JP4466798B2 - 直流−直流変換器 - Google Patents
直流−直流変換器 Download PDFInfo
- Publication number
- JP4466798B2 JP4466798B2 JP2000156508A JP2000156508A JP4466798B2 JP 4466798 B2 JP4466798 B2 JP 4466798B2 JP 2000156508 A JP2000156508 A JP 2000156508A JP 2000156508 A JP2000156508 A JP 2000156508A JP 4466798 B2 JP4466798 B2 JP 4466798B2
- Authority
- JP
- Japan
- Prior art keywords
- switch
- switches
- circuit
- value
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Description
【発明の属する技術分野】
本発明は、直流−直流変換器に関する。
【0002】
【従来の技術】
インバータ回路と整流回路との組み合せによって構成した直流−直流変換器即ちDC−DCコンバータは、充電器、コンピュータ用電源等として広く使用されている。
【0003】
【発明が解決しようとする課題】
ところで、従来の典型的なDC−DCコンバータの整流回路はダイオード整流回路であるので、負荷の電力を電源側に回生することができないという欠点を有する。DC−DCコンバータの別の形式の整流回路として同期整流回路がある。この同期整流回路では、整流回路のダイオードの電圧降下を低減するためにダイオードに並列にスイッチ素子を接続し、ダイオードの導通期間にスイッチ素子をオン制御する。しかし、同期整流回路のスイッチ素子を制御するための回路が複雑になった。
また、インバータ回路のスイッチ素子及び同期整流回路のスイッチ素子の零電圧スイッチング即ちZVSを可能にする制御回路を簡単に構成することができなかった。
また、リップルの少ない直流出力電圧を得ることが困難であった。
また、整流回路で発生するノイズ又はサージ電圧が問題になった。
また、直流―交流変換回路のスイッチ素子の制御パルスを形成するための回路の簡略化が要求されている。
【0004】
そこで、本発明の目的は、電力回生可能な直流−直流変換器を提供することにある。
本発明の別な目的は、スイッチの零電圧スイッチング即ちZVSが可能な直流−直流変換器を提供することにある。
本発明の更に別な目的は、インバータ回路のトランスの電位の安定化を容易に図ることができる直流−直流変換器を提供することにある。
本発明の更に別な目的は、リップル成分を低減することができる直流−直流変換器を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決し、上記目的を達成するための本発明は、直流電力を供給するための第1及び第2の直流電源端子と、前記第1及び第2の直流電源端子間に接続された第1及び第2のスイッチの直列回路と、前記第1及び第2の直流電源端子間に接続された第3及び第4のスイッチの直列回路と、前記第1及び第2のスイッチの相互接続点と前記第3及び第4のスイッチの相互接続点との間に接続されたトランスの1次巻線と、前記1次巻線に電磁結合された前記トランスの2次巻線と、前記2次巻線に接続された少なくとも第5及び第6のスイッチを有する同期整流回路と、前記同期整流回路と直流出力端子との間に接続された平滑回路と、前記第1、第2、第3、第4、第5及び第6のスイッチのオン,オフ制御信号を形成する制御回路と、を有する直流−直流変換器であって、前記制御回路が、鋸波を発生する鋸波発生器と、前記鋸波の最低値から最高値までの振幅値(Vp)を示す信号を発生する振幅値発生手段と、前記鋸波の最低値と最高値との中間値(Vct)を示す信号を発生する中間値発生手段と、前記第1.第2.第3及び第4のスイッチを制御するためのパルスの幅を指令するためのものであって、前記鋸波の最低値と前記中間値(Vct)との間の値から成る第1のパルス幅指令値(V1)を発生するパルス幅指令値発生手段と、前記最高値(Vp)から前記第1のパルス幅指令値(V1)を減算して第2のパルス幅指令値(V2)を出力する減算手段と、前記第1のパルス幅指令値(V1)と前記鋸波とを比較して前記第1のスイッチの制御パルスを形成し且つ前記第2のスイッチを前記第1のスイッチのオフ期間の少なくとも一部においてオンに制御するための制御パルスを形成する第1のパルス形成手段と、前記第2のパルス幅指令値(V2)と前記鋸波とを比較して前記第3のスイッチの制御パルスを形成し且つ前記第4のスイッチを前記第3のスイッチのオフ期間少なくとも一部においてオンに制御するための制御パルスを形成する第2のパルス形成手段と、前記中間値(Vct)と前記前記鋸波とを比較して前記第5のスイッチの制御パルスを形成し且つ前記第6のスイッチを少なくとも前記第5のスイッチのオフ期間の一部においてオンに制御するための制御パルスを形成する第3のパルス形成手段とを備えていることを特徴とする直流−直流変換器に係わるものである。
【0006】
なお、請求項2に示すように同期整流回路を有する直流―直流変換器を構成することができる。
また、請求項3に示すように、第1〜第4のダイオード及び第1〜第4のコンデンサを第1〜第4のスイッチに並列に接続することが望ましい。
また、請求項4に示すように、トランスの2次巻線にセンタタップを設け、同期整流回路を第5及び第6のスイッチで構成することができる。
また、請求項5に示すように、第5及び第6のスイッチに並列に第5及び第6のダイオードを接続することが望ましい。
また、請求項6に示すように、同期整流回路を第5〜第8のスイッチのブリッジ回路で形成することができる。
また、請求項7に示すように、第5〜第8のスイッチに並列に第5〜第8のダイオードを接続することが望ましい。
また、請求項8に示すように、平滑回路をリアクトルとコンデンサとから成るチョ−クインプット型に形成することが望ましい。
また、請求項9に示すようにクランプ回路を設けることが望ましい。
【0007】
【発明の効果】
各請求項の発明によれば、第1〜第4のスイッチの制御パルスを容易に形成することができる。
また、各請求項の発明によれば、鋸波の中間値に基づいて第5及び第6のスイッチ又は第5〜第8のスイッチの制御信号を形成し、中間値と最低値との間に設定された第1及び第2のパルス幅指令値によって第1及び第2のスイッチの制御信号を形成し、中間値と最高値との間に設定された第2又は第1のパルス幅指令値によって第3及び第4のスイッチの制御信号を形成する。従って、第1〜第6のスイッチ又は第1〜第8のスイッチの制御信号を中間値と第1及び第2のパルス指令値と鋸波とを使用して容易且つ低コストに形成することができる。更に詳細には、例えば第1及び第2のスイッチを3相変換回路(3相インバータ又はコンバータ)の第1相のスイッチ回路、第3及び第4のスイッチを3相変換回路の第2相のスイッチ回路、第5及び第6のスイッチ又は第5〜第8のスイッチを3相変換回路の第3相のスイッチ回路と同様に取り扱って、3相変換回路の3相のスイッチ制御信号形成回路の一部を変形したものによって本発明の第1〜第6のスイッチ又は第1〜第8のスイッチの制御信号を形成することが可能になり、制御回路のコストの低減を図ることができる。
請求項3の発明によれば、第1〜第4のコンデンサによる部分共振によって第1〜第4のスイッチの零電圧スイッチング即ちZVSが可能になり、第1〜第4のスイッチング損失を低減することができる。
請求項5及び7の発明によれば、第5及び第6のスイッチ、又は第5〜第8のスイッチがオフになった後に第5及び第6のダイオード又は第5〜第8のダイオードを介して電流を流すことができ、平滑性の良い出力電圧を得ることができる。
請求項8によれば、リアクトルによって電流の連続性が良くなり、平滑性の良い出力電圧を得ることができる。
請求項9によれば、同期整流回路のスイッチとダイオードとのいずれか一方又は両方によって発生するノイズ又は過電圧を抑制することができる。
【0008】
【実施形態及び実施例】
次に、図1〜図8を参照して本発明の実施形態及び実施例を説明する。
【0009】
【第1の実施例】
本発明の第1の実施例に従う直流−直流変換器即ちDC−DCコンバータは図1に示すように、整流回路、コンバータ回路又は電池等から成る直流電源1に接続される第1及び第2の直流電源端子1a、1bを有する。第1及び第2の直流電源端子1a、1b間には入力コンデンサCin及びブリッジ型変換回路が接続されている。ブリッジ型変換回路は、第1及び第2の直流電源端子1a、1b間に接続された第1及び第2のスイッチQ1 、Q2 の直列回路と、第3及び第4のスイッチQ3 、Q4 の直列回路とを有する。第1、第2、第3及び第4のスイッチQ1 ,Q2 、Q3 、Q4 は電界効果トランジスタ(FET)から成る半導体スイッチである。第1、第2、第3及び第4のスイッチQ1 、Q2 、Q3 、Q4 にそれぞれ並列に第1、第2、第3及び第4のダイオードD1 、D2 、D3 、D4 が接続されている。第1〜第4のダイオードD1 〜D4 は電源1の電圧によって逆バイアスされる方向性を有している。これ等のダイオードD1 〜D4 は第1〜第4のスイッチQ1 〜Q4 と同一の半導体基体に設けた内蔵ダイオードとすることができる。第1〜第4のスイッチQ1 〜Q4 の零電圧スイッチング即ちZVSを可能にするために、第1〜第4のスイッチQ1 〜Q4 にそれぞれ並列に第1、第2、第3及び第4のコンデンサC1 、C2 、C3 、C4 が接続されている。なお、第1〜第4のコンデンサC1 〜C4 を第1〜第4のスイッチQ1 〜Q4 の寄生容量とすることもできる。従って、本願での第1〜第4のコンデンサC1 〜C4 は個別コンデンサ又は寄生容量を意味するものとする。
【0010】
第1〜第4のスイッチQ1〜Q4から成る直流―交流変換回路の出力回路又は負荷回路としてのトランスTは1次巻線N1 と2次巻線N2 とを有する。1次巻線N1 は、第1及び第2のスイッチQ1 、Q2 の相互接続点と第3及び第4のスイッチQ3 、Q4 の相互接続点との間に接続されている。2次巻線N2 はセンタタップPo を有し、第1の部分N2aと第2の部分N2bに分割されている。
【0011】
2次巻線N2 と第1及び第2の直流出力端子2a、2bとの間には、同期整流回路3と平滑回路4とが接続されている。同期整流回路3は半導体スイッチ素子としてのFETから成る第5及び第6のスイッチQ5 、Q6 と、第5及び第6のダイオードD5 、D6 とから成る。第5のスイッチQ5 は2次巻線N2 の一方の端子P1 と平滑回路4の一方の入力端子としての一方の入力ライン6aとの間に接続され、第6のスイッチQ6は2次巻線N2 の他方の端子P2 と平滑回路4の一方の入力端子としての一方の入力ライン6aとの間に接続されている。2次巻線N2 のセンタタップPo は平滑回路4の他方の入力ライン6bに接続されている。
第5及び第6のダイオードD5 、D6 は第5及び第6のスイッチQ5 、Q6 にそれぞれ並列に接続されている。第5及び第6のダイオードD5 、D6 は平滑用コンデンサCo の電圧で逆バイアスされる方向性を有する。なお、第5及び第6のダイオードD5 、D6 を第5及び第6のスイッチQ5 、Q6 と同一の半導体基体に設けた内蔵ダイオードとすることができる。第5及び第6のスイッチQ5 、Q6 は絶縁ゲート型nチャネルFETであるので、正方向電流と逆方向電流との両方を流すことができる。
【0012】
平滑回路4はリアクトルLo とコンデンサCo とから成るチョークインプット型平滑回路である。リアクトルLo は平滑回路4の一方の入力ライン6aとコンデンサCo の一端との間に接続されている。コンデンサCo は対の出力端子2a、2b間に接続されている。なお、リアクトルLo を平滑回路4の他方の入力ライン6bとコンデンサCo の他端との間に接続することもできる。コンデンサCo に接続された第1及び第2の直流出力端子2a、2b間には負荷(図示せず)が接続される。
【0013】
制御回路5は、第1〜第6のスイッチQ1 〜Q6 のゲート即ち制御端子に制御信号を送るものである。なお、制御回路5は第1〜第6のスイッチQ1 〜Q6 にそれぞれ接続されているが、図1では図示を簡略化するために上記接続が省略されている。この制御回路5は出力端子2a、2b間の電圧を一定に制御するために、出力端子2a、2bにも接続されている。
【0014】
図2は図1の制御回路5の詳細を示す。この制御回路5は、鋸波発生器10、Vp 値発生器11、0.5Vp 発生器12、パルス幅指令値発生器13、減算器14、第1、第2及び第3のパルス形成回路15、16、17、出力電圧検出回路18、誤差増幅器19及び基準電圧源20を有する。なお、この制御回路5はテキサス社のDSPであるTMS320F240に内蔵されているPWM発生器を使用して構成することができる。
【0015】
鋸波発生器10は、図3(A)に示すように増加の速度と低下の速度とが同一の鋸波電圧(以下、鋸波と言う)Vt を同期Taを有して繰返して発生する。この鋸波Vt の繰返し周波数は例えば20〜150kHZ である。この実施例では鋸波Vt の最低値は零ボルトであり、最高値はVp ボルトである。
【0016】
増幅値発生手段としてのVp 値発生器11は、鋸波Vt の最高値Vp と最低値(0V)との差の値に相当する振幅値Vp を発生するものであり、例えばVp を示す基準電圧源又はVp を示すデータが格納されたメモリ手段で構成される。
【0017】
中間値発生手段としての0.5Vp 発生器12は、鋸波Vt の最低値(0V)と最高値(Vp )との中間値Vctを示す値0.5Vp を発生するものであり、例えば0.5Vp を示す基準電圧源又はこれを示すデータが格納されたメモリ手段で構成される。
【0018】
パルス幅指令値発生器13は、第1〜第4のスイッチQ1 〜Q4 を制御するための制御パルスの幅の情報を含む第1のパルス幅指令値V1 を発生するものである。この実施例では、図3(A)に示すように、第1のパルス幅指令値V1 は0〜0.5Vp の範囲内の値を有する。
【0019】
減算器14はVp 発生器11から与えられた鋸波Vt の振幅値Vp から第1のパルス幅指令値V1 を減算して第2のパルス幅指令値V2 を形成するものである。第2のパルス幅指令値V2 は、図3(A)に示すように中間値Vct=0.5Vp と最高値Vp との間の値を有する。
【0020】
出力電圧を一定に制御するための第1のパルス幅指令値V1 を形成するために、電圧検出回路18は、図1の出力端子2a、2bに接続されている。誤差増幅器19は、電圧検出回路18から得られた検出値と基準電圧源20の基準電圧との差を示す信号を形成し、パルス幅指令値発生器13に送る。パルス幅指令値発生器13は誤差増幅器19の出力に比例した第1のパルス幅指令値V1を電圧信号の形式で発生する。
【0021】
第1のパルス形成回路15は、第1の比較器21と、第1及び第2のスイッチ制御信号Vg1、Vg2を形成するためのVg1及びVg2形成回路22、23とから成る。第1の比較器21は鋸波Vt と第1のパルス幅指令値V1 とを比較して図3(B)に示す第1の比較出力Va を2値信号の形式で出力する。Vg1形成回路22は、第1のスイッチQ1 の制御パルスを形成するものであって、第1の比較器21の出力Va の立上り時点t12を時間Td だけ遅延した時点t13で低レベルから高レベルに転換し、第1の比較出力Va の高レベルから低レベルへの転換時点t14に同期して高レベルから低レベルになるパルスを図3(E)に示すように形成し、このパルスを第1の制御信号Vg1として第1のスイッチQ1 の制御端子に送る。Vg2形成回路23は、第2のスイッチQ2 を第1のスイッチQ1 のオフ期間にオンに制御するための制御信号Vg2を形成するためのものであって、図3(F)に示すように図3(A)に示す第1の比較器21の出力Va の高レベルから低レベルへの転換時点t1 から時間Td だけ遅延したt2 時点で図3(F)に示すように低レベルから高レベルに立上り、第1の比較器21の出力Va の低レベルから高レベルへの立上り時点t12で高レベルから低レベルに立下るパルスを形成し、これを第2の制御信号Vg2として第2のスイッチQ2 の制御端子に送る。
【0022】
第2のパルス形成回路16は、第2の比較器24と、第3及び第4の制御信号Vg3、Vg4を形成するためのVg3及びVg4形成回路25、26とから成る。第2の比較器24は鋸波Vt と減算器14の出力から成る第2のパルス幅指令値V2 とを比較して図3(C)に示す比較出力Vb を2値信号の形式で発生する。Vg3形成回路25は、第3のスイッチQ3 を制御するパルスを形成するものであって、第2の比較器24の出力Vb の高レベルから低レベルへの転換時点t5 から時間Td だけ遅延した時点t6 で低レベルから高レベルに立上り、その後第2の比較器24の出力Vb の低レベルから高レベルへの転換時点t8 にて高レベルから低レベルに転換するパルスを図3(G)に示すように形成し、これを第3の制御信号Vg3として第3のスイッチQ3 の制御端子に送る。Vg4形成回路26は、第4のスイッチQ4 を制御するパルスを形成するものであって、第2の比較器24の出力Vb の低レベルから高レベルへの立上り時点t8 から時間Td だけ遅延した時点t9 で低レベルから高レベルに転換し、第2の比較器24の出力Vb が高レベルから低レベルに転換する時点t18で高レベルから低レベルに転換するパルスを図3(H)に示すように形成し、これを第4のスイッチQ4 の制御端子に送る。
【0023】
第3のパルス形成回路17は、デュ−テイ比がほぼ50%の第5及び第6のスイッチQ5、Q6の制御信号を形成するものであって、第3の比較器27と第5及び第6の制御端子Vg5、Vg6を形成するためのVg5、Vg6形成回路28、29とから成る。第3の比較器27は鋸波Vt と0.5Vp 発生器12の出力0.5Vp とを比較して図3(D)に示す2値の比較出力Vc を発生する。Vg5形成回路28は第5のスイッチQ5 を制御するパルスを形成するものであって、第3の比較器27の出力Vc の低レベルから高レベルへの立上り時点t10に同期して低レベルから高レベルに転換し、第3の比較器27の出力Vc の高レベルから低レベルへの転換時点t16から時間Td だけ遅延した時点t17で高レベルから低レベルに転換するパルスを図3(I)に示すように形成し、これを第5のスイッチQ5 の制御端子に送る。Vg6形成回路29は第6のスイッチQ6 を第5のスイッチQ5 のオフ期間にオンに制御するための第6の制御信号Vg6を形成するものであって、第3の比較器27の出力Vc の高レベルから低レベルへの転換時点t3 に同期して低レベルから高レベルに転換し、第3の比較器27の出力Vc の低レベルから高レベルへの転換時点t10から時間Td だけ遅延した時点t11で高レベルから低レベルに転換するパルスを図3(J)に示すように形成し、このパルスを第6の制御信号Vg6として第6のスイッチQ6 の制御端子に送る。図3における各遅延時間Td は第1〜第6のスイッチQ1 〜Q6 のターンオフ時にそれぞれの両端子間電圧即ちドレイン・ソース間電圧が零ボルトから電源電圧まで立上る所要時間にほぼ一致している。
【0024】
次に、図1のDC−DCコンバータの動作を図3を参照して説明する。なお、電流経路は各部の参照符号のみで示すことにする。図3(E)(H)(I)に示すようにt1 時点の直前においては、第1、第4及び第5のスイッチQ1 、Q4 、Q5 がオンである。従って、トランスTの1次側では1a−Q1 −N1 −Q4 −1bの経路で図3(K)で点線で示す電流Iq1が流れ、2次側では、N2a−Q5 −Lo −Co の経路で図3(N)に示す電流Iq5が流れる。なお、この期間には、電源1の電圧E1 が1次巻線N1 に印加され、2次巻線N2 には1次巻線N1 との巻数比に応じた電圧が誘起し、コンデンサCo 及び負荷に電力が供給される。
【0025】
t1 〜t2 期間には、第4及び第5のスイッチQ4 、Q5 のオン制御が継続しているが、第1のスイッチQ1 はt1 でターンオフ制御される。従って、1a−C1 −N1 −Q4 −1bの経路で第1のコンデンサC1 の充電電流が流れ、第1のコンデンサC1 の電圧即ち第1のスイッチQ1 の電圧Vq1が図3(K)に示すように傾斜を有して立上る。これにより第1のスイッチQ1 のZVSが達成され、このスイッチング損失が小さくなり且つノイズが抑制される。このt1 〜t2 期間には、C2 −N1 −Q4 の回路で第2のコンデンサC2 の放電電流が流れ、第2のスイッチQ2 の電圧Vq2は図3(L)に示すように徐々に低下する。また、t1 〜t2 期間において、2次側には、N2a−Q5 −Lo −Co の経路で電流Iq5が図3(N)に示すように流れ続ける。
【0026】
t2 〜t3 期間には、図3(F)(H)(I)に示すように第2、第4及び第5のスイッチQ2 、Q4 、Q5 がオン制御され、残りのスイッチQ1 、Q3 、Q6 はオフ制御される。従って、1次巻線N1 は第2及び第4のスイッチQ2 、Q4 で短絡されている。t2 時点で第2のスイッチQ2 をターンオン制御すると、t2 時点で第2のスイッチQ2 の電圧Vq2は零になっているので、ZVSが達成される。このt2 〜t3 期間には、N1 −Q4 −Q2 の経路で電流が流れる。この電流は図3(L)で点線で示す電流Iq2及び図3(M)に示す電流I1 である。2次側においては、リアクトルLo の蓄積エネルギの放出によってLo −Co −N2a−Q5 の経路で図3(N)に示す電流Iq5が流れる。なお、t2 〜t3 期間には、1次巻線N1 の電圧及び2次巻線N2a、N2bの電圧及び第5のスイッチQ5 の電圧がそれぞれ実質的に零である。従って、この期間には第6のスイッチQ6 の電圧も零である。
【0027】
t3 〜t4 期間には、図3(F)(H)(I)(J)に示すように第2、第4、第5及び第6のスイッチQ2 、Q4 、Q5 、Q6 がオン制御され、この他のスイッチはオフ制御される。この結果、t2 〜t3 期間と同様にN1 −Q4 −Q2 の経路に図3(M)の電流I1 が流れる。t3 時点で第6のスイッチQ6 がターンオン制御されるが、この時点で第6のスイッチQ6 の両端子間電圧は零であるので、ZVSとなる。
【0028】
t4 〜t5 区間では、図3(F)(H)(J)に示すように第2、第4、第6のスイッチQ2 、Q4 、Q6 がオン制御される。t4 時点で第5のスイッチQ5 がターンオフ制御されるが、2次巻線N2 の電圧が零であり且つ第6のスイッチQ6 の電圧も零であるので、第5のスイッチQ5 はZVSでターンオフされる。なお、第5のスイッチQ5 がオフになってもN2a−D5 −Lo −Co の経路で図3(O)の電流Id5が流れる。
【0029】
t5 〜t6 期間には、図3(F)(J)に示すように第2及び第6のスイッチQ2 、Q6 のみがオン制御され、この他のスイッチQ1 、Q3 、Q4 、Q5 はオフ制御される。これにより、C3 −1−Q2 −N1 の経路で第3のコンデンサC3 の電荷が共振で放出され、この電圧が徐々に低下し、t6 時点で零になる。他方、第4のコンデンサC4 は電源1の電圧E1 まで徐々に充電される。これにより、t5 時点での第4のスイッチQ4 のターンオフはZVSになる。2次側においては、N2a−D5 −Lo −Co の経路で電流Id5が図3(O)に示すように流れる。
【0030】
t6 〜t7 では、図3(F)(G)(J)に示すように第2、第3、第6のスイッチQ2 、Q3 、Q6 がオン制御状態にあり、この他のスイッチはオフ制御状態にある。この期間にはN1 −Q3 −1−Q2 の経路で電流が流れる。t6 時点で第3のスイッチQ3 がターンオン制御されるが、t6 時点でこの電圧が零になっているので、ZVSが達成される。このt6 〜t7 期間において2次側には、Lo −Co −N2a−D5 の経路及びLo −Co −N2b−Q6 の経路に電流が流れる。
【0031】
t7 〜t8 期間には、t6 〜t7 期間と同様に図3(F)(G)(J)に示すように第2、第3、第6のスイッチQ2 、Q3 、Q6 がオン制御状態にある。これにより、1−Q3 −N1 −Q2 の経路で1次巻線N1 に電源1の電圧E1 が印加され、ここに電流I1 が流れる。また、2次側において、N2b−Q6 −Lo −Co の経路でコンデンサCo が充電される。
【0032】
t8 〜t9 期間には、図3(F)(J)に示すように第2及び第6のスイッチQ2 、Q6 のみがオン制御される。t8 で第3のスイッチQ3 がターンオフ制御されると、第3のコンデンサC3 が電源電圧E1 に向って徐々に充電され、第3のスイッチQ3 のZVSが達成される。一方、t8 〜t9 期間において第4のコンデンサC4 の電圧は零に向って徐々に低下する。
【0033】
t9 〜t10期間には、図3(F)(H)(J)に示すように第2、第4、第6のスイッチQ2 、Q4 、Q6 のみがオン制御される。t9 において第4のスイッチQ4 がターンオン制御されるが、t9 時点で第4のスイッチQ4 及び第4のコンデンサC4 の電圧が零であるので、ZVSが達成される。
【0034】
t10〜t11期間では、図3(F)(H)(I)(J)に示すように第2、第4、第5、第6のスイッチQ2 、Q4 、Q5 、Q6 のみがオン制御される。t10時点で第5のスイッチQ5 をターンオン制御する時に2次巻線N2 の電圧が零であるので、第5のスイッチQ5 の電圧も零であり、ZVSが達成される。
【0035】
t11〜t12期間には、図3(F)(H)(I)に示すように第2、第4及び第5のスイッチQ2 、Q4 、Q5 のみがオン制御される。t11時点での第6のスイッチQ6 のターンオフはZVSとなる。即ちt11時点で、2次巻線N2 の電圧は零であり、第6のスイッチQ6 は第5のスイッチQ5 で短絡されているので、第6のスイッチQ6 の電圧は零であり、ZVSになる。このt11〜t12期間には、Lo −Co −N2b−D6 の経路で図3(Q)に示す電流Id6が流れる。
【0036】
t12〜t13期間には、図3(H)(I)に示すように第4及び第5のスイッチQ4 、Q5 のみがオン制御される。t12時点で第2のスイッチQ2 がターンオフ制御されると、第2のコンデンサC2 が徐々に充電され、第1のコンデンサC1 が徐々に放電されてt13時点で零になる。従って、t12時点での第2のスイッチQ2 のターンオフはZVSになる。また、t13時点の第1のスイッチQ1 のターンオンもZVSになる。
【0037】
本実施例のDC−DCコンバータは次の効果を有する。
(1) 2次側に第5及び第6のスイッチQ5 、Q6 を設けることによって、軽負荷時においてもリアクトルLo の電流の連続性を確保することが可能になり、リップルを低減することができる。
(2) 第5及び第6のスイッチQ5 、Q6 を介して出力端子2a、2b側からトランスT側に回生電流を流すことが可能になる。即ち、負荷の電力を電源1に回生することができる。
(3) Vp 発生器11、0.5Vp 発生器12、パルス幅指令値発生器13、減算器14を設け、第1、第2及び第3の比較器21、24、27による図3(A)〜(D)に示す比較動作によって第1〜第6のスイッチQ1 〜Q6 の制御信号Vg1〜Vg6を形成するので、これ等の制御信号Vg1〜Vg6を簡単な回路によって形成することができる。
(4) 各スイッチQ1 〜Q6 のZVSが可能であり、スイッチング損失を低減することができる。
(5) 第1、第2及び第3の比較器21、24、27として、3相のスイッチング回路におけるゲート信号生成用の比較器を使用することが可能になり、部品の共通化によってコストの低減を図ることができる。
(6) 第1〜第4のスイッチQ1 〜Q4 はデッドタイムを除き、第1〜第4のスイッチQ1 〜Q4 のいずれかがオンしている。従って、トランスTの1次巻線N1 の電圧を安定化することができる。即ち、従来のDC−DCコンバータでは、軽負荷時にPWMのパルス幅が狭くなるために第1〜第4のスイッチQ1 〜Q4 の全てがオフになる時間が長くなることがある。このオフ期間が短い場合には、トランスTの1次巻線N1 のインダクタンスによる電流が第1〜第4のダイオードD1 〜D4 を通って流れ、1次巻線N1 の電位の安定化を図ることができるが、オフ期間が長くなると第1〜第4のダイオードD1 〜D4 を通って流れる電流が無くなり、トランスの1次巻線N1 の電位が不安定になる。これにより第1〜第4のスイッチQ1 〜Q4 のターンオン時のZVSが確実に出来なくなり、またサージ電流が流れることもある。これに対し、本実施例では、第1〜第4のスイッチQ1 〜Q4 のいずれかがオン状態にあるので、1次巻線N1 の電位の安定化を図ることができる。
【0038】
【第2の実施例】
次に、図4及び図5を参照して第2の実施例のDC−DCコンバータを説明する。但し、第1の実施例と共通する部分の図示を省略し、図1を参照する。また,図4において図2と実質的に同一の部分には同一の符号を付してその説明を省略する。
【0039】
第2の実施例のDC−DCコンバータは、図1及び図2の制御回路5を図4の制御回路5aに変形した他は、図1と同一に構成したものである。図4の制御回路5aは、図2のパルス幅指令値発生器13及び減算器14をパルス幅指令値発生器13a及び減算器14aに変えた他は図2と同一に構成したものである。図4のパルス幅指令値発生器13aは、図5に示す中間値0.5Vp とピーク値Vp との間の値を有する第1のパルス幅指令値V1 を発生する。減算器14aはピーク値Vp から第1のパルス幅指令値V1 を減算した値からなる第2のパルス幅指令値V2 を発生する。図4及び図5の第2のパルス幅指令値V2 は図2及び図3の第1のパルス幅指令値V1 と同様に機能し、第1の比較器21に入力する。図4及び図5の第1のパルス幅指令値V1 は図2及び図3の第2のパルス幅指令値V2 と同様に機能し、第2の比較器24に入力する。従って、図4の第1〜第3の比較器21、24、27からは図2のこれ等の出力と同一の出力が得られる。これにより、第2の実施例によっても第1の実施例と同一の効果を得ることができる。
【0040】
【第3の実施例】
次に、図6に示す第3の実施例のDC−DCコンバータを説明する。但し、図6において図1と実質的に同一の部分には同一の符号を付してその説明を省略する。図6のDC−DCコンバータは、図1のトランスTと整流回路3と制御回路5bとを、トランスTa と整流回路3aと制御回路5bとに変形し、この他は図1と同様に構成したものである。
【0041】
図6のトランスTa の1次巻線N1 に接続されている1次側回路10は、図1のトランスTの1次巻線N1 よりも電源側の回路と同一である。図6のトランスTa の2次巻線N2 はセンタタップを有していない。整流回路3aはブリッジ接続された第5、第6、第7及び第8のスイッチQ5 、Q6 、Q7 、Q8 と第5、第6、第7及び第8のダイオードD5 、D6 、D7 、D8 とから成る。第5及び第7のスイッチQ5 、Q7 の相互接続点は2次巻線N2 の一端に接続され、第2及び第4のスイッチQ2 、Q4 の相互接続点は2次巻線N2 の他端に接続されている。第5及び第7のスイッチQ5 、Q7 の直列回路と第6及び第8のスイッチQ6 、Q8 の直列回路とは、平滑回路4の対の入力ライン6a、6b間に接続されている。第5、第6、第7及び第8のダイオードD5 、D6 、D7 、D8 は、コンデンサCo の電圧で逆バイアスされる方向性を有して第5、第6、第7及び第8のスイッチQ5 、Q6 、Q7 、Q8 に並列に接続されている。なお、ダイオードD5 〜D8 をスイッチQ5 〜Q8 の内蔵ダイオードとすることができる。
【0042】
制御回路5bは、図2の制御回路5に第7及び第8のスイッチQ7 、Q8 の制御手段を付加した後は図2と同一に構成されている。
図7(A)(B)(C)(D)は図6の1次側回路10に含まれる図1の第1〜第4のスイッチQ1 〜Q4 の制御信号Vg1〜Vg4を示し、図3(E)(F)(G)(H)と同一である。図7(E)は第5及び第8のスイッチQ5 、Q8 の制御信号Vg5、Vg8を示し、図7(F)は第6及び第7のスイッチQ6 、Q7 の制御信号Vg6、Vg7を示す。図7(E)(F)は図3(I)(J)と同一である。
【0043】
図6に示すようにブリッジ型の同期整流回路3aを設けても、図6のコンバータの基本的動作は図1のコンバータの基本的動作と同一であるので、第3の実施例によっても第1の実施例と同一の効果を得ることができる。
【0044】
【第4の実施例】
図8に示す第4の実施例のDC−DCコンバータは、図6のDC−DCコンバータにクランプ用ダイオードDc 、コンデンサCc 、抵抗Rc から成るクランプ回路を付加し、この他は図6と同一に構成したものである。
【0045】
クランプ用コンデンサCc はクランプ用ダイオードDc を介して平滑回路4の入力端子6a、6b間に接続されている。クランプ用抵抗Rc はクランプ用ダイオードDc を介してリアクトルLo に並列に接続されている。クランプ用コンデンサCc の電圧は出力端子2a、2b間の所望出力電圧程度に保たれる。整流回路3aの出力電圧がクランプ用コンデンサCc の電圧よりも高くなると、クランプ用ダイオードDc が導通し、過電圧が抑制される。即ち、スイッチQ5 〜Q8 のターンオフ時、又はダイオードD5 〜D8 の逆回復時に発生するサージ電圧がクランプ用コンデンサCc で低減される。クランプ用コンデンサCc の電圧が高くなると、抵抗Rc を介して放出される。
【0046】
第4の実施例はクランプ回路の効果以外に第1〜第3の実施例と同一の効果も有する。
【0047】
【変形例】
本発明は上記実施例に限定されるものでなく、例えば次の変形が可能なものである。
(1) スイッチQ1 〜Q8 をFET以外のバイポーラトランジスタ、IGBT等の半導体スイッチ素子とすることができる。
(2) 制御回路5、5a、5bの一部又は全部をディジタル回路で形成することができる。
【図面の簡単な説明】
【図1】第1の実施例のDC−DCコンバータを示す回路図である。
【図2】図1の制御回路を詳しく示すブロック図である。
【図3】図1及び図2の各部の状態を示す波形図である。
【図4】第2の実施例の制御回路を示すブロック図である。
【図5】第2の実施例の鋸波と各比較器の入力との関係を示す波形図である。
【図6】第3の実施例のDC−DCコンバータを示す回路図である。
【図7】図6の第1〜第8のスイッチの制御信号を示す波形図である。
【図8】第4の実施例のDC−DCコンバータを示す回路図である。
【符号の説明】
Q1 〜Q8 スイッチ
D1 〜D8 ダイオード
C1 〜C4 コンデンサ
T トランス
5、5a、5b 制御回路
21、24、27 比較器
Claims (9)
- 直流電力を供給するための第1及び第2の直流電源端子と、
前記第1及び第2の直流電源端子間に接続された第1及び第2のスイッチの直列回路と、
前記第1及び第2の直流電源端子間に接続された第3及び第4のスイッチの直列回路と、
前記第1及び第2のスイッチの相互接続点と前記第3及び第4のスイッチの相互接続点との間に接続されたトランスの1次巻線と、
前記1次巻線に電磁結合された前記トランスの2次巻線と、
前記2次巻線に接続された少なくとも第5及び第6のスイッチを有する同期整流回路と、
前記同期整流回路と直流出力端子との間に接続された平滑回路と、
前記第1.第2.第3.第4.第5及び第6のスイッチのオン,オフ制御信号を形成する制御回路と、
を有する直流−直流変換器であって、
前記制御回路が、
鋸波を発生する鋸波発生器と、
前記鋸波の最低値から最高値までの振幅値(Vp)を示す信号を発生する振幅値発生手段と、
前記鋸波の最低値と最高値との中間値(Vct)を示す信号を発生する中間値発生手段と、
前記第1.第2.第3及び第4のスイッチを制御するためのパルスの幅を指令するためのものであって、前記鋸波の最低値と前記中間値(Vct)との間の値から成る第1のパルス幅指令値(V1)を発生するパルス幅指令値発生手段と、
前記最高値(Vp)から前記第1のパルス幅指令値(V1)を減算して第2のパルス幅指令値(V2)を出力する減算手段と、
前記第1のパルス幅指令値(V1)と前記鋸波とを比較して前記第1のスイッチの制御パルスを形成し且つ前記第2のスイッチを前記第1のスイッチのオフ期間の少なくとも一部においてオンに制御するための制御パルスを形成する第1のパルス形成手段と、
前記第2のパルス幅指令値(V2)と前記鋸波とを比較して前記第3のスイッチの制御パルスを形成し且つ前記第4のスイッチを前記第3のスイッチのオフ期間少なくとも一部においてオンに制御するための制御パルスを形成する第2のパルス形成手段と、
前記中間値(Vct)と前記前記鋸波とを比較して前記第5のスイッチの制御パルスを形成し且つ前記第6のスイッチを少なくとも前記第5のスイッチのオフ期間の一部においてオンに制御するための制御パルスを形成する第3のパルス形成手段と
を備えていることを特徴とする直流−直流変換器。 - 直流電力を供給するための第1及び第2の直流電源端子と、
前記第1及び第2の直流電源端子間に接続された第1及び第2のスイッチの直列回路と、
前記第1及び第2の直流電源端子間に接続された第3及び第4のスイッチの直列回路と、
前記第1及び第2のスイッチの相互接続点と前記第3及び第4のスイッチの相互接続点との間に接続されたトランスの1次巻線と、
前記1次巻線に電磁結合された前記トランスの2次巻線と、
前記2次巻線に接続された少なくとも第5及び第6のスイッチを有する同期整流回路と、
前記同期整流回路と直流出力端子との間に接続された平滑回路と、
前記第1.第2.第3.第4.第5及び第6のスイッチのオン,オフ制御信号を形成する制御回路と、
を有する直流−直流変換器であって、
前記制御回路が、
鋸波を発生する鋸波発生器と、
前記鋸波の最低値から最高値までの振幅値(Vp)を示す信号を発生する振幅値発生手段と、
前記鋸波の最低値と最高値との中間値(Vct)を示す信号を発生する中間値発生手段と、
前記第1.第2.第3及び第4のスイッチを制御するためのパルスの幅を指令するためのものであって、前記鋸波の最高値と前記中間値(Vct)との間の値から成る第1のパルス幅指令値(V1)を発生するパルス幅指令値発生手段と、
前記最高値(Vp)から前記第1のパルス幅指令値(V1)を減算して第2のパルス幅指令値(V2)を出力する減算手段と、
前記第2のパルス幅指令値(V2)と前記鋸波とを比較して前記第1のスイッチの制御パルスを形成し且つ前記第2のスイッチを前記第1のスイッチのオフ期間の少なくとも一部においてオンに制御するための制御パルスを形成する第1のパルス形成手段と、
前記第1のパルス幅指令値(V1)と前記鋸波とを比較して前記第3のスイッチの制御パルスを形成し且つ前記第4のスイッチを前記第3のスイッチのオフ期間の少なくとも一部においてオンに制御するための制御パルスを形成する第2のパルス形成手段と、
前記中間値(Vct)と前記前記鋸波とを比較して前記第5のスイッチの制御パルスを形成し且つ前記第6のスイッチを少なくとも前記第5のスイッチのオフ期間の一部においてオンに制御するための制御パルスを形成する第3のパルス形成手段と
を備えていることを特徴とする直流−直流変換器。 - 更に、前記第1.第2.第3及び第4のスイッチに対してそれぞれ逆方向並列に接続された第1.第2.第3及び第4のダイオードと、前記第1.第2.第3及び第4のスイッチに対してそれぞれ並列に接続された第1.第2.第3及び第4のコンデンサとを有していることを特徴とする請求項1又は2記載の直流−直流変換器。
- 前記2次巻線は、センタタップを有するものであり、前記同期整流回路は、前記2次巻線の一端と前記平滑回路の一方の入力端子との間に接続された第1のスイッチと、前記2次巻線の他端と前記平滑回路の一方の入力端子との間に接続された第2のスイッチとから成り、前記センタタップは前記平滑回路の他方の入力端子に接続されていることを特徴とする請求項1又は2又は3記載の直流−直流変換器。
- 前記第5及び第6のスイッチに並列に第5及び第6のダイオードが接続されていることを特徴とする請求項4記載の直流−直流変換器。
- 前記同期整流回路は、
前記2次巻線の一端と前記平滑回路の一方の入力端子との間に接続された第5のスイッチと、
前記2次巻線の他端と前記平滑回路の一方の入力端子との間に接続された第6のスイッチと、
前記2次巻線の一端と前記平滑回路の他方の入力端子との間に接続された第7のスイッチと、
前記2次巻線の他端と前記平滑回路の他方の入力端子との間に接続された第8のスイッチと、
を有するブリッジ型整流回路であり、
前記制御回路は、更に前記第7のスイッチを少なくとも前記第5のスイッチのオフ期間の一部においてオンに制御するための回路と、前記第8のスイッチを少なくとも前記第6のスイッチのオフ期間の一部においてオンに制御するための回路とを有していることを特徴とする請求項1又は2又は3記載の直流−直流変換器。 - 前記第5.第6.第7及び第8のスイッチに並列に第5.第6.第7及び第8のダイオードが接続されていることを特徴とする請求項6記載の直流−直流変換器。
- 前記平滑回路は、前記同期整流回路の一方の出力端子と前記直流出力端子との間に直列に接続されたリアクトルと、前記リアクトルを介して前記同期整流回路の一方の出力端子と他方の出力端子との間に接続された平滑用コンデンサとから成ることを特徴とする請求項1乃至7のいずれかに記載の直流−直流変換器。
- 前記同期整流回路の出力電圧をクランプする回路を有していることを特徴とする請求項1乃至8のいずれかに記載の直流−直流変換器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000156508A JP4466798B2 (ja) | 2000-05-26 | 2000-05-26 | 直流−直流変換器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000156508A JP4466798B2 (ja) | 2000-05-26 | 2000-05-26 | 直流−直流変換器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001339945A JP2001339945A (ja) | 2001-12-07 |
JP4466798B2 true JP4466798B2 (ja) | 2010-05-26 |
Family
ID=18661294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000156508A Expired - Fee Related JP4466798B2 (ja) | 2000-05-26 | 2000-05-26 | 直流−直流変換器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4466798B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105375771A (zh) * | 2014-09-02 | 2016-03-02 | 康舒科技股份有限公司 | 直流/直流电源装置的相移式全桥转换器控制电路 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4619769B2 (ja) * | 2004-12-21 | 2011-01-26 | 株式会社東芝 | 電源装置 |
KR100547289B1 (ko) * | 2005-05-18 | 2006-01-26 | 주식회사 피에스텍 | 간헐 모드로 동작하는 동기 정류형 직렬 공진 컨버터 |
JP2009095120A (ja) * | 2007-10-05 | 2009-04-30 | Sanyo Denki Co Ltd | 電力変換器 |
JP5176767B2 (ja) * | 2007-10-29 | 2013-04-03 | Tdk株式会社 | スイッチング電源 |
JP5229139B2 (ja) * | 2009-07-07 | 2013-07-03 | 株式会社豊田自動織機 | 双方向dcdcコンバータ |
US8300440B2 (en) | 2009-12-04 | 2012-10-30 | ConvenientPower HK Ltd. | AC-DC converter and AC-DC conversion method |
CN102959846B (zh) | 2010-06-25 | 2015-07-15 | 株式会社日立制作所 | Dc-dc变换器 |
KR101024306B1 (ko) | 2011-02-15 | 2011-03-29 | 이오에스 코포레이션 | 직류/직류 변환 장치 |
KR101024307B1 (ko) | 2011-02-15 | 2011-03-29 | 이오에스 코포레이션 | 직류/직류 변환 컨버터 회로 |
WO2013020269A1 (zh) * | 2011-08-09 | 2013-02-14 | 联合汽车电子有限公司 | 移相全桥电路及其控制方法 |
WO2013024550A1 (ja) | 2011-08-18 | 2013-02-21 | 富士通株式会社 | Dc-dcコンバータ、dc-dc変換方法、及び情報機器 |
-
2000
- 2000-05-26 JP JP2000156508A patent/JP4466798B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105375771A (zh) * | 2014-09-02 | 2016-03-02 | 康舒科技股份有限公司 | 直流/直流电源装置的相移式全桥转换器控制电路 |
CN105375771B (zh) * | 2014-09-02 | 2017-12-15 | 康舒科技股份有限公司 | 直流/直流电源装置的相移式全桥转换器控制电路 |
Also Published As
Publication number | Publication date |
---|---|
JP2001339945A (ja) | 2001-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Koo et al. | Analysis and design of phase shift full bridge converter with series-connected two transformers | |
JP3374917B2 (ja) | スイッチング電源装置 | |
WO2000048300A1 (en) | Offset resonance zero volt switching flyback converter | |
WO2001084699A1 (fr) | Dispositif de conversion de puissance | |
JP4466798B2 (ja) | 直流−直流変換器 | |
JP2008048483A (ja) | 直流交流変換装置 | |
US5982649A (en) | Power supply circuit for a control circuit | |
CN1938932A (zh) | 具有节能调制器的不连续模式pfc控制器和其操作方法 | |
US7663898B2 (en) | Switching power supply with direct conversion off AC power source | |
EP4169154A1 (en) | Soft-switching pulse-width modulated dc-dc power converter | |
JP3528920B2 (ja) | スイッチング電源装置 | |
JP3496717B2 (ja) | スイッチング電源装置 | |
JP3465746B2 (ja) | 直流―直流変換器 | |
Zhang et al. | Investigation of adaptive synchronous rectifier (SR) driving scheme for LLC/CLLC resonant converter in EV on-board chargers | |
JP3681960B2 (ja) | スイッチング電源 | |
JP4193033B2 (ja) | 三相スイッチング整流装置 | |
JP2001314081A (ja) | Ac−dcコンバータ | |
Babaei et al. | An optimized zero-current, zero-voltage, and three-level dc–dc converter | |
JP3298617B2 (ja) | 交流−直流変換器 | |
JPH1084674A (ja) | 交流−直流変換器 | |
JP3296424B2 (ja) | 電力変換装置 | |
JP3468261B2 (ja) | ブリッジ型インバ−タ装置 | |
JP2001314086A (ja) | Ac−dcコンバータ | |
JP3427891B2 (ja) | Dc−dcコンバータ | |
JP3495295B2 (ja) | Dc−dcコンバータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070416 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100216 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |