintain lubricity particularly in the temperature range of 200 ° C. or more after the oil has evaporated, natural graphite powder was blended in a particle size and closely packed to improve the denseness of the graphite coating. In particular, in order to form a lubricating film on the mold surface (longitudinal surface of 30 to 60 mm) at a high temperature (300 to 600 ° C.) that requires lubrication, a nonionic activator is blended to change the dispersion state of the graphite particles. Improved, petroleum rosin was used as an adhesive.
[0040]
Comparative Example The oil-based lubricant of this example is 5 to 10 parts by weight of an extreme pressure additive, 5 to 10 parts by weight of metal soap, and 25 to 25 parts of graphite powder having an average particle diameter of 30 μm with respect to 100 parts by weight of refined mineral oil. 30 parts by weight of lubricant was mixed.
[0041]
Coating film formation test The oil-based lubricants of Examples and Comparative Examples were dropped (1 cc) on the surface of an iron plate at a temperature of 500C set at an angle of 30 °. The results are shown in FIGS. FIGS. 1 and 2 show the drop after dropping on a horizontal iron plate, and FIGS. 3 and 4 show the drop after dropping on a 30 ° angle iron plate.
[0042]
As shown in FIGS. 1 to 4, the oil-based lubricant 1 of the developed product of the example did not spread and showed a flow of 45 mm. Moreover, since the oil-based lubricant 1 of the developed product of the example does not separate the solid lubricant and the oil component and does not flow more than necessary, the appropriate thickness of the coating film was maintained. On the other hand, as shown in FIGS. 1 to 4, the conventional oil-based lubricant 2 of the comparative example spreads significantly, flows 100 mm, and an appropriate thickness of the coating film is not maintained.
[0043]
Reciprocating lubrication test For the oil-based lubricants of Examples and Comparative Examples, the friction coefficient at a temperature of 50 to 600C was measured by a reciprocating lubrication tester shown in Fig. 5. As shown in FIG. 5, the reciprocating lubrication testing machine 3 applies an oil-based lubricant to be tested to the sliding surface 6 between the steel plate 4 and the aluminum rod 5, and under a predetermined load 7, The friction coefficient of the oil-based lubricant is measured with the spring balance 8. Although not shown, a heater for controlling the steel plate 4 to a predetermined temperature is provided under the steel plate 4.
[0044]
As shown in FIG. 6, the oil lubricant of the example forms a heat-resistant soft coating film, and since this coating film has appropriate adhesion, it has a friction compared to the oil lubricant of the comparative example. It can be seen that the coefficient is extremely low and the followability to the forged new surface is excellent.
[0045]
Production of forged product Using the oil-based lubricants of Examples and Comparative Examples, a forged product of a stepped shaft as shown in Fig. 8 is formed from a round bar-like material with high hardness as shown in Fig. 7. Manufactured.
[0046]
Manufacturing conditions are
Press used: Knuckle press 400t,
Work material: Titanium alloy, heat-resistant steel, etc.
Extrusion conditions: billet heating temperature, 900-1200 ° C,
Mold temperature: 400-600 ° C
Lubricant supply amount: 1 to 3 cc / time.
[0047]
With the oil-based lubricant of the example, a stepped shaft could be produced without problems. On the other hand, seizure occurred in the oilse lubricant of the comparative example.
[0048]
【The invention's effect】
According to the oil-based lubricant of the present invention, in high-temperature hot extrusion forging, a coating film of a heat-resistant solid lubricant such as graphite is uniformly formed in the mold, and the solid lubricant is uniformly Ni alloy. Since the surface of a high-hardness material such as Ti alloy is covered, the wear of the mold can be prevented, the extrusion load during forging can be kept low, and the wear of the forged product can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a drawing-substituting photograph showing the film-forming property on a horizontal plane.
FIG. 2 is an explanatory diagram of FIG. 1;
FIG. 3 is a drawing-substituting photograph showing the film-forming property at an angle of 30 °.
FIG. 4 is an explanatory diagram of FIG. 3;
FIG. 5 is a side view of a reciprocating lubrication tester.
FIG. 6 is a graph showing a friction coefficient of an oil lubricant.
FIG. 7 is a front view of a high hardness material used in an example of the present invention.
FIG. 8 is a front view of a forged product manufactured in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oil-based lubricant of Example 2 Oil-based lubricant of Comparative Example 3 Reciprocating lubrication testing machine 4 Steel plate 5 Aluminum rod 6 Sliding surface 7 Load 8 Spring balance

Claims (1)

高硬度材質の材料を熱間押し出し鍛造するために、300〜600℃の高温金型内に供給される、油性潤滑剤であって、100重量部の前記油性潤滑剤中に、25〜35重量部の固体潤滑剤、5〜15重量部のノニオン系活性剤及び15〜25重量部の変性シリコンオイルが含有されており、前記高硬度材質の材料はNi合金又はTi合金であり、前記固体潤滑剤が黒鉛粉末であり、前記黒鉛粉末が低粒度黒鉛及び高粒度黒鉛の混合物であり、前記低粒度黒鉛が1〜5μmの平均粒子径を有しており、前記低粒度黒鉛が、0.5μm以下の粒子径の黒鉛粒子と10μm以上の粒子径の黒鉛子とをそれぞれ5重量%以下含有する粒度分布を有しており、前記低粒度黒鉛が99.5%以上の純度を有しており、前記高粒度黒鉛が10〜50μmの平均粒径を有しており、前記高粒度黒鉛が、5μm以下の粒子径の黒鉛粒子と100μm以上の粒子径の黒鉛粒子とをそれぞれ5重量%以下含有する粒度分布を有しており、前記高粒度黒鉛が95%以上の純度を有しており、前記低粒度黒鉛と前記高粒度黒鉛とが、重量比2:1〜1:1で混合されていることを特徴とする、油性潤滑剤。In order to hot extrude and forge a material having high hardness, it is an oil-based lubricant supplied in a high-temperature mold of 300 to 600 ° C., and 25 to 35 weight in 100 parts by weight of the oil-based lubricant. Part of solid lubricant, 5 to 15 parts by weight of nonionic activator and 15 to 25 parts by weight of modified silicone oil, the material of the high hardness material is Ni alloy or Ti alloy, and the solid lubricant The agent is graphite powder, the graphite powder is a mixture of low particle size graphite and high particle size graphite, the low particle size graphite has an average particle diameter of 1 to 5 μm, and the low particle size graphite is 0.5 μm has a particle size distribution containing less of the particle diameter of the above graphite particles and 10μm particle size and graphite particles child 5 wt% or less, the low particle size graphite has a purity of 99.5% The high-grain graphite is an average of 10 to 50 μm The high particle size graphite has a particle size distribution containing 5% by weight or less each of graphite particles having a particle size of 5 μm or less and graphite particles having a particle size of 100 μm or more; An oil-based lubricant, wherein the granular graphite has a purity of 95% or more, and the low granular graphite and the high granular graphite are mixed in a weight ratio of 2: 1 to 1: 1.
JP2000055911A 2000-03-01 2000-03-01 Oil-based lubricant Expired - Fee Related JP4508343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055911A JP4508343B2 (en) 2000-03-01 2000-03-01 Oil-based lubricant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055911A JP4508343B2 (en) 2000-03-01 2000-03-01 Oil-based lubricant

Publications (2)

Publication Number Publication Date
JP2001240887A JP2001240887A (en) 2001-09-04
JP4508343B2 true JP4508343B2 (en) 2010-07-21

Family

ID=18576951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055911A Expired - Fee Related JP4508343B2 (en) 2000-03-01 2000-03-01 Oil-based lubricant

Country Status (1)

Country Link
JP (1) JP4508343B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327190A (en) * 2001-05-07 2002-11-15 Nippon Oil Corp Mold-coating oil and plastic processing method using the same
JP4535719B2 (en) * 2003-12-12 2010-09-01 協同油脂株式会社 Processing agent for plastic working of steel, plastic working method and oxidation inhibiting method
JP2006182806A (en) * 2004-12-24 2006-07-13 Toyota Motor Corp Plastic processing lubricating oil composition
JP4829549B2 (en) * 2005-06-29 2011-12-07 トヨタ自動車株式会社 Lubricating oil for plastic working
JP5277421B2 (en) * 2007-05-07 2013-08-28 大同化学工業株式会社 Hot rolling oil composition
DE102009009124A1 (en) * 2008-10-24 2010-04-29 Paul Hettich Gmbh & Co. Kg Pull-out guide for household appliances
JP2019107680A (en) * 2017-12-19 2019-07-04 昭和電工株式会社 Base material for forging of heat sink

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128062A (en) * 1974-03-28 1975-10-08
JPS50128061A (en) * 1974-03-28 1975-10-08
JPS6333496A (en) * 1986-07-28 1988-02-13 Yushiro Chem Ind Co Ltd Lubricant for hot forging
JPS6397695A (en) * 1986-10-14 1988-04-28 Agency Of Ind Science & Technol Lubricant for use in forging and casting of metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128062A (en) * 1974-03-28 1975-10-08
JPS50128061A (en) * 1974-03-28 1975-10-08
JPS6333496A (en) * 1986-07-28 1988-02-13 Yushiro Chem Ind Co Ltd Lubricant for hot forging
JPS6397695A (en) * 1986-10-14 1988-04-28 Agency Of Ind Science & Technol Lubricant for use in forging and casting of metal

Also Published As

Publication number Publication date
JP2001240887A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
Xie et al. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts
Pai et al. Wear resistance of cast graphitic aluminium alloys
Podgornik et al. Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming
RU2666199C2 (en) Method for producing spray powders containing chromium nitride
WO2013111708A1 (en) Die release agent composition
CN105452507B (en) Sintered alloy-made valve guide and its manufacturing method
JP4508343B2 (en) Oil-based lubricant
WO2010126026A2 (en) Lead-free copper-based sintered sliding material and sliding part
JP2016117949A (en) Thermal spray powder for thermal spray, piston ring and method for manufacturing piston ring
US7030065B2 (en) Solid lubricant for lubricating rotary trunnion supported equipment
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
JPS5881948A (en) Aluminum composite material excellent in wear resistance and vibration attenuating capacity
Lelonis et al. Boron nitride powder a high-performance alternative for solid lubrication
CN104878272A (en) Nickel aluminum/copper oxide high-temperature self-lubricating composite material and preparation method thereof
JP2017160497A (en) Flame spray material and utilization thereof
JP4953117B2 (en) Die-cast oil release agent
JP2001105177A (en) Powder for overlay
JP2002282997A (en) Low-speed mold release agent for die-casting
Moorthy et al. Study on tribological characteristics of self-lubricating aa2218–fly ash–white graphite composites
EP0611817A1 (en) Lubricant composition for hot plastic working
JPS63392A (en) Homogenous composition
Ganapathy et al. Comparative study of different nanolubricants for automotive applications
Juszczyk et al. Microstructure and tribological properties of the copper matrix composite materials containing lubricating phase particles
JPS6315987B2 (en)
RU2232797C1 (en) Grease lubricant for plastic working of metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees