Nothing Special   »   [go: up one dir, main page]

JP4482861B2 - Rare earth magnet powder excellent in magnetic anisotropy and thermal stability and method for producing the same - Google Patents

Rare earth magnet powder excellent in magnetic anisotropy and thermal stability and method for producing the same Download PDF

Info

Publication number
JP4482861B2
JP4482861B2 JP2003370054A JP2003370054A JP4482861B2 JP 4482861 B2 JP4482861 B2 JP 4482861B2 JP 2003370054 A JP2003370054 A JP 2003370054A JP 2003370054 A JP2003370054 A JP 2003370054A JP 4482861 B2 JP4482861 B2 JP 4482861B2
Authority
JP
Japan
Prior art keywords
powder
hydrogen
rare earth
earth magnet
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003370054A
Other languages
Japanese (ja)
Other versions
JP2005097711A (en
Inventor
克彦 森
亮治 中山
秀昭 小野
哲朗 田湯
宗勝 島田
眞 加納
宜郎 川下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003370054A priority Critical patent/JP4482861B2/en
Priority to US10/569,429 priority patent/US7632360B2/en
Priority to PCT/JP2004/006784 priority patent/WO2005023462A1/en
Publication of JP2005097711A publication Critical patent/JP2005097711A/en
Application granted granted Critical
Publication of JP4482861B2 publication Critical patent/JP4482861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

この発明は、磁気異方性および熱的安定性に優れた希土類磁石粉末およびその製造方法に関するものである。   The present invention relates to a rare earth magnet powder excellent in magnetic anisotropy and thermal stability and a method for producing the same.

MをGa、Zr、Nb、Mo、Hf、Ta、W、Ni、Al、Ti、V、Cu、Cr、Ge、CおよびSiの内の1種または2種以上とすると、原子%で(以下、%は原子%を示す)、Yを含む希土類元素の内の1種または2種以上:10〜20%、Co:0〜50%、B:3〜20%、M:0〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料水素化物粉末と、Dy、Tbの単体、合金、化合物、またはそれら(単体、合金、化合物)の水素化物からなる粉末を混合して混合粉末を作製し、この混合粉末を拡散加熱し、この拡散加熱した混合粉末から脱水素することにより磁気異方性に優れた希土類磁石粉末を製造する方法は知られており、前記希土類磁石合金原料水素化物粉末は希土類磁石合金原料を水素雰囲気中で室温から温度:500℃未満までの所定の温度に昇温、または昇温し保持して水素吸収処理したのち、水素圧力:10〜1000kPaの水素雰囲気中で500〜1000℃の範囲内の所定の温度に昇温し保持することにより前記希土類磁石合金原料に水素を吸収させて相変態による分解を促す水素吸収・分解処理を施し、引き続いて、水素吸収・分解処理を施した希土類磁石合金原料を500〜1000℃の範囲内の所定の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより希土類磁石合金原料に水素を一部残したまま減圧水素中熱処理を行い、引き続いてArガスを導入して室温まで冷却することにより製造することは知られている(特許文献1参照)。   When M is one or more of Ga, Zr, Nb, Mo, Hf, Ta, W, Ni, Al, Ti, V, Cu, Cr, Ge, C, and Si, it is expressed in atomic% (hereinafter referred to as “%”). ,% Represents atomic%), one or more of Y-containing rare earth elements: 10 to 20%, Co: 0 to 50%, B: 3 to 20%, M: 0 to 5% A rare earth magnet alloy raw material hydride powder having a component composition consisting of Fe and inevitable impurities, and Dy, Tb simple substance, alloy, compound, or hydride of them (single substance, alloy, compound) A method for producing a rare earth magnet powder excellent in magnetic anisotropy by mixing to produce a mixed powder, diffusing and heating the mixed powder, and dehydrogenating from the diffusively heated mixed powder is known. Rare earth magnet alloy raw material hydride powder The raw material was heated to a predetermined temperature from room temperature to less than 500 ° C. in a hydrogen atmosphere, or heated and held for hydrogen absorption treatment, and then hydrogen pressure: 500 to 1000 ° C. in a hydrogen atmosphere of 10 to 1000 kPa. Is heated and held at a predetermined temperature within the above range to absorb hydrogen into the rare earth magnet alloy raw material to promote decomposition by phase transformation, followed by hydrogen absorption / decomposition treatment. The rare earth magnet alloy raw material at a predetermined temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of less than 0.65 to 10 kPa and an inert gas Is kept in a mixed gas atmosphere, and heat treatment in reduced-pressure hydrogen is performed while leaving a portion of the hydrogen in the rare earth magnet alloy raw material, followed by introduction of Ar gas and cooling to room temperature. It is known to manufacture by (see Patent Document 1).

また、これら希土類磁石粉末である磁気異方性HDDR磁石粉末は、希土類磁石合金原料を水素吸収処理したのち、水素圧力:10〜1000kPaの水素雰囲気中で500〜1000℃の範囲内の所定の温度に昇温し保持することにより希土類磁石合金原料に水素を吸収させて相変態による分解を促す水素吸収・分解処理を施し、引き続いて、水素吸収・分解処理を施した希土類磁石合金原料を500〜1000℃の範囲内の所定の温度で真空中に保持することにより脱水素処理が施されるところから、実質的に正方晶構造をとるRFe14B型金属間化合物相を主相とした再結晶粒が相互に隣接した再結晶集合組織を有し、この再結晶集合組織は個々の再結晶粒の最短粒径aと最長粒径bの比(b/a)が2未満である形状の再結晶粒が全再結晶粒の50容量%以上存在し、かつ再結晶粒の平均再結晶粒径が0.05〜5μmの寸法を有する磁気異方性HDDR磁石粉末の基本組織を有することが知られている(特許文献2参照)。
特開2002−93610号公報 特許第2576672号公報
In addition, the magnetic anisotropic HDDR magnet powder, which is a rare earth magnet powder, is obtained by subjecting a rare earth magnet alloy raw material to hydrogen absorption treatment and then a predetermined temperature within a range of 500 to 1000 ° C. in a hydrogen atmosphere of hydrogen pressure: 10 to 1000 kPa. The rare-earth magnet alloy raw material subjected to hydrogen absorption / decomposition treatment that absorbs hydrogen to the rare-earth magnet alloy raw material to promote decomposition by phase transformation by heating and holding at 500 to 500 to Since dehydrogenation treatment is performed by holding in a vacuum at a predetermined temperature within a range of 1000 ° C., the main phase is an R 2 Fe 14 B type intermetallic compound phase having a substantially tetragonal structure. The recrystallized grains have recrystallized textures adjacent to each other, and the recrystallized texture is a shape in which the ratio (b / a) of the shortest grain size a to the longest grain size b of each recrystallized grain is less than 2. Recrystallization It is known that the grains have a basic structure of magnetic anisotropic HDDR magnet powder in which 50% by volume or more of the total recrystallized grains are present and the average recrystallized grain size of the recrystallized grains is 0.05 to 5 μm. (See Patent Document 2).
JP 2002-93610 A Japanese Patent No. 2576672

近年、電気・電子業界では一層磁気異方性に優れた希土類磁石粉末が求められており、特に自動車業界では電気自動車の開発が盛んで、電気自動車に搭載するモーターの開発が盛んに行われている。この電気自動車に搭載されているモーターは小型ガソリンエンジンの近傍に設置されたり、炎天下に放置されることがあるために特に加熱されやすい環境下に置かれることが多々ある。そのために一層耐熱性に優れかつ磁気特性に優れたモーター部品を製造することのできる保磁力および残留磁束密度が共に優れた磁気異方性を有しかつ熱的安定性に一層優れた希土類磁石粉末が求められている。   In recent years, rare earth magnet powders with higher magnetic anisotropy have been demanded in the electric and electronic industries, and particularly in the automobile industry, the development of electric cars has been active, and the development of motors for use in electric cars has been actively conducted. Yes. The motor mounted on this electric vehicle is often placed in an environment where it is particularly easily heated because it may be installed in the vicinity of a small gasoline engine or may be left in the sun. Therefore, it is possible to produce a motor component with excellent heat resistance and magnetic characteristics. Rare earth magnet powder having magnetic anisotropy with excellent coercive force and residual magnetic flux density and excellent thermal stability. Is required.

そこで、本発明者らは、一層優れた磁気異方性および熱的安定性を有する希土類磁石粉末を得るべく研究を行った。その結果、以下の(い)〜(は)に記載の研究結果が得られたのである。
(い)(a)原子%で(以下、%は原子%を示す)、R(ただし、Rは、DyおよびTbを除き、Yを含む希土類元素の内の1種または2種以上を示す。以下同じ):5〜20%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多い層(以下、Dy−Tbリッチ層という)で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍である希土類磁石粉末、
(b)R:5〜20%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍である希土類磁石粉末、
(c)R:5〜20%、Co:0.1〜50%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍である希土類磁石粉末、
(d)R:5〜20%、DyおよびTbの1種または2種を0.01〜10%、Co:0.1〜50%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍である希土類磁石粉末、
の前記(a)〜(d)記載の希土類磁石粉末はいずれも従来の特許文献1記載の希土類磁石粉末に比べて一層優れた磁気異方性および熱的安定性を有する。
(ろ)この希土類磁石粉末はいずれも実質的に正方晶構造をとるRFe14B型金属間化合物相を主相とした再結晶粒が相互に隣接した再結晶集合組織を有し、この再結晶集合組織は個々の再結晶粒の最短粒径aと最長粒径bの比(b/a)が2未満である形状の再結晶粒が全再結晶粒の50容量%以上存在し、かつ再結晶粒の平均再結晶粒径が0.05〜5μmの寸法を有する磁気異方性HDDR磁石粉末の基本組織を有している、という研究結果が得られたのである。
(は)これらの前記磁気異方性および熱的安定性を有する希土類磁石粉末は、通常の方法で希土類磁石を作製することができる。
Therefore, the present inventors have studied to obtain a rare earth magnet powder having more excellent magnetic anisotropy and thermal stability. As a result, the research results described in the following (ii) to (ha) were obtained.
(Ii) (a) In atomic% (hereinafter,% indicates atomic%) and R (where R represents one or more of rare earth elements including Y, excluding Dy and Tb). The same shall apply hereinafter): 5 to 20%, containing one or two of Dy and Tb in an amount of 0.01 to 10%, and B: 3 to 20%, with the balance being composed of Fe and inevitable impurities, A rare earth magnet powder having an average powder particle size: 10 to 1000 μm,
This rare earth magnet powder is covered with 70% or more of the entire surface with a layer having a thickness of 0.05 to 50 μm and a high content of one or two of Dy and Tb (hereinafter referred to as Dy-Tb rich layer). One or two concentrations of Dy and Tb in the Dy-Tb rich layer have a maximum detection intensity by the wavelength dispersion type X-ray spectroscopy of one or two of Dy and Tb. A rare earth magnet powder that is 1.2 to 5 times the average detected intensity at the center within a range of 1/3;
(B) R: 5 to 20%, one or two of Dy and Tb are contained 0.01 to 10%, B: 3 to 20%, M: 0.001 to 5%, with the balance being Fe and A rare earth magnet powder having a component composition consisting of inevitable impurities and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and having a large content of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle by the maximum detection intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. Rare earth magnet powder which is 1.2 to 5 times the average detected intensity of the central part in
(C) R: 5 to 20%, Co: 0.1 to 50%, one or two of Dy and Tb are contained in an amount of 0.01 to 10%, B: 3 to 20%, the balance being Fe and A rare earth magnet powder having a component composition consisting of inevitable impurities and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and having a large content of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle by the maximum detection intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. Rare earth magnet powder which is 1.2 to 5 times the average detected intensity of the central part in
(D) R: 5 to 20%, one or two of Dy and Tb are 0.01 to 10%, Co: 0.1 to 50%, B: 3 to 20%, M: 0.001 to 5 A rare earth magnet powder having a component composition consisting of Fe and inevitable impurities, and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and having a large content of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle with the maximum detected intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. Rare earth magnet powder which is 1.2 to 5 times the average detected intensity of the central part in
The rare earth magnet powders described in the above (a) to (d) all have magnetic anisotropy and thermal stability that are superior to the conventional rare earth magnet powder described in Patent Document 1.
(B) Each of the rare earth magnet powders has a recrystallized texture in which recrystallized grains mainly having an R 2 Fe 14 B type intermetallic compound phase having a tetragonal structure are adjacent to each other. The recrystallized texture has 50% by volume or more of recrystallized grains having a shape in which the ratio (b / a) of the shortest particle diameter a and the longest particle diameter b of each recrystallized grain is less than 2, In addition, the research result that the average recrystallized grain size of the recrystallized grains has a basic structure of magnetic anisotropic HDDR magnet powder having a size of 0.05 to 5 μm was obtained.
(Ii) These rare earth magnet powders having magnetic anisotropy and thermal stability can produce rare earth magnets by a usual method.

前記一層優れた磁気異方性および熱的安定性を有する希土類磁石粉末を製造するには、
(イ)前記従来の磁気異方性に優れた希土類磁石粉末の製造方法において、希土類磁石合金原料を平均粒径:10〜1000μmになるまで通常の不活性ガス雰囲気中で粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、その後、従来と同様に引き続いて、必要に応じて、水素吸収・分解処理を施した混合粉末を不活性ガス圧:10〜1000kPa、温度:500〜1000℃の範囲内の所定の温度で不活性ガス雰囲気中に保持することにより中間熱処理を行い、さらに引き続いて、必要に応じて、中間熱処理を施した混合粉末を500〜1000℃の範囲内の所定の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより混合粉末に水素を一部残したまま減圧水素中熱処理を行い、その後、500〜1000℃の範囲内の所定の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することにより製造することができる、
(ロ)また、必要に応じて希土類磁石合金原料を圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温、または昇温し保持することにより水素を吸収させる水素吸収処理を施したのち、平均粉末粒径:10〜1000μmになるまで粉砕処理して水素吸収処理した希土類磁石合金原料粉末(以下、この粉末を水素吸収希土類磁石合金原料粉末という)を作製し、
この水素吸収希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、その後、引き続いて、必要に応じて、水素吸収・分解処理を施した水素含有原料混合粉末を不活性ガス圧:10〜1000kPa、温度:500〜1000℃の範囲内の所定の温度で不活性ガス雰囲気中に保持することにより中間熱処理を行い、さらに引き続いて、必要に応じて、中間熱処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の所定の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより水素含有原料混合粉末に水素を一部残したまま減圧水素中熱処理を行い、その後、500〜1000℃の範囲内の所定の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することにより製造することもできる。
In order to produce the rare earth magnet powder having the more excellent magnetic anisotropy and thermal stability,
(A) In the conventional method for producing a rare earth magnet powder excellent in magnetic anisotropy, the rare earth magnet alloy raw material is pulverized in a normal inert gas atmosphere until the average particle size becomes 10 to 1000 μm. An alloy raw material powder was prepared, and a Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm was added to the rare earth magnet alloy raw material powder. .01-5 mol% added and mixed to make a mixed powder,
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment for absorbing and decomposing hydrogen by absorbing the mixed powder by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding it in a hydrogen gas atmosphere of 10 to 1000 kPa. Similarly, if necessary, the mixed powder subjected to the hydrogen absorption / decomposition treatment is placed in an inert gas atmosphere at a predetermined temperature within a range of inert gas pressure: 10 to 1000 kPa and temperature: 500 to 1000 ° C. The intermediate heat treatment is performed by holding, and then, if necessary, the mixed powder subjected to the intermediate heat treatment is subjected to a predetermined temperature within a range of 500 to 1000 ° C. , Absolute pressure: 0.65 to less than 10 kPa in hydrogen atmosphere or hydrogen partial pressure: less than 0.65 to 10 kPa in a mixed gas atmosphere of hydrogen and inert gas to leave part of the hydrogen in the mixed powder Then, heat treatment is performed in hydrogen under reduced pressure, and then hydrogen is forcibly released by promoting the phase transformation by maintaining a vacuum atmosphere at an ultimate pressure of 0.13 kPa or less at a predetermined temperature within a range of 500 to 1000 ° C. It can be produced by applying a dehydrogenation treatment, then cooling and crushing.
(B) If necessary, absorb the hydrogen by raising the temperature of the rare earth magnet alloy raw material from room temperature to a temperature of less than 500 ° C or holding it in a hydrogen gas atmosphere of pressure: 10 to 1000 kPa. After the hydrogen absorption treatment, a rare earth magnet alloy raw material powder (hereinafter referred to as a hydrogen absorbing rare earth magnet alloy raw material powder) that has been pulverized to an average powder particle size of 10 to 1000 μm and treated with hydrogen absorption is prepared. And
To this hydrogen-absorbing rare earth magnet alloy raw material powder, 0.01 to 5 mol of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm is added. % To make a hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. The hydrogen-containing raw material mixed powder subjected to hydrogen absorption / decomposition treatment, and then subjected to hydrogen absorption / decomposition treatment, if necessary, within the range of inert gas pressure: 10 to 1000 kPa, temperature: 500 to 1000 ° C. An intermediate heat treatment is carried out by maintaining it in an inert gas atmosphere at a predetermined temperature, and subsequently, if necessary, the hydrogen-containing raw material mixed powder subjected to the intermediate heat treatment is subjected to a predetermined heat treatment within a range of 500 to 1000 ° C. In a hydrogen atmosphere at an absolute pressure of less than 0.65 to 10 kPa or a mixed gas atmosphere of hydrogen and an inert gas at a temperature of less than 0.65 to 10 kPa at a temperature The hydrogen-containing raw material mixed powder is subjected to a heat treatment in a reduced pressure hydrogen while retaining a part of the hydrogen-containing raw material mixed powder, and then, at a predetermined temperature in the range of 500 to 1000 ° C., an ultimate pressure: 0.13 kPa or less in a vacuum atmosphere It can also be produced by forcibly releasing hydrogen by holding it in a dehydrogenation treatment that promotes phase transformation, followed by cooling and crushing.

前記希土類磁石合金原料は、原子%で(以下、%は原子%を示す)、
R´(ただし、R´は、Yを含む希土類元素の内の1種または2種以上を示し、DyおよびTbの1種または2種を含まない場合も含む。以下同じ):10〜20%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
R´:10〜20%、B:3〜20%、M(但し、MはGa、Zr、Nb、Mo、Hf、Ta、W、Ni、Al、Ti、V、Cu、Cr、Ge、CおよびSiの内の1種または2種以上を示す。以下同じ):0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
R´:10〜20%、Co:0.1〜50%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
または、R´:10〜20%、Co:0.1〜50%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料であることが好ましい。
The rare earth magnet alloy raw material is atomic% (hereinafter,% indicates atomic%),
R ′ (where R ′ represents one or more of rare earth elements including Y, including cases where one or two of Dy and Tb are not included; the same applies hereinafter): 10 to 20% B: a rare earth magnet alloy raw material having a composition containing 3 to 20%, the balance being Fe and inevitable impurities,
R ′: 10 to 20%, B: 3 to 20%, M (where M is Ga, Zr, Nb, Mo, Hf, Ta, W, Ni, Al, Ti, V, Cu, Cr, Ge, C And one or more of Si, the same shall apply hereinafter): a rare earth magnet alloy raw material having a component composition of 0.001 to 5%, the balance being Fe and inevitable impurities,
R ′: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, rare earth magnet alloy raw material having a component composition consisting of Fe and inevitable impurities,
Or, R ′: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, M: 0.001 to 5%, with the balance being composed of Fe and inevitable impurities A rare earth magnet alloy raw material is preferred.

この発明は、これらの研究結果に基づいて成されたものであって、
(1)R(ただし、Rは、DyおよびTbを除き、Yを含む希土類元素を示す。以下同じ):5〜20%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多い層(以下、Dy−Tbリッチ層という)で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍である希土類磁石粉末、
(2)R:5〜20%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍である希土類磁石粉末、
(3)R:5〜20%、Co:0.1〜50%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍である希土類磁石粉末、
(4)R:5〜20%、DyおよびTbの1種または2種を0.01〜10%、Co:0.1〜50%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍である希土類磁石粉末、
(5)前記(1)、(2)、(3)または(4)記載の磁気異方性および熱的安定性に優れた希土類磁石粉末を有機バインダーまたは金属バインダーにより結合してなる希土類磁石、
(6)前記(1)、(2)、(3)または(4)記載の磁気異方性および熱的安定性に優れた希土類磁石粉末をホットプレスまたは熱間静水圧プレスしてなる希土類磁石、
(7)希土類磁石合金原料を不活性ガス雰囲気中で平均粒径:10〜1000μmになるまで粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕する磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(8)希土類磁石合金原料を不活性ガス雰囲気中で平均粒径:10〜1000μmになるまで粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した混合粉末を500〜1000℃の範囲内の温度で圧力:10〜1000kPaの不活性ガス雰囲気中に保持することにより中間熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕する磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(9)希土類磁石合金原料を不活性ガス雰囲気中で平均粒径:10〜1000μmになるまで粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した混合粉末を500〜1000℃の範囲内の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより混合粉末に水素を一部残したまま減圧水素中熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕する磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(10)希土類磁石合金原料を不活性ガス雰囲気中で平均粒径:10〜1000μmになるまで粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した混合粉末を500〜1000℃の範囲内の温度で圧力:10〜1000kPaの不活性ガス雰囲気中に保持することにより中間熱処理を行い、
引き続いて、中間熱処理を施した混合粉末を500〜1000℃の範囲内の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより混合粉末に水素を一部残したまま減圧水素中熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕する磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(11)前記(7)、(8)、(9)または(10)記載の希土類磁石合金原料は、真空またはArガス雰囲気中、温度:600〜1200℃に保持の条件で均質化処理した希土類磁石合金原料である磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(12)希土類磁石合金原料を、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温、または昇温し保持することにより水素を吸収させる水素吸収処理を施したのち、平均粉末粒径:10〜1000μmになるまで粉砕処理して水素吸収処理した希土類磁石合金原料粉末(以下、この粉末を水素吸収希土類磁石合金原料粉末という)を作製し、
この水素吸収希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕する磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(13)水素吸収希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の温度で圧力:10〜1000kPaの不活性ガス雰囲気中に保持することにより中間熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕する磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(14)水素吸収希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより水素含有原料混合粉末に水素を一部残したまま減圧水素中熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕する磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(15)水素吸収希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の温度で圧力:10〜1000kPaの不活性ガス雰囲気中に保持することにより中間熱処理を行い、
引き続いて、中間熱処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより水素含有原料混合粉末に水素を一部残したまま減圧水素中熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕する磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、
(16)前記(12)、(13)、(14)または(15)記載の水素吸収希土類磁石合金原料粉末を作製するための希土類磁石合金原料は、真空またはArガス雰囲気中、温度:600〜1200℃に保持の条件で均質化処理した希土類磁石合金原料であることを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
(17)前記(7)、(8)、(9)、(10)、(11)、(12)、(13)、(14)、(15)または(16)記載の方法で製造した磁気異方性および熱的安定性に優れた希土類磁石粉末を有機バインダーまたは金属バインダーにより結合することを特徴とする希土類磁石の製造方法。
(18)前記(7)、(8)、(9)、(10)、(11)、(12)、(13)、(14)、(15)または(16)記載の方法で製造した磁気異方性および熱的安定性に優れた希土類磁石粉末を成形して圧粉体を作製し、この圧粉体を温度:600〜900℃でホットプレスまたは熱間静水圧プレスする希土類磁石の製造方法、
(19)前記(7)、(8)、(9)、(10)、(11)、(12)、(13)、(14)、(15)または(16)記載の希土類磁石合金原料は、原子%で(以下、%は原子%を示す)、
R´(ただし、R´はYを含む希土類元素を示す。以下同じ):10〜20%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
R´:10〜20%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
R´:10〜20%、Co:0.1〜50%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、または
R´:10〜20%、Co:0.1〜50%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料である磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法、に特徴を有するものである。
This invention was made based on these research results,
(1) R (where R is a rare earth element including Y except for Dy and Tb; the same applies hereinafter): 5 to 20%, one or two of Dy and Tb being 0.01 to 10%, B: a rare earth magnet powder containing 3 to 20%, the balance having a component composition consisting of Fe and inevitable impurities, and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with 70% or more of the entire surface with a layer having a thickness of 0.05 to 50 μm and a high content of one or two of Dy and Tb (hereinafter referred to as Dy-Tb rich layer). One or two concentrations of Dy and Tb in the Dy-Tb rich layer have a maximum detection intensity by the wavelength dispersion type X-ray spectroscopy of one or two of Dy and Tb. A rare earth magnet powder that is 1.2 to 5 times the average detected intensity at the center within a range of 1/3;
(2) R: 5 to 20%, one or two of Dy and Tb are contained 0.01 to 10%, B: 3 to 20%, M: 0.001 to 5%, with the balance being Fe and A rare earth magnet powder having a component composition consisting of inevitable impurities and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and having a large content of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle with the maximum detected intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. Rare earth magnet powder which is 1.2 to 5 times the average detected intensity of the central part in
(3) R: 5 to 20%, Co: 0.1 to 50%, one or two of Dy and Tb are contained in an amount of 0.01 to 10%, B: 3 to 20%, the balance being Fe and A rare earth magnet powder having a component composition consisting of inevitable impurities and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and having a large content of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle with the maximum detected intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. Rare earth magnet powder which is 1.2 to 5 times the average detected intensity of the central part in
(4) R: 5 to 20%, one or two of Dy and Tb are 0.01 to 10%, Co: 0.1 to 50%, B: 3 to 20%, M: 0.001 to 5 A rare earth magnet powder having a component composition consisting of Fe and unavoidable impurities, and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and having a large content of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle with the maximum detected intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. Rare earth magnet powder which is 1.2 to 5 times the average detected intensity of the central part in
(5) A rare earth magnet obtained by bonding the rare earth magnet powder excellent in magnetic anisotropy and thermal stability described in (1), (2), (3) or (4) with an organic binder or a metal binder,
(6) A rare earth magnet obtained by hot pressing or hot isostatic pressing the rare earth magnet powder having excellent magnetic anisotropy and thermal stability described in (1), (2), (3) or (4). ,
(7) Rare earth magnet alloy raw material is pulverized in an inert gas atmosphere to an average particle size of 10 to 1000 μm to prepare a rare earth magnet alloy raw material powder. .1-50 μm Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder was added in 0.01-5 mol% and mixed to produce a mixed powder;
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment in which hydrogen is absorbed into the mixed powder and decomposed by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding in a hydrogen gas atmosphere of 10 to 1000 kPa,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by maintaining a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. under an ultimate pressure of 0.13 kPa or less to promote phase transformation. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability to be crushed;
(8) The rare earth magnet alloy raw material is pulverized in an inert gas atmosphere until the average particle size becomes 10 to 1000 μm to prepare a rare earth magnet alloy raw material powder. .1-50 μm Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder was added in 0.01-5 mol% and mixed to produce a mixed powder;
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment in which hydrogen is absorbed into the mixed powder and decomposed by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding in a hydrogen gas atmosphere of 10 to 1000 kPa,
Subsequently, an intermediate heat treatment is performed by holding the mixed powder subjected to hydrogen absorption / decomposition treatment in an inert gas atmosphere at a temperature in the range of 500 to 1000 ° C. and a pressure of 10 to 1000 kPa,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by maintaining a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. under an ultimate pressure of 0.13 kPa or less to promote phase transformation. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability to be crushed;
(9) The rare earth magnet alloy raw material is pulverized in an inert gas atmosphere to an average particle size of 10 to 1000 μm to prepare a rare earth magnet alloy raw material powder. .1-50 μm Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder was added in 0.01-5 mol% and mixed to produce a mixed powder;
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment in which hydrogen is absorbed into the mixed powder and decomposed by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding in a hydrogen gas atmosphere of 10 to 1000 kPa,
Subsequently, the mixed powder that has been subjected to hydrogen absorption / decomposition treatment at a temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of less than 0.65 to 10 kPa By maintaining in a mixed gas atmosphere of hydrogen and an inert gas, heat treatment in reduced pressure hydrogen is performed while leaving some hydrogen in the mixed powder,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by maintaining a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. under an ultimate pressure of 0.13 kPa or less to promote phase transformation. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability to be crushed;
(10) Rare earth magnet alloy raw material is pulverized in an inert gas atmosphere to an average particle size of 10 to 1000 μm to prepare a rare earth magnet alloy raw material powder. .1-50 μm Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder was added in 0.01-5 mol% and mixed to produce a mixed powder;
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment in which hydrogen is absorbed into the mixed powder and decomposed by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding in a hydrogen gas atmosphere of 10 to 1000 kPa,
Subsequently, an intermediate heat treatment is performed by holding the mixed powder subjected to hydrogen absorption / decomposition treatment in an inert gas atmosphere at a temperature in the range of 500 to 1000 ° C. and a pressure of 10 to 1000 kPa,
Subsequently, the mixed powder that has been subjected to the intermediate heat treatment at a temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of less than 0.65 to 10 kPa By maintaining in a mixed gas atmosphere with the active gas, a heat treatment in reduced-pressure hydrogen is performed while leaving some hydrogen in the mixed powder,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by maintaining a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. under an ultimate pressure of 0.13 kPa or less to promote phase transformation. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability to be crushed;
(11) The rare earth magnet alloy raw material described in the above (7), (8), (9) or (10) is a rare earth which is homogenized in a vacuum or an Ar gas atmosphere at a temperature of 600 to 1200 ° C. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, which is a magnet alloy raw material,
(12) Hydrogen absorption treatment for absorbing hydrogen by raising the temperature of the rare earth magnet alloy raw material from room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere of pressure: 10 to 1000 kPa After the application, a rare earth magnet alloy raw material powder (hereinafter referred to as a hydrogen absorbing rare earth magnet alloy raw material powder) that has been pulverized to an average powder particle size of 10 to 1000 μm and hydrogen-absorbed is prepared.
To this hydrogen-absorbing rare earth magnet alloy raw material powder, 0.01 to 5 mol of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm is added. % To make a hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by maintaining a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. under an ultimate pressure of 0.13 kPa or less to promote phase transformation. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability to be crushed;
(13) Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm is added to the hydrogen-absorbing rare earth magnet alloy raw material powder in an amount of 0.01 to Add 5 mol% and mix to make hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment
Subsequently, an intermediate heat treatment is performed by holding the hydrogen-containing raw material mixed powder subjected to the hydrogen absorption / decomposition treatment at a temperature in the range of 500 to 1000 ° C. in an inert gas atmosphere at a pressure of 10 to 1000 kPa,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by maintaining a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. under an ultimate pressure of 0.13 kPa or less to promote phase transformation. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability to be crushed;
(14) Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm is added to the hydrogen-absorbing rare earth magnet alloy raw material powder in an amount of 0.01 to Add 5 mol% and mix to make hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment
Subsequently, the hydrogen-containing raw material mixed powder that has been subjected to hydrogen absorption / decomposition treatment at a temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of 0.65 to A heat treatment in reduced-pressure hydrogen is performed while leaving part of the hydrogen in the hydrogen-containing raw material mixed powder by maintaining in a mixed gas atmosphere of hydrogen and inert gas of less than 10 kPa,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by maintaining a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. under an ultimate pressure of 0.13 kPa or less to promote phase transformation. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability to be crushed;
(15) Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm is added to the hydrogen-absorbing rare earth magnet alloy raw material powder in an amount of 0.01 to Add 5 mol% and mix to make hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment
Subsequently, an intermediate heat treatment is performed by holding the hydrogen-containing raw material mixed powder subjected to the hydrogen absorption / decomposition treatment at a temperature in the range of 500 to 1000 ° C. in an inert gas atmosphere at a pressure of 10 to 1000 kPa,
Subsequently, the hydrogen-containing raw material mixed powder subjected to the intermediate heat treatment at a temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of less than 0.65 to 10 kPa By maintaining in a mixed gas atmosphere of hydrogen and an inert gas, a hydrogen-containing raw material mixed powder is subjected to heat treatment in hydrogen under reduced pressure while leaving part of the hydrogen in the mixed powder.
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by maintaining a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. under an ultimate pressure of 0.13 kPa or less to promote phase transformation. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability to be crushed;
(16) The rare earth magnet alloy raw material for producing the hydrogen-absorbing rare earth magnet alloy raw material powder described in (12), (13), (14) or (15) is a vacuum or an Ar gas atmosphere at a temperature of 600 to A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized in that it is a rare earth magnet alloy raw material homogenized under conditions of maintaining at 1200 ° C.
(17) Magnetic produced by the method described in (7), (8), (9), (10), (11), (12), (13), (14), (15) or (16) A method for producing a rare earth magnet, comprising bonding rare earth magnet powder excellent in anisotropy and thermal stability with an organic binder or a metal binder.
(18) Magnetic produced by the method described in (7), (8), (9), (10), (11), (12), (13), (14), (15) or (16) Production of a green compact by molding rare earth magnet powder excellent in anisotropy and thermal stability, and manufacturing the rare earth magnet by hot pressing or hot isostatic pressing the green compact at a temperature of 600 to 900 ° C. Method,
(19) The rare earth magnet alloy raw material according to (7), (8), (9), (10), (11), (12), (13), (14), (15) or (16) , In atomic% (hereinafter,% indicates atomic%),
R ′ (where R ′ represents a rare earth element containing Y. The same shall apply hereinafter): 10 to 20%, B: 3 to 20%, the remainder comprising a component composition consisting of Fe and inevitable impurities material,
R ′: 10 to 20%, B: 3 to 20%, M: 0.001 to 5%, a rare earth magnet alloy raw material having a component composition consisting of Fe and inevitable impurities,
R ′: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, rare earth magnet alloy raw material having a component composition consisting of Fe and inevitable impurities, or R ′: 10 20%, Co: 0.1 to 50%, B: 3 to 20%, M: 0.001 to 5%, a magnetic material that is a rare earth magnet alloy raw material having a component composition consisting of Fe and inevitable impurities. It is characterized by a method for producing a rare earth magnet powder excellent in anisotropy and thermal stability.

希土類磁石合金原料粉末または水素吸収希土類磁石合金原料粉末を作製→希土類磁石合金原料粉末にDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製→水素吸収処理→水素吸収・分解処理→必要に応じて中間熱処理→必要に応じて減圧水素中熱処理→脱水素処理の順序で施すこの発明の希土類磁石粉末の製造方法により得られた希土類磁石粉末は、磁気異方性および熱的安定性に優れており、産業上優れた効果を奏するものである。   Preparation of rare earth magnet alloy raw material powder or hydrogen-absorbing rare earth magnet alloy raw material powder → Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder 0.01 ~ 5 mol% added and mixed to produce mixed powder → hydrogen absorption treatment → hydrogen absorption / decomposition treatment → intermediate heat treatment as needed → heat treatment in reduced pressure hydrogen as necessary → dehydration rare earth according to the present invention The rare earth magnet powder obtained by the magnet powder manufacturing method is excellent in magnetic anisotropy and thermal stability, and has excellent industrial effects.

この発明の希土類磁石粉末の成分組成および組織、並びにこの発明の磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法における希土類磁石合金原料粉末または水素吸収希土類磁石合金原料粉末にDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を添加する添加量および製造条件を前述の如く限定した理由を説明する。
(A)希土類磁石粉末
(i)成分組成の限定理由
R:
Rは、Ndを主体とし、その他、Y、Pr、Sm、Ce、La、Er、Eu、Gd、Tm、Yb、Lu、Hoなどを微量含む希土類元素(ただし、DyおよびTbを除く)であるが、その含有量が5%未満では保磁力が低下し、一方、20%を越えて含有すると飽和磁化が低下していずれも希望の磁気特性が得られないので好ましくない。したがって、Rの含有量は5〜20%に定めた。
DyおよびTb:
DyおよびTbの1種または2種の含有量を0.01〜10%(一層好ましくは、0.3〜4%)に限定したのは、DyおよびTbの1種または2種を0.01%未満含有させても磁気異方性および熱的安定性に優れた所望の効果が得られず、一方、10%を越えて含有させると、異方性が低下して十分な磁気特性が得られないので好ましくない理由によるものである。
B:
Bの含有量は3%未満では保磁力が低下し、一方、20%を越えて含有すると飽和磁化が低下していずれも希望の磁気特性が得られないので好ましくない。したがって、Bの含有量は3〜20%に定めた。
Co:
Coは希土類磁石合金の等方性化を阻止するために必要に応じて添加するが、その含有量が0.1%未満では所望の効果が得られず、一方、50%を越えて含有すると、保磁力および飽和磁化が下がるので異方化しても高特性が得られない。したがって、この発明の希土類磁石粉末および希土類磁石粉末の製造方法で使用する希土類磁石合金原料に含まれるCoの含有量は0.1〜50%(一層好ましくは、5〜30%)に定めた。
M(Ga、Zr、Nb、Mo、Hf、Ta、W、Ni、Al、Ti、V、Cu、Cr、Ge、CおよびSiの内の1種または2種以上):
Mは、保磁力および残留磁束密度の一層の向上のために必要に応じて添加するが、その含有量が0.001%未満では所望の効果が得られず、一方、5%を越えて添加すると、保磁力および残留磁束密度が低下するので好ましくない。したがってMの含有量は0.001〜5%以下に定めた。
(ii)組織の限定理由
波長分散型X線分光法の線分析による最大検出強度:
表面付近のDyまたはTbの1種または2種の最大検出強度は、波長分散型X線分光法の線分析で粉末断面を横断するように走査して、粉末の中心付近における粒径の1/3の範囲での平均検出強度を求めてこれを中心付近の強度とし、これに対する割合として表面付近のピークのDyまたはTbの1種または2種の最大検出強度を求める。なお、時々DyまたはTbの1種または2種の検出強度が部分的に極端に大きい場所が現れるが、多くの場合これは希土類リッチの相が存在するためで、この相の特徴としてDyまたはTbの1種または2種に加えてNdまたはPrの1種または2種の検出強度も同時に大きくなる。このような相は本発明において不可避で生じる層であるため、最大検出強度の評価の対象からは除外するものとする。また、ここで、DyまたはTbの1種または2種の波長分散型X線分光法による最大検出強度が1.2倍未満のときは、粉末の表面と内部との異方性磁界の差が小さいため、表面の高い異方性磁界による大きな保磁力と内部の大きな異方性とを両立するという効果が得られない。また、検出強度が5倍を超えるときは表面付近の領域の磁束密度が大きく低下してしまう。従って、領域のDyまたはTbの1種または2種の波長分散型X線分光法による検出強度を内部の検出強度の1.2〜5倍(望ましくは1.3〜4倍)とした。
Dy−Tbリッチ層の表面からの厚さ:
希土類磁石粉末の表面に存在するDyまたはTbの1種または2種の含有量が多い領域(Dy−Tbリッチ層)の表面からの深さは、波長分散型X線分光法の線分析で粉末断面の表面付近を横断するようにできるだけ細かい間隔で走査し、検出されたピークについて強度が中心付近の平均検出強度の1.2倍以上となる部分の幅を、DyまたはTbの1種または2種の含有量が多い領域の表面からの深さとして求める。なお、走査した場所が部分的に極端にDyまたはTbの1種または2種の検出強度が大きいDy−Tbリッチ相が存在する場所であった場合は、表面からの深さの評価の対象から除外するものとする。また、ここで、DyまたはTbの1種または2種は表面付近のR(Fe,Co)14B型結晶粒子のR原子を置換して(R,(Dy,Tb))(Fe,Co)14B型相を形成していると思われ、この発明の効果は表面の結晶粒子1層かまたはそれ以上を内部よりもDyまたはTbの1種または2種が多くなるように置換することで得られると思われるが、DyまたはTbの1種または2種の含有量が多い領域であるDy−Tbリッチ層の厚さが0.05μmよりも少ないと所望の効果が得られない。また、その厚さが50μmを超えるとDyまたはTbの1種または2種の含有量が多く保磁力が大きい領域の体積が内部の高異方性の領域に影響を与えて粉末全体の異方性を著しく下げてしまう。従って、Dy−Tbリッチ層の表面からの深さを0.05〜50μm(望ましくは1〜30μm)とした。
Dy−Tbリッチ層の表面被覆率:
DyまたはTbの1種または2種の含有量が多い領域(Dy−Tbリッチ層)の表面被覆率は、波長分散型X線分光法の線分析で1つの粉末断面について走査位置を変えて5回以上の線分析を行い、DyまたはTbの1種または2種の粉末の表面付近の検出強度の合計が中心付近の1.2倍以上となる粉末表面の数の、粉末表面を走査により横断した回数に対する割合として求める。なお、走査した場所が部分的に極端にDyまたはTbの1種または2種の検出強度が大きい希土類リッチ相が存在する場所であった場合は、計数の対象から除外するものとする。また、ここで、粉末の表面を、異方性磁界が大きく、かつ、Ndよりも酸化されにくい元素であるDyまたはTbの1種または2種の含有量が多い領域が覆うことにより、大きな保磁力と異方性とを兼ね備え、かつ、優れた耐酸化性が得られるが、表面を覆う領域が70%未満のときは十分大きな保磁力が得られず、また、耐酸化も不十分なため、十分な熱的安定性と耐熱性が得られない。従ってDyまたはTbの1種または2種の含有量が多い領域が覆う面積を粉末表面全体の70%以上(望ましくは80%以上)とした。
The composition and structure of the rare earth magnet powder of the present invention, and the rare earth magnet alloy raw material powder or the hydrogen absorbing rare earth magnet alloy raw material powder in the method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability of the present invention The reason why the addition amount and the production conditions for adding the hydride powder of Tb, the hydride powder of Tb, or the hydride powder of the Dy-Tb binary alloy are limited as described above will be described.
(A) Rare earth magnet powder (i) Reason for limitation of component composition R:
R is a rare earth element (except for Dy and Tb) mainly composed of Nd and containing trace amounts of Y, Pr, Sm, Ce, La, Er, Eu, Gd, Tm, Yb, Lu, Ho and the like. However, if the content is less than 5%, the coercive force is lowered. On the other hand, if the content exceeds 20%, the saturation magnetization is lowered and none of the desired magnetic properties can be obtained. Therefore, the content of R is set to 5 to 20%.
Dy and Tb:
The reason why the content of one or two of Dy and Tb is limited to 0.01 to 10% (more preferably 0.3 to 4%) is that one or two of Dy and Tb is 0.01 Even if the content is less than 10%, desired effects excellent in magnetic anisotropy and thermal stability cannot be obtained. On the other hand, if the content exceeds 10%, anisotropy is reduced and sufficient magnetic properties are obtained. This is because it is not preferable.
B:
If the B content is less than 3%, the coercive force is lowered. On the other hand, if it exceeds 20%, the saturation magnetization is lowered and none of the desired magnetic properties can be obtained. Therefore, the content of B is set to 3 to 20%.
Co:
Co is added as necessary in order to prevent the rare-earth magnet alloy from being isotropic. However, if the content is less than 0.1%, the desired effect cannot be obtained. Since the coercive force and the saturation magnetization are lowered, high characteristics cannot be obtained even if anisotropic. Therefore, the Co content in the rare earth magnet alloy raw material used in the rare earth magnet powder and the rare earth magnet powder manufacturing method of the present invention is set to 0.1 to 50% (more preferably 5 to 30%).
M (one or more of Ga, Zr, Nb, Mo, Hf, Ta, W, Ni, Al, Ti, V, Cu, Cr, Ge, C, and Si):
M is added as necessary to further improve the coercive force and the residual magnetic flux density, but if the content is less than 0.001%, the desired effect cannot be obtained, while adding over 5%. This is not preferable because the coercive force and the residual magnetic flux density are lowered. Therefore, the content of M is set to 0.001 to 5% or less.
(Ii) Reason for limitation of tissue Maximum detected intensity by line analysis of wavelength dispersion X-ray spectroscopy:
The maximum detected intensity of one or two kinds of Dy or Tb near the surface is scanned across the powder cross section by wavelength analysis of wavelength dispersive X-ray spectroscopy, and 1 / of the particle size near the center of the powder. The average detected intensity in the range of 3 is obtained and set as the intensity near the center, and the maximum detected intensity of one or two kinds of Dy or Tb of the peak near the surface is obtained as a ratio to the average detected intensity. In some cases, a place where the detection intensity of one or two of Dy or Tb is partially extremely large appears. In many cases, this is because a rare earth-rich phase exists, and this phase is characterized by Dy or Tb. In addition to one or two of the above, the detection intensities of one or two of Nd or Pr are simultaneously increased. Since such a phase is an inevitable layer in the present invention, it is excluded from the object of evaluation of the maximum detection intensity. Here, when the maximum detected intensity by one or two types of wavelength-dispersive X-ray spectroscopy of Dy or Tb is less than 1.2 times, the difference in anisotropic magnetic field between the surface and the inside of the powder is Since it is small, the effect of achieving both a large coercive force due to a high anisotropic magnetic field on the surface and a large internal anisotropy cannot be obtained. Further, when the detection intensity exceeds 5 times, the magnetic flux density in the region near the surface is greatly reduced. Therefore, the detection intensity of one or two types of wavelength-dispersive X-ray spectroscopy of Dy or Tb in the region was set to 1.2 to 5 times (preferably 1.3 to 4 times) the internal detection intensity.
Thickness from the surface of the Dy-Tb rich layer:
The depth from the surface of the region (Dy-Tb rich layer) having a high content of one or two of Dy or Tb present on the surface of the rare earth magnet powder is determined by the line analysis of wavelength dispersive X-ray spectroscopy. The width of a portion where the intensity of the detected peak is 1.2 times or more of the average detected intensity near the center of the detected peak is set to one or two of Dy or Tb. It is determined as the depth from the surface of the region where the seed content is large. In addition, when the scanned location is a location where a Dy-Tb rich phase with one or two detection strengths of Dy or Tb being extremely large is present, the depth from the surface is evaluated. Shall be excluded. Here, one or two of Dy or Tb replaces the R atom of the R 2 (Fe, Co) 14 B-type crystal particle near the surface, and (R, (Dy, Tb)) 2 (Fe, Co) 14 B type phase is considered to be formed, and the effect of the present invention is to replace one or more crystal grains on the surface so that one or two kinds of Dy or Tb are more than one inside. However, if the thickness of the Dy-Tb rich layer, which is a region where the content of one or two of Dy or Tb is large, is less than 0.05 μm, the desired effect cannot be obtained. In addition, when the thickness exceeds 50 μm, the volume of the region where the content of one or two of Dy or Tb is large and the coercive force is large affects the region of high anisotropy inside, and the anisotropic of the whole powder. Will significantly reduce the performance. Therefore, the depth from the surface of the Dy-Tb rich layer is set to 0.05 to 50 μm (desirably 1 to 30 μm).
Surface coverage of Dy-Tb rich layer:
The surface coverage of the region (Dy-Tb rich layer) in which the content of one or two of Dy or Tb is large is 5 by changing the scanning position for one powder cross section in the line analysis of wavelength dispersive X-ray spectroscopy. Perform line analysis more than once, and traverse the powder surface by the number of powder surfaces whose total detected intensity near the surface of one or two types of Dy or Tb powder is more than 1.2 times near the center. As a percentage of the number of times In addition, when the scanned place is a place where a rare earth-rich phase with one or two detection strengths of Dy or Tb that is extremely extremely large exists, it is excluded from counting. Here, the powder surface is covered with a region having a large amount of one or two of Dy or Tb, which is an element that has a large anisotropic magnetic field and is less likely to be oxidized than Nd. It has both magnetic force and anisotropy, and excellent oxidation resistance can be obtained. However, when the area covering the surface is less than 70%, a sufficiently large coercive force cannot be obtained, and oxidation resistance is insufficient. Sufficient thermal stability and heat resistance cannot be obtained. Therefore, the area covered by the region having a high content of one or two of Dy or Tb was set to 70% or more (preferably 80% or more) of the entire powder surface.

上記のこの発明の希土類磁石粉末は粉末内部の表面付近のDyまたはTbの1種または2種の多い領域(Dy−Tbリッチ層)の異方性磁界が中心付近よりも高くなるため粉末として保磁力が向上し、また、DyおよびTbは比較的酸化されにくく、粉末としての耐酸化性が良くなるので、粉末の熱的安定性と耐熱性が向上すると考えられる。さらに、DyまたはTbの1種または2種の多い領域(Dy−Tbリッチ層)は粉末の表面付近に限られるので粉末全体の異方性がほとんど低下しないため、この粉末では良好な耐熱性と高い異方性が両立していると考えられる。
(B)前記(7)、(8)、(9)、(10)および(11)記載の磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法における製造条件の限定理由:
希土類磁石合金原料を平均粒径:10〜1000μm(一層好ましくは、50〜400μm)の範囲に粉砕する理由は、平均粒径:10μm未満に微細に不活性ガス雰囲気中で粉砕しようとすると、微細であるために粉砕時の発熱によって合金が酸化されることは避けられず、この酸化により最終的に得られる希土類磁石粉末の保磁力は低下するので好ましくなく、一方、平均粒径:1000μmよりも大きいと、Dy、TbまたはDy−Tb二元系合金が希土類磁石合金原料粉末の中心部まで拡散することが出来ずに組成が不均一となり、最終的に解砕して得られる希土類磁石粉末の1つの粉末粒子内の磁化容易軸が揃いにくくなって、磁気異方性が低下するので好ましくないことによるものである。
The rare earth magnet powder of the present invention described above is retained as a powder because the anisotropic magnetic field of one or two types of Dy or Tb near the surface inside the powder (Dy-Tb rich layer) is higher than that near the center. The magnetic force is improved, and Dy and Tb are relatively hardly oxidized, and the oxidation resistance as a powder is improved. Therefore, it is considered that the thermal stability and heat resistance of the powder are improved. Furthermore, since one or two regions having a large amount of Dy or Tb (Dy-Tb rich layer) are limited to the vicinity of the surface of the powder, the anisotropy of the entire powder is hardly reduced. It is considered that high anisotropy is compatible.
(B) Reasons for limiting the production conditions in the method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability described in (7), (8), (9), (10) and (11):
The reason why the rare earth magnet alloy raw material is pulverized to an average particle size of 10 to 1000 μm (more preferably 50 to 400 μm) is that the average particle size is less than 10 μm and is finely pulverized in an inert gas atmosphere. Therefore, it is inevitable that the alloy is oxidized due to heat generated during pulverization, and the coercivity of the rare earth magnet powder finally obtained by this oxidation is not preferable. On the other hand, the average particle size is less than 1000 μm. If it is larger, the Dy, Tb or Dy-Tb binary alloy cannot be diffused to the center of the rare earth magnet alloy raw material powder, resulting in a non-uniform composition, and finally the rare earth magnet powder obtained by crushing. This is because the easy axis of magnetization in one powder particle becomes difficult to align and the magnetic anisotropy decreases, which is not preferable.

この希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕すると、磁気異方性および熱的安定性に一層優れた希土類磁石粉末が得られるのである。   To this rare earth magnet alloy raw material powder, 0.01 to 5 mol% of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm is added. And mixed to produce a mixed powder, and this mixed powder absorbs hydrogen by raising the temperature from room temperature to a temperature of less than 500 ° C. or holding it in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption treatment, followed by hydrogen absorption in which the mixed powder absorbs and decomposes by raising the temperature to a temperature in the range of 500 to 1000 ° C. and holding it in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa.・ A decomposition process is performed, and then hydrogen is forcibly released by maintaining in a vacuum atmosphere at a temperature within a range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, thereby causing phase transformation. Dehydrogenated subjected to prompt, then cooled and pulverized, more excellent rare-earth magnet powder in the magnetic anisotropy and thermal stability is to be obtained.

この希土類磁石合金原料粉末に、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を添加し混合して得られた混合粉末を水素吸収処理し、さらに水素吸収・分解処理し、ついで脱水素処理を行うと、磁気異方性および熱的安定性に一層優れた希土類磁石粉末が得られるが、その理由は、下記のごとき理由が考えられる。   The rare earth magnet alloy raw material powder is mixed with Dy hydride powder, Tb hydride powder, or Dy-Tb binary alloy hydride powder, and mixed to obtain a hydrogen absorption treatment. Absorption / decomposition treatment followed by dehydrogenation treatment yields a rare earth magnet powder with more excellent magnetic anisotropy and thermal stability. The reasons for this can be considered as follows.

最近の研究では、希土類磁石合金原料粉末を水素吸収し、さらに水素吸収・分解し、ついで脱水素する処理(この処理は一般にHDDR処理と言われている)による希土類磁石粉末の異方性化は水素吸収・分解処理の段階の反応が重要であることが明らかになってきている。一方、熱的安定性向上のために保磁力を向上させようとDyまたはTbの1種または2種を希土類磁石合金中に多量に添加すると、文献(特開平9−165601号公報)にあるように異方性が低下してしまい、十分なエネルギー積を得ることができない。この原因は、希土類磁石合金中にDyまたはTbの1種または2種が多量に含まれていると、前述の水素吸収・分解処理の反応が影響を受け、水素吸収・分解反応によって形成される状態が異方性化条件を満足しない状態になるためではないかと思われる。   Recent research has shown that rare earth magnet powders are made anisotropic by hydrogen absorption, further hydrogen absorption / decomposition, and then dehydrogenation (this process is generally referred to as HDDR process). It has become clear that the reaction at the stage of hydrogen absorption and decomposition is important. On the other hand, when one or two of Dy or Tb is added to a rare earth magnet alloy in an attempt to improve the coercive force in order to improve the thermal stability, it appears in the literature (Japanese Patent Laid-Open No. 9-165601). However, the anisotropy decreases and a sufficient energy product cannot be obtained. This is because when the rare earth magnet alloy contains one or two of Dy or Tb in a large amount, the reaction of the hydrogen absorption / decomposition treatment described above is affected, and it is formed by the hydrogen absorption / decomposition reaction. It seems that this is because the state does not satisfy the anisotropy condition.

しかし、本発明のように通常の不活性ガス雰囲気中で粉砕して得られた希土類磁石合金原料粉末に、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を添加し混合して得られた混合粉末を水素吸収・分解処理を施すと、そのときの分解反応は、希土類磁石合金からは希土類元素の水素化物が形成されて残りがFeまたは(Fe,Co)と、FeBを基本とする相に分解される方向に進むため、同じ希土類元素であるDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末はこの分解反応に携わることがないため、希土類磁石合金原料粉末だけが分解されるため、希土類磁石合金中にDyまたはTbの1種または2種を多量に添加したときのように水素吸収・分解反応によって形成される状態が異方性化条件を満足しない状態にならない。 However, the rare earth magnet alloy raw material powder obtained by pulverization in a normal inert gas atmosphere as in the present invention, Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride When the mixed powder obtained by adding and mixing the powder is subjected to hydrogen absorption / decomposition treatment, the decomposition reaction at that time is caused by the rare earth element hydride formed from the rare earth magnet alloy, and the remainder is Fe or (Fe, Co) and Fe 2 B are decomposed into a phase based on Fe 2 B. Therefore, the same rare earth element Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder is Since it is not involved in this decomposition reaction, only the rare earth magnet alloy raw material powder is decomposed, so that the hydrogen absorption / decomposition reaction occurs as in the case where a large amount of one or two of Dy or Tb is added to the rare earth magnet alloy. In State formed me is not a state that does not satisfy the anisotropic conditions.

ついで、この状態から脱水素処理を行うと、希土類磁石合金原料粉末中に分解したR水素化物、Feまたは(Fe,Co)およびFeBを基本とする相が反応してRFe14Bを基本とする相が形成されるだけでなく、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末も水素を放出することによってDyまたはTbの1種または2種の原子が希土類磁石合金原料粉末の表面全体に拡散し、引き続いて希土類磁石合金原料粉末の内部に向って拡散するため、最終的に形成されるRFe14Bを基本とする相は元の希土類磁石合金原料粉末に比べてDyまたはTbの1種または2種の含有量が多くなり、かつ粉末粒子内の表面付近のDyまたはTbの1種または2種の含有量が粉末粒子内の中心付近よりも多くなり、その結果、保磁力が向上し、かつ保磁力の温度係数が低減するため、熱的安定性が向上する。一方、水素吸収・分解反応の段階で異方性化条件を満足する状態になっているため、脱水素によって異方性化が実際に起こって、その結果、保磁力が大きく、かつ異方性に優れた希土類磁石粉末がえられる、などの理由が考えられる。 Next, when dehydrogenation is performed from this state, a phase based on R hydride, Fe or (Fe, Co) and Fe 2 B decomposed in the rare earth magnet alloy raw material powder reacts to produce R 2 Fe 14 B In addition, a Dy hydride powder, a Tb hydride powder or a hydride powder of a Dy-Tb binary alloy also releases one of Dy or Tb by releasing hydrogen. Since the two types of atoms diffuse throughout the surface of the rare earth magnet alloy raw material powder and subsequently diffuse toward the inside of the rare earth magnet alloy raw material powder, the phase based on R 2 Fe 14 B finally formed is Compared to the original rare earth magnet alloy raw material powder, the content of one or two kinds of Dy or Tb is increased, and the content of one or two kinds of Dy or Tb in the vicinity of the surface in the powder particles is contained in the powder particles. Heart of As a result, the coercive force is improved and the temperature coefficient of the coercive force is reduced, so that the thermal stability is improved. On the other hand, since the condition for anisotropy is satisfied at the stage of hydrogen absorption / decomposition reaction, anisotropy actually occurs by dehydrogenation, resulting in a large coercive force and anisotropy. The reason is that an excellent rare earth magnet powder can be obtained.

この発明では、この希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、この混合粉末をさらに加熱し、圧力:10〜1000kPaの水素ガス雰囲気中で温度:500〜1000℃の範囲内の所定の温度に保持する水素吸収・分解処理を施すことにより原料に水素を吸収させて相変態を促し分解させるが、混合粉末を作製するために希土類磁石合金原料粉に添加するDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末の平均粒径を0.1〜50μmに限定した理由は、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末の平均粒径が0.1μm未満では酸化が激しくなり、取り扱いが非常に困難になるので好ましくなく、一方、平均粒径が50μmを越えると希土類磁石粉末中にDy、TbまたはDy−Tb二元系合金の相またはこれら元素が過多の化合物相が偏析してしまい、均一に拡散することができないので、これら水素化物粉末の平均粒径は0.1〜50μm(一層好ましくは1〜10μm)に定めた。
また、その添加量を0.01〜5モル%に限定した理由は0.01モル%未満では保磁力改善の効果が十分でなく、一方、5モル%を越えて添加すると異方性が低下して十分な磁気特性が得られないので好ましくない。したがって、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末の添加量は0.01〜5モル%(一層好ましくは、0.3〜3モル%)に定めた。
In this invention, 0.01 to 50 μm of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm is added to the rare earth magnet alloy raw material powder. 5 mol% is added and mixed to prepare a mixed powder, and this mixed powder is further heated to maintain a predetermined temperature within a range of temperature: 500 to 1000 ° C. in a hydrogen gas atmosphere of pressure: 10 to 1000 kPa. By absorbing and decomposing the raw material, the raw material absorbs hydrogen to promote phase transformation and decompose, but Dy hydride powder added to the rare earth magnet alloy raw material powder, Tb hydride powder or The reason why the average particle size of the hydride powder of the Dy-Tb binary alloy is limited to 0.1 to 50 μm is that Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder If the average particle size is less than 0.1 μm, the oxidation becomes severe and the handling becomes very difficult, which is not preferable. On the other hand, if the average particle size exceeds 50 μm, it is not preferable to include Dy, Tb or Dy-Tb binary in the rare earth magnet powder. Since the alloy alloy phase or the compound phase containing these elements excessively segregates and cannot be uniformly diffused, the average particle size of these hydride powders is 0.1 to 50 μm (more preferably 1 to 10 μm). Determined.
Moreover, the reason for limiting the amount of addition to 0.01 to 5 mol% is that if it is less than 0.01 mol%, the effect of improving the coercive force is not sufficient, while if it exceeds 5 mol%, the anisotropy decreases. Therefore, it is not preferable because sufficient magnetic properties cannot be obtained. Therefore, the addition amount of the hydride powder of Dy, the hydride powder of Tb or the hydride powder of the Dy-Tb binary alloy is 0.01 to 5 mol% (more preferably 0.3 to 3 mol%). Determined.

水素吸収処理における圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持する条件はすでに知られている条件であり、また、引き続いて施される水素吸収・分解処理工程における圧力:10〜1000kPaの水素ガス雰囲気中で温度:500〜1000℃の範囲内の所定の温度に保持する条件もすでに知られている条件であり、いずれも特に新規な条件ではないのでその限定理由の説明は省略する。   The pressure in the hydrogen absorption treatment is a known condition for raising the temperature from room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere of 10 to 1000 kPa, and maintaining it after raising the temperature. The pressure in the hydrogen absorption / decomposition treatment step to be performed: In a hydrogen gas atmosphere of 10 to 1000 kPa, the temperature is maintained at a predetermined temperature in the range of 500 to 1000 ° C., and the conditions are already known. Since it is not a new condition, explanation of the reason for limitation will be omitted.

かかる水素吸収・分解処理したのち、必要に応じて中間熱処理を施す。この中間熱処理は、不活性ガスフローにより雰囲気を不活性ガス雰囲気に変えることにより適度なスピードで異方性化を促進させる工程である。この中間熱処理は圧力:10〜1000kPaの不活性ガス雰囲気中で温度:500〜1000℃の範囲内の所定の温度に保持する条件で行なわれる。かかる中間熱処理における不活性ガス雰囲気の圧力が10kPa未満では異方性化が速くなりすぎて保磁力低下の原因になるので好ましくなく、一方、1000kPaを越えると異方性化がほとんど進まなくなり、残留磁束密度低下の原因になるので好ましくないとされている。   After such hydrogen absorption / decomposition treatment, intermediate heat treatment is performed as necessary. This intermediate heat treatment is a step of promoting anisotropy at an appropriate speed by changing the atmosphere to an inert gas atmosphere by an inert gas flow. This intermediate heat treatment is performed under a condition of maintaining a predetermined temperature within a temperature range of 500 to 1000 ° C. in an inert gas atmosphere at a pressure of 10 to 1000 kPa. If the pressure of the inert gas atmosphere in the intermediate heat treatment is less than 10 kPa, the anisotropy becomes too fast and causes a decrease in the coercive force. On the other hand, if it exceeds 1000 kPa, the anisotropy hardly progresses and the residual This is not preferable because it causes a decrease in magnetic flux density.

必要に応じて中間熱処理を施したのち、さらに必要に応じて減圧水素中熱処理を施す。この減圧水素中熱処理は、水素吸収・分解処理した混合粉末を絶対圧:0.65〜10kPa未満(好ましくは、2〜8kPa)の水素雰囲気中または水素分圧:0.65〜10kPa未満(好ましくは、2〜8kPa)の水素と不活性ガスとの混合ガス雰囲気中に保持することにより混合粉末に水素を一部残したまま熱処理する工程である。この減圧水素中熱処理を施すことにより保磁力および残留磁束密度を一層向上させることができる。   After performing an intermediate heat treatment as necessary, a heat treatment in reduced-pressure hydrogen is further performed as necessary. This heat treatment in hydrogen under reduced pressure is carried out in a hydrogen atmosphere with an absolute pressure of less than 0.65 to 10 kPa (preferably 2 to 8 kPa) or a hydrogen partial pressure of less than 0.65 to 10 kPa (preferably Is a step of heat-treating while maintaining a part of hydrogen in the mixed powder by maintaining in a mixed gas atmosphere of 2 to 8 kPa) hydrogen and an inert gas. By performing the heat treatment in hydrogen under reduced pressure, the coercive force and the residual magnetic flux density can be further improved.

必要に応じて中間熱処理および減圧水素中熱処理を施したのち脱水素処理を行う。脱水素処理は到達圧:0.13kPa以下の真空雰囲気に保持することにより混合粉末から強制的に水素を十分放出させ、それにより一層の相変態を促す処理である。到達圧:0.13kPa以下の真空雰囲気に保持する理由は、0.13kPaを越える到達圧では十分に脱水素が行われないからである。   If necessary, dehydrogenation is performed after intermediate heat treatment and heat treatment in hydrogen under reduced pressure. The dehydrogenation process is a process that forcibly releases hydrogen from the mixed powder by maintaining a vacuum atmosphere at an ultimate pressure of 0.13 kPa or less, thereby promoting further phase transformation. The ultimate pressure is maintained in a vacuum atmosphere of 0.13 kPa or less because dehydrogenation is not sufficiently performed at an ultimate pressure exceeding 0.13 kPa.

この脱水素処理後に行なう冷却は不活性ガス(Arガス)を流すことにより室温まで冷却する。冷却した後は解砕して希土類磁石粉末とする。この解砕して得られた希土類磁石粉末は残留内部応力が極めて少ないので熱処理する必要はない。この発明の製造方法により得られた磁気異方性および熱的安定性に一層優れた希土類磁石粉末は、有機バインダーまたは金属バインダーにより結合することにより磁気異方性および熱的安定性に優れた希土類磁石を製造することができ、さらにこの希土類磁石粉末を成形して圧粉体を作製し、この圧粉体を温度:600〜900℃でホットプレスまたは熱間静水圧プレスすることにより磁気異方性および熱的安定性に優れた希土類磁石を製造することが出来る。
(C)前記(12)、(13)、(14)、(15)または(16)記載の磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法における製造条件の限定理由:
水素吸収希土類磁石合金原料粉末は、希土類磁石合金原料に圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの所定の温度に昇温、または昇温し500℃未満までの所定の温度(例えば、100℃)に保持することにより水素を吸収せしめる水素吸収処理を施すことにより作製する。この希土類磁石合金原料を圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの所定の温度に昇温、または昇温する水素吸収処理は、従来から行われている処理であるが、この発明でこの水素吸収処理した希土類磁石合金原料に粉砕処理を施して水素吸収希土類磁石合金原料粉末を作製する理由は、
水素吸収処理した塊状の希土類磁石合金原料は粉砕しやすいこと、
水素吸収処理は温度:500℃未満までの比較的低い温度で処理されるために高温に保持されるその他の工程で粉砕するよりも粉砕しやすいこと、
塊状の希土類磁石合金原料を水素吸収処理後に予め希土類磁石粉末とほぼ同じ平均粒径に粉砕してあるので、最後の粉砕工程では解砕するだけで十分に微細な希土類磁石粉末が得られ、したがって、得られた希土類磁石粉末が酸化されることが極めて少なく、また内部応力が蓄積されることが極めて少ないところから磁気異方性が一層向上すること、
水素粉砕後、HDDR処理を施すと、磁石粉末の表面凹凸が減少して平滑な表面になり、比表面積が減少するために熱的安定性が向上する、などの理由によるものである。
The cooling performed after the dehydrogenation is performed by flowing an inert gas (Ar gas) to room temperature. After cooling, it is crushed into rare earth magnet powder. The rare earth magnet powder obtained by pulverization has very little residual internal stress, so that it does not need to be heat-treated. The rare earth magnet powder having a further excellent magnetic anisotropy and thermal stability obtained by the production method of the present invention is a rare earth magnet having excellent magnetic anisotropy and thermal stability by being bonded with an organic binder or a metal binder. A magnet can be manufactured, and further, this rare earth magnet powder is molded to produce a green compact, and the green compact is magnetically anisotropic by hot pressing or hot isostatic pressing at a temperature of 600 to 900 ° C. Rare earth magnets excellent in heat resistance and thermal stability can be manufactured.
(C) Reasons for limiting the production conditions in the method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability described in (12), (13), (14), (15) or (16):
The hydrogen-absorbing rare earth magnet alloy raw material powder is heated to a predetermined temperature from room temperature to less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, or heated to less than 500 ° C. It is produced by performing a hydrogen absorption treatment for absorbing hydrogen by maintaining it at a predetermined temperature (for example, 100 ° C.). This rare earth magnet alloy raw material is heated to a predetermined temperature from room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, or a hydrogen absorption process for increasing the temperature is a conventional process. However, the reason for producing a hydrogen-absorbing rare earth magnet alloy raw material powder by pulverizing the hydrogen-absorbed rare earth magnet alloy raw material in this invention is as follows:
The bulk rare earth magnet alloy raw material treated with hydrogen absorption is easy to grind,
Hydrogen absorption treatment is easier to pulverize than other steps that are kept at high temperature because the temperature is treated at a relatively low temperature of less than 500 ° C.,
Since the massive rare earth magnet alloy raw material is pulverized to the same average particle diameter as that of the rare earth magnet powder in advance after the hydrogen absorption treatment, a sufficiently fine rare earth magnet powder can be obtained simply by crushing in the final pulverization step. The magnetic anisotropy is further improved from the fact that the rare earth magnet powder obtained is very rarely oxidized and the internal stress is very little accumulated.
This is because when the HDDR treatment is performed after hydrogen pulverization, the surface irregularities of the magnet powder are reduced to a smooth surface, and the thermal stability is improved because the specific surface area is reduced.

水素吸収希土類磁石合金原料を製造するに際して、希土類磁石合金原料を水素吸収処理後に平均粉末粒径:10〜1000μm(一層好ましくは、50〜400μm)の範囲に粉砕する理由は、水素吸収処理した塊状の希土類磁石合金原料は比較的酸化され難いが、平均粒径:10μm未満に微細に粉砕しようとすると、微細であるために粉砕時に酸化されることは避けられず、この酸化により最終的に得られる希土類磁石粉末の保磁力は低下するので好ましくなく、一方、平均粒径:1000μmよりも大きいと、最終的に解砕して得られる希土類磁石粉末の1つの粉末粒子内の磁化容易軸が揃いにくくなって、磁気異方性が低下するので好ましくないことによるものである。水素吸収処希土類磁石合金原料粉末の平均粒径は最終的に得られる希土類磁石粉末とほぼ同じ平均粒径である。   The reason for pulverizing the rare earth magnet alloy raw material to the range of the average powder particle size: 10 to 1000 μm (more preferably 50 to 400 μm) after the hydrogen absorption treatment in producing the hydrogen absorbing rare earth magnet alloy raw material The rare earth magnet alloy raw material is relatively difficult to oxidize, but if it is intended to be finely pulverized to an average particle size of less than 10 μm, it is inevitable that it will be oxidized at the time of pulverization because it is fine. Since the coercive force of the rare earth magnet powder to be obtained is lowered, it is not preferable. On the other hand, when the average particle size is larger than 1000 μm, the easy magnetization axes in one powder particle of the rare earth magnet powder finally obtained by crushing are aligned. This is because it becomes difficult and magnetic anisotropy decreases, which is not preferable. The average particle diameter of the hydrogen-absorbing rare earth magnet alloy raw material powder is almost the same as that of the finally obtained rare earth magnet powder.

この水素吸収希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕すると、磁気異方性および熱的安定性に一層優れた希土類磁石粉末が得られるのである。   To this hydrogen-absorbing rare earth magnet alloy raw material powder, 0.01 to 5 mol of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm is added. % To prepare a hydrogen-containing raw material mixed powder, and this hydrogen-containing raw material mixed powder is heated to a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa and held. The hydrogen-containing raw material mixed powder is further subjected to hydrogen absorption / decomposition treatment for absorbing and decomposing hydrogen, and then maintained in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less. When a dehydrogenation treatment is performed to forcibly release hydrogen to promote phase transformation, followed by cooling and pulverization, a rare earth magnet powder with better magnetic anisotropy and thermal stability can be obtained. That.

この水素吸収希土類磁石合金原料粉末に、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を添加し混合して得られた水素含有原料混合粉末をさらに水素吸収・分解処理し、ついで脱水素処理を行うと、磁気異方性および熱的安定性に一層優れた希土類磁石粉末が得られるが、その理由は、以下の通りである。   A hydrogen-containing raw material mixed powder obtained by adding and mixing Dy hydride powder, Tb hydride powder, or Dy-Tb binary alloy hydride powder to the hydrogen-absorbing rare earth magnet alloy raw material powder is further mixed with hydrogen. When the absorption / decomposition treatment is performed and then the dehydrogenation treatment is performed, a rare earth magnet powder having more excellent magnetic anisotropy and thermal stability can be obtained for the following reason.

最近の研究では、HDDR処理による希土類磁石粉末の異方性化は水素吸収・分解処理の段階の反応が重要であることが明らかになってきている。その一方で、熱的安定性向上のために保磁力を向上させようとDyまたはTbの1種または2種を希土類磁石合金中の多量に添加すると、文献(特開平9−165601号公報)にあるように異方性が低下してしまい、十分なエネルギー積を得ることができない。この原因は、希土類磁石合金中にDyまたはTbの1種または2種が多量に含まれていると、前述の水素吸収・分解処理の反応が影響を受け、水素吸収・分解反応によって形成される状態が異方性化条件を満足しない状態になるためではないかと思われる。   Recent research has revealed that the reaction at the stage of hydrogen absorption / decomposition is important for anisotropy of rare earth magnet powder by HDDR treatment. On the other hand, if one or two of Dy or Tb is added in a large amount in the rare earth magnet alloy so as to improve the coercive force in order to improve the thermal stability, the literature (Japanese Patent Laid-Open No. 9-165601) discloses. As is the case, the anisotropy decreases, and a sufficient energy product cannot be obtained. This is because when the rare earth magnet alloy contains one or two of Dy or Tb in a large amount, the reaction of the hydrogen absorption / decomposition treatment described above is affected, and it is formed by the hydrogen absorption / decomposition reaction. It seems that this is because the state does not satisfy the anisotropy condition.

しかし、本発明のように水素吸収処理した希土類磁石合金原料粉末に、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を添加し混合して得られた水素含有原料混合粉末をさらに水素吸収・分解処理を施すと、そのときの分解反応は、希土類磁石合金からは希土類元素の水素化物が形成されて残りがFeまたは(Fe,Co)と、FeBを基本とする相に分解される方向に進むため、同じ希土類元素であるDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末はこの分解反応に携わることがなく、そのために希土類磁石合金原料粉末だけが分解され、希土類磁石合金中にDyまたはTbの1種または2種を多量に添加したときのように水素吸収・分解反応によって形成される状態が異方性化条件を満足しない状態にならない。 However, it was obtained by adding and mixing Dy hydride powder, Tb hydride powder or hydride powder of Dy-Tb binary alloy to the rare earth magnet alloy raw material powder treated with hydrogen absorption as in the present invention. When the hydrogen-containing raw material mixed powder is further subjected to hydrogen absorption / decomposition treatment, the decomposition reaction at that time is caused by formation of rare earth element hydride from the rare earth magnet alloy, and the remainder is Fe or (Fe, Co), Fe 2. The same rare earth element Dy hydride powder, Tb hydride powder, or Dy-Tb binary alloy hydride powder is involved in this decomposition reaction in order to proceed in the direction of decomposition into B-based phases. Therefore, only the rare earth magnet alloy raw material powder is decomposed and formed by hydrogen absorption / decomposition reaction as in the case where a large amount of one or two of Dy or Tb is added to the rare earth magnet alloy. State that is is not in a state that does not satisfy the anisotropic conditions.

ついで、この状態から脱水素処理を行うと、希土類磁石合金原料粉末中に分解したR水素化物、Feまたは(Fe,Co)およびFeBを基本とする相が反応してRFe14Bを基本とする相が形成されるだけでなく、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末も水素を放出することによってDyまたはTbの1種または2種の原子が希土類磁石合金原料粉末の表面全体に拡散し、引き続いて希土類磁石合金原料粉末の内部に向って拡散するため、最終的に形成されるRFe14Bを基本とする相は元の希土類磁石合金原料粉末に比べてDyまたはTbの1種または2種の含有量が多くなり、かつ粉末粒子内の表面付近のDyまたはTbの1種または2種の含有量が粉末粒子内の中心付近よりも多くなり、その結果、保磁力が向上し、かつ保磁力の温度係数が低減するため、熱的安定性が向上する。一方、水素吸収・分解反応の段階で異方性化条件を満足する状態になっているため、脱水素によって異方性化が実際に起こって、その結果、保磁力が大きく、かつ異方性に優れた希土類磁石粉末がえられる、と考えられる。 Next, when dehydrogenation is performed from this state, a phase based on R hydride, Fe or (Fe, Co) and Fe 2 B decomposed in the rare earth magnet alloy raw material powder reacts to produce R 2 Fe 14 B In addition, a Dy hydride powder, a Tb hydride powder or a hydride powder of a Dy-Tb binary alloy also releases one of Dy or Tb by releasing hydrogen. Since the two types of atoms diffuse throughout the surface of the rare earth magnet alloy raw material powder and subsequently diffuse toward the inside of the rare earth magnet alloy raw material powder, the phase based on R 2 Fe 14 B finally formed is Compared to the original rare earth magnet alloy raw material powder, the content of one or two kinds of Dy or Tb is increased, and the content of one or two kinds of Dy or Tb in the vicinity of the surface in the powder particles is contained in the powder particles. Heart of As a result, the coercive force is improved and the temperature coefficient of the coercive force is reduced, so that the thermal stability is improved. On the other hand, since the condition for anisotropy is satisfied at the stage of hydrogen absorption / decomposition reaction, anisotropy actually occurs by dehydrogenation, resulting in a large coercive force and anisotropy. It is considered that a rare earth magnet powder excellent in the above can be obtained.

この発明では、この水素吸収希土類磁石合金原料粉末に、平均粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に、さらに加熱し、圧力:10〜1000kPaの水素ガス雰囲気中で温度:500〜1000℃の範囲内の所定の温度に保持する水素吸収・分解処理を施すものであり、この水素吸収・分解処理により原料に水素を吸収させて相変態を促し分解する。   In the present invention, the hydrogen-absorbing rare earth magnet alloy raw material powder is supplied with Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder having an average particle size of 0.1 to 50 μm. A hydrogen-containing raw material mixed powder is prepared by adding and mixing 01 to 5 mol%, and the hydrogen-containing raw material mixed powder is further heated, and the pressure is within a range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment is performed to maintain the temperature at a predetermined temperature, and hydrogen is absorbed into the raw material by this hydrogen absorption / decomposition treatment to promote phase transformation and decomposition.

水素含有原料混合粉末を作製するために水素吸収希土類磁石合金原料粉に添加するDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末の平均粒径を0.1〜50μmに限定した理由は、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末の平均粒径が0.1μm未満では酸化が激しくなり、取り扱いが非常に困難になるので好ましくなく、一方、平均粒径が50μmを越えると希土類磁石粉末中にDy、TbまたはDy−Tb二元系合金の相またはこれら元素が過多の化合物相が偏析してしまい、均一に拡散することができないので、これら水素化物粉末の平均粒径は0.1〜50μm(一層好ましくは1〜10μm)に定めた。また、その添加量を0.01〜5モル%に限定した理由は0.01モル%未満では保磁力改善の効果が十分でなく、一方、5モル%を越えて添加すると異方性が低下して十分な磁気特性が得られないので好ましくない。したがって、Dyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末の添加量は0.01〜5モル%(一層好ましくは、0.3〜3モル%)に定めた。   The average particle size of the Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder added to the hydrogen-absorbing rare earth magnet alloy raw material powder in order to produce the hydrogen-containing raw material mixed powder is 0.00. The reason for limiting to 1-50 μm is that if the average particle size of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder is less than 0.1 μm, the oxidation becomes severe and handling is very On the other hand, if the average particle diameter exceeds 50 μm, the phase of Dy, Tb or Dy-Tb binary alloy or the compound phase containing excessive amounts of these elements segregates in the rare earth magnet powder. Since they cannot diffuse uniformly, the average particle size of these hydride powders was set to 0.1 to 50 μm (more preferably 1 to 10 μm). Moreover, the reason for limiting the amount of addition to 0.01 to 5 mol% is that if it is less than 0.01 mol%, the effect of improving the coercive force is not sufficient, while if it exceeds 5 mol%, the anisotropy decreases. Therefore, it is not preferable because sufficient magnetic properties cannot be obtained. Therefore, the addition amount of the hydride powder of Dy, the hydride powder of Tb or the hydride powder of the Dy-Tb binary alloy is 0.01 to 5 mol% (more preferably 0.3 to 3 mol%). Determined.

水素吸収・分解処理工程における圧力:10〜1000kPaの水素ガス雰囲気中で温度:500〜1000℃の範囲内の所定の温度に保持する条件はすでに知られている条件であり、特に新規な条件ではないのでその限定理由の説明は省略する。   The pressure in the hydrogen absorption / decomposition treatment step: The condition of maintaining a predetermined temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere of 10 to 1000 kPa is a known condition. The explanation of the reason for limitation is omitted.

かかる水素吸収・分解処理したのち、必要に応じて中間熱処理を施す。この中間熱処理は、不活性ガスフローにより雰囲気を不活性ガス雰囲気に変えることにより適度なスピードで異方性化を促進させる工程である。この中間熱処理は圧力:10〜1000kPaの不活性ガス雰囲気中で温度:500〜1000℃の範囲内の所定の温度に保持する条件で行なわれる。かかる中間熱処理における不活性ガス雰囲気の圧力が10kPa未満では異方性化が速くなりすぎて保磁力低下の原因になるので好ましくなく、一方、1000kPaを越えると異方性化がほとんど進まなくなり、残留磁束密度低下の原因になるので好ましくないとされている。   After such hydrogen absorption / decomposition treatment, intermediate heat treatment is performed as necessary. This intermediate heat treatment is a step of promoting anisotropy at an appropriate speed by changing the atmosphere to an inert gas atmosphere by an inert gas flow. This intermediate heat treatment is performed under a condition of maintaining a predetermined temperature within a temperature range of 500 to 1000 ° C. in an inert gas atmosphere at a pressure of 10 to 1000 kPa. If the pressure of the inert gas atmosphere in the intermediate heat treatment is less than 10 kPa, the anisotropy becomes too fast and causes a decrease in the coercive force. On the other hand, if it exceeds 1000 kPa, the anisotropy hardly progresses and the residual This is not preferable because it causes a decrease in magnetic flux density.

必要に応じて中間熱処理を施したのち、さらに必要に応じて減圧水素中熱処理を施す。この減圧水素中熱処理は、水素吸収・分解処理した水素含有原料混合粉末を絶対圧:0.65〜10kPa未満(好ましくは、2〜8kPa)の水素雰囲気中または水素分圧:0.65〜10kPa未満(好ましくは、2〜8kPa)の水素と不活性ガスとの混合ガス雰囲気中に保持することにより水素含有原料混合粉末に水素を一部残したまま熱処理する工程である。この減圧水素中熱処理を施すことにより保磁力および残留磁束密度を一層向上させることができる。   After performing an intermediate heat treatment as necessary, a heat treatment in reduced-pressure hydrogen is further performed as necessary. This heat treatment in hydrogen under reduced pressure is performed by using a hydrogen-containing raw material mixed powder subjected to hydrogen absorption / decomposition treatment in a hydrogen atmosphere at an absolute pressure of less than 0.65 to 10 kPa (preferably 2 to 8 kPa) or a hydrogen partial pressure of 0.65 to 10 kPa. This is a step of heat-treating the hydrogen-containing raw material mixed powder while leaving a part of the hydrogen in the mixed gas atmosphere of less than (preferably 2 to 8 kPa) hydrogen and an inert gas. By performing the heat treatment in hydrogen under reduced pressure, the coercive force and the residual magnetic flux density can be further improved.

必要に応じて中間熱処理および減圧水素中熱処理を施したのち脱水素処理を行う。脱水素処理は到達圧:0.13kPa以下の真空雰囲気に保持することにより水素含有原料混合粉末から強制的に水素を十分放出させ、それにより一層の相変態を促す処理である。到達圧:0.13kPa以下の真空雰囲気に保持する理由は、0.13kPaを越える到達圧では十分に脱水素が行われないからである。   If necessary, dehydrogenation is performed after intermediate heat treatment and heat treatment in hydrogen under reduced pressure. The dehydrogenation treatment is a treatment that forcibly releases hydrogen from the hydrogen-containing raw material mixed powder by maintaining a vacuum atmosphere at an ultimate pressure of 0.13 kPa or less, thereby promoting further phase transformation. The ultimate pressure is maintained in a vacuum atmosphere of 0.13 kPa or less because dehydrogenation is not sufficiently performed at an ultimate pressure exceeding 0.13 kPa.

この脱水素処理後に行なう冷却は不活性ガス(Arガス)を流すことにより室温まで冷却する。冷却した後は解砕して希土類磁石粉末とする。この解砕して得られた希土類磁石粉末は残留内部応力が極めて少ないので熱処理する必要はない。この発明の製造方法により得られた磁気異方性および熱的安定性に一層優れた希土類磁石粉末は、有機バインダーまたは金属バインダーにより結合することにより磁気異方性および熱的安定性に優れた希土類磁石を製造することができ、さらにこの希土類磁石粉末を成形して圧粉体を作製し、この圧粉体を温度:600〜900℃でホットプレスまたは熱間静水圧プレスすることにより磁気異方性および熱的安定性に優れた希土類磁石を製造することが出来る。
前記(7)、(8)、(9)、(10)、(11)、(12)、(13)、(14)、(15)または(16)記載の磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法で使用される希土類磁石合金原料はDyまたはTbの1種または2種が含まれていても、含まれていなくても良い。したがって、この発明の磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法で使用される希土類磁石合金原料は、特許文献1および2に記載の通常の磁気異方性HDDR磁石粉末を製造する際に使用する希土類磁石合金原料と同じ成分組成を有し、一層具体的には、DyまたはTbの1種または2種が含まれていても含まれていなくても良いYを含む希土類元素をR´とすると、
R´:10〜20%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
R´:10〜20%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
R´:10〜20%、Co:0.1〜50%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、または
R´:10〜20%、Co:0.1〜50%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料である。
The cooling performed after the dehydrogenation is performed by flowing an inert gas (Ar gas) to room temperature. After cooling, it is crushed into rare earth magnet powder. The rare earth magnet powder obtained by pulverization has very little residual internal stress, so that it does not need to be heat-treated. The rare earth magnet powder having a further excellent magnetic anisotropy and thermal stability obtained by the production method of the present invention is a rare earth magnet having excellent magnetic anisotropy and thermal stability by being bonded with an organic binder or a metal binder. A magnet can be manufactured, and further, this rare earth magnet powder is molded to produce a green compact, and the green compact is magnetically anisotropic by hot pressing or hot isostatic pressing at a temperature of 600 to 900 ° C. Rare earth magnets excellent in heat resistance and thermal stability can be manufactured.
Magnetic anisotropy and thermal stability according to (7), (8), (9), (10), (11), (12), (13), (14), (15) or (16) The rare earth magnet alloy raw material used in the method for producing a rare earth magnet powder having excellent properties may or may not contain one or two of Dy or Tb. Therefore, the rare earth magnet alloy raw material used in the method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability according to the present invention is the ordinary magnetic anisotropic HDDR magnet powder described in Patent Documents 1 and 2. It has the same component composition as the rare earth magnet alloy raw material used in manufacturing, and more specifically includes Y which may or may not be included in one or two of Dy or Tb. If the rare earth element is R ′,
R ′: 10 to 20%, B: 3 to 20%, rare earth magnet alloy raw material having a component composition with the balance consisting of Fe and inevitable impurities,
R ′: 10 to 20%, B: 3 to 20%, M: 0.001 to 5%, a rare earth magnet alloy raw material having a component composition consisting of Fe and inevitable impurities,
R ′: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, rare earth magnet alloy raw material having a component composition consisting of Fe and inevitable impurities, or R ′: 10 It is a rare earth magnet alloy raw material containing 20%, Co: 0.1 to 50%, B: 3 to 20%, M: 0.001 to 5%, and the balance being composed of Fe and inevitable impurities.

高周波真空溶解炉を用いて溶解し、得られた溶湯を鋳造してこれを1100℃のArガス雰囲気中で24時間保持することにより均質化処理を行い、表1に示される成分組成の希土類磁石合金原料の鋳塊a〜oを製造した。これら鋳塊a〜oをArガス雰囲気中で破砕して10mm以下のブロックを作製した。   A rare earth magnet having the component composition shown in Table 1 is melted using a high-frequency vacuum melting furnace, homogenized by casting the obtained molten metal and holding it in an Ar gas atmosphere at 1100 ° C. for 24 hours. Ingots a to o of alloy raw materials were manufactured. These ingots a to o were crushed in an Ar gas atmosphere to produce blocks of 10 mm or less.

Figure 0004482861
実施例1
表1の鋳塊a〜eのブロックをArガス雰囲気中で表2に示される平均粒径になるように粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、いずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表2に示される量だけ添加し混合して混合粉末を作製し、この混合粉末に表2に示される条件で水素吸収処理を施し、引き続いて表2に示される条件で水素吸収・分解処理を施し、引き続いて必要に応じて表2に示される条件で中間熱処理を行い、さらに必要に応じて表2に示される条件で減圧水素中熱処理を行い、次いで表3に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより本発明法1〜5を実施した。
従来例1
表1の鋳塊a〜eのブロックを粉砕処理することなくまた水素化物粉末を添加して混合粉末を作ることなく表2に示される実施例1と同じ条件で水素吸収処理を施したのち、表2に示される実施例1と同じ条件で水素吸収・分解処理を施し、引き続いて必要に応じて表2に示される条件で減圧水素中熱処理を行った後、Arガス中で強制的に室温まで冷却し、表3に示される平均粒径になるように粉砕処理して希土類磁石原料水素化物粉末を作製したのち、この希土類磁石原料水素化物粉末にいずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表3に示される量だけ添加し混合して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に真空中で昇温して表3に示される条件に保持して拡散熱処理を施し、さらに表3に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して従来法1〜5を実施することにより希土類磁石粉末を製造した。
Figure 0004482861
Example 1
The blocks of the ingots a to e in Table 1 are pulverized in an Ar gas atmosphere so as to have an average particle size shown in Table 2 to produce a rare earth magnet alloy raw material powder. The average particle size: 5 μm Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder was added in the amount shown in Table 2 and mixed to produce a mixed powder. The mixed powder is subjected to hydrogen absorption treatment under the conditions shown in Table 2, followed by hydrogen absorption / decomposition treatment under the conditions shown in Table 2, and subsequently subjected to intermediate heat treatment under the conditions shown in Table 2 as necessary. Further, if necessary, heat treatment in hydrogen under reduced pressure is performed under the conditions shown in Table 2, followed by dehydrogenation treatment under the conditions shown in Table 3, and then forcedly cooled to room temperature with Ar gas to 300 μm or less. Crush to produce rare earth magnet powder The present invention methods 1 to 5 were carried out.
Conventional example 1
After subjecting the blocks of ingots a to e in Table 1 to hydrogen absorption treatment under the same conditions as in Example 1 shown in Table 2 without pulverizing treatment and without adding hydride powder to make mixed powder, A hydrogen absorption / decomposition treatment was performed under the same conditions as in Example 1 shown in Table 2, followed by a heat treatment in reduced-pressure hydrogen under the conditions shown in Table 2 as necessary, and then forcibly at room temperature in Ar gas. The rare earth magnet raw material hydride powder was prepared by cooling to a mean particle size as shown in Table 3 and producing a rare earth magnet raw material hydride powder. Hydrogenated powder, Tb hydride powder or Dy-Tb binary alloy hydride powder is added in the amount shown in Table 3 and mixed to produce a hydrogen-containing raw material mixed powder. As shown in Table 3 After carrying out diffusion heat treatment while maintaining the conditions, and further performing dehydrogenation treatment under the conditions shown in Table 3, it was forcibly cooled to room temperature with Ar gas and crushed to 300 μm or less. Rare earth magnet powder was manufactured by carrying out.

本発明法1〜5および従来法1〜5により得られた希土類磁石粉末をフェノール樹脂に埋め込み、鏡面に研磨して波長分散型X線分光計の一つである電子線マイクロアナライザ(日本電子製 JXA−8800RL、以下、EPMAという)により分析した中心付近と表面付近のDyおよび/またはTbの検出強度およびその強度比を測定することにより、Dy−Tbリッチ層の表面からの深さおよび表面被覆率の値を求め、その結果を表4に示した。   Electron beam microanalyzer (manufactured by JEOL Ltd.) which is one of wavelength dispersive X-ray spectrometers by embedding rare earth magnet powders obtained by the present invention methods 1 to 5 and conventional methods 1 to 5 in a phenol resin and polishing the mirror surface. The depth and surface coating of the Dy-Tb rich layer from the surface by measuring the detected intensity of Dy and / or Tb near the center and the surface analyzed by JXA-8800RL (hereinafter referred to as EPMA) and the intensity ratio thereof The rate value was determined and the results are shown in Table 4.

さらに、本発明法1〜5および従来法1〜5により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場中で圧縮成形して圧粉体を作製し、この圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3のボンド磁石を作製し、得られたボンド磁石の磁気特性を表5に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表5に示した。ここで保磁力の温度係数αiHcとは、αiHc(%/℃)={(150℃の保磁力‐室温(20℃)の保磁力)/室温(20℃)の保磁力}/(150−20)×100で求められる値である。 Further, the rare earth magnet powders obtained by the present invention methods 1 to 5 and the conventional methods 1 to 5 were each mixed with 3% by mass of an epoxy resin, kneaded, and compression-molded in a magnetic field of 1.6 MA / m. The green compact was heat-cured in an oven at 150 ° C. for 2 hours to produce a bonded magnet having a density of 6.0 to 6.1 g / cm 3 , and the magnetic properties of the obtained bonded magnet were measured. Table 5 shows. Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 5. Here, the temperature coefficient α iHc of coercive force is α iHc (% / ° C.) = {( Coercivity at 150 ° C.−coercivity at room temperature (20 ° C.)) / Coercivity at room temperature (20 ° C.)} / (150 −20) A value obtained by × 100.

さらに、本発明法1〜5および従来法1〜5により得られた希土類磁石粉末を磁場中で圧縮成形して異方性圧粉体を作製し、この異方性圧粉体をホットプレス装置にセットし、磁場の印加方向が圧縮方向になるようにArガス中、温度:750℃、圧力:58.8MPa 、1分間保持の条件でホットプレスを行い、急冷して密度:7.5〜7.7g/cm3 のホットプレス磁石を作製し、得られたホットプレス磁石の磁気特性を表5に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表5に示した。 Further, the rare earth magnet powders obtained by the present invention methods 1 to 5 and the conventional methods 1 to 5 are compression molded in a magnetic field to produce an anisotropic green compact, and this anisotropic green compact is hot-pressed. In Ar gas, temperature: 750 ° C., pressure: 58.8 MPa so that the direction of magnetic field application is the compression direction Hot pressing was performed under the condition of holding for 1 minute, followed by rapid cooling to produce a hot pressed magnet having a density of 7.5 to 7.7 g / cm 3. Table 5 shows the magnetic characteristics of the obtained hot pressed magnet. . Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 5.

また、本発明法1〜5および従来法1〜5により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場を圧縮方向に印加しながら外径:10mm、高さ:7mmの寸法を有する円柱状に圧縮成形し、ついでこの円柱状圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3の円柱状ボンド磁石を作製し、得られたボンド磁石を70kOeのパルス磁界で着磁したのち、100℃に保持したオーブンに1000時間放置して3時間、100時間、1000時間経過後の熱減磁率を測定し、その結果を表5に示して熱的安定性を評価した。 Further, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention methods 1 to 5 and the conventional methods 1 to 5, and the outside was applied while applying a magnetic field of 1.6 MA / m in the compression direction. It is compression-molded into a cylindrical shape having a size of 10 mm in diameter and 7 mm in height, and then this cylindrical green compact is thermoset in an oven at 150 ° C. for 2 hours to obtain a density of 6.0 to 6.1 g / cm. 3 cylindrical bonded magnets were produced, and the obtained bonded magnets were magnetized with a pulse magnetic field of 70 kOe, and then left in an oven maintained at 100 ° C. for 1000 hours for 3 hours, 100 hours, and heat after 1000 hours. The demagnetization factor was measured, and the results are shown in Table 5 to evaluate the thermal stability.

ここで、熱減磁率とは、熱減磁率(%)={(所定時間暴露後の全磁束−暴露前の全磁束)/暴露前の全磁束}×100で求められる値である。   Here, the thermal demagnetization factor is a value obtained by the following equation: thermal demagnetization factor (%) = {(total magnetic flux after exposure for a predetermined time−total magnetic flux before exposure) / total magnetic flux before exposure} × 100.

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
表1〜表5に示される結果から、Arガス雰囲気中で粉砕処理し、これに水素化物粉末を添加して混合粉末を作る本発明法1〜5により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性は、粉砕処理せずまた水素化物を添加しない従来法1〜5により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性に比べて、保磁力および残留磁束密度がともに向上していることが分かり、また保磁力の温度係数が小さく、さらに熱減磁率が小さいところから、熱的安定性にも優れていることが分かる。
Figure 0004482861
From the results shown in Tables 1 to 5, the bond made of the rare earth magnet powder obtained by the present invention methods 1 to 5 which was pulverized in an Ar gas atmosphere and added with hydride powder to make a mixed powder. The magnetic properties of magnets and hot-pressed magnets are compared with the magnetic properties of bonded magnets and hot-pressed magnets made from rare earth magnet powders obtained by conventional methods 1 to 5 that are not pulverized and do not add hydride. It can be seen that both the residual magnetic flux density is improved and that the temperature coefficient of the coercive force is small and the thermal demagnetization factor is small, so that the thermal stability is also excellent.

この発明の検出強度およびその強度比を測定することにより、Dy−Tbリッチ層の表面からの深さおよび表面被覆率の値の求め方を本発明法1により得られた希土類磁石粉末を用いて詳細に説明する。   By using the rare earth magnet powder obtained by Method 1 of the present invention, the value of the depth from the surface of the Dy-Tb rich layer and the surface coverage ratio are determined by measuring the detected intensity and the intensity ratio of the present invention. This will be described in detail.

まず、本発明法1により得られた希土類磁石粉末をフェノール樹脂に埋め込み、鏡面に研磨してEPMAにより粉末内部断面におけるDyの元素分布を観察した。その際に撮影したDyの元素分布写真を図1に示す。輝点が多い所ほどDyの含有量が多いことを示しており、断面外周付近に輝点が多いことから粉末粒子内の表面付近の方が中心付近よりもDyの含有量が多いことが示されている。そこでEPMAで図1の点Aから点Bへの直線上におけるDyの線分析を行った。この時の測定条件は、加速電圧15kV、電子ビーム径最小、保持時間1.0sec/point、測定間隔1.0μmとして、Dyの特性X線・DyLα線(波長0.1909nm)を用いて測定を行った。その結果を図2に示す。グラフの横軸は試料の移動距離(mm)を示し、縦軸はDyLα線の検出強度をカウント数で示している。0.01mm付近から0.135mm付近までの粉末粒子に相当する部分で800counts以上のDyLα線が検出されているが、特に0.01mm付近のピーク(以後ピークAとする)が1440counts、0.135mm付近のピーク(以後ピークBとする)が1380countsと両端で強いピークが見られ、粉末粒子内の表面付近のDyの含有量が中心付近よりも多いことが分かる。そこで中心付近の強度を粉末粒径の1/3に相当する0.051mmから0.093mmの間の平均強度として求めると811countsとなった。従って、ピークAの中心付近に対する強度比は1.78、ピークBは1.70で1.2よりも十分大きな値であることがわかった。また、試料の向きを変えて同様の線分析を10回行ったところ、19ヶ所の表面付近の検出強度が中心付近の1.2倍以上となり、これより表面を覆うDyの含有量の多い領域の割合を95%とした。次にピークAを中心に保持時間1.0sec、測定間隔20nmとできるだけ細かい間隔で線分析を行った。その結果を図3に示す。中心付近の検出強度に対して十分有意性があると思われる1.2倍(973counts)以上の領域をピークAの領域としてその幅を求めると4.1μmとなった。   First, the rare earth magnet powder obtained by the method 1 of the present invention was embedded in a phenol resin, polished on a mirror surface, and the element distribution of Dy in the internal cross section of the powder was observed by EPMA. An elemental distribution photograph of Dy taken at that time is shown in FIG. The more bright spots, the higher the Dy content. The more bright spots near the outer periphery of the cross section, the higher the Dy content near the surface of the powder particles than the center. Has been. Therefore, a line analysis of Dy on a straight line from point A to point B in FIG. The measurement conditions at this time are an acceleration voltage of 15 kV, a minimum electron beam diameter, a holding time of 1.0 sec / point, a measurement interval of 1.0 μm, and measurement using Dy characteristic X-rays / DyLα rays (wavelength: 0.1909 nm). went. The result is shown in FIG. The horizontal axis of the graph indicates the moving distance (mm) of the sample, and the vertical axis indicates the detection intensity of the DyLα ray in terms of the number of counts. DyLα rays of 800 counts or more are detected in portions corresponding to powder particles from about 0.01 mm to about 0.135 mm, and in particular, a peak near 0.01 mm (hereinafter referred to as peak A) is 1440 counts, 0.135 mm. A peak near the peak (hereinafter referred to as peak B) is 1380counts, and strong peaks are observed at both ends, and it can be seen that the content of Dy near the surface in the powder particles is larger than that near the center. Accordingly, when the strength near the center was determined as an average strength between 0.051 mm and 0.093 mm corresponding to 1/3 of the powder particle size, it was 811counts. Therefore, it was found that the intensity ratio of the peak A to the vicinity of the center was 1.78, and the peak B was 1.70, which was sufficiently larger than 1.2. In addition, when the same line analysis was performed 10 times while changing the direction of the sample, the detected intensity near the surface of 19 locations was 1.2 times or more that near the center, and a region with a higher Dy content covering the surface than this The ratio was 95%. Next, a line analysis was performed with the retention time of 1.0 sec and the measurement interval of 20 nm as fine as possible centering on the peak A. The result is shown in FIG. When the area of 1.2 times (973counts) or more, which seems to be sufficiently significant for the detection intensity near the center, was determined as the peak A area, the width was 4.1 μm.

従来法1の磁石粉末についても同様にEPMAで分析を行った。1.0μm間隔の線分析の結果を図4に示す。中心付近のDyLα線の平均検出強度は1176countsとなり、表面付近の強度は0.02mm付近(以後ピークCとする)で1360countsであり、中心付近の1.2倍の1411countsに達しない。また、20nm間隔の線分析の結果を図5に示す。ピークCの強度は20nm間隔の測定により実際には1180countsと中心付近と変わらず、表面付近と中心付近のDyの含有量にはほとんど差がないことが分かった。   The magnetic powder of the conventional method 1 was similarly analyzed by EPMA. The results of line analysis at 1.0 μm intervals are shown in FIG. The average detected intensity of the DyLα ray near the center is 1176 counts, the intensity near the surface is 1360 counts near 0.02 mm (hereinafter referred to as peak C), and does not reach 1411 counts, which is 1.2 times the center. Moreover, the result of the line analysis of a 20 nm space | interval is shown in FIG. It was found that the intensity of peak C was not changed from 1180counts near the center by measurement at intervals of 20 nm, and there was almost no difference in the Dy content near the surface and near the center.

同様にして本発明法2〜5および従来法2〜5により作製した希土類磁石粉末についてEPMAにより分析した中心付近と表面付近のDy+Tbの検出強度、その強度比、Dy−Tbリッチ層の厚さ、Dy−Tbリッチ層の表面被覆率の値を求めたのであり、以下に述べる実施例2〜6の本発明法6〜30および従来法6〜30により作製した希土類磁石粉末についても同様にして求めた。
実施例2
表1の鋳塊f〜jのブロックを表6に示される平均粒径になるようにArガス雰囲気中で粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、いずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表6に示される量だけ添加し混合して混合粉末を作製し、この混合粉末に表6に示される条件で水素吸収処理を施し、引き続いて表6に示される条件で水素吸収・分解処理を施し、引き続いて必要に応じて表7に示される条件で中間熱処理を行い、さらに必要に応じて表7に示される条件で減圧水素中熱処理を行い、次いで表8に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより本発明法6〜10を実施した。
従来例2
表1の鋳塊f〜jのブロックを粉砕処理することなくまた水素化物粉末を添加して混合粉末を作ることなく表6に示される実施例2と同じ条件で水素吸収処理を施したのち表6に示される実施例2と同じ条件で水素吸収・分解処理を施し、引き続いて必要に応じて表7に示される条件で減圧水素中熱処理を行った後、Arガス中で強制的に室温まで冷却し、表8に示される平均粒径になるように粉砕処理して希土類磁石原料水素化物粉末を作製したのち、この希土類磁石原料水素化物粉末にいずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表8に示される量だけ添加し混合して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に真空中で昇温して表8に示される条件に保持して拡散熱処理を施し、さらに表8に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより従来法6〜10を実施した。
Similarly, the detected intensity of Dy + Tb near the center and near the surface analyzed by EPMA for the rare earth magnet powders produced by the present invention methods 2 to 5 and the conventional methods 2 to 5, the intensity ratio, the thickness of the Dy-Tb rich layer, The value of the surface coverage of the Dy-Tb rich layer was determined, and the rare earth magnet powders prepared by the inventive methods 6-30 and conventional methods 6-30 of Examples 2 to 6 described below were determined in the same manner. It was.
Example 2
The blocks of the ingots f to j in Table 1 were pulverized in an Ar gas atmosphere so as to have an average particle size shown in Table 6 to prepare a rare earth magnet alloy raw material powder. The average particle size: 5 μm Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder was added in the amount shown in Table 6 and mixed to produce a mixed powder. The mixed powder is subjected to hydrogen absorption treatment under the conditions shown in Table 6, subsequently subjected to hydrogen absorption / decomposition treatment under the conditions shown in Table 6, and subsequently subjected to intermediate heat treatment under the conditions shown in Table 7 as necessary. Further, if necessary, heat treatment in hydrogen under reduced pressure is performed under the conditions shown in Table 7, followed by dehydrogenation treatment under the conditions shown in Table 8, and then forcedly cooled to room temperature with Ar gas to 300 μm or less. Crush to produce rare earth magnet powder The present invention methods 6 to 10 were carried out.
Conventional example 2
A table after performing hydrogen absorption treatment under the same conditions as in Example 2 shown in Table 6 without pulverizing the blocks of ingots f to j in Table 1 and without adding hydride powder to make a mixed powder. 6 was subjected to hydrogen absorption / decomposition under the same conditions as in Example 2 and subsequently subjected to heat treatment in reduced-pressure hydrogen under the conditions shown in Table 7 as necessary, and then forcibly brought to room temperature in Ar gas. After cooling, the rare earth magnet raw material hydride powder was prepared by pulverizing to the average particle size shown in Table 8, and then all of the rare earth magnet raw material hydride powder had a Dy hydride having an average particle diameter of 5 μm. Powder, Tb hydride powder or hydride powder of Dy-Tb binary alloy is added in the amount shown in Table 8 and mixed to produce a hydrogen-containing raw material mixed powder. As shown in Table 8 After carrying out a diffusion heat treatment while maintaining the conditions, and further performing a dehydrogenation treatment under the conditions shown in Table 8, it is forcibly cooled to room temperature with Ar gas and crushed to 300 μm or less to produce a rare earth magnet powder. Thus, the conventional methods 6 to 10 were carried out.

本発明法6〜10および従来法6〜10により得られた希土類磁石粉末をフェノール樹脂に埋め込み、鏡面に研磨してEPMAにより分析した中心付近と表面付近のDyおよび/またはTbの検出強度およびその強度比を測定することにより、Dy−Tbリッチ層の表面からの深さおよび表面被覆率の値を求め、その結果を表9に示した。   The rare earth magnet powders obtained by the present invention methods 6 to 10 and the conventional methods 6 to 10 were embedded in a phenol resin, polished on a mirror surface and analyzed by EPMA, and the detected intensity of Dy and / or Tb near the center and near the surface and its By measuring the intensity ratio, the depth from the surface of the Dy-Tb rich layer and the value of the surface coverage were determined, and the results are shown in Table 9.

さらに、本発明法6〜10および従来法6〜10により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場中で圧縮成形して圧粉体を作製し、この圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3のボンド磁石を作製し、得られたボンド磁石の磁気特性を表10に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表10に示した。 Further, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention methods 6 to 10 and the conventional methods 6 to 10, and the mixture was compressed and molded in a magnetic field of 1.6 MA / m. The green compact was heat-cured in an oven at 150 ° C. for 2 hours to produce a bonded magnet having a density of 6.0 to 6.1 g / cm 3. The magnetic properties of the obtained bonded magnet were measured. Table 10 shows. Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 10.

また、本発明法6〜10および従来法6〜10により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場を圧縮方向に印加しながら外径:10mm、高さ:7mmの寸法を有する円柱状に圧縮成形し、ついでこの円柱状圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3の円柱状ボンド磁石を作製し、得られたボンド磁石を70kOeのパルス磁界で着磁したのち、100℃に保持したオーブンに1000時間放置して3時間、100時間、1000時間経過後の熱減磁率を測定し、その結果を表10に示して熱的安定性を評価した。 Further, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention methods 6 to 10 and the conventional methods 6 to 10 and kneaded, and while applying a magnetic field of 1.6 MA / m in the compression direction, It is compression-molded into a cylindrical shape having a size of 10 mm in diameter and 7 mm in height, and then this cylindrical green compact is thermoset in an oven at 150 ° C. for 2 hours to obtain a density of 6.0 to 6.1 g / cm. 3 cylindrical bonded magnets were produced, and the obtained bonded magnets were magnetized with a pulse magnetic field of 70 kOe, and then left in an oven maintained at 100 ° C. for 1000 hours for 3 hours, 100 hours, and heat after 1000 hours. The demagnetization factor was measured, and the results are shown in Table 10 to evaluate the thermal stability.

さらに、本発明法6〜10および従来法6〜10により得られた希土類磁石粉末を磁場中で圧縮成形して異方性圧粉体を作製し、この異方性圧粉体をホットプレス装置にセットし、磁場の印加方向が圧縮方向になるようにArガス中、温度:750℃、圧力:58.8MPa 、1分間保持の条件でホットプレスを行い、急冷して密度:7.5〜7.7g/cm3 のホットプレス磁石を作製し、得られたホットプレス磁石の磁気特性を表10に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表10に示した。 Further, the rare earth magnet powder obtained by the present invention methods 6 to 10 and the conventional methods 6 to 10 is compression molded in a magnetic field to produce an anisotropic green compact, and this anisotropic green compact is hot-pressed. In Ar gas, temperature: 750 ° C., pressure: 58.8 MPa so that the direction of magnetic field application is the compression direction Hot pressing was performed under the condition of holding for 1 minute, followed by rapid cooling to produce a hot pressed magnet having a density of 7.5 to 7.7 g / cm 3. Table 10 shows the magnetic characteristics of the obtained hot pressed magnet. . Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 10.

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
表1および表6〜表10に示される結果から、Arガス雰囲気中で粉砕処理し、これに水素化物粉末を添加して混合粉末を作る本発明法6〜10により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性は、粉砕処理せずまた水素化物を添加しない従来法6〜10により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性に比べて、保磁力および残留磁束密度がともに向上していることが分かる。また保磁力の温度係数が小さく、さらに熱減磁率が小さいところから、熱的安定性にも優れていることが分かる。
実施例3
表1の鋳塊k〜oのブロックを表11に示される平均粒径になるようにArガス雰囲気中で粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、いずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表11に示される量だけ添加し混合して混合粉末を作製し、この混合粉末に表11に示される条件で水素吸収処理を施し、引き続いて表11に示される条件で水素吸収・分解処理を施し、引き続いて必要に応じて表11に示される条件で中間熱処理を行い、さらに必要に応じて表11に示される条件で減圧水素中熱処理を行い、次いで表12に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより本発明法11〜15を実施した。
従来例3
表1の鋳塊k〜oのブロックを粉砕処理することなくまた水素化物粉末を添加して混合粉末を作ることなく表11に示される実施例3と同じ条件で水素吸収処理を施した後、表11に示される実施例3と同じ条件で水素吸収・分解処理を施し、引き続いて必要に応じて表11に示される条件で減圧水素中熱処理を行った後、Arガス中で強制的に室温まで冷却し、表12に示される平均粒径になるように粉砕処理して希土類磁石原料水素化物粉末を作製したのち、この希土類磁石原料水素化物粉末にいずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表12に示される量だけ添加し混合して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に真空中で昇温して表12に示される条件に保持して拡散熱処理を施し、さらに表12に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより従来法11〜15を実施した。
Figure 0004482861
From the results shown in Table 1 and Tables 6 to 10, the rare earth magnet powders obtained by the present invention methods 6 to 10 were pulverized in an Ar gas atmosphere and added with hydride powder to make a mixed powder. The magnetic properties of the produced bonded magnet and hot-pressed magnet are compared with the magnetic properties of the bonded magnet and hot-pressed magnet produced by the rare-earth magnet powder obtained by the conventional methods 6 to 10 which are not pulverized and do not add hydride. It can be seen that both the coercive force and the residual magnetic flux density are improved. Further, it can be seen that since the temperature coefficient of the coercive force is small and the thermal demagnetization factor is small, the thermal stability is also excellent.
Example 3
The blocks of the ingots k to o in Table 1 were pulverized in an Ar gas atmosphere so as to have an average particle size shown in Table 11 to produce a rare earth magnet alloy raw material powder. The average particle size: 5 μm Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder was added in the amount shown in Table 11 and mixed to produce a mixed powder. The mixed powder is subjected to hydrogen absorption treatment under the conditions shown in Table 11, subsequently subjected to hydrogen absorption / decomposition treatment under the conditions shown in Table 11, and subsequently subjected to intermediate heat treatment under the conditions shown in Table 11 as necessary. Further, if necessary, heat treatment in reduced-pressure hydrogen is performed under the conditions shown in Table 11, and then dehydrogenation treatment is performed under the conditions shown in Table 12, followed by forced cooling to room temperature with Ar gas to 300 μm or less. Crush to rare earth Inventive methods 11 to 15 were carried out by producing similar magnet powders.
Conventional example 3
After performing the hydrogen absorption treatment under the same conditions as in Example 3 shown in Table 11 without crushing the blocks of ingots k to o in Table 1 and without adding hydride powder to make a mixed powder, After performing hydrogen absorption / decomposition treatment under the same conditions as in Example 3 shown in Table 11 and subsequently performing heat treatment in hydrogen under reduced pressure under the conditions shown in Table 11 as necessary, it is forced to room temperature in Ar gas. The rare earth magnet raw material hydride powder was prepared by pulverizing to the average particle size shown in Table 12 to produce a rare earth magnet raw material hydride powder. Hydrogenated powder, Tb hydride powder or Dy-Tb binary alloy hydride powder is added in the amount shown in Table 12 and mixed to produce a hydrogen-containing raw material mixed powder. Raise the temperature in Table 1 After performing diffusion heat treatment under the conditions shown in FIG. 12 and further performing dehydrogenation treatment under the conditions shown in Table 12, it is forcibly cooled to room temperature with Ar gas, and pulverized to 300 μm or less. Conventional methods 11 to 15 were carried out by manufacturing

本発明法11〜15および従来法11〜15により得られた希土類磁石粉末をフェノール樹脂に埋め込み、鏡面に研磨してEPMAにより分析した中心付近と表面付近のDyおよび/またはTbの検出強度およびその強度比を測定することにより、Dy−Tbリッチ層の表面からの深さおよび表面被覆率の値を求め、その結果を表13に示した。   The rare earth magnet powders obtained by the present invention methods 11 to 15 and the conventional methods 11 to 15 were embedded in phenol resin, polished on a mirror surface and analyzed by EPMA, and the detected intensity of Dy and / or Tb near the center and near the surface and By measuring the intensity ratio, the depth from the surface of the Dy-Tb rich layer and the value of the surface coverage were determined. The results are shown in Table 13.

本発明法11〜15および従来法11〜15により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場中で圧縮成形して圧粉体を作製し、この圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3のボンド磁石を作製し、得られたボンド磁石の磁気特性を表14に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表14に示した。 The rare earth magnet powders obtained by the present invention methods 11 to 15 and the conventional methods 11 to 15 were each mixed with 3% by mass of an epoxy resin and kneaded and compression molded in a magnetic field of 1.6 MA / m to obtain a green compact. The green compact was heat-cured in an oven at 150 ° C. for 2 hours to produce a bonded magnet having a density of 6.0 to 6.1 g / cm 3. The magnetic properties of the obtained bonded magnet are shown in Table 14. It was shown to. Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 14.

また、本発明法11〜15および従来法11〜15により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場を圧縮方向に印加しながら外径:10mm、高さ:7mmの寸法を有する円柱状に圧縮成形し、ついでこの円柱状圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3の円柱状ボンド磁石を作製し、得られたボンド磁石を70kOeのパルス磁界で着磁したのち、100℃に保持したオーブンに1000時間放置して3時間、100時間、1000時間経過後の熱減磁率を測定し、その結果を表14に示して熱的安定性を評価した。 In addition, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention methods 11 to 15 and the conventional methods 11 to 15, and the outside was applied while applying a magnetic field of 1.6 MA / m in the compression direction. It is compression-molded into a cylindrical shape having a size of 10 mm in diameter and 7 mm in height, and then this cylindrical green compact is thermoset in an oven at 150 ° C. for 2 hours to obtain a density of 6.0 to 6.1 g / cm. 3 cylindrical bonded magnets were produced, and the obtained bonded magnets were magnetized with a pulse magnetic field of 70 kOe, and then left in an oven maintained at 100 ° C. for 1000 hours for 3 hours, 100 hours, and heat after 1000 hours. The demagnetization factor was measured, and the results are shown in Table 14 to evaluate the thermal stability.

さらに、本発明法11〜15および従来法11〜15により得られた希土類磁石粉末を磁場中で異方性圧粉体を作製し、この異方性圧粉体をホットプレス装置にセットし、磁場の印加方向が圧縮方向になるようにArガス中、温度:750℃、圧力:58.8MPa 、1分間保持の条件でホットプレスを行い、急冷して密度:7.5〜7.7g/cm3 のホットプレス磁石を作製し、得られたホットプレス磁石の磁気特性を表14に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表14に示した。 Further, the rare earth magnet powder obtained by the present invention methods 11 to 15 and the conventional methods 11 to 15 is produced in an anisotropic magnetic powder in a magnetic field, and the anisotropic green compact is set in a hot press apparatus. In Ar gas, temperature: 750 ° C., pressure: 58.8 MPa so that the direction of magnetic field application is the compression direction Hot pressing was performed under the condition of holding for 1 minute, followed by rapid cooling to produce a hot pressed magnet having a density of 7.5 to 7.7 g / cm 3. Table 14 shows the magnetic characteristics of the obtained hot pressed magnet. . Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 14.

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
表1および表11〜表14に示される結果から、Arガス雰囲気中で粉砕処理し、これに水素化物粉末を添加して混合粉末を作る本発明法11〜15により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性は、粉砕処理せずまた水素化物を添加しない従来法11〜15により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性に比べて、保磁力および残留磁束密度がともに向上していることが分かる。また保磁力の温度係数が小さく、さらに熱減磁率が小さいところから、熱的安定性にも優れていることが分かる。
実施例4
表1の鋳塊a〜eのブロックに表15に示される条件の水素吸収処理を施した後、この水素吸収処理したブロックを表15に示される平均粒径になるように粉砕処理して水素吸収希土類磁石合金原料粉末を作製し、この水素吸収希土類磁石合金原料粉末に、いずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表15に示される量だけ添加し混合して水素含有原料混合粉末を作製し、
引き続いて表15に示される条件で水素吸収・分解処理を施し、引き続いて必要に応じて表15に示される条件で中間熱処理を行い、さらに必要に応じて表15に示される条件で減圧水素中熱処理を行い、さらに表16に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより本発明法16〜20を実施した。
従来例4
表1の鋳塊a〜eのブロックを表15に示される条件の水素吸収処理を施した後、粉砕処理することなくまた水素化物粉末を添加して水素含有原料混合粉末を作ることなく表15に示される実施例4と同じ条件で水素吸収・分解処理を施し、引き続いて必要に応じて表15に示される条件で減圧水素中熱処理を行った後、Arガス中で強制的に室温まで冷却し、表16に示される平均粒径になるように粉砕処理して希土類磁石原料水素化物粉末を作製し、この希土類磁石原料水素化物粉末にいずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表16に示される量だけ添加し混合して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に真空中で昇温して表16に示される条件に保持して拡散熱処理を施し、さらに表16に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより従来法16〜20を実施した。
Figure 0004482861
From the results shown in Table 1 and Tables 11 to 14, the rare earth magnet powders obtained by the present invention methods 11 to 15 were pulverized in an Ar gas atmosphere and hydride powder was added thereto to produce mixed powders. The magnetic properties of the produced bonded magnet and hot-pressed magnet are compared with the magnetic properties of the bonded magnet and hot-pressed magnet produced by the rare earth magnet powder obtained by the conventional methods 11 to 15 which are not pulverized and do not add hydride. It can be seen that both the coercive force and the residual magnetic flux density are improved. Further, it can be seen that since the temperature coefficient of the coercive force is small and the thermal demagnetization factor is small, the thermal stability is also excellent.
Example 4
After the blocks of ingots a to e in Table 1 were subjected to hydrogen absorption treatment under the conditions shown in Table 15, the hydrogen-absorbed blocks were pulverized so as to have an average particle size shown in Table 15 to generate hydrogen. Absorbing rare earth magnet alloy raw material powder was prepared, and all of the hydrogen absorbing rare earth magnet alloy raw material powder were Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride having an average particle size of 5 μm. Add the amount of powder shown in Table 15 and mix to make a hydrogen-containing raw material mixed powder,
Subsequently, hydrogen absorption / decomposition treatment is performed under the conditions shown in Table 15, followed by intermediate heat treatment under the conditions shown in Table 15 as necessary, and further under reduced pressure hydrogen under the conditions shown in Table 15 as necessary. After heat treatment and further dehydrogenation treatment under the conditions shown in Table 16, the method of the present invention 16 is produced by forcibly cooling to room temperature with Ar gas and crushing to 300 μm or less to produce rare earth magnet powder. ~ 20 were carried out.
Conventional example 4
After the blocks of the ingots a to e in Table 1 were subjected to the hydrogen absorption treatment under the conditions shown in Table 15, the hydride powder was not added and the hydrogen-containing raw material mixed powder was not produced without pulverizing treatment. Hydrogen absorption / decomposition treatment is performed under the same conditions as in Example 4 shown in the following, followed by heat treatment in reduced-pressure hydrogen under the conditions shown in Table 15 as necessary, followed by forced cooling to room temperature in Ar gas Then, the rare earth magnet raw material hydride powder was pulverized so as to have an average particle size shown in Table 16, and both of the rare earth magnet raw material hydride powders had a Dy hydride powder with an average particle diameter of 5 μm, A hydride powder of Tb or a hydride powder of a Dy-Tb binary alloy is added in an amount shown in Table 16 and mixed to prepare a hydrogen-containing raw material mixed powder. The hydrogen-containing raw material mixed powder is heated in vacuum. Shown in Table 16 The material is subjected to diffusion heat treatment under the conditions shown in Table 16, and further subjected to dehydrogenation treatment under the conditions shown in Table 16, and then forcedly cooled to room temperature with Ar gas and pulverized to 300 μm or less to produce rare earth magnet powder. Thus, conventional methods 16 to 20 were carried out.

本発明法16〜20および従来法16〜20により得られた希土類磁石粉末をフェノール樹脂に埋め込み、鏡面に研磨してEPMAにより分析した中心付近と表面付近のDyおよび/またはTbの検出強度およびその強度比を測定することにより、Dy−Tbリッチ層の表面からの深さおよび表面被覆率の値を求め、その結果を表17に示した。   The rare earth magnet powder obtained by the present invention method 16-20 and the conventional method 16-20 was embedded in phenol resin, polished on a mirror surface and analyzed by EPMA, and the detected intensity of Dy and / or Tb near the center and near the surface and its By measuring the intensity ratio, the depth from the surface of the Dy-Tb rich layer and the value of the surface coverage were determined, and the results are shown in Table 17.

例として、本発明法16により得られた希土類磁石粉末をフェノール樹脂に埋め込み、鏡面に研磨してEPMAにより粉末内部断面におけるDyの元素分布を観察した際に撮影したDyの元素分布写真を図6に示す。断面外周付近に輝点が多いことから粉末粒子内の表面付近の方が中心付近よりもDyの含有量が多いことが示されている。実際にEPMAで図6の点Eから点Fへの直線上におけるDyの線分析を行った結果を図7に示す。図7によると、両端に強いピークが見られ、粉末粒子内の表面付近のDyの含有量が中心付近よりも多いことが分かる。両端のピークの平均検出強度は1412counts、中心付近の粉末粒径の1/3の範囲での平均検出強度は915countsで、中心付近に対する強度比は1.54となった。試料の向きを変えて同様の線分析を10回行った結果から表面被覆率は95%となった。また、両端のピークを細かい間隔で走査した結果、中心付近の検出強度の1.2倍以上となる領域の幅は4.5μmとなった。   As an example, a photograph of the elemental distribution of Dy taken when the rare earth magnet powder obtained by the method 16 of the present invention was embedded in a phenolic resin, polished on a mirror surface, and observed for the elemental distribution of Dy in the internal cross section of the powder by EPMA is shown in FIG. Shown in Since there are many bright spots near the outer periphery of the cross section, it is indicated that the Dy content is higher in the vicinity of the surface in the powder particles than in the vicinity of the center. FIG. 7 shows the result of the actual line analysis of Dy on the straight line from point E to point F in FIG. According to FIG. 7, strong peaks are observed at both ends, and it can be seen that the content of Dy near the surface in the powder particles is higher than that near the center. The average detected intensity of the peaks at both ends was 1412 counts, the average detected intensity in the range of 1/3 of the powder particle size near the center was 915 counts, and the intensity ratio with respect to the vicinity of the center was 1.54. The surface coverage was 95% as a result of performing the same line analysis 10 times while changing the direction of the sample. Further, as a result of scanning the peaks at both ends at a fine interval, the width of the region that is 1.2 times or more the detection intensity near the center is 4.5 μm.

表17の値はこのように本発明法16により得られた希土類磁石粉末、および同様にして本発明法17〜20および従来法16〜20により得られた希土類磁石粉末についての測定結果により得られた値である。   The values in Table 17 are obtained from the measurement results of the rare earth magnet powders obtained by the present invention method 16 and the rare earth magnet powders obtained by the present invention methods 17 to 20 and the conventional methods 16 to 20 in the same manner. Value.

さらに、本発明法16〜20および従来法16〜20により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場中で圧縮成形して圧粉体を作製し、この圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3のボンド磁石を作製し、得られたボンド磁石の磁気特性を表18に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表18に示した。ここで保磁力の温度係数αiHcとは、αiHc(%/℃)={(150℃の保磁力‐室温(20℃)の保磁力)/室温(20℃)の保磁力}/(150−20)×100で求められる値である。 Further, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention method 16-20 and the conventional method 16-20, and compression molded in a magnetic field of 1.6 MA / m. The green compact was heat-cured in an oven at 150 ° C. for 2 hours to produce a bonded magnet having a density of 6.0 to 6.1 g / cm 3 , and the magnetic properties of the obtained bonded magnet were measured. It is shown in Table 18. Further, the temperature coefficient α iHc of the coercive force was determined from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 18. Here, the temperature coefficient α iHc of coercive force is α iHc (% / ° C.) = {( Coercivity at 150 ° C.−coercivity at room temperature (20 ° C.)) / Coercivity at room temperature (20 ° C.)} / (150 −20) A value obtained by × 100.

さらに、本発明法16〜20および従来法16〜20により得られた希土類磁石粉末を磁場中で圧縮成形して異方性圧粉体を作製し、この異方性圧粉体をホットプレス装置にセットし、磁場の印加方向が圧縮方向になるようにArガス中、温度:750℃、圧力:58.8MPa 、1分間保持の条件でホットプレスを行い、急冷して密度:7.5〜7.7g/cm3 のホットプレス磁石を作製し、得られたホットプレス磁石の磁気特性を表18に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表18に示した。 Further, the rare earth magnet powder obtained by the present invention method 16-20 and the conventional method 16-20 is compression-molded in a magnetic field to produce an anisotropic green compact. In Ar gas, temperature: 750 ° C., pressure: 58.8 MPa Hot pressing was performed under the condition of holding for 1 minute, followed by rapid cooling to produce a hot pressed magnet having a density of 7.5 to 7.7 g / cm 3. Table 18 shows the magnetic properties of the obtained hot pressed magnet. . Further, the temperature coefficient α iHc of the coercive force was determined from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 18.

また、本発明法16〜20および従来法16〜20により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場を圧縮方向に印加しながら外径:10mm、高さ:7mmの寸法を有する円柱状に圧縮成形し、ついでこの円柱状圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3の円柱状ボンド磁石を作製し、得られたボンド磁石の磁気特性を70kOeのパルス磁界で着磁したのち、100℃に保持したオーブンに1000時間放置して3時間、100時間、1000時間経過後の熱減磁率を測定し、その結果を表18に示して熱的安定性を評価した。 Further, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention method 16-20 and the conventional method 16-20, and the outside was applied while applying a magnetic field of 1.6 MA / m in the compression direction. It is compression-molded into a cylindrical shape having a size of 10 mm in diameter and 7 mm in height, and then this cylindrical green compact is thermoset in an oven at 150 ° C. for 2 hours to obtain a density of 6.0 to 6.1 g / cm. 3 columnar bonded magnets were prepared, and the magnetic properties of the obtained bonded magnets were magnetized with a pulse magnetic field of 70 kOe, then left in an oven maintained at 100 ° C. for 1000 hours for 3 hours, 100 hours, and 1000 hours. The thermal demagnetization rate was measured later, and the results are shown in Table 18 to evaluate the thermal stability.

ここで、熱減磁率とは、熱減磁率(%)={(所定時間暴露後の全磁束−暴露前の全磁束)/暴露前の全磁束}×100で求められる値である。   Here, the thermal demagnetization factor is a value obtained by the following equation: thermal demagnetization factor (%) = {(total magnetic flux after exposure for a predetermined time−total magnetic flux before exposure) / total magnetic flux before exposure} × 100.

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
表1および表15〜表18に示される結果から、水素吸収希土類磁石原料粉末に水素化物粉末を添加して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に水素吸収・分解処理を施す本発明法16〜20により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性は、水素吸収処理を施したのち水素吸収・分解処理を施して得られた希土類磁石原料水素化物粉末に水素化物粉末を添加して得られた水素含有原料混合粉末を拡散熱処理する従来法16〜20により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性に比べて、保磁力および残留磁束密度がともに向上していることが分かり、また保磁力の温度係数が小さく、さらに熱減磁率が小さいところから、熱的安定性にも優れていることが分かる。
実施例5
表1の鋳塊f〜jのブロックに表19に示される条件の水素吸収処理を施し、この水素吸収処理したブロックを表19に示される平均粒径になるように粉砕処理して水素吸収処理した希土類磁石合金原料粉末を作製し、この水素吸収処理した希土類磁石合金原料粉末に、いずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表19に示される量だけ添加し混合して水素含有原料混合粉末を作製し、
引き続いて表19に示される条件で水素吸収・分解処理を施し、引き続いて必要に応じて表19に示される条件で中間熱処理を行い、さらに必要に応じて表20に示される条件で減圧水素中熱処理を行い、さらに表20に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより本発明法21〜25を実施した。
従来例5
表1の鋳塊f〜jのブロックを表19に示される実施例5同じ条件の水素吸収処理を施した後、表19に示される実施例5と同じ条件で水素吸収・分解処理を施し、引き続いて必要に応じて表20に示される条件で減圧水素中熱処理を行ったのち、Arガス中で強制的に室温まで冷却し、表20に示される平均粒径になるように粉砕処理して希土類磁石原料水素化物粉末を作製したのち、この希土類磁石原料水素化物粉末にいずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表20に示される量だけ添加し混合して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に真空中で昇温して表20に示される条件に保持して拡散熱処理を施し、さらに表20に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより従来法21〜25を実施した。
Figure 0004482861
From the results shown in Table 1 and Tables 15 to 18, hydride powder is added to the hydrogen-absorbing rare earth magnet raw material powder to produce a hydrogen-containing raw material mixed powder, and this hydrogen-containing raw material mixed powder is subjected to hydrogen absorption / decomposition treatment. The magnetic properties of bonded magnets and hot-pressed magnets made from rare earth magnet powders obtained by the present invention method 16 to 20 are as follows. Hydrogen raw material hydrogen obtained after hydrogen absorption treatment and hydrogen absorption / decomposition treatment Compared to the magnetic properties of bonded magnets and hot-pressed magnets made with rare earth magnet powders obtained by conventional methods 16-20, wherein the hydrogen-containing raw material mixed powder obtained by adding hydride powder to the halide powder is subjected to diffusion heat treatment, It can be seen that both the coercive force and the residual magnetic flux density are improved, the temperature coefficient of the coercive force is small, and the thermal demagnetization factor is small. It can be seen that are also excellent.
Example 5
The blocks of ingots f to j in Table 1 are subjected to hydrogen absorption treatment under the conditions shown in Table 19, and the blocks subjected to the hydrogen absorption treatment are pulverized so as to have an average particle size shown in Table 19 to be subjected to hydrogen absorption treatment. The rare earth magnet alloy raw material powder was prepared, and the hydrogen-absorbed rare earth magnet alloy raw material powder was made of any of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy having an average particle size of 5 μm. Add hydride powder in the amount shown in Table 19 and mix to make hydrogen-containing raw material mixed powder,
Subsequently, hydrogen absorption / decomposition treatment was performed under the conditions shown in Table 19, followed by intermediate heat treatment under the conditions shown in Table 19 as necessary, and further under reduced pressure hydrogen under the conditions shown in Table 20 as necessary. After heat treatment and further dehydrogenation treatment under the conditions shown in Table 20, the method of the present invention 21 is produced by forcibly cooling to room temperature with Ar gas and pulverizing to 300 μm or less to produce rare earth magnet powder. ~ 25 were carried out.
Conventional Example 5
After the blocks of the ingots f to j in Table 1 were subjected to hydrogen absorption treatment under the same conditions as in Example 5 shown in Table 19, they were subjected to hydrogen absorption / decomposition treatment under the same conditions as in Example 5 shown in Table 19, Subsequently, after performing heat treatment in reduced pressure hydrogen under the conditions shown in Table 20 as necessary, forcibly cooled to room temperature in Ar gas, and pulverized to an average particle size shown in Table 20 After preparing the rare earth magnet raw material hydride powder, all of the rare earth magnet raw material hydride powder has an average particle size of 5 μm of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder. Is added and mixed in the amount shown in Table 20 to prepare a hydrogen-containing raw material mixed powder, and the hydrogen-containing raw material mixed powder is heated in vacuum and kept under the conditions shown in Table 20 and subjected to diffusion heat treatment. Furthermore, the conditions shown in Table 20 In After performing dehydrogenation treatment, forced cooling to room temperature in an Ar gas, was carried out conventional methods 21 to 25 by producing a rare earth magnet powder and then disintegrated to 300μm or less.

本発明法21〜25および従来法21〜25により得られた希土類磁石粉末をフェノール樹脂に埋め込み、鏡面に研磨してEPMAにより分析した中心付近と表面付近のDyおよび/またはTbの検出強度およびその強度比を測定することにより、Dy−Tbリッチ層の表面からの深さおよび表面被覆率の値を求め、その結果を表21に示した。   The rare earth magnet powders obtained by the present invention methods 21 to 25 and the conventional methods 21 to 25 are embedded in a phenol resin, polished on a mirror surface and analyzed by EPMA, and the detected intensity of Dy and / or Tb near the center and near the surface and its By measuring the intensity ratio, the depth from the surface of the Dy-Tb rich layer and the value of the surface coverage were determined, and the results are shown in Table 21.

さらに、本発明法21〜25および従来法21〜25により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場中で圧縮成形して圧粉体を作製し、この圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3のボンド磁石を作製し、得られたボンド磁石の磁気特性を表22に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表22に示した。 Further, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention methods 21 to 25 and the conventional methods 21 to 25, followed by compression molding in a magnetic field of 1.6 MA / m. The green compact was heat-cured in an oven at 150 ° C. for 2 hours to produce a bonded magnet having a density of 6.0 to 6.1 g / cm 3. The magnetic properties of the obtained bonded magnet were measured. It is shown in Table 22. Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 22.

また、本発明法21〜25および従来法21〜25により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場を圧縮方向に印加しながら外径:10mm、高さ:7mmの寸法を有する円柱状に圧縮成形し、ついでこの円柱状圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3の円柱状ボンド磁石を作製し、得られたボンド磁石の磁気特性をを70kOeのパルス磁界で着磁したのち、100℃に保持したオーブンに1000時間放置して3時間、100時間、1000時間経過後の熱減磁率を測定し、その結果を表22に示して熱的安定性を評価した。 In addition, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention methods 21 to 25 and the conventional methods 21 to 25 and kneaded, and while applying a magnetic field of 1.6 MA / m in the compression direction It is compression-molded into a cylindrical shape having a size of 10 mm in diameter and 7 mm in height, and then this cylindrical green compact is thermoset in an oven at 150 ° C. for 2 hours to obtain a density of 6.0 to 6.1 g / cm. 3 columnar bonded magnets were produced, and the magnetic properties of the obtained bonded magnets were magnetized with a pulse magnetic field of 70 kOe, then left in an oven maintained at 100 ° C. for 1000 hours for 3 hours, 100 hours, 1000 hours. The thermal demagnetization factor after the lapse of time was measured, and the results are shown in Table 22 to evaluate the thermal stability.

さらに、本発明法21〜25および従来法21〜25により得られた希土類磁石粉末を磁場中で圧縮成形して異方性圧粉体を作製し、この異方性圧粉体をホットプレス装置にセットし、磁場の印加方向が圧縮方向になるようにArガス中、温度:750℃、圧力:58.8MPa 、1分間保持の条件でホットプレスを行い、急冷して密度:7.5〜7.7g/cm3 のホットプレス磁石を作製し、得られたホットプレス磁石の磁気特性を表22に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表22に示した。 Further, the rare earth magnet powders obtained by the present invention methods 21 to 25 and the conventional methods 21 to 25 are compression molded in a magnetic field to produce an anisotropic green compact. In Ar gas, temperature: 750 ° C., pressure: 58.8 MPa so that the direction of magnetic field application is the compression direction Hot pressing was performed under the condition of holding for 1 minute, followed by rapid cooling to produce a hot pressed magnet having a density of 7.5 to 7.7 g / cm 3. Table 22 shows the magnetic characteristics of the obtained hot pressed magnet. . Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 22.

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
表1および表19〜22に示される結果から、水素吸収希土類磁石原料粉末に水素化物粉末を添加して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に水素吸収・分解処理を施す本発明法21〜25により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性は、水素吸収処理を施したのち水素吸収・分解処理を施して得られた希土類磁石原料水素化物粉末に水素化物粉末を添加して得られた水素含有原料混合粉末を拡散熱処理する従来法21〜25により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性に比べて、保磁力および残留磁束密度がともに向上していることが分かり、また保磁力の温度係数が小さく、さらに熱減磁率が小さいところから、熱的安定性にも優れていることが分かる。
実施例6
表1の鋳塊k〜oのブロックに表23に示される条件の水素吸収処理を施し、この水素吸収処理したブロックを表23に示される平均粒径になるように粉砕処理して水素吸収処理した希土類磁石合金原料粉末を作製し、この水素吸収処理した希土類磁石合金原料粉末に、いずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表23に示される量だけ添加し混合して水素含有原料混合粉末を作製し、
引き続いて水素含有原料混合粉末に表23に示される条件で水素吸収・分解処理を施し、引き続いて必要に応じて表23に示される条件で中間熱処理を行い、さらに必要に応じて表23に示される条件で減圧水素中熱処理を行い、さらに表24に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより本発明法26〜30を実施した。
従来例6
表1の鋳塊k〜oのブロックを表23に示される実施例6同じ条件の水素吸収処理を施した後、粉砕処理することなくまた水素化物粉末を添加して水素含有原料混合粉末を作ることなく実施例6と同じ条件で水素吸収・分解処理を施し、引き続いて必要に応じて表23に示される条件で減圧水素中熱処理を行った後、Arガス中で強制的に室温まで冷却し、表24に示される平均粒径になるように粉砕処理して希土類磁石原料水素化物粉末を作製したのち、この希土類磁石原料水素化物粉末にいずれも平均粒径:5μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を表24に示される量だけ添加し混合して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に真空中で昇温して表24に示される条件に保持して拡散熱処理を施し、さらに表24に示される条件で脱水素処理を行った後、Arガスで強制的に室温まで冷却し、300μm以下に解砕して希土類磁石粉末を製造することにより従来法26〜30を実施した。
Figure 0004482861
From the results shown in Table 1 and Tables 19-22, hydride powder is added to the hydrogen-absorbing rare earth magnet raw material powder to produce a hydrogen-containing raw material mixed powder, and this hydrogen-containing raw material mixed powder is subjected to hydrogen absorption / decomposition treatment. The magnetic properties of bonded magnets and hot-pressed magnets made from rare earth magnet powders obtained by the inventive methods 21 to 25 are the rare earth magnet raw material hydrides obtained by hydrogen absorption / decomposition after hydrogen absorption. Compared to the magnetic properties of bonded magnets and hot-pressed magnets made from rare earth magnet powders obtained by conventional methods 21 to 25, in which hydride powders obtained by adding hydride powders to powders are subjected to diffusion heat treatment. It can be seen that both the magnetic force and the residual magnetic flux density are improved, the temperature coefficient of the coercive force is small, and the thermal demagnetization factor is small. It can be seen that are better.
Example 6
The blocks of ingots k to o in Table 1 are subjected to hydrogen absorption treatment under the conditions shown in Table 23, and the hydrogen-absorbed treatment blocks are pulverized so as to have an average particle size as shown in Table 23. The rare earth magnet alloy raw material powder was prepared, and the hydrogen-absorbed rare earth magnet alloy raw material powder was made of any of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy having an average particle size of 5 μm. Add and mix hydride powder in the amount shown in Table 23 to produce a hydrogen-containing raw material mixed powder,
Subsequently, the hydrogen-containing raw material mixed powder was subjected to hydrogen absorption / decomposition treatment under the conditions shown in Table 23, followed by intermediate heat treatment under the conditions shown in Table 23 as necessary, and further as shown in Table 23 as necessary. Heat treatment in reduced-pressure hydrogen under the conditions described above, and further after dehydrogenation treatment under the conditions shown in Table 24, forcibly cooled to room temperature with Ar gas and pulverized to 300 μm or less to produce rare earth magnet powder Thus, the inventive methods 26 to 30 were carried out.
Conventional Example 6
After the blocks of the ingots k to o in Table 1 were subjected to hydrogen absorption treatment under the same conditions as in Example 6 shown in Table 23, hydride powder was added without pulverization to make a hydrogen-containing raw material mixed powder. Without being subjected to hydrogen absorption / decomposition treatment under the same conditions as in Example 6, followed by heat treatment in reduced pressure hydrogen under the conditions shown in Table 23 as necessary, and then forcedly cooled to room temperature in Ar gas. After pulverizing to prepare the rare earth magnet raw material hydride powder so as to have an average particle diameter shown in Table 24, each of the rare earth magnet raw material hydride powders has a Dy hydride powder having an average particle diameter of 5 μm, A hydride powder of Tb or a hydride powder of a Dy-Tb binary alloy is added in an amount shown in Table 24 and mixed to prepare a hydrogen-containing raw material mixed powder. Shown in Table 24 After the diffusion heat treatment is carried out under the conditions shown in Table 24, and after the dehydrogenation treatment is performed under the conditions shown in Table 24, it is forcibly cooled to room temperature with Ar gas and pulverized to 300 μm or less to produce rare earth magnet powder. Thus, conventional methods 26 to 30 were carried out.

本発明法26〜30および従来法26〜30により得られた希土類磁石粉末をフェノール樹脂に埋め込み、鏡面に研磨してEPMAにより分析した中心付近と表面付近のDyおよび/またはTbの検出強度およびその強度比を測定することにより、Dy−Tbリッチ層の表面からの深さおよび表面被覆率の値を求め、その結果を表25に示した。   The rare earth magnet powder obtained by the present invention method 26-30 and the conventional method 26-30 is embedded in a phenol resin, polished on a mirror surface and analyzed by EPMA, and the detected intensity of Dy and / or Tb near the center and near the surface and its By measuring the intensity ratio, the depth from the surface of the Dy-Tb rich layer and the value of the surface coverage were determined, and the results are shown in Table 25.

本発明法26〜30および従来法26〜30により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場中で圧縮成形して圧粉体を作製し、この圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3のボンド磁石を作製し、得られたボンド磁石の磁気特性を表26に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表26に示した。 3% by mass of epoxy resin is added to each of the rare earth magnet powders obtained by the present invention method 26-30 and the conventional methods 26-30 and kneaded and compression molded in a magnetic field of 1.6 MA / m to obtain a green compact. The green compact was then thermoset in an oven at 150 ° C. for 2 hours to produce a bond magnet having a density of 6.0 to 6.1 g / cm 3. Table 26 shows the magnetic properties of the obtained bond magnet. It was shown to. Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 26.

また、本発明法26〜30および従来法26〜30により得られた希土類磁石粉末にそれぞれ3質量%のエポキシ樹脂を加えて混練し、1.6MA/mの磁場を圧縮方向に印加しながら外径:10mm、高さ:7mmの寸法を有する円柱状に圧縮成形し、ついでこの円柱状圧粉体をオーブンで150℃、2時間熱硬化して、密度:6.0〜6.1g/cm3の円柱状ボンド磁石を作製し、得られたボンド磁石の磁気特性をを70kOeのパルス磁界で着磁したのち、100℃に保持したオーブンに1000時間放置して3時間、100時間、1000時間経過後の熱減磁率を測定し、その結果を表26に示して熱的安定性を評価した。 Further, 3% by mass of an epoxy resin was added to each of the rare earth magnet powders obtained by the present invention method 26-30 and the conventional method 26-30 and kneaded, while applying a magnetic field of 1.6 MA / m in the compression direction. It is compression-molded into a cylindrical shape having a size of 10 mm in diameter and 7 mm in height, and then this cylindrical green compact is thermoset in an oven at 150 ° C. for 2 hours to obtain a density of 6.0 to 6.1 g / cm. 3 cylindrical bonded magnets were produced, and the magnetic properties of the obtained bonded magnets were magnetized with a pulse magnetic field of 70 kOe, and then left in an oven maintained at 100 ° C. for 1000 hours for 3 hours, 100 hours, 1000 hours. The thermal demagnetization factor after the lapse of time was measured, and the results are shown in Table 26 to evaluate the thermal stability.

さらに、本発明法26〜30および従来法26〜30により得られた希土類磁石粉末を磁場中で異方性圧粉体を作製し、この異方性圧粉体をホットプレス装置にセットし、磁場の印加方向が圧縮方向になるようにArガス中、温度:750℃、圧力:58.8MPa 、1分間保持の条件でホットプレスを行い、急冷して密度:7.5〜7.7g/cm3 のホットプレス磁石を作製し、得られたホットプレス磁石の磁気特性を表26に示した。また、150℃で磁気特性を測定した結果から保磁力の温度係数αiHcを求め、その値を表26に示した。 Further, the rare earth magnet powder obtained by the present invention method 26-30 and the conventional method 26-30 was produced in an anisotropic magnetic powder in a magnetic field, and the anisotropic green compact was set in a hot press apparatus, In Ar gas, temperature: 750 ° C., pressure: 58.8 MPa so that the magnetic field application direction is the compression direction Hot pressing was performed under the condition of holding for 1 minute, followed by rapid cooling to produce a hot pressed magnet having a density of 7.5 to 7.7 g / cm 3. Table 26 shows the magnetic characteristics of the obtained hot pressed magnet. . Further, the temperature coefficient α iHc of the coercive force was obtained from the result of measuring the magnetic characteristics at 150 ° C., and the value is shown in Table 26.

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
Figure 0004482861

Figure 0004482861
表1および表23〜26に示される結果から、水素吸収希土類磁石原料粉末に水素化物粉末を添加して水素含有原料混合粉末を作製し、この水素含有原料混合粉末に水素吸収・分解処理を施す本発明法26〜30により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性は、水素吸収処理を施したのち水素吸収・分解処理を施して得られた希土類磁石原料水素化物粉末に水素化物粉末を添加して得られた水素含有原料混合粉末を拡散熱処理する従来法26〜30により得られた希土類磁石粉末で作製したボンド磁石およびホットプレス磁石の磁気特性に比べて、保磁力および残留磁束密度がともに向上していることが分かり、また保磁力の温度係数が小さく、さらに熱減磁率が小さいところから、熱的安定性にも優れていることが分かる。
Figure 0004482861
From the results shown in Table 1 and Tables 23 to 26, a hydride powder is added to the hydrogen-absorbing rare earth magnet raw material powder to produce a hydrogen-containing raw material mixed powder, and this hydrogen-containing raw material mixed powder is subjected to hydrogen absorption / decomposition treatment. The magnetic properties of bonded magnets and hot-pressed magnets made from rare earth magnet powders obtained by the present invention method 26-30 are hydrides of rare earth magnet raw materials obtained by hydrogen absorption / decomposition after hydrogen absorption. Compared to the magnetic properties of bonded magnets and hot-pressed magnets made from rare earth magnet powders obtained by conventional methods 26-30, in which a hydrogen-containing raw material mixed powder obtained by adding hydride powder to the powder is subjected to diffusion heat treatment. It can be seen that both the magnetic force and the residual magnetic flux density are improved, the temperature coefficient of the coercive force is small, and the thermal demagnetization factor is small. It can be seen that are better.

本発明法1で作製した異方性磁石粉末に含まれるDyの元素分布を示す電子線マイクロアナライザ(EMPA)による元素分布写真である。It is an element distribution photograph by the electron beam microanalyzer (EMPA) which shows the element distribution of Dy contained in the anisotropic magnet powder produced by this invention method 1. FIG. 本発明法1で作製した異方性磁石粉末に含まれるDyの図1におけるA−B直線上のDy分布を示す電子線マイクロアナライザ(EMPA)による線分析グラフである。It is a line-analysis graph by an electron beam microanalyzer (EMPA) which shows Dy distribution on the AB line in FIG. 1 of Dy contained in the anisotropic magnet powder produced by this invention method 1. FIG. 本発明法1で作製した異方性磁石粉末に含まれるDyの直線上の元素分布を示し、図2のピークA付近を細かい間隔で走査した線分析グラフである。FIG. 3 is a line analysis graph showing the element distribution on the straight line of Dy contained in the anisotropic magnet powder produced by the method 1 of the present invention, and scanning the vicinity of the peak A in FIG. 2 at fine intervals. 従来法1で作製した異方性磁石粉末に含まれるDyの元素分布を示す電子線マイクロアナライザ(EMPA)による線分析グラフである。It is a line analysis graph by an electron beam microanalyzer (EMPA) which shows element distribution of Dy contained in anisotropic magnet powder produced by conventional method 1. 従来法1で作製した異方性磁石粉末に含まれるDyの元素分布を示す図4のピークC付近を細かい間隔で走査した線分析グラフである。FIG. 5 is a line analysis graph obtained by scanning the vicinity of the peak C in FIG. 4 at a fine interval showing the element distribution of Dy contained in the anisotropic magnet powder produced by the conventional method 1. FIG. 本発明法16で作製した異方性磁石粉末に含まれるDyの元素分布を示す電子線マイクロアナライザ(EMPA)による元素分布写真である。It is an element distribution photograph by the electron beam microanalyzer (EMPA) which shows element distribution of Dy contained in the anisotropic magnet powder produced by this invention method 16. FIG. 本発明法16で作製した異方性磁石粉末に含まれるDyの図6におけるE−F直線上のDy分布を示す電子線マイクロアナライザ(EMPA)による線分析グラフである。It is a line analysis graph by an electron beam microanalyzer (EMPA) which shows Dy distribution on the EF straight line in FIG. 6 of Dy contained in the anisotropic magnet powder produced by this invention method 16. FIG.

Claims (20)

原子%で(以下、%は原子%を示す)、R(ただし、Rは、DyおよびTbを除くYを含む希土類元素の内の1種または2種以上を示す。以下同じ):5〜20%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多い層(以下、Dy−Tbリッチ層という)で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍であることを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末。
In atomic% (hereinafter,% indicates atomic%), R (wherein R represents one or more of rare earth elements including Y excluding Dy and Tb; the same shall apply hereinafter): 5 to 20 %, One or two of Dy and Tb is contained in an amount of 0.01 to 10%, B: 3 to 20%, the balance is composed of Fe and inevitable impurities, and the average powder particle size is 10 to 10%. A rare earth magnet powder having 1000 μm,
This rare earth magnet powder is covered with 70% or more of the entire surface with a layer having a thickness of 0.05 to 50 μm and a high content of one or two of Dy and Tb (hereinafter referred to as Dy-Tb rich layer). One or two concentrations of Dy and Tb in the Dy-Tb rich layer have a maximum detection intensity by the wavelength dispersion type X-ray spectroscopy of one or two of Dy and Tb. A rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by being 1.2 to 5 times the average detected intensity in the center within a range of 1/3.
R:5〜20%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%、M(ただし、MはGa、Zr、Nb、Mo、Hf、Ta、W、Ni、Al、Ti、V、Cu、Cr、Ge、CおよびSiの内の1種または2種以上を示す。):0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍であることを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末。
R: 5 to 20%, one or two of Dy and Tb are 0.01 to 10%, B is 3 to 20%, M (where M is Ga, Zr, Nb, Mo, Hf, Ta, W) , Ni, Al, Ti, V, Cu, Cr, Ge, C, and Si are included.): 0.001 to 5%, with the balance being Fe and inevitable impurities A rare earth magnet powder having a component composition and having an average powder particle size: 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and containing a large amount of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle by the maximum detection intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. A rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by being 1.2 to 5 times the average detected intensity of the central part in.
R:5〜20%、Co:0.1〜50%、DyおよびTbの1種または2種を0.01〜10%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍であることを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末。
R: 5 to 20%, Co: 0.1 to 50%, one or two of Dy and Tb are contained in an amount of 0.01 to 10%, B: 3 to 20%, the balance being Fe and inevitable impurities A rare earth magnet powder having a composition of components and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and containing a large amount of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle by the maximum detection intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. A rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by being 1.2 to 5 times the average detected intensity of the central part in.
R:5〜20%、DyおよびTbの1種または2種を0.01〜10%、Co:0.1〜50%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粉末粒径:10〜1000μmを有する希土類磁石粉末であって、
この希土類磁石粉末は、厚さ:0.05〜50μmを有するDyおよびTbの1種または2種の含有量が多いDy−Tbリッチ層で表面全体の70%以上覆われており、前記Dy−Tbリッチ層におけるDyおよびTbの1種または2種の濃度はDyおよびTbの1種または2種の波長分散型X線分光法による最大検出強度が粉末粒子の粒径の1/3の範囲内における中心部の平均検出強度の1.2〜5倍であることを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末。
R: 5 to 20%, one or two of Dy and Tb 0.01 to 10%, Co: 0.1 to 50%, B: 3 to 20%, M: 0.001 to 5% A rare earth magnet powder having a component composition consisting of Fe and inevitable impurities and having an average powder particle size of 10 to 1000 μm,
This rare earth magnet powder is covered with a Dy-Tb rich layer having a thickness of 0.05 to 50 μm and containing a large amount of one or two of Dy and Tb at least 70% of the entire surface. The concentration of one or two of Dy and Tb in the Tb-rich layer is within the range of 1/3 of the particle size of the powder particle by the maximum detection intensity by one or two wavelength-dispersive X-ray spectroscopy of Dy and Tb. A rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by being 1.2 to 5 times the average detected intensity of the central part in.
実質的に正方晶構造をとるRFe14B型金属間化合物相を主相とした再結晶粒が相互に隣接した再結晶集合組織を有し、この再結晶集合組織は個々の再結晶粒の最短粒径aと最長粒径bの比(b/a)が2未満である形状の再結晶粒が全再結晶粒の50容量%以上存在し、かつ再結晶粒の平均再結晶粒径が0.05〜5μmの寸法を有する磁気異方性HDDR磁石粉末の基本組織を有することを特徴とする請求項1、2、3または4記載の磁気異方性および熱的安定性に優れた希土類磁石粉末。 Recrystallized grains mainly composed of an R 2 Fe 14 B type intermetallic compound phase having a tetragonal crystal structure have recrystallized textures adjacent to each other. There are 50% by volume or more of recrystallized grains having a ratio (b / a) between the shortest grain size a and the longest grain size b of less than 2, and the average recrystallized grain size of the recrystallized grains 5. The magnetic anisotropy HDDR magnet powder having a basic structure of 0.05 to 5 μm in size is excellent in magnetic anisotropy and thermal stability according to claim 1, 2, 3 or 4 Rare earth magnet powder. 請求項1、2、3、4または5記載の磁気異方性および熱的安定性に優れた希土類磁石粉末を有機バインダーまたは金属バインダーにより結合してなることを特徴とする希土類磁石。 6. A rare earth magnet comprising the rare earth magnet powder having excellent magnetic anisotropy and thermal stability according to claim 1, 2, 3, 4, or 5 bonded with an organic binder or a metal binder. 請求項1、2、3、4または5記載の磁気異方性および熱的安定性に優れた希土類磁石粉末をホットプレスまたは熱間静水圧プレスしてなることを特徴とする希土類磁石。 6. A rare earth magnet obtained by hot pressing or hot isostatic pressing the rare earth magnet powder having excellent magnetic anisotropy and thermal stability according to claim 1, 2, 3, 4 or 5. 希土類磁石合金原料を不活性ガス雰囲気中で平均粉末粒径:10〜1000μmになるまで粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粉末粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
The rare earth magnet alloy raw material is pulverized in an inert gas atmosphere to an average powder particle size of 10 to 1000 μm to prepare a rare earth magnet alloy raw material powder. 1 to 50 μm of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder is added and mixed to make a mixed powder,
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment in which hydrogen is absorbed into the mixed powder and decomposed by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding in a hydrogen gas atmosphere of 10 to 1000 kPa,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by holding in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, and then to cool, A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by crushing.
希土類磁石合金原料を不活性ガス雰囲気中で平均粉末粒径:10〜1000μmになるまで粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粉末粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した混合粉末を500〜1000℃の範囲内の温度で圧力:10〜1000kPaの不活性ガス雰囲気中に保持することにより中間熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
The rare earth magnet alloy raw material is pulverized in an inert gas atmosphere to an average powder particle size of 10 to 1000 μm to prepare a rare earth magnet alloy raw material powder. 1 to 50 μm of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder is added and mixed to make a mixed powder,
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment in which hydrogen is absorbed into the mixed powder and decomposed by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding in a hydrogen gas atmosphere of 10 to 1000 kPa,
Subsequently, an intermediate heat treatment is performed by holding the mixed powder subjected to hydrogen absorption / decomposition treatment in an inert gas atmosphere at a temperature in the range of 500 to 1000 ° C. and a pressure of 10 to 1000 kPa,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by holding in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, and then to cool, A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by crushing.
希土類磁石合金原料を不活性ガス雰囲気中で平均粉末粒径:10〜1000μmになるまで粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粉末粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した混合粉末を500〜1000℃の範囲内の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより混合粉末に水素を一部残したまま減圧水素中熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
The rare earth magnet alloy raw material is pulverized in an inert gas atmosphere to an average powder particle size of 10 to 1000 μm to prepare a rare earth magnet alloy raw material powder. 1 to 50 μm of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder is added and mixed to make a mixed powder,
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment in which hydrogen is absorbed into the mixed powder and decomposed by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding in a hydrogen gas atmosphere of 10 to 1000 kPa,
Subsequently, the mixed powder that has been subjected to hydrogen absorption / decomposition treatment at a temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of less than 0.65 to 10 kPa By maintaining in a mixed gas atmosphere of hydrogen and an inert gas, heat treatment in reduced pressure hydrogen is performed while leaving some hydrogen in the mixed powder,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by holding in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, and then to cool, A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by crushing.
希土類磁石合金原料を不活性ガス雰囲気中で平均粉末粒径:10〜1000μmになるまで粉砕処理して希土類磁石合金原料粉末を作製し、この希土類磁石合金原料粉末に、平均粉末粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して混合粉末を作製し、
この混合粉末に、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温または昇温し保持することにより水素を吸収させる水素吸収処理を施し、引き続いて圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記混合粉末に水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した混合粉末を500〜1000℃の範囲内の温度で圧力:10〜1000kPaの不活性ガス雰囲気中に保持することにより中間熱処理を行い、
引き続いて、中間熱処理を施した混合粉末を500〜1000℃の範囲内の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより混合粉末に水素を一部残したまま減圧水素中熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
The rare earth magnet alloy raw material is pulverized in an inert gas atmosphere to an average powder particle size of 10 to 1000 μm to prepare a rare earth magnet alloy raw material powder. 1 to 50 μm of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder is added and mixed to make a mixed powder,
The mixed powder was subjected to a hydrogen absorption treatment for absorbing hydrogen by raising the temperature from a room temperature to a temperature of less than 500 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa, and then holding the temperature. : A hydrogen absorption / decomposition treatment in which hydrogen is absorbed into the mixed powder and decomposed by raising the temperature to a temperature within a range of 500 to 1000 ° C. and holding in a hydrogen gas atmosphere of 10 to 1000 kPa,
Subsequently, an intermediate heat treatment is performed by holding the mixed powder subjected to hydrogen absorption / decomposition treatment in an inert gas atmosphere at a temperature in the range of 500 to 1000 ° C. and a pressure of 10 to 1000 kPa,
Subsequently, the mixed powder that has been subjected to the intermediate heat treatment at a temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of less than 0.65 to 10 kPa By maintaining in a mixed gas atmosphere with the active gas, a heat treatment in reduced-pressure hydrogen is performed while leaving some hydrogen in the mixed powder,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by holding in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, and then to cool, A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by crushing.
前記請求項8、9、10または11記載の希土類磁石合金原料は、真空またはArガス雰囲気中、温度:600〜1200℃に保持の条件で均質化処理した希土類磁石合金原料であることを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。 The rare earth magnet alloy raw material according to claim 8, 9, 10 or 11 is a rare earth magnetic alloy raw material homogenized under a condition of holding at a temperature of 600 to 1200 ° C in a vacuum or an Ar gas atmosphere. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability. 希土類磁石合金原料を、圧力:10〜1000kPaの水素ガス雰囲気中で室温から温度:500℃未満までの温度に昇温、または昇温し保持することにより水素を吸収させる水素吸収処理を施したのち、平均粉末粒径:10〜1000μmになるまで粉砕処理して水素吸収処理した希土類磁石合金原料粉末(以下、この粉末を水素吸収希土類磁石合金原料粉末という)を作製し、
この水素吸収希土類磁石合金原料粉末に、平均粉末粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
After the rare earth magnet alloy raw material is subjected to a hydrogen absorption treatment in which hydrogen is absorbed by raising the temperature from room temperature to a temperature of less than 500 ° C. or holding it after raising the temperature in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. An average powder particle size: A rare earth magnet alloy raw material powder (hereinafter referred to as a hydrogen absorbing rare earth magnet alloy raw material powder) that has been pulverized and hydrogen-absorbed to 10 to 1000 μm is prepared,
To this hydrogen-absorbing rare earth magnet alloy raw material powder, 0.01 to 5 μm of Dy hydride powder, Tb hydride powder or Dy-Tb binary alloy hydride powder with an average powder particle size of 0.1 to 50 μm was added. Mol% added and mixed to produce hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by holding in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, and then to cool, A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by crushing.
水素吸収希土類磁石合金原料粉末に、平均粉末粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の温度で圧力:10〜1000kPaの不活性ガス雰囲気中に保持することにより中間熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
0.01-5 mol of hydrogen-absorbing rare earth magnet alloy raw material powder with an average powder particle size: 0.1-50 μm of Dy hydride powder, Tb hydride powder, or Dy-Tb binary alloy hydride powder % To make a hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment
Subsequently, an intermediate heat treatment is performed by holding the hydrogen-containing raw material mixed powder subjected to the hydrogen absorption / decomposition treatment at a temperature in the range of 500 to 1000 ° C. in an inert gas atmosphere at a pressure of 10 to 1000 kPa,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by holding in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, and then to cool, A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by crushing.
水素吸収希土類磁石合金原料粉末に、平均粉末粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより水素含有原料混合粉末に水素を一部残したまま減圧水素中熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
0.01-5 mol of hydrogen-absorbing rare earth magnet alloy raw material powder with an average powder particle size: 0.1-50 μm of Dy hydride powder, Tb hydride powder, or Dy-Tb binary alloy hydride powder % To make a hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment
Subsequently, the hydrogen-containing raw material mixed powder that has been subjected to hydrogen absorption / decomposition treatment at a temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of 0.65 to A heat treatment in reduced-pressure hydrogen is performed while leaving part of the hydrogen in the hydrogen-containing raw material mixed powder by maintaining in a mixed gas atmosphere of hydrogen and inert gas of less than 10 kPa,
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by holding in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, and then to cool, A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by crushing.
水素吸収希土類磁石合金原料粉末に、平均粉末粒径:0.1〜50μmのDyの水素化物粉末、Tbの水素化物粉末またはDy−Tb二元系合金の水素化物粉末を0.01〜5モル%添加し混合して水素含有原料混合粉末を作製し、
この水素含有原料混合粉末を圧力:10〜1000kPaの水素ガス雰囲気中で500〜1000℃の範囲内の温度に昇温し保持することにより前記水素含有原料混合粉末にさらに水素を吸収させて分解する水素吸収・分解処理を施し、
引き続いて、水素吸収・分解処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の温度で圧力:10〜1000kPaの不活性ガス雰囲気中に保持することにより中間熱処理を行い、
引き続いて、中間熱処理を施した水素含有原料混合粉末を500〜1000℃の範囲内の温度で、絶対圧:0.65〜10kPa未満の水素雰囲気中または水素分圧:0.65〜10kPa未満の水素と不活性ガスとの混合ガス雰囲気中に保持することにより水素含有原料混合粉末に水素を一部残したまま減圧水素中熱処理を行い、
その後、500〜1000℃の範囲内の温度で到達圧:0.13kPa以下の真空雰囲気に保持することにより強制的に水素を放出させて相変態を促す脱水素処理を施し、ついで冷却し、解砕することを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
0.01-5 mol of hydrogen-absorbing rare earth magnet alloy raw material powder with an average powder particle size: 0.1-50 μm of Dy hydride powder, Tb hydride powder, or Dy-Tb binary alloy hydride powder % To make a hydrogen-containing raw material mixed powder,
The hydrogen-containing raw material mixed powder is further decomposed by absorbing hydrogen into the hydrogen-containing raw material mixed powder by holding the hydrogen-containing raw material mixed powder at a temperature in the range of 500 to 1000 ° C. in a hydrogen gas atmosphere at a pressure of 10 to 1000 kPa. Hydrogen absorption / decomposition treatment
Subsequently, an intermediate heat treatment is performed by holding the hydrogen-containing raw material mixed powder subjected to the hydrogen absorption / decomposition treatment at a temperature in the range of 500 to 1000 ° C. in an inert gas atmosphere at a pressure of 10 to 1000 kPa,
Subsequently, the hydrogen-containing raw material mixed powder subjected to the intermediate heat treatment at a temperature in the range of 500 to 1000 ° C. in a hydrogen atmosphere having an absolute pressure of less than 0.65 to 10 kPa or a hydrogen partial pressure of less than 0.65 to 10 kPa By maintaining in a mixed gas atmosphere of hydrogen and an inert gas, a hydrogen-containing raw material mixed powder is subjected to heat treatment in hydrogen under reduced pressure while leaving part of the hydrogen in the mixed powder.
Thereafter, a dehydrogenation treatment is performed to forcibly release hydrogen by holding in a vacuum atmosphere at a temperature in the range of 500 to 1000 ° C. and an ultimate pressure of 0.13 kPa or less, and then to cool, A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by crushing.
前記請求項13、14、15または16記載の水素吸収希土類磁石合金原料粉末を作製するための希土類磁石合金原料は、真空またはArガス雰囲気中、温度:600〜1200℃に保持の条件で均質化処理した希土類磁石合金原料であることを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。 The rare earth magnet alloy raw material for producing the hydrogen-absorbing rare earth magnet alloy raw material powder according to claim 13, 14, 15, or 16 is homogenized under a vacuum or Ar gas atmosphere at a temperature of 600 to 1200 ° C. A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability, characterized by being a treated rare earth magnet alloy raw material. 請求項8、9、10、11、12、13、14、15、16または17記載の方法で製造した磁気異方性および熱的安定性に優れた希土類磁石粉末を有機バインダーまたは金属バインダーにより結合することを特徴とする希土類磁石の製造方法。 A rare earth magnet powder excellent in magnetic anisotropy and thermal stability produced by the method according to claim 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 is bonded with an organic binder or a metal binder. A method for producing a rare earth magnet. 請求項8、9、10、11、12、13、14、15、16または17記載の方法で製造した磁気異方性および熱的安定性に優れた希土類磁石粉末を成形して圧粉体を作製し、この圧粉体を温度:600〜900℃でホットプレスまたは熱間静水圧プレスすることを特徴とする希土類磁石の製造方法。 A rare earth magnet powder having excellent magnetic anisotropy and thermal stability produced by the method according to claim 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 is molded into a green compact. A method for producing a rare earth magnet, characterized in that the green compact is produced and hot pressed or hot isostatic pressed at a temperature of 600 to 900 ° C. 請求項8、9、10、11、12、13、14、15、16または17記載の希土類磁石合金原料は、原子%で(以下、%は原子%を示す)、
R´(ただし、R´は、Yを含む希土類元素の内の1種または2種以上を示し、DyおよびTbの1種または2種を含まない場合も含む。以下同じ):10〜20%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
R´:10〜20%、B:3〜20%、M(但し、MはGa、Zr、Nb、Mo、Hf、Ta、W、Ni、Al、Ti、V、Cu、Cr、Ge、CおよびSiの内の1種または2種以上を示す。):0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、
R´:10〜20%、Co:0.1〜50%、B:3〜20%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料、または
R´:10〜20%、Co:0.1〜50%、B:3〜20%、M:0.001〜5%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する希土類磁石合金原料であることを特徴とする磁気異方性および熱的安定性に優れた希土類磁石粉末の製造方法。
The rare earth magnet alloy raw material according to claim 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 is atomic% (hereinafter,% indicates atomic%),
R ′ (where R ′ represents one or more of rare earth elements including Y, including cases where one or two of Dy and Tb are not included; the same applies hereinafter): 10 to 20% B: a rare earth magnet alloy raw material having a composition containing 3 to 20%, the balance being Fe and inevitable impurities,
R ′: 10 to 20%, B: 3 to 20%, M (where M is Ga, Zr, Nb, Mo, Hf, Ta, W, Ni, Al, Ti, V, Cu, Cr, Ge, C And one or more of Si.): A rare earth magnet alloy raw material having a component composition of 0.001 to 5%, with the balance being Fe and inevitable impurities,
R ′: 10 to 20%, Co: 0.1 to 50%, B: 3 to 20%, rare earth magnet alloy raw material having a component composition consisting of Fe and inevitable impurities, or R ′: 10 20%, Co: 0.1 to 50%, B: 3 to 20%, M: 0.001 to 5%, the remainder being a rare earth magnet alloy raw material having a component composition consisting of Fe and inevitable impurities A method for producing a rare earth magnet powder excellent in magnetic anisotropy and thermal stability.
JP2003370054A 2002-10-30 2003-10-30 Rare earth magnet powder excellent in magnetic anisotropy and thermal stability and method for producing the same Expired - Fee Related JP4482861B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003370054A JP4482861B2 (en) 2002-10-30 2003-10-30 Rare earth magnet powder excellent in magnetic anisotropy and thermal stability and method for producing the same
US10/569,429 US7632360B2 (en) 2003-08-27 2004-05-13 Rare earth magnet powder and method of producing the same
PCT/JP2004/006784 WO2005023462A1 (en) 2003-08-27 2004-05-13 Rare earth magnet powder and method for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002315723 2002-10-30
JP2003209090 2003-08-27
JP2003209477 2003-08-29
JP2003370054A JP4482861B2 (en) 2002-10-30 2003-10-30 Rare earth magnet powder excellent in magnetic anisotropy and thermal stability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005097711A JP2005097711A (en) 2005-04-14
JP4482861B2 true JP4482861B2 (en) 2010-06-16

Family

ID=34468441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370054A Expired - Fee Related JP4482861B2 (en) 2002-10-30 2003-10-30 Rare earth magnet powder excellent in magnetic anisotropy and thermal stability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4482861B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632360B2 (en) * 2003-08-27 2009-12-15 Nissan Motor Co., Ltd. Rare earth magnet powder and method of producing the same
JP2008305835A (en) * 2007-06-05 2008-12-18 Yaskawa Electric Corp Magnetic powder and method of manufacturing the same, and bond magnet using the magnetic powder
JP5125818B2 (en) * 2007-07-24 2013-01-23 日産自動車株式会社 Magnetic compact and manufacturing method thereof
EP2511920B1 (en) 2009-12-09 2016-04-27 Aichi Steel Corporation Process for production of rare earth anisotropic magnet
JP5472320B2 (en) 2009-12-09 2014-04-16 愛知製鋼株式会社 Rare earth anisotropic magnet powder, method for producing the same, and bonded magnet
JP5906876B2 (en) * 2011-03-29 2016-04-20 日立金属株式会社 Manufacturing method of RTB-based permanent magnet
US10186374B2 (en) * 2013-03-15 2019-01-22 GM Global Technology Operations LLC Manufacturing Nd—Fe—B magnets using hot pressing with reduced dysprosium or terbium
JP7303157B2 (en) * 2020-06-01 2023-07-04 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005097711A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
TWI413136B (en) Rare earth permanent magnet
TWI417906B (en) Functionally graded rare earth permanent magnet
JP4702546B2 (en) Rare earth permanent magnet
JP7379362B2 (en) Low B content R-Fe-B sintered magnet and manufacturing method
JP5892139B2 (en) Rare earth anisotropic magnet and manufacturing method thereof
JP5304907B2 (en) R-Fe-B fine crystal high density magnet
US7488395B2 (en) Functionally graded rare earth permanent magnet
TWI421885B (en) Manufacture method of rare earth metal permanent magnet material
CN109964290B (en) Method for producing R-T-B sintered magnet
JP4702547B2 (en) Functionally graded rare earth permanent magnet
JP4702548B2 (en) Functionally graded rare earth permanent magnet
JP6471669B2 (en) Manufacturing method of RTB-based magnet
JP4482861B2 (en) Rare earth magnet powder excellent in magnetic anisotropy and thermal stability and method for producing the same
US7632360B2 (en) Rare earth magnet powder and method of producing the same
JP5288276B2 (en) Manufacturing method of RTB-based permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP2013115156A (en) Method of manufacturing r-t-b-based permanent magnet
JP7537536B2 (en) RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
CN111724955A (en) R-T-B permanent magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JPH04338604A (en) Metallic bonding magnet and manufacture thereof
KR102726938B1 (en) Double-layer neodymium iron boron magnet and its manufacturing method
JP2024031021A (en) Manufacturing method of rare earth magnet powder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees