JP4542491B2 - High-strength heat-resistant cast steel, method for producing the same, and uses using the same - Google Patents
High-strength heat-resistant cast steel, method for producing the same, and uses using the same Download PDFInfo
- Publication number
- JP4542491B2 JP4542491B2 JP2005283199A JP2005283199A JP4542491B2 JP 4542491 B2 JP4542491 B2 JP 4542491B2 JP 2005283199 A JP2005283199 A JP 2005283199A JP 2005283199 A JP2005283199 A JP 2005283199A JP 4542491 B2 JP4542491 B2 JP 4542491B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- steam turbine
- cast steel
- pressure
- resistant cast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Control Of Turbines (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、620℃以上における高いクリープ破断強度と良好な溶接性を有し、主蒸気温度及び圧力がそれぞれ620℃以上、25MPA以上の超々臨界圧タービンの高圧及び中圧内部ケーシング並びに主蒸気止め弁及び加減弁ケーシングに好適な新規な耐熱鋳鋼とその製造方法及びそれを用いた蒸気タービン用ケーシング、主蒸気止め弁及び蒸気加減弁並びに蒸気タービン発電プラントに関する。 The present invention has a high creep rupture strength and good weldability at 620 ° C. or higher, a main steam temperature and a pressure of 620 ° C. or higher, and a super-critical pressure turbine casing of a super supercritical pressure turbine having a pressure of 25 MPA or higher, and a main steam stopper. The present invention relates to a novel heat-resistant cast steel suitable for a valve and a regulating valve casing, a method for producing the same, a casing for a steam turbine using the same, a main steam stop valve, a steam regulating valve, and a steam turbine power plant.
従来の蒸気温度600℃以下の蒸気タービンでは、ケーシング材料としてCrMoV低合金鋳鋼や、11CrMoVNb鋳鋼が用いられている。しかし、石油、石炭などの化石燃料の枯渇及び省エネルギの観点から、蒸気タービンの発電効率の向上が望まれ、発電効率を向上させるには蒸気温度及び圧力を上げるのが最も有効な手段であることから、火力発電設備は蒸気温度の高温化が進められている。これらの高効率タービン用材料としては、現用ケーシング材では強度不足で、これよりも高強度の材料が必要である。 In a conventional steam turbine having a steam temperature of 600 ° C. or lower, CrMoV low alloy cast steel or 11CrMoVNb cast steel is used as a casing material. However, from the viewpoint of depletion of fossil fuels such as oil and coal and energy saving, it is desired to improve the power generation efficiency of the steam turbine, and the most effective means is to increase the steam temperature and pressure to improve the power generation efficiency. For this reason, steam power generation is being promoted at higher temperatures. As these high-efficiency turbine materials, the current casing material is insufficient in strength, and a material having higher strength is required.
蒸気温度620℃以上の高温蒸気タービンケーシングとしては高温強度が不足である。特許文献1には9%CR鋼からなるケーシングが開示されているが、高温強度にばらつきを示した。従来の蒸気タービンは蒸気温度600℃、蒸気圧力25MPaであった。ロータ材として1Cr−1Mo−1/4Vフェライト系低合金鍛鋼や、11Cr−1Mo−V−Nb−N鍛鋼、ケーシング材として1Cr−1Mo−1/4Vフェライト系低合金鋳鋼や11Cr−1Mo−V−Nb−N鋳鋼が知られ、特にこれらの材料として高温強度のより高い材料として特許文献2に示されているオーステナイト系合金、特許文献3、4、5に示されているマルテンサイト鋼が知られている。
As a high-temperature steam turbine casing having a steam temperature of 620 ° C. or higher, the high-temperature strength is insufficient.
前述の従来ケーシング材料よりも高温強度の高い材料としては、特許文献5に示されているマルテンサイト系鋳鋼が知られている。しかし、蒸気温度620℃の蒸気タービンケーシングとして使用するには強度が不十分であり、肉厚を厚くしなければならないためにタービンの起動停止時に大きな熱応力を発生する問題が有った。
上述した公報にはロータ材及びケーシング材等が開示されているが、前述の如くより高温化に伴う蒸気タービン及び火力発電プラントシステムについては全く考慮されていない。
As a material having higher high-temperature strength than the above-described conventional casing material, a martensitic cast steel shown in
Although the above-mentioned publications disclose rotor materials and casing materials, the steam turbine and the thermal power plant system associated with higher temperatures are not taken into consideration at all as described above.
本発明の目的は、620℃以上でのクリープ破断強度と靭性が高く、かつ溶接性の良好な高強度耐熱鋳鋼とその製造方法及びそれを用いた蒸気タービンケーシング、主蒸気止め弁、蒸気加減弁とそれらの製造方法並びに蒸気タービンと蒸気タービン発電プラントを提供することにある。 An object of the present invention is to provide a high strength heat-resistant cast steel having high creep rupture strength and toughness at 620 ° C. or higher and good weldability, a method for producing the same, a steam turbine casing , a main steam stop valve, and a steam control valve using the same. And a manufacturing method thereof, and a steam turbine and a steam turbine power plant.
本発明は、質量で、C0.10〜0.16%、Si0.1〜0.6%、Mn0.3〜0.8%、Cr9.5〜11.5%、Ni0.12〜0.8%、Mo0.2〜0.7%、W1.9〜3.0%、V0.05〜0.3%、Nb、Ta及びZrの1種以上の合計量が0.01〜0.15%、Co0.2〜1.5%、N0.01〜0.08%及びB0.0005〜0.01%を含有し、残部がFe及び不可避的不純物よりなることを特徴とする高強度耐熱鋳鋼とそれを用いた蒸気タービンケーシング及び主蒸気止め弁並びに蒸気加減弁にある。 The present invention relates to C0. 10 ~0.16%, Si0.1~ 0.6%, Mn0. 3 ~ 0.8%, Cr 9.5 ~1 1.5%, Ni0.1 2 ~ 0.8%, Mo 0.2~ 0.7%, W1.9~3.0%, V0.05 -0.3%, the total amount of one or more of Nb, Ta and Zr is 0.01-0.15%, Co0. A high-strength heat-resistant cast steel containing 2 to 1.5 %, N 0.01 to 0.08% and B 0.0005 to 0.01%, the balance being made of Fe and inevitable impurities, and its use Steam turbine casing, main steam stop valve and steam control valve.
本発明は、質量で、Al0.0005〜0.04%及びO0.02%以下であること、[W/(Mo+0.5W)]及び(Co/W)の関係で表される直交座標おいて、座標点A(1.1、0.90)、座標点B(1.5、0.55)及び座標点C(1.8、0.55)の各点を直線で結んで得られる値以下の[W/(Mo+0.5W)]及び(Co/W)を有することが好ましい。 In the present invention, by mass, Al is 0.0005 to 0.04% and O is 0.02% or less, and orthogonal coordinates represented by the relationship of [W / (Mo + 0.5W)] and (Co / W). The coordinate point A (1.1, 0.90), the coordinate point B (1.5, 0.55), and the coordinate point C (1.8, 0.55) are connected by straight lines. It is preferable to have [W / (Mo + 0.5W)] and (Co / W) that are less than or equal to the values obtained.
又、本発明は、質量で、Re 1.5%以下、Nd0.5%以下及びSr1.0%以下の少なくとも1種を含有させることが好ましい。 In addition, the present invention preferably contains at least one of Re 1.5% or less, Nd 0.5% or less, and Sr 1.0% or less by mass.
更に、本発明は、620℃、105h時間クリープ破断強度が98MPA以上、室温の衝撃吸収エネルギが29.4J以上を有し、溶接性が良好なものとする。より高い信頼性を確保するには、620℃、105hクリープ破断強度を108MPA以上、室温衝撃吸収エネルギを31.4J以上であることが好ましい。 Furthermore, the present invention has a creep rupture strength at 620 ° C. for 10 5 h of 98 MPA or more, an impact absorption energy at room temperature of 29.4 J or more, and good weldability. In order to ensure higher reliability, it is preferable that the creep rupture strength at 620 ° C. and 10 5 h is 108 MPa or more and the room temperature impact absorption energy is 31.4 J or more.
本発明の高強度耐熱鋳鋼の製造法は、上記各耐熱鋳鋼の組成とする原料を電気炉で溶解し、真空取鍋精錬による脱ガス処理後、砂型鋳型に鋳込み成形することを特徴とする。そして鋳込み成形後の鋳鋼を、1000〜1150℃で焼鈍し、1000〜1100℃に加熱し急冷する焼準熱処理を行い、次いで550〜750℃及び670℃〜770℃で順次2回焼戻熱処理を行うものである。 The method for producing high-strength heat-resistant cast steel according to the present invention is characterized in that the raw materials having the compositions of the heat-resistant cast steels are melted in an electric furnace and cast into a sand mold after degassing by vacuum ladle refining. Then, the cast steel after casting is annealed at 1000 to 1150 ° C., heated to 1000 to 1100 ° C. and rapidly cooled, and then tempered twice in sequence at 550 to 750 ° C. and 670 ° C. to 770 ° C. Is what you do.
本発明に係る高強度耐熱鋳鋼とそれを用いた蒸気タービンケーシング及び主蒸気止め弁並びに蒸気加減弁は、上記の組成を有し、上記製造法により製造され、本発明の蒸気タービン発電プラントは、この蒸気タービンケーシング及び主蒸気止め弁並びに蒸気加減弁より構成されたことを特徴とする。以下、本発明材の成分限定理由について説明する。 A high-strength heat-resistant cast steel according to the present invention and a steam turbine casing, a main steam stop valve, and a steam control valve using the same have the above composition and are manufactured by the above manufacturing method. The steam turbine casing, a main steam stop valve, and a steam control valve are included. Hereinafter, the reasons for limiting the components of the material of the present invention will be described.
Cは、高い引張強さを得るために、0.10%以上必要な元素であるが、0.16%を超えると高温に長時間さらされた場合に金属組織が不安定になり、長時間クリープ破断強度を低下させるので、0.10〜0.16%に限定される。特に0.10〜0.14%の範囲が好ましく、より0.10〜0.12%の範囲が好ましい。 In order to obtain high tensile strength, C is 0. Although the element is necessary for 10 % or more, if it exceeds 0.16%, the metal structure becomes unstable when exposed to high temperature for a long time, and the creep rupture strength is lowered for a long time. It is limited to 10 to 0.16 percent. Especially 0. The range of 10 to 0.14% is preferable, and more preferably 0. A range of 10 to 0.12% is preferred.
Mnは、脱酸剤として添加するものであり、0.3%の添加でその効果は達成され、0.8%を超える多量の添加はクリープ破断強度を低下させる。特に、0.4〜0.7%が好ましい。 Mn is added as a deoxidizing agent. The effect is achieved with the addition of 3 %, and the addition of more than 0.8 % reduces the creep rupture strength. In particular , 0.4 to 0.7% is preferable.
Siも、脱酸剤として添加するもので、真空カーボン脱酸法などの製鋼技術によればSiの添加は低められるが、0.1%以上の添加が必要である。また、Siは有害なδフェライト組織を生成するので0.6%を越える添加は避けなければならない。そして、Siを低くすることにより、有害なδフェライト組織の生成防止効果がある。したがって、添加する場合には0.6%以下に抑える必要が有り、より0.2〜0.6%が好ましい。 Si is also added as a deoxidizer. According to steelmaking techniques such as vacuum carbon deoxidation, the addition of Si can be reduced, but addition of 0.1% or more is necessary. Further, since Si produces a harmful δ ferrite structure, addition exceeding 0.6 % should be avoided. And, by lowering Si, there is an effect of preventing generation of harmful δ ferrite structure. Therefore, it is necessary to keep the 0.6% or less in the case of addition, good Ri 0.2 to 0.6 percent is preferred.
Crは、高温強度及び高温酸化を改善する効果がある。11.5%を超えると有害なδフェライト組織生成の原因となり、過剰な添加は靭性低下の原因となる。9.5%より少ないと高温高圧蒸気に対する耐酸化性が不十分となる。特に、10.0〜11.0%が好ましい。 Cr has the effect of improving high temperature strength and high temperature oxidation. If it exceeds 11.5 %, a harmful δ ferrite structure will be formed, and excessive addition will cause a decrease in toughness. If it is less than 9.5 %, the oxidation resistance against high-temperature and high-pressure steam becomes insufficient. In particular , 10.0 to 11.0% is preferable.
Niは、δフェライトの生成を抑制し、靭性を付与する元素であり、最低0.12%必要であるが、0.8%を超えると620℃以上のクリープ破断強度を低下させるので、0.12〜0.8%に限定する。特に、0.3〜0.7%が好ましい。 Ni is an element that suppresses the formation of δ ferrite and imparts toughness, and needs to be at least 0.1 2 %. However, if it exceeds 0.8 %, the creep rupture strength at 620 ° C. or higher is reduced. limited to .1 2 to 0.8 percent. In particular, preferably 0.3 to 0.7 percent.
Wは、高温長時間強度を顕著に高める効果がある。1.9%より少ないWでは620℃以上で使用する耐熱鋳鋼としては強度向上効果が不十分である。またWは3.0%を超えると靭性が低くなる。特に1.95〜2.7%、より2.0〜2.5%が好ましい。 W has an effect of remarkably increasing the high temperature long time strength. When W is less than 1.9%, the strength improvement effect is insufficient as a heat-resistant cast steel used at 620 ° C. or higher. On the other hand, if W exceeds 3.0%, the toughness becomes low. In particular, it is preferably 1.95 to 2.7%, more preferably 2.0 to 2.5%.
Moは、高温強度向上のために0.2%以上添加される。しかし、本発明鋳鋼のように1.9%を超えるWを含む場合には、0.7%を超えるMo添加は靭性及び疲労強度を低下させるので、0.7%以下に制限される。特に、0.2〜0.6%が好ましい。
Vは、クリープ破断強度を高める効果が有る。0.05%未満ではその効果が不十分で、0.3%を超えるとδフェライトを生成して疲労強度を低下させる。特に0.10〜0.25%、より0.12〜0.23%が好ましい。
Mo is added by 0.2% or more in order to improve the high temperature strength. However, when it contains W exceeding 1.9% as in the present invention cast steel, addition of Mo exceeding 0.7 % lowers toughness and fatigue strength, so it is limited to 0.7 % or less. In particular, 0.2 to 0.6% is preferable.
V has the effect of increasing the creep rupture strength. If it is less than 0.05%, the effect is insufficient, and if it exceeds 0.3%, δ ferrite is generated and the fatigue strength is lowered. In particular, 0.10 to 0.25%, more preferably 0.12 to 0.23% is preferable.
Nbは、高温強度を高めるのに非常に効果的な元素であるが、あまり多量に添加すると、特に大型鋼塊では粗大な共晶NB炭化物が生じ、強度を低下させたり、疲労強度を低下させるδフェライトを析出させる原因になるので、0.15%未満に抑える必要がある。また、0.01%未満のNBでは効果が不十分である。特に大型鋼塊の場合には、0.02〜0.12%が、より0.04〜0.10%が好ましい。 Nb is a very effective element for increasing the high-temperature strength. However, when added in a large amount, coarse eutectic NB carbides are generated particularly in large steel ingots, and the strength is reduced or the fatigue strength is reduced. Since it causes δ ferrite to precipitate, it must be suppressed to less than 0.15%. Moreover, the effect is insufficient with NB less than 0.01%. Particularly in the case of a large steel ingot, 0.02 to 0.12% is preferable and 0.04 to 0.10% is more preferable.
Ta及びZrは、低温靭性を高める効果が有り、Ta0.15%以下及びZr0.1%以下の単独または複合添加で十分な効果が得られる。Taを0.1%以上添加した場合は、Nbの添加を省略することができる。 Ta and Zr have an effect of increasing low temperature toughness, and a sufficient effect can be obtained by adding Ta or less and Ta 0.15% or less alone or in combination. When Ta is added in an amount of 0.1% or more, the addition of Nb can be omitted.
Coは、0.2%以上の添加で高温強度が著しく改善される。これはWとの相互作用によるものと考えられ、Wを1.9%以上含む本発明合金において特長的な現象である。一方、Coの1.5%を超える過度な添加は、高温における組織安定性を低下させるため、クリープ破断強度を低下させるので、0.2〜1.5%に限定される。特に、0.2〜1.2%が好ましい。 Co is 0. Addition of 2 % or more significantly improves the high temperature strength. This is considered to be due to the interaction with W, and is a characteristic phenomenon in the present alloy containing 1.9% or more of W. On the other hand, excessive addition of more than 1.5 % of Co lowers the structure stability at high temperature, and thus decreases the creep rupture strength. It is limited to 2 to 1.5 %. In particular , 0.2 to 1.2% is preferable.
Nは、Vの窒化物を析出したり、また固溶した状態でMoやWと共同でIS効果(侵入型固溶元素と置換型固溶元素の相互作用)により高温強度を高める作用があり、最低0.01%は必要であるが、0.08%を超えると延性を低下させるので、0.01〜0.08%に限定される。特に0.015〜0.075%、より0.015〜0.06%が好ましい。 N precipitates V nitride, and has the effect of increasing the high temperature strength by the IS effect (interaction between interstitial and substitutional solid solution elements) in collaboration with Mo and W in a solid solution state. However, at least 0.01% is necessary, but if it exceeds 0.08%, the ductility is lowered, so it is limited to 0.01 to 0.08%. In particular, 0.015 to 0.075%, more preferably 0.015 to 0.06% is preferable.
Alは、脱酸剤及び結晶粒微細化剤として0.0005%以上添加される。Alは強窒化物形成元素であり、クリープに有効に働く窒素を固着することにより、特に0.04%を越えると高温域での104h以上の長時間クリープ強度を低下させる作用を有する。また、AlはWを主体とする脆弱な金属間化合物であるラーベス相の析出を促進し、結晶粒界への析出を招き長時間側のクリープ破断強度を低下させる。特に。極度の結晶粒微細化では粒界にラーベス相が連続に析出する。従って、その上限を0.04%とするものである。特に0.001〜0.035%、より0.003〜0.030%が好ましい。 Al is added in an amount of 0.0005% or more as a deoxidizing agent and a crystal grain refining agent. Al is a strong nitride forming element, by fixing the nitrogen works effectively to creep, have the effect of reducing the long-term creep strength of at least 10 4 h in a high temperature range especially exceeds 0.04%. Further, Al promotes the precipitation of the Laves phase, which is a brittle intermetallic compound mainly composed of W, invites the precipitation to the crystal grain boundary, and lowers the creep rupture strength on the long time side. In particular. In extreme grain refinement, Laves phase is continuously precipitated at grain boundaries. Therefore, the upper limit is made 0.04%. In particular, 0.001 to 0.035%, more preferably 0.003 to 0.030% is preferable.
Bは、粒界強化作用とM23C6中に固溶し、M23C6型炭化物の凝集粗大化を妨げる作用により高温強度を高める効果があり、最低0.0005%添加すると有効であるが、0.01%を越えると溶接性を害するので、0.0005〜0.01%に限定する。特に、0.001〜0.008%、より0.002〜0.007%が好ましい。 B is a solid solution in the grain boundary strengthening effect and M 23 C 6, has the effect of enhancing the high temperature strength by the action preventing the aggregation and coarsening of M 23 C 6 type carbide, it is effective to add a minimum 0.0005% However, if over 0.01%, weldability is impaired, so the content is limited to 0.0005 to 0.01%. In particular, 0.001 to 0.008%, more preferably 0.002 to 0.007% is preferable.
Oの含有量は、0.015%を超えると高温強度及び靭性値を低下させるので、0.020%以下とすべきであり、特に0.015%以下、より0.010%以下が好ましい。 If the content of O exceeds 0.015%, the high-temperature strength and toughness value are lowered, so it should be 0.020% or less, particularly 0.015% or less, more preferably 0.010% or less.
特に、Mo、W及びCoは、高温強度、高温組織安定性に大きく関与し、本発明鋼では複合的に作用することが実験的に明らかとなった。 In particular, it has been experimentally clarified that Mo, W, and Co are greatly involved in high-temperature strength and high-temperature structure stability and act in a composite manner in the steel of the present invention.
即ち、620℃以上における高温強度と高温組織安定性を兼ね備えた材料特性を得るためには、クリープ強度を向上させるMoとWの添加比において、高温長時間強度を顕著に向上させるW比率を高めることが好ましく、かつ高温組織安定性を向上させるためにCoとWの添加比Co/Wを低めることが好ましい。Mo、W及びCoの関係を示す直交座標[W/(Mo+0.5W)]と(Co/W)との関係において、座標点A(1.2、0.80)、座標点B(1.5、0.55)及び座標点C(1.8、0.55)の各点を直線で結んで得られる直線ABC以下で示される領域が好ましい。 That is, in order to obtain material properties that have both high-temperature strength and high-temperature structure stability at 620 ° C. or higher, the ratio of Mo and W that improves creep strength is increased, and the W ratio that significantly improves high-temperature long-term strength is increased. In order to improve the high-temperature structure stability, it is preferable to reduce the Co / W addition ratio Co / W. In the relationship between Cartesian coordinates [W / (Mo + 0.5W)] and (Co / W) indicating the relationship among Mo, W and Co, coordinate point A (1.2, 0.80), coordinate point B ( 1.5, 0.55) and the coordinate point C (1.8, 0.55) are preferably shown in the region represented by the straight line ABC or less obtained by connecting the points with straight lines.
Reは、固溶強化により、高温強度を顕著に高める。過剰な添加は脆化を促進するため2%以下の添加が好ましいが、Reは希少な元素であり、実用上から1.5%以下、より1.2%以下が好ましい。 Re significantly increases the high-temperature strength by solid solution strengthening. Excessive addition promotes embrittlement, so addition of 2% or less is preferable, but Re is a rare element, and is practically 1.5% or less, more preferably 1.2% or less.
Ndは、炭窒化物の形成により高温強度を高める。Ndは少量添加でも効果が有り、過剰な添加は脆化を促進するため1%以下の添加が好ましいが、Ndは希少な元素であり、実用上から0.5%以下、より0.3%以下が好ましい。 Nd increases the high temperature strength by forming carbonitrides. Nd is effective even when added in a small amount. Excessive addition promotes embrittlement, so addition of 1% or less is preferable, but Nd is a rare element and is practically 0.5% or less, more preferably 0.3%. The following is preferred.
Srは、旧オーステナイト粒界を強化し、低温靭性と強度を高め、特にクリープ破断強度を高める。過剰な添加は粒界における炭窒化物の形成を促進し、粒界を脆くして靭性と強度を低めるため1.0%以下の添加が好ましい。Srは希少な元素であり、実用上から0.8%以下、より0.5%以下が好ましい。 Sr strengthens the prior austenite grain boundaries, increases the low temperature toughness and strength, and in particular increases the creep rupture strength. Excessive addition promotes the formation of carbonitrides at the grain boundaries, makes the grain boundaries brittle and lowers toughness and strength, so 1.0% or less is preferred. Sr is a rare element, and is practically 0.8% or less, more preferably 0.5% or less.
本発明の耐熱鋳鋼ケーシング及び主蒸気止め弁並びに蒸気加減弁は、δフェライト組織が混在すると、高温クリープ破断強度及び低温靭性が低くなるので、組織は均一な焼戻しマルテンサイト組織が好ましい。焼戻しマルテンサイト組織を得るために、次式(1)で示されるCr当量を10以下にしなければならない。Cr当量をあまり低くすると高温クリープ破断強度が低下してしまうので、4以上にしなければならない。 In the heat-resistant cast steel casing, the main steam stop valve and the steam control valve of the present invention, when the δ ferrite structure is mixed, the high-temperature creep rupture strength and the low-temperature toughness are lowered. Therefore, the structure is preferably a uniform tempered martensite structure. In order to obtain a tempered martensite structure, the Cr equivalent represented by the following formula (1) must be 10 or less. If the Cr equivalent is too low, the high temperature creep rupture strength will decrease, so it must be 4 or more.
Cr当量(重量%)=Cr+6Si+4Mo+1.5W+11V+5Nb−40C
−30N−30B−2Mn−4Ni−2Co ……(1)
又、P及びSの低減は、クリープ破断強度及び低温靭性を高める効果があり、極力低減することが望ましい。低温靭性向上の点からP0.020%以下及びS0.020%以下が好ましい。特に、P0.015%以下、S0.015% 以下、よりP0.010%以下、S0.010%以下が望ましい。
Cr equivalent (wt%) = Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb-40C
-30N-30B-2Mn-4Ni-2Co (1)
Further, the reduction of P and S has the effect of increasing the creep rupture strength and low temperature toughness, and it is desirable to reduce it as much as possible. From the viewpoint of improving low temperature toughness, P of 0.020% or less and S of 0.020% or less are preferable. In particular, P is 0.015% or less, S 0.015% or less, more preferably P0.010% or less, and S 0.010% or less.
Sb、Sn及びAsの低減も、低温靭性を高める効果があり、極力低減することが望ましいが、現状製鋼技術レベルの点から、Sb0.0015%以下、Sn0.01%以下、及びAs0.02%以下が好ましい。特に、Sb0.0010%以下、Sn0.005%及びAs0.01%以下が望ましい。 Reduction of Sb, Sn and As also has the effect of increasing low temperature toughness, and it is desirable to reduce it as much as possible. However, from the viewpoint of the current steelmaking technology level, Sb is 0.0015% or less, Sn 0.01% or less, and As 0.02%. The following is preferred. Particularly, Sb 0.0010% or less, Sn 0.005% and As 0.01% or less are desirable.
蒸気タービンケーシング及び主蒸気止め弁並びに蒸気加減弁は、620℃以上の高圧蒸気に曝されるので、内圧による高応力が作用する。そのため、クリープ破壊防止の観点から、ケーシング材は620℃、105時間クリープ破断強度が98MPa以上を要求される。また、タービン起動時には部材温度が低い時に熱応力が作用するので、脆性破壊防止の観点から、29.4J以上の室温衝撃吸収エネルギが要求される。特により高い信頼性を確保するには、620℃、105時間クリープ破断強度103MPa以上、室温衝撃吸収エネルギ30.9J以上であることが好ましい。 Since the steam turbine casing, the main steam stop valve, and the steam control valve are exposed to high-pressure steam at 620 ° C. or higher, high stress due to internal pressure acts. Therefore, from the viewpoint of preventing creep rupture, the casing material 620 ° C., 10 5 h creep rupture strength is required more than 98 MPa. Further, since thermal stress acts when the member temperature is low when the turbine is started, room temperature impact absorption energy of 29.4 J or more is required from the viewpoint of preventing brittle fracture. In particular, to ensure a higher reliability, 620 ° C., 10 5 h creep rupture strength 103MPa or more, it is preferable that the room temperature impact absorption energy 30.9J more.
特に、蒸気タービンケーシングは、鋳塊重量は50トン前後と大型になるので、欠陥の少ない鋼塊を作製するには高度な製造技術が要求される。本発明にかかる高強度耐熱鋳鋼は、その目標組成とする合金原料を電気炉で溶解し、真空取鍋精錬による脱ガス後、砂型鋳型に鋳込み、成形することにより健全なものが作製できる。鋳込み前に十分な精錬及び脱酸を行うことにより、引け巣等の鋳造欠陥の少ないものにできる。主蒸気止め弁及び蒸気加減弁においても同様である。 In particular, since the steam turbine casing has a large ingot weight of around 50 tons, a high manufacturing technique is required to produce a steel ingot with few defects. The high-strength heat-resistant cast steel according to the present invention can be made sound by melting an alloy raw material having a target composition in an electric furnace, degassing it by vacuum ladle refining, casting into a sand mold, and molding. By carrying out sufficient refining and deoxidation before casting, the casting defects such as shrinkage can be reduced. The same applies to the main steam stop valve and the steam control valve.
また、形成された耐熱鋳鋼を1000〜1150℃で焼鈍熱処理後、1000〜1100℃に加熱し、急冷する焼準熱処理、550〜750℃での一次焼戻し及び670〜770℃での二次焼戻しを順次行うことにより、620℃以上の蒸気中で使用可能な蒸気タービンケーシング等の大型鋼塊が製造できる。焼鈍及び焼準温度は、1000℃以下では炭窒化物を十分に固溶させることができず、あまり高くすると結晶粒粗大化の原因になる。また、2回焼戻しは残留オーステナイトを完全に分解させ、均一な焼戻しマルテンサイトにすることができる。上記の製法で製造することにより、98MPa以上の620℃、105時間クリープ破断強度と、29.4J以上の室温衝撃吸収エネルギが得られ、620℃以上の蒸気中で使用可能な蒸気タービンケーシングにできる。 In addition, the formed heat-resistant cast steel is annealed at 1000 to 1150 ° C., then heated to 1000 to 1100 ° C., and quenched rapidly, primary tempering at 550 to 750 ° C., and secondary tempering at 670 to 770 ° C. By carrying out sequentially, large-sized steel ingots, such as a steam turbine casing which can be used in the steam of 620 degreeC or more, can be manufactured. If the annealing and normalizing temperatures are 1000 ° C. or less, the carbonitride cannot be sufficiently dissolved, and if it is too high, crystal grains become coarse. In addition, the tempering twice can completely decompose the retained austenite and make uniform tempered martensite. By manufacturing the above method, 98 MPa or more 620 ° C., 10 and 5 hours creep rupture strength, obtained at room temperature impact absorption energy above 29.4J, the steam turbine casing usable in 620 ° C. or higher in the vapor it can.
本発明によれば、620℃クリープ破断強度及び室温靭性の高いフェライト系耐熱鋳鋼が得られるので、温度650℃までの超々臨界圧蒸気タービン用ケーシングに用いることができる。 According to the present invention, a ferritic heat-resistant cast steel having high 620 ° C. creep rupture strength and room temperature toughness can be obtained, so that it can be used for a casing for an ultra-supercritical steam turbine up to a temperature of 650 ° C.
温度650℃までの超々臨界圧蒸気タービン用ケーシングに対してオーステナイト系耐熱鋳鋼に代わり、本発明に係る耐熱鋳鋼を使用することにより、従来同様の設計思想で製作することができ、更にオーステナイト系耐熱鋳鋼に比べ熱膨張係数が小さいので蒸気タービンの急起動が容易になると共に、熱疲労損傷を受け難いなどの利点がある。 By using the heat-resistant cast steel according to the present invention instead of the austenitic heat-resistant cast steel for casings for ultra-supercritical steam turbines up to a temperature of 650 ° C., it can be manufactured with the same design philosophy as in the past, and further the austenitic heat-resistant steel. Since the coefficient of thermal expansion is smaller than that of cast steel, there are advantages such that the rapid start-up of the steam turbine is facilitated and that it is less susceptible to thermal fatigue damage.
以下、本発明を実施するための最良の形態を具体的な実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described in detail by way of specific examples, but the present invention is not limited to these examples.
表1は、本発明に係る耐熱鋳鋼の化学組成(質量%)を示すものである。試料は大型ケーシングの厚肉部を想定して、高周波誘導溶解炉を用い200kg溶解し、最大厚さ200mm、幅380mm、高さ440mmの砂型に鋳込み、鋳塊を作製した。試料No.1〜13が本発明材であり、試料No.30〜35が従来材としての比較材である。いずれの試料も、1050℃×8h炉冷の焼鈍処理後、大型タービンケーシングの厚肉部を想定し、1050℃×8h加熱保持後空冷の焼準、680℃×7h加熱保持後空冷の一次焼戻し及び710℃×7h加熱保持後空冷の二次焼戻しを行った。 Table 1 shows the chemical composition (mass%) of the heat-resistant cast steel according to the present invention. The sample was assumed to be a thick part of a large casing, and 200 kg was melted using a high-frequency induction melting furnace, and cast into a sand mold having a maximum thickness of 200 mm, a width of 380 mm, and a height of 440 mm to produce an ingot. Sample No. 1 to 13 are the materials of the present invention. 30 to 35 are comparative materials as conventional materials. Each sample is assumed to be a thick-walled portion of a large turbine casing after annealing at 1050 ° C. × 8 h for furnace cooling, air cooling normalization after heating at 1050 ° C. × 8 h, and primary cooling at air cooling after holding at 680 ° C. × 7 h. And after heating and holding at 710 ° C. for 7 hours, air-cooled secondary tempering was performed.
表2は室温の引張特性、20℃におけるVノッチシャルピー衝撃吸収エネルギ、620℃×105hクリープ破断強度及び溶接割れ試験結果を示すものである。 Table 2 shows the tensile properties at room temperature, V-notch Charpy impact absorption energy at 20 ° C., 620 ° C. × 10 5 h creep rupture strength, and weld crack test results.
適量のB、Mo、W及びCoを添加し、適量の[W/(Mo+0.5W)]、(Co/W)を有する本発明材No.1〜13は、クリープ破断強度及び衝撃吸収エネルギが、前述の650℃までの高温高圧タービンケーシングに要求される特性(620℃×105h強度≧98MPA、20℃衝撃吸収エネルギ≧29.4J)を十分満足するものである。 Appropriate amounts of B, Mo, W, and Co are added, and the present material No. Nos. 1 to 13 are characteristics required for a high-temperature and high-pressure turbine casing up to 650 ° C. in terms of creep rupture strength and impact absorption energy (620 ° C. × 10 5 h strength ≧ 98 MPA, 20 ° C. shock absorption energy ≧ 29.4 J). Is sufficiently satisfied.
図1は、W添加量と10万時間クリープ破断強さの関係を示す線図である。図1に示すように、Nb量が比較材のNo.32が0.057%、No.33が0.053%、No.35が0.04%、No.34が0.04%、No.31が0.04%、No.30が0.03%であり、いずれもW量の増化によってクリープ破断強さが高められ、Nb量の高いほどその効果は大きいものである。しかし、本発明材のCo0.2〜1.5%を有するNo.1〜13のものは、同じNb量及び同じW量に比較していずれもより高いクリープ破断強さを有することが明らかである。尚、W量を1.8%以下ではW量の影響は見られないが、1.8%以上にするとクリープ破断強度が顕著に高くなる。更に、本発明材のNo.1〜13のものは、同じ0.04%付近のNb量及び0.08%付近のNb量において、いずれもW量の増化によってクリープ破断強度が顕著に高くなる。 FIG. 1 is a diagram showing the relationship between the amount of W added and creep rupture strength for 100,000 hours. As shown in FIG. 32 is 0.057%. 33 is 0.053%. 35 is 0.04%. 34 is 0.04%. 31 is 0.04%. 30 is 0.03%, and in all cases, the creep rupture strength is increased by increasing the W content, and the effect is greater as the Nb content is higher. However, No. having Co of 0.2 to 1.5% of the material of the present invention. It is clear that those of 1 to 13 all have higher creep rupture strength compared to the same Nb amount and the same W amount. Note that when the W amount is 1.8% or less, the influence of the W amount is not observed, but when the W amount is 1.8% or more, the creep rupture strength is remarkably increased. Furthermore, No. of this invention material. In the case of Nos. 1 to 13, the creep rupture strength is remarkably increased by increasing the W amount at the same Nb amount around 0.04% and Nb amount around 0.08%.
図2は、W添加量と衝撃吸収エネルギの関係を示す線図である。機械的性質に及ぼすWの影響を調べた結果、前述と同様に同じNb量について示すように、W量を多くするに従って衝撃吸収エネルギが低下することが明らかである。しかし、本発明のCo0.2〜1.5%を有するNo.1〜13のものは、同じNb量及び同じW量に比較していずれもより高い衝撃吸収エネルギを有することが明らかである。更に、本発明材は、尚、W量が3.0%以内では、室温の衝撃吸収エネルギの低下が見られないものである。又、Nb量が0.03〜0.06%の低いものではW量の増化による室温の衝撃吸収エネルギの低下が見られない。 FIG. 2 is a diagram showing the relationship between the W addition amount and the impact absorption energy. As a result of investigating the influence of W on the mechanical properties, it is clear that the impact absorption energy decreases as the W amount increases, as shown for the same Nb amount as described above. However, in the present invention, No. having Co of 0.2 to 1.5%. It is clear that those of 1 to 13 have higher impact absorption energy compared to the same Nb amount and the same W amount. Furthermore, the material of the present invention does not show a reduction in shock absorption energy at room temperature when the W content is within 3.0%. In addition, when the Nb content is as low as 0.03 to 0.06%, there is no reduction in impact absorption energy at room temperature due to an increase in the W content.
図3はCo添加量と10万時間クリープ破断強さの関係を示す線図である。図3に示すように、前述と同様に同じNb量においてCo量の増化によって逆にクリープ破断強さが低下することが明らかである。しかし、本発明材のCo0.2〜1.5%を有する低Co及び中Coを有するNo.1〜13は、Co量の増化によってクリープ破断強さが高められる。従って、Co量が1.5%を境にしてそれ以下ではいずれもより高いクリープ破断強さを有し、1.5%を越えるとCo量の増化によるクリープ破断強さがその増化によって低下することが明らかである。 FIG. 3 is a diagram showing the relationship between the Co addition amount and the 100,000 hour creep rupture strength. As shown in FIG. 3, it is clear that the creep rupture strength decreases conversely by increasing the Co content at the same Nb content as described above. However, according to the present invention No. having low Co and medium Co having 0.2 to 1.5% Co. In Nos. 1 to 13, the creep rupture strength is increased by increasing the amount of Co. Accordingly, when the Co content is 1.5 % or less, all of them have a higher creep rupture strength. When the Co content exceeds 1.5 %, the creep rupture strength due to the increased Co content is increased by the increase. It is clear that it falls.
図4は、Co添加量と衝撃吸収エネルギの関係を示す線図である。図4に示すように、比較材及び本発明材のいずれもCo量の増加に伴って衝撃吸収エネルギが高くなる傾向に有る。しかし、1.5%を超えると組織安定度が低下して前述のように105時間クリープ強度が低下するので好ましくないものである。 FIG. 4 is a diagram showing the relationship between the Co addition amount and the impact absorption energy. As shown in FIG. 4, both the comparative material and the material of the present invention tend to have higher impact absorption energy as the amount of Co increases. However, if it exceeds 1.5 %, the structural stability is lowered and the creep strength is lowered for 10 5 hours as described above, which is not preferable.
図5はW/(Mo+0.5W)と10万時間クリープ破断強さの関係を示す線図である。図5に示すように、比較材の高Coを有するNo.30〜35はW/(Mo+0.5W)の増化によって10万時間クリープ破断強さがやや低下するが、本発明材は、W/(Mo+0.5W)の増化によって10万時間クリープ破断強さが高められることが明らかである。 FIG. 5 is a diagram showing the relationship between W / (Mo + 0.5W) and 100,000 hour creep rupture strength. As shown in FIG. In the case of 30 to 35, the increase in W / (Mo + 0.5W) results in a slight decrease in the 100,000-hour creep rupture strength, but the material of the present invention has a 100,000-hour creep rupture strength due to the increase in W / (Mo + 0.5W). It is clear that the height is increased.
図6はW/(Mo+0.5W)と衝撃吸収エネルギの関係を示す線図である。図6に示すように、比較材の高Coを有するNo.30〜35はW/(Mo+0.5W)の増化によって衝撃吸収エネルギがやや低下するが、本発明材は、W/(Mo+0.5W)の増化によって衝撃吸収エネルギの低下が見られないことが明らかである。 FIG. 6 is a diagram showing the relationship between W / (Mo + 0.5W) and shock absorption energy. As shown in FIG. In 30 to 35, the impact absorption energy is slightly reduced by increasing W / (Mo + 0.5W), but the material of the present invention does not show a decrease in impact absorption energy by increasing W / (Mo + 0.5W). Is clear.
図7は(Co/W)と10万時間クリープ破断強さの関係を示す線図である。図7に示すように、比較材の高Coを有するNo.30〜35は(Co/W)が0.75以上ではその増化によって10万時間クリープ破断強さが低下し、Nb量が高いほどその低下が急激である。しかし、本発明材の(Co/W)が1.0以下では、(Co/W)による影響が小さく、(Co/W)が0.1〜0.70の範囲においては、クリープ破断強さの変化は小さいものである。 FIG. 7 is a diagram showing the relationship between (Co / W) and 100,000-hour creep rupture strength. As shown in FIG. In 30 to 35, when (Co / W) is 0.75 or more, the creep rupture strength is reduced by 100,000 hours due to the increase, and the decrease is more rapid as the Nb amount is higher. However, when (Co / W) of the material of the present invention is 1.0 or less, the influence of (Co / W) is small, and when (Co / W) is in the range of 0.1 to 0.70, the creep rupture strength. The change in is small.
図8は(Co/W)と衝撃吸収エネルギの関係を示す線図である。図8に示すように、衝撃吸収エネルギはNb量が(Co/W)が0.75以上ではその値が大きいほど衝撃吸収エネルギが高められるが、Nb量が大きいほどその増化が急激である。しかし、本発明材の(Co/W)が0.1〜0.70の範囲においては、衝撃吸収エネルギの変化は小さいものである。 FIG. 8 is a diagram showing the relationship between (Co / W) and shock absorption energy. As shown in FIG. 8, when the Nb amount is (Co / W) of 0.75 or more, the shock absorption energy increases as the value increases, but the increase in the shock absorption energy increases more rapidly as the Nb amount increases. . However, when the (Co / W) of the material of the present invention is in the range of 0.1 to 0.70, the change in shock absorption energy is small.
図9はW/(Mo+0.5W)と(Co/W)の関係を示す線図である。特に[W/(Mo+0.5W)]を1.1〜1.8の範囲及び(Co/W)を0.1〜0.90の範囲に調整することにより、温度620℃、圧力25MPA以上の高温高圧タービンの高圧及び中圧内部ケーシング並びに主蒸気止め弁及び加減弁ケーシングに要求される620℃、105時間クリープ破断強度98MPA以上、室温衝撃吸収エネルギ29.4J以上の耐熱鋳鋼ケーシング材が得られる。 FIG. 9 is a diagram showing the relationship between W / (Mo + 0.5W) and (Co / W). In particular, by adjusting [W / (Mo + 0.5W)] to a range of 1.1 to 1.8 and (Co / W) to a range of 0.1 to 0.90, a temperature of 620 ° C. and a pressure of 25 MPA or more. required 620 ° C. in high pressure and intermediate pressure internal casing and the main steam stop valve and governor valve casing of a high temperature high pressure turbine, 10 5 h creep rupture strength 98MPA above, obtained at room temperature impact absorption energy 29.4J more resistant cast steel casing material It is done.
図10は、縦軸の衝撃吸収エネルギと横軸のクリープ破断強さとの関係を示す線図である。図10に示すように、衝撃吸収エネルギは、クリープ破断強さが大きくなるにつれて低下し、特に前述のNb量との相関性を有する。従って、本発明材のNo.1〜13は同じNb量の比較材と比較しても、又、同じクリープ破断強さにおいていずれも高い衝撃吸収エネルギを有することが明らかである。 FIG. 10 is a diagram showing the relationship between the impact absorption energy on the vertical axis and the creep rupture strength on the horizontal axis. As shown in FIG. 10, the impact absorption energy decreases as the creep rupture strength increases, and has a correlation with the Nb amount described above. Accordingly, No. of the material of the present invention. It is apparent that Nos. 1 to 13 have high impact absorption energy even when compared with a comparative material having the same Nb amount and at the same creep rupture strength.
図11は、縦軸のクリープ破断強さと翼軸の衝撃吸収エネルギとの関係を示す線図である。図11に示すように、クリープ破断強さは衝撃吸収エネルギが大きくなるにつれて低下し、特に前述のNb量との相関性を有する。従って、本発明材のNo.1〜13は同じNb量の比較材と比較しても、又、同じ衝撃吸収エネルギにおいていずれも高いクリープ破断強さを有することが明らかである。 FIG. 11 is a diagram showing the relationship between the creep rupture strength on the vertical axis and the impact absorption energy on the blade axis. As shown in FIG. 11, the creep rupture strength decreases as the shock absorption energy increases, and has a correlation with the Nb amount described above. Accordingly, No. of the material of the present invention. It is clear that Nos. 1 to 13 have a high creep rupture strength at the same impact absorption energy even when compared with a comparative material having the same Nb amount.
図12は本発明材について溶接割れ試験を行ったその試験片の形状及び寸法を示す正面図(a)、側面図(b)及び断面図(c)である。溶接性評価は、JIS Z3158に準ずる斜めY型溶接割れ試験により行った。予熱、パス間及び後熱開始温度を150℃とし、母材に対してC量を低め、Si量を0.5%近傍、Mn量を1.5%近傍、Ni量0.9%、Mo1.0%のいずれも母材より高めとし、他Cr、Nb、V及びNを母材と同等とする被覆アーク溶接棒を用いて溶接を行った。後熱処理は400℃×30分にした。表2に示すように、本発明材は溶接割れが認められず、溶接性が良好であった。 FIG. 12 is a front view (a), a side view (b), and a cross-sectional view (c) showing the shape and dimensions of a test piece subjected to a weld crack test on the material of the present invention. The weldability evaluation was performed by an oblique Y-type weld cracking test according to JIS Z3158. Preheating, between passes and after-heat start temperature is 150 ° C., C amount is lowered with respect to the base material, Si amount is about 0.5%, Mn amount is about 1.5%, Ni amount is 0.9%, Mo1 The welding was performed using a coated arc welding rod in which 0.0% was higher than the base metal and other Cr, Nb, V, and N were equivalent to the base metal. The post heat treatment was performed at 400 ° C. for 30 minutes. As shown in Table 2, the inventive material showed no weld cracking and good weldability.
以上のように、本実施例によれば、620℃クリープ破断強度及び室温靭性の高いフェライト系耐熱鋳鋼が得られるので、温度650℃までの超々臨界圧蒸気タービン用ケーシング及び主蒸気止め弁並びに蒸気加減弁に用いることができる。 As described above, according to this embodiment, a ferritic heat-resistant cast steel having a high 620 ° C. creep rupture strength and room temperature toughness can be obtained. Therefore, a casing for an ultra supercritical steam turbine up to a temperature of 650 ° C., a main steam stop valve, steam It can be used for adjusting valves.
温度650℃までの超々臨界圧蒸気タービン用ケーシング及び主蒸気止め弁並びに蒸気加減弁に対してオーステナイト系耐熱鋳鋼に代わり、本発明に係る耐熱鋳鋼を使用することにより、従来同様の設計思想で製作することができ、更にオーステナイト系耐熱鋳鋼に比べ熱膨張係数が小さいので蒸気タービンの急起動が容易になると共に、熱疲労損傷を受け難いなどの利点がある。 By using the heat-resistant cast steel according to the present invention instead of the austenitic heat-resistant cast steel for the super-supercritical steam turbine casing, main steam stop valve and steam control valve up to 650 ° C, it is manufactured with the same design concept as before. Furthermore, since the coefficient of thermal expansion is smaller than that of austenitic heat-resistant cast steel, there is an advantage that the steam turbine can be started quickly and is not easily damaged by thermal fatigue.
図13は本発明の高強度耐熱鋳鋼を用いた高圧蒸気タービンの断面構成図である。図14は本発明の高強度耐熱鋳鋼を用いた中圧蒸気タービンの断面構成図である。高圧蒸気タービンは内部ケーシング18とその外側の外部ケーシング19内に高圧動翼16を植設した高圧ロータシャフト20が設けられる。中圧蒸気タービンは内部ケーシング21とその外側の外部ケーシング22内に中圧動翼17を植設した高圧ロータシャフト24が設けられる。高温高圧の蒸気はボイラによって得られ、主蒸気管を通って主蒸気入口を構成するフランジ、エルボ25より主蒸気入口28を通り、ノズルボックス38より初段複流の動翼に導かれる。これらの動翼に対応して各々静翼が設けられる。
FIG. 13 is a cross-sectional configuration diagram of a high-pressure steam turbine using the high-strength heat-resistant cast steel of the present invention. FIG. 14 is a cross-sectional configuration diagram of an intermediate pressure steam turbine using the high-strength heat-resistant cast steel of the present invention. The high-pressure steam turbine is provided with a high-
本実施例においては、蒸気タービン発電プラントの構成として高圧蒸気タービン(HP)と中圧蒸気タービン(IP)がタンデムに連結されたものである。HPの初段は複流であり、片側に8段設けられる。これらの動翼に対応して各々静翼が設けられる。動翼は鞍型ダブティル型式で、ダブルティノンを有する。 In the present embodiment, as a configuration of the steam turbine power plant, a high-pressure steam turbine (HP) and an intermediate-pressure steam turbine (IP) are connected in tandem. The first stage of HP is a double flow, and eight stages are provided on one side. A stationary blade is provided for each of these blades. The moving blade is a saddle type dovetail type and has a double tinon.
IPはHPより排出された蒸気を再度625℃に再熱器によって加熱された蒸気によってHPと共に発電機を回転させるもので、3000回/minの回転数によって回転される。IPはHPと同様に中圧内部車室21と中圧外部車室22とを有し、中圧動翼17と対抗して静翼が設けられる。中圧動翼17は6段で2流となり、中圧ロータシャフト13の長手方向に対しほぼ対称に左右に設けられる。
The IP rotates the generator with the HP by the steam heated by the reheater again at 625 ° C. The steam discharged from the HP is rotated at a rotational speed of 3000 times / min. Like the HP, the IP has a medium pressure
本実施例においては、(HP)と(IP)共に、外部ケーシング19、22、内部ケーシング18、21、後述する主蒸気止め弁ケーシング及び蒸気加減弁ケーシングを、実施例1の表1に記載のNo.4の鋳鋼を用いた。特に、内部ケーシングについて目標組成とする合金原料を電気炉で50トン溶解し、真空取鍋精錬後、砂型鋳型に鋳込んだ。
In this embodiment, both (HP) and (IP) are the
この鋳鋼を1050℃×10h炉冷の焼鈍熱処理後、1050℃×10h衝風冷の焼準熱処理し、ついで570℃×12hの一次焼戻し、730℃×12hの二次焼戻しを順次行った。全焼戻しマルテンサイト組織を有するこの試作ケーシングを切断調査した結果、620℃、25MPA高温高圧タービンケーシングに要求される特性(620℃、105h強度≧98MPA、室温衝撃吸収エネルギ≧29.4J)を満足すると共に、前述の溶接割れ試験において割れのないものであった。 The cast steel was annealed at 1050 ° C. × 10 h for furnace cooling, then subjected to normal heat treatment at 1050 ° C. × 10 h for blast cooling, followed by primary tempering at 570 ° C. × 12 h and secondary tempering at 730 ° C. × 12 h. As a result of cutting investigation of this prototype casing having a fully tempered martensite structure, the properties required for a 620 ° C., 25 MPa high temperature and high pressure turbine casing (620 ° C., 10 5 h strength ≧ 98 MPa, room temperature impact absorption energy ≧ 29.4 J) are obtained. While satisfying, it was a thing without a crack in the above-mentioned weld cracking test.
本実施例によれば、前述のように、620℃クリープ破断強度及び室温靭性の高いフェライト系耐熱鋳鋼が得られるので、温度650℃までの超々臨界圧蒸気タービン用ケーシング等に用いることができる。 According to this embodiment, as described above, a ferritic heat-resistant cast steel having a high 620 ° C. creep rupture strength and high room temperature toughness can be obtained. Therefore, it can be used for a casing for an ultra supercritical steam turbine up to a temperature of 650 ° C.
温度650℃までの超々臨界圧蒸気タービン用ケーシングに対してオーステナイト系耐熱鋳鋼に代わり、本発明に係る耐熱鋳鋼を使用することにより、従来同様の設計思想で製作することができ、更にオーステナイト系耐熱鋳鋼に比べ熱膨張係数が小さいので蒸気タービンの急起動が容易になると共に、熱疲労損傷を受け難いなどの利点がある。 By using the heat-resistant cast steel according to the present invention instead of the austenitic heat-resistant cast steel for casings for ultra-supercritical steam turbines up to a temperature of 650 ° C., it can be manufactured with the same design philosophy as in the past, and further the austenitic heat-resistant steel. Since the coefficient of thermal expansion is smaller than that of cast steel, there are advantages such that the rapid start-up of the steam turbine is facilitated and that it is less susceptible to thermal fatigue damage.
又、本実施例の蒸気タービン発電プラントとして、低圧蒸気タービン(LP)は2基タンデムに結合され、ほぼ同じ構造を有し、各々の最終段動翼は左右に8段あり、左右ほぼ対称になっており、また動翼に対応して静翼が設けられる。低圧ロータシャフトはNi3.75%、Cr1.75%、Mo0.4%、V0.15%、C0.25%、Si0.05%、Mn0.10%、残Feからなるスーパークリーン材の全焼戻しベーナイト組織を有する鍛鋼が用いられる。最終段以外の動翼及び静翼にはいずれもMoを0.1%含有する12%Cr鋼が用いられる。 Moreover, as a steam turbine power plant of this embodiment, the low-pressure steam turbine (LP) is connected to two tandems and has almost the same structure, and each final stage moving blade has eight stages on the left and right, and is almost symmetrical. In addition, a stationary blade is provided corresponding to the moving blade. The low-pressure rotor shaft is a super-clean tempered bainite of Ni 3.75%, Cr 1.75%, Mo 0.4%, V 0.15%, C 0.25%, Si 0.05%, Mn 0.10%, residual Fe. Forged steel with a texture is used. 12% Cr steel containing 0.1% Mo is used for the moving blades and stationary blades other than the final stage.
最終段動翼の翼部長さは43インチあり、翼部長さが43インチである長翼の高速蒸気が突き当たる翼部には、蒸気中の水滴によるエロージョンを防止するためのCo基合金のステライト板を溶接で接合したエロージョンシールドが設けられる。 The wing part length of the last stage rotor blade is 43 inches, and the wing part length is 43 inches. The wing part where the high-speed steam of the long blades abuts is provided with a Co-based alloy stellite plate to prevent erosion due to water droplets in the steam. An erosion shield that is joined by welding is provided.
43インチ長翼は、エレクトロスラグ再溶解法により溶製し、鍛造・熱処理が行われる。この長翼材には、重量で、C0.08〜0.18%、Si0.25%以下、Mn0.90%以下、Cr8.0〜13.0%、Ni2〜3%、Mo1.5〜3.0%、V0.05〜0.35%、Nb及びTaの一種又は二種の合計量が0.02〜0.20%、及びN0.02〜0.10%を含有するマルテンサイト鋼からなり、その室温の引張強さが120kgf/mm2以上、全焼戻しマルテンサイト組織を有するものである。43インチ長翼の機械的性質は、より好ましくは、引張強さ128.5kgf/mm2以上、20℃Vノッチシャルピー衝撃値4kgf−m/cm2以上である。
The 43-inch long blade is melted by electroslag remelting and subjected to forging and heat treatment. This long blade material has a weight of C 0.08 to 0.18%, Si 0.25% or less, Mn 0.90% or less, Cr 8.0 to 13.0%,
本実施例における高温高圧蒸気タービン発電プラントは、主として石炭専焼ボイラ、HP、IP、LP2台、復水器、復水ポンプ、低圧給水加熱器系統、脱気器、昇圧ポンプ、給水ポンプ、高圧給水加熱器系統などより構成されている。すなわち、ボイラで発生した超高温高圧蒸気はHPに入り動力を発生させたのち再びボイラにて再熱されてIPへ入り動力を発生させる。このIPの排気蒸気は、LPに入り動力を発生させた後、復水器にて凝縮する。この凝縮水は復水ポンプにて低圧給水加熱器系統、脱気器へ送られる。この脱気器にて脱気された給水は昇圧ポンプ、給水ポンプにて高圧給水加熱器へ送られ昇温された後、ボイラへ戻る。ボイラにおいて給水は節炭器、蒸発器、過熱器を通って高温高圧の蒸気となる。 The high-temperature and high-pressure steam turbine power plant in this embodiment is mainly a coal-fired boiler, HP, IP, LP2 units, condenser, condensate pump, low-pressure feed water heater system, deaerator, boost pump, feed water pump, high-pressure feed water It consists of a heater system. That is, the super high temperature and high pressure steam generated in the boiler enters HP and generates power, and then is reheated again in the boiler and enters IP to generate power. The exhaust steam of the IP enters the LP, generates power, and then condenses in the condenser. This condensed water is sent to a low pressure feed water heater system and a deaerator by a condensate pump. The feed water deaerated by the deaerator is sent to a high-pressure feed water heater by a booster pump and a feed pump to be heated, and then returned to the boiler. In the boiler, the feed water becomes high-temperature and high-pressure steam through the economizer, evaporator and superheater.
尚、本実施例に代えて同じHP、IP及び1基又は2基のLPをタンデムに連結し、1台の発電機を回転させて発電するタンデムコンパウンド型発電プラントとしても同様に構成することができる。 Instead of this embodiment, the same HP, IP, and one or two LPs are connected to the tandem, and a tandem compound power plant that generates electricity by rotating one generator can be configured in the same manner. it can.
本実施例によれば、620℃〜650℃の蒸気温度条件において必要な長時間クリープ破断強度及び靭性を有する蒸気タービンケーシング等に好適であり、熱効率の高い蒸気タービン発電プラントが得られるものである。 According to the present embodiment, it is suitable for a steam turbine casing having a long-term creep rupture strength and toughness necessary under a steam temperature condition of 620 ° C. to 650 ° C., and a steam turbine power plant having high thermal efficiency can be obtained. .
温度650℃までの超々臨界圧蒸気タービン用ケーシングに対してオーステナイト系耐熱鋳鋼に代わり、本発明に係る耐熱鋳鋼を使用することにより、従来同様の設計思想で製作することができ、更にオーステナイト系耐熱鋳鋼に比べ熱膨張係数が小さいので蒸気タービンの急起動が容易になると共に、熱疲労損傷を受け難いなどの利点がある。 By using the heat-resistant cast steel according to the present invention instead of the austenitic heat-resistant cast steel for casings for ultra-supercritical steam turbines up to a temperature of 650 ° C., it can be manufactured with the same design philosophy as in the past, and further the austenitic heat-resistant steel. Since the coefficient of thermal expansion is smaller than that of cast steel, there are advantages such that the rapid start-up of the steam turbine is facilitated and that it is less susceptible to thermal fatigue damage.
図15は、蒸気温度620℃、600MW蒸気タービン発電プラントに用いた高中圧一体型蒸気タービンの断面図である。本実施例は、タンデムコンパウンドダブルフロー型、LPにおける最終段翼長が43インチであり、高中圧一体型蒸気タービン(HP・IP)及びLP1台(C)又は2台(D)で3000r/minの回転数を有し、高温部においては表に示す主な材料によって構成される。高圧部(HP)の蒸気温度は600℃、250kgf/cm2の圧力であり、中圧部(IP)の蒸気温度は600℃に再熱器によって加熱され、45〜65kgf/cm2の圧力で運転される。低圧部(LP)には、蒸気温度400℃の蒸気が入り、100℃以下、722mmHgの真空で復水器に送られる。 FIG. 15 is a cross-sectional view of a high-medium pressure integrated steam turbine used in a 600 MW steam turbine power plant with a steam temperature of 620 ° C. This example is a tandem compound double flow type, the last stage blade length in LP is 43 inches, high-medium pressure integrated steam turbine (HP • IP) and LP (1) (C) or 2 (D) 3000 r / min. The high temperature part is composed of the main materials shown in the table. The steam temperature of the high pressure part (HP) is 600 ° C. and a pressure of 250 kgf / cm 2 , and the steam temperature of the intermediate pressure part (IP) is heated to 600 ° C. by a reheater, and the pressure is 45 to 65 kgf / cm 2 . Driven. Steam having a steam temperature of 400 ° C. enters the low-pressure section (LP) and is sent to the condenser with a vacuum of 100 ° C. or less and 722 mmHg.
(HP・IP)は、高圧側蒸気タービンが内部ケーシング18とその外側の外部ケーシング19及び中圧側蒸気タービンが内部ケーシング21とその外側の外部ケーシング22を有し、これらのケーシング内に高圧側の高圧動翼16及び中圧動翼17を植設した高中圧ロータシャフト23が設けられる。前述の高温高圧の蒸気は前述のボイラによって得られ、主蒸気管を通って、主蒸気入℃を構成するフランジ、エルボ25より主蒸気入℃28を通り、ノズルボックス38より初段の動翼に導かれる。動翼は図中左側の高圧側に8段及び(図中右側約半分の)中圧側に6段設けられる。これらの動翼に対応して各々静翼が設けられる。動翼は鞍型又はゲタ型、ダブティル型式、ダブルティノンを有する。更に、(HP・IP)には後述する主蒸気止め弁及び蒸気加減弁が接続される。
(HP / IP) has a high pressure side steam turbine having an
本実施例においては、(HP・IP)の外部ケーシング19、22、内部ケーシング18、21、後述する主蒸気止め弁ケーシング及び蒸気加減弁ケーシングとして、実施例1の表1に記載のNo.4の鋳鋼を用い、実施例2と同様に、目標組成とする合金原料を電気炉で50トン溶解し、真空取鍋精錬後、砂型鋳型に鋳込み、同様の熱処理を行った。
In this example, (HP / IP)
本実施例においても、全焼戻しマルテンサイト組織を有し、この試作ケーシングを調査した結果、620℃、25MPA高温高圧タービンケーシングに要求される特性(620℃、105h強度≧98MPA、室温衝撃吸収エネルギ≧29.4J)を満足すると共に、前述の溶接割れ試験において割れのないものであった。 Also in this example, as a result of investigating this trial casing with a fully tempered martensite structure, characteristics required for a 620 ° C., 25 MPa high temperature and high pressure turbine casing (620 ° C., 10 5 h strength ≧ 98 MPa, room temperature shock absorption) Energy ≧ 29.4 J) and no cracks in the above-described weld cracking test.
本実施例によれば、前述のように、620℃クリープ破断強度及び室温靭性の高いフェライト系耐熱鋳鋼が得られるので、温度650℃までの超々臨界圧蒸気タービン用ケーシングに用いることができる。 According to this embodiment, as described above, a ferritic heat-resistant cast steel having a high 620 ° C. creep rupture strength and high room temperature toughness can be obtained, so that it can be used for a casing for an ultra supercritical steam turbine up to a temperature of 650 ° C.
温度650℃までの超々臨界圧蒸気タービン用ケーシングに対してオーステナイト系耐熱鋳鋼に代わり、本発明に係る耐熱鋳鋼を使用することにより、従来同様の設計思想で製作することができ、更にオーステナイト系耐熱鋳鋼に比べ熱膨張係数が小さいので蒸気タービンの急起動が容易になると共に、熱疲労損傷を受け難いなどの利点がある。 By using the heat-resistant cast steel according to the present invention instead of the austenitic heat-resistant cast steel for casings for ultra-supercritical steam turbines up to a temperature of 650 ° C., it can be manufactured with the same design philosophy as in the past, and further the austenitic heat-resistant steel. Since the coefficient of thermal expansion is smaller than that of cast steel, there are advantages such that the rapid start-up of the steam turbine is facilitated and that it is less susceptible to thermal fatigue damage.
更に、本実施例の蒸気タービン発電プラントにおいて、低圧蒸気タービン(LP)は1基又は2基タンデムに結合され、実施例2とほぼ同じ構造を有し、各々の最終段動翼は左右に8段あり、左右ほぼ対称になっており、出力1050MW級の発電できるものである。又、最終段動翼の翼部長さは43インチあり、前述と同様の12%Cr鋼が使用され、低圧ロータシャフト、最終段以外の動翼及び静翼、内外部ケーシング材も同様である。 Further, in the steam turbine power plant of the present embodiment, the low-pressure steam turbine (LP) is connected to one or two tandems and has substantially the same structure as that of the second embodiment, and each final stage moving blade has 8 left and right. There are steps and they are almost symmetrical and can generate 1050 MW power. The blade length of the final stage moving blade is 43 inches, and the same 12% Cr steel as described above is used. The same applies to the low pressure rotor shaft, the moving blades and stationary blades other than the final stage, and the inner and outer casing materials.
翼部長さが43インチである長翼の高速蒸気が突き当たる翼部には、蒸気中の水滴によるエロージョンを防止するためのCo基合金のステライト板を溶接で接合したエロージョンシールドが設けられる。 An erosion shield in which a Co-based alloy stellite plate is joined by welding to prevent the erosion caused by water droplets in the steam is provided on the wing part where the wing part has a length of 43 inches.
43インチ長翼は、エレクトロスラグ再溶解法により実施例2と同様に溶製し、鍛造熱・処理が行なわれ、その室温の引張強さが120kgf/mm2以上、より好ましくは、引張強さ128.5kgf/mm2以上、20℃Vノッチシャルピー衝撃値4kgf−m/cm2以上を有する全焼戻しマルテンサイト組織を有するものである。 The 43-inch long blade is melted by electroslag remelting in the same manner as in Example 2 and subjected to forging heat and treatment, and the tensile strength at room temperature is 120 kgf / mm 2 or more, more preferably tensile strength. 128.5kgf / mm 2 or more, and has a fully tempered martensite structure having a 20 ° C. V-notch Charpy impact value 4kgf-m / cm 2 or more.
本実施例によれば、620℃〜650℃の蒸気温度条件において必要な長時間クリープ破断強度及び靭性を有する蒸気タービンケーシング等に好適であり、又、熱効率の高い蒸気タービン発電プラントが得られるものである。 According to the present embodiment, it is suitable for a steam turbine casing having long-term creep rupture strength and toughness required under a steam temperature condition of 620 ° C. to 650 ° C., and a steam turbine power plant having high thermal efficiency can be obtained. It is.
図16は蒸気タービン発電プラントの主蒸気止め弁及び蒸気加減弁が一体に形成された断面図である。本実施例においては、実施例2及び3の蒸気タービン発電プラントにおいて高圧蒸気タービン又は高中圧一体型蒸気タービンにボイラから送られる主蒸気は主蒸気入り口34から主蒸気止め弁32に供給され、蒸気加減弁33によって蒸気出口35においてその供給量の加減を行うものである。
FIG. 16 is a sectional view in which a main steam stop valve and a steam control valve of a steam turbine power plant are integrally formed. In the present embodiment, the main steam sent from the boiler to the high pressure steam turbine or the high / medium pressure integrated steam turbine in the steam turbine power plants of
本実施例においては、主蒸気止め弁ケーシング及び蒸気加減弁ケーシングとして、実施例1の表1に記載のNo.4の鋳鋼を用い、目標組成とする合金原料を電気炉で溶解し、真空取鍋精錬後、砂型鋳型に鋳込み、実施例2と同様の熱処理及び溶接割れ試験を行った。 In this example, as the main steam stop valve casing and the steam control valve casing, No. 1 described in Table 1 of Example 1 was used. Using the cast steel of No. 4, the alloy raw material having the target composition was melted in an electric furnace, and after refining the vacuum ladle, it was cast into a sand mold and subjected to the same heat treatment and weld cracking test as in Example 2.
その結果、620℃、25MPA高温高圧タービンケーシングに要求される特性(620℃、105h強度≧98MPA、室温衝撃吸収エネルギ≧29.4J)を満足すると共に、前述の溶接割れ試験において割れのないものであった。 As a result, the properties required for a 620 ° C., 25 MPa high temperature and high pressure turbine casing (620 ° C., 10 5 h strength ≧ 98 MPa, room temperature shock absorption energy ≧ 29.4 J) are satisfied, and there is no crack in the above-mentioned weld crack test. It was a thing.
本実施例によれば、前述のように、620℃クリープ破断強度及び室温靭性の高いフェライト系耐熱鋳鋼が得られるので、温度650℃までの超々臨界圧蒸気タービンの主蒸気止め弁ケーシング及び蒸気加減弁ケーシングに用いることができ、前述と同様の効果を有するものである。 According to the present embodiment, as described above, a ferritic heat-resistant cast steel having a high 620 ° C creep rupture strength and high room temperature toughness can be obtained. Therefore, the main steam stop valve casing and steam control of the super supercritical steam turbine up to a temperature of 650 ° C can be obtained. It can be used for a valve casing and has the same effect as described above.
16…高圧動翼、17…中圧動翼、18…高圧内部ケーシング、19…高圧外部ケーシング、20…高圧ロータシャフト、21…中圧内部ケーシング、22…中圧外部ケーシング、23…高中圧一体型ロータシャフト、24…中圧ロータシャフト、25…フランジ,エルボ、27…軸受け、28…主蒸気入口、29…再熱蒸気入口、30…高圧蒸気出口、31…気筒連絡管、32…主蒸気止め弁、33…蒸気加減弁、34…主蒸気入口、35…蒸気出口、38…ノズルボックス。
DESCRIPTION OF
Claims (17)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283199A JP4542491B2 (en) | 2005-09-29 | 2005-09-29 | High-strength heat-resistant cast steel, method for producing the same, and uses using the same |
EP06020264A EP1770182B1 (en) | 2005-09-29 | 2006-09-27 | High-strength heat resisting cast steel, method of producing the steel, and applications of the steel |
US11/528,439 US20070071599A1 (en) | 2005-09-29 | 2006-09-28 | High-strength heat resisting cast steel, method of producing the steel, and applications of the steel |
US13/021,985 US20110126540A1 (en) | 2005-09-29 | 2011-02-07 | High-strength heat resisting cast steel, method of producing the steel, and applications of the steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283199A JP4542491B2 (en) | 2005-09-29 | 2005-09-29 | High-strength heat-resistant cast steel, method for producing the same, and uses using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007092123A JP2007092123A (en) | 2007-04-12 |
JP4542491B2 true JP4542491B2 (en) | 2010-09-15 |
Family
ID=37496517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005283199A Expired - Fee Related JP4542491B2 (en) | 2005-09-29 | 2005-09-29 | High-strength heat-resistant cast steel, method for producing the same, and uses using the same |
Country Status (3)
Country | Link |
---|---|
US (2) | US20070071599A1 (en) |
EP (1) | EP1770182B1 (en) |
JP (1) | JP4542491B2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101514433A (en) * | 2007-03-16 | 2009-08-26 | 株式会社神户制钢所 | Automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact property and method of manufacturing the same |
JP5022887B2 (en) * | 2007-12-25 | 2012-09-12 | 株式会社東芝 | Steam valve device and steam turbine plant |
US8943836B2 (en) * | 2009-07-10 | 2015-02-03 | Nrg Energy, Inc. | Combined cycle power plant |
JP4982539B2 (en) | 2009-09-04 | 2012-07-25 | 株式会社日立製作所 | Ni-base alloy, Ni-base casting alloy, high-temperature components for steam turbine, and steam turbine casing |
JP5562825B2 (en) * | 2010-12-28 | 2014-07-30 | 株式会社東芝 | Heat-resistant cast steel, method for producing heat-resistant cast steel, cast component for steam turbine, and method for producing cast component for steam turbine |
JP2012219682A (en) * | 2011-04-07 | 2012-11-12 | Hitachi Ltd | Rotor shaft for steam turbine, and steam turbine using the same |
CN102518869B (en) * | 2011-12-30 | 2013-11-06 | 中国人民解放军国防科学技术大学 | Stop valve |
CN102829195A (en) * | 2012-09-05 | 2012-12-19 | 张丽智 | Universal compact type forged steel self-sealing stop valve |
CN103256394A (en) * | 2013-05-17 | 2013-08-21 | 江苏星河阀门有限公司 | Instrument blocking valve with non-rotary valve rod |
CN104046919B (en) * | 2014-07-09 | 2015-12-30 | 南京赛达机械制造有限公司 | A kind of high life turbine blade and production technique thereof |
JP6334384B2 (en) * | 2014-12-17 | 2018-05-30 | 三菱日立パワーシステムズ株式会社 | Steam turbine rotor, steam turbine using the steam turbine rotor, and thermal power plant using the steam turbine |
JP6562476B2 (en) * | 2015-02-27 | 2019-08-21 | 国立研究開発法人物質・材料研究機構 | Ferritic heat resistant steel and its manufacturing method |
CN104831160B (en) * | 2015-03-26 | 2016-09-28 | 哈尔滨汽轮机厂有限责任公司 | For 630 DEG C of ultra-supercritical turbine blade containing Re Steel material and manufacture method thereof |
DE102017211295A1 (en) * | 2017-07-03 | 2019-01-03 | Siemens Aktiengesellschaft | Steam turbine and method of operating the same |
JP6991755B2 (en) * | 2017-07-03 | 2022-01-13 | 株式会社東芝 | Manufacturing method of nozzle plate of steam turbine |
CN112626413A (en) * | 2020-11-28 | 2021-04-09 | 四川维珍高新材料有限公司 | Aviation case product and production process thereof |
JPWO2023286204A1 (en) | 2021-07-14 | 2023-01-19 | ||
CN116065096B (en) * | 2023-03-05 | 2023-08-04 | 襄阳金耐特机械股份有限公司 | Ferrite heat-resistant cast steel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002121654A (en) * | 2000-10-13 | 2002-04-26 | Hitachi Ltd | Rotor shaft for steam turbine and steam turbine using the same and steam turbine power plant |
JP2002256396A (en) * | 2000-12-26 | 2002-09-11 | Japan Steel Works Ltd:The | HIGH Cr FERRITIC HEAT RESISTANT STEEL |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6152353A (en) * | 1984-08-23 | 1986-03-15 | Toshiba Corp | Heat resistant high-chromium cast steel |
US4735771A (en) * | 1986-12-03 | 1988-04-05 | Chrysler Motors Corporation | Method of preparing oxidation resistant iron base alloy compositions |
JPH0759740B2 (en) * | 1989-05-23 | 1995-06-28 | 新日本製鐵株式会社 | Ferritic heat resistant steel with excellent toughness and creep strength |
JPH05263196A (en) * | 1992-03-19 | 1993-10-12 | Nippon Steel Corp | Ferritic heat resistant steel excellent in high temperature strength and toughness |
JPH0770713A (en) * | 1993-07-07 | 1995-03-14 | Japan Steel Works Ltd:The | Heat resistant cast steel |
JPH0734202A (en) * | 1993-07-23 | 1995-02-03 | Toshiba Corp | Steam turbine rotor |
JPH07286247A (en) * | 1994-04-18 | 1995-10-31 | Nippon Steel Corp | High strength ferritic heat resistant steel |
JPH07286246A (en) * | 1994-04-18 | 1995-10-31 | Nippon Steel Corp | High strength ferritic heat resistant steel |
JP3723924B2 (en) * | 1995-04-03 | 2005-12-07 | 株式会社日本製鋼所 | Heat-resistant cast steel and method for producing the same |
JPH0959747A (en) * | 1995-08-25 | 1997-03-04 | Hitachi Ltd | High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine |
JP3368413B2 (en) * | 1996-04-25 | 2003-01-20 | 新日本製鐵株式会社 | Manufacturing method of high Cr ferritic heat resistant steel |
JPH1136038A (en) * | 1997-07-16 | 1999-02-09 | Mitsubishi Heavy Ind Ltd | Heat resistant cast steel |
JPH1161342A (en) * | 1997-08-08 | 1999-03-05 | Mitsubishi Heavy Ind Ltd | High chromium ferritic steel |
JP2001152293A (en) * | 1999-11-22 | 2001-06-05 | Sumitomo Metal Ind Ltd | HIGH Cr FERRITIC HEAT RESISTING STEEL |
JP3508667B2 (en) * | 2000-01-13 | 2004-03-22 | 住友金属工業株式会社 | High Cr ferritic heat resistant steel excellent in high temperature strength and method for producing the same |
-
2005
- 2005-09-29 JP JP2005283199A patent/JP4542491B2/en not_active Expired - Fee Related
-
2006
- 2006-09-27 EP EP06020264A patent/EP1770182B1/en not_active Ceased
- 2006-09-28 US US11/528,439 patent/US20070071599A1/en not_active Abandoned
-
2011
- 2011-02-07 US US13/021,985 patent/US20110126540A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002121654A (en) * | 2000-10-13 | 2002-04-26 | Hitachi Ltd | Rotor shaft for steam turbine and steam turbine using the same and steam turbine power plant |
JP2002256396A (en) * | 2000-12-26 | 2002-09-11 | Japan Steel Works Ltd:The | HIGH Cr FERRITIC HEAT RESISTANT STEEL |
Also Published As
Publication number | Publication date |
---|---|
EP1770182A1 (en) | 2007-04-04 |
US20070071599A1 (en) | 2007-03-29 |
EP1770182B1 (en) | 2011-12-14 |
JP2007092123A (en) | 2007-04-12 |
US20110126540A1 (en) | 2011-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4542491B2 (en) | High-strength heat-resistant cast steel, method for producing the same, and uses using the same | |
JP3793667B2 (en) | Method for manufacturing low-pressure steam turbine final stage rotor blade | |
US5961284A (en) | High strength heat resisting cast steel, steam turbine casing, steam turbine power plant and steam turbine | |
JP4542490B2 (en) | High-strength martensitic heat-resistant steel, its production method and its use | |
JP3315800B2 (en) | Steam turbine power plant and steam turbine | |
US6129514A (en) | Steam turbine power-generation plant and steam turbine | |
EP1849881B1 (en) | Steam turbine | |
JP2012219682A (en) | Rotor shaft for steam turbine, and steam turbine using the same | |
JP4844188B2 (en) | casing | |
JP3956602B2 (en) | Manufacturing method of steam turbine rotor shaft | |
US6358004B1 (en) | Steam turbine power-generation plant and steam turbine | |
JP2006022343A (en) | Heat resistant steel, rotor shaft for steam turbine using it, steam turbine, and power plant with the use of steam turbine | |
JP5389763B2 (en) | Rotor shaft for steam turbine, steam turbine and steam turbine power plant using the same | |
JP3362369B2 (en) | Steam turbine power plant and steam turbine | |
JP3716684B2 (en) | High strength martensitic steel | |
JP3661456B2 (en) | Last stage blade of low pressure steam turbine | |
JPH09287402A (en) | Rotor shaft for steam turbine, steam turbine power generating plant, and steam turbine thereof | |
JP3800630B2 (en) | Final stage blades for steam turbine power plant and low pressure steam turbine and their manufacturing method | |
JPH10317105A (en) | High strength steel, steam turbine long blade and steam turbine | |
JP3632272B2 (en) | Rotor shaft for steam turbine and its manufacturing method, steam turbine power plant and its steam turbine | |
JPH07118812A (en) | Heat-resistant cast steel turbine casting and its production | |
JP3362371B2 (en) | Steam turbine and steam turbine power plant | |
JPH1193603A (en) | Steam turbine power plant and steam turbine | |
WO2016142963A1 (en) | Austenitic heat-resistant steel and turbine component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100622 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100625 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4542491 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |