JP4332247B2 - A lactic acid bacterium having high ability to produce γ-aminobutyric acid, a fermented food containing a high amount of γ-aminobutyric acid using the lactic acid bacterium, and a method for producing the same. - Google Patents
A lactic acid bacterium having high ability to produce γ-aminobutyric acid, a fermented food containing a high amount of γ-aminobutyric acid using the lactic acid bacterium, and a method for producing the same. Download PDFInfo
- Publication number
- JP4332247B2 JP4332247B2 JP01363599A JP1363599A JP4332247B2 JP 4332247 B2 JP4332247 B2 JP 4332247B2 JP 01363599 A JP01363599 A JP 01363599A JP 1363599 A JP1363599 A JP 1363599A JP 4332247 B2 JP4332247 B2 JP 4332247B2
- Authority
- JP
- Japan
- Prior art keywords
- lactic acid
- fermentation
- gaba
- acid
- aminobutyric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、血圧上昇抑制作用のある化合物として注目されているγ−アミノ酪酸(GABA)高生産能を有する乳酸菌、及びその乳酸菌を使用したGABAを高含有する健康指向の高い食品と、その食品の製造法に関する。
【0002】
【従来の技術】
GABAは、自然界に広く分布しているアミノ酸であり、食品の成分としても、茶、野菜類などに通常含まれており、生体内においてもL−グルタミン酸からの脱炭酸により生産され、組織内に存在する。このGABAは、他の多くのアミノ酸とは異なり、非蛋白質構成アミノ酸であるが、生理的には重要な働きを持っている。即ち、GABAは食品として体内に摂取されるだけでなく、塩分の過剰摂取に対して尿へのナトリウムイオンの排出を促進し、また血圧降下作用(Hubert C. Stanton,Archint. Pharmacodyn.,143,p195-204,1963 )を示すなどの重要な調節作用に寄与していることが知られている。
【0003】
GABAを含有した食品としては、GABAを強化した茶葉がギャバロン茶(日本農芸化学学会誌,61,NO.11,p1449-1451,1987,実開昭63-103285 )として開発され、ラットを用いた実験により、ギャバロン茶が血圧降下作用や尿へのナトリウムイオンの排出促進作用を有していることが確認されている。また、昔から血圧降下作用が顕著であるとして薬膳料理などに用いられてきた紅麹の主要な有効成分はGABAであることが、最近明らかにされている。
【0004】
【発明が解決しようとする課題】
しかしながら、GABAが含まれている食品は、少数の野菜など種類が限定されており、また、GABAを含んでいる食品でも、その含有量は少なく、GABAは有効な成分であるにも関わらず、食品として摂取される機会が少ない。
【0005】
そこで、人為的にGABAの摂取量を多くする方法として、大腸菌等の微生物によりGABAを生産し、それを食品に添加することも考えられる。しかしながら、大腸菌により生産されたGABAは、食品に用いるには安全性の面で問題がある。このように、微生物により生産されたGABAは、食品に用いる場合、GABAを生産する菌の種類が問題となると共に、それを安全且つ大量に生産することができる菌が必要となってくる。
【0006】
ここで、例えば、特許第2704493号公報にあるようにラクトバチルス・プランタム又はそれを含有する醸造諸味を添加し、L−グルタミン酸を含む魚醤油諸味やその圧搾液や魚醤油を発酵させてGABA発酵食品を得ることができる。しかし、発酵に時間がかかるために生産性が悪く、又、原料であるL−グルタミン酸がかなり残るために清涼飲料水などの“うま味”の付加が好ましくないものへの利用の際に添加量が限られるか、若しくは添加できない。
よって、短時間で且つ高率で、L−グルタミン酸ナトリウム(MSG)若しくはL−グルタミン酸よりGABAを生産する菌や製造方法が望まれる。
【0007】
【課題を解決するための手段】
本発明では、食品としての安全性の点から、従来から発酵乳などの食品製造に用いられている微生物によるGABAの生産能力を利用することとした。
また、乳酸菌発酵特有の風味を崩さないために、MSG、L−グルタミン酸、又はL−グルタミン酸含有食品(例えば、豆、トマト、海藻等を原料とする食品)からGABAへの変換をほぼ100%行う条件(乳酸菌株の選定、乳酸菌株の組み合わせの選定、発酵培地の配合・初発pHの設定、発酵温度・発酵時間の設定)を検索した。
【0008】
その結果、GABAの生産力が高い新規乳酸菌株を発見し、さらには、乳酸菌株の組み合わせの選定(GABA生産力を向上を与える乳酸菌の混合培養)、発酵培地の配合や初発pHの設定、発酵温度や発酵時間の設定を行うことにより効率よくGABAを得ることを見い出し、この発明に至った。
【0009】
すなわち、本発明のGABA高生産能を有する新規乳酸菌ラクトバチルス ブレビス(Lactobacillus brevis)TY414(FERM P−16910)は、下記の菌学的性質を有する。
MRS液体培地で初発pH5.7、30℃、16時間培養した時の菌の形態
(1)菌の形態 桿状
(2)グラム染色 陽性
(3)運動性 なし
(4)胞子 なし
(5)カタラーゼ なし
(6)通性嫌気性
(7)生育温度範囲 20〜40℃
(8)生育pH範囲 3.8〜9.4
(9)乳酸発酵 ヘテロ型
(10)乳酸の旋光性 DL
(11)糖の発酵性
強発酵 → L−アラビノース、リボース、D−キシロース、ガラクトース、グルコース、フルクトース、α−メチル−D−グルコシド、マルトース、メリビオース
弱発酵 → マンニトール、N アセチルグルコサミン、セリオビオース、グルコネート、2−ケトグルコネート、5−ケトグルコネート
【0011】
さらに、本発明は、GABA生産性の向上を目的とした、前記ラクトバチルス ブレビスTY414とラクトバチルス デルブルッキィ ブルガリカス(Lactobacillus delbrueckii subsp. bulgaricus )IFO13953(ブルガリカスタイプストレイン)との混合培養にも特徴を有する。
【0012】
さらに、本発明は、発酵培地が、乳製品(又はこれに植物成分を添加したもの)と、L−グルタミン酸ナトリウム(MSG)又はL−グルタミン酸若しくはL−グルタミン酸を含有する食品との混合物であり、上記いずれかの乳酸菌の発酵作用によるGABA高含有発酵物の短期間製造法にも特徴を有する。
【0013】
【発明の実施の形態】
以下、本発明の乳酸菌によるGABAの生産について、更に詳細に説明する。
【0014】
被験試料を適量サンプリングし、生理食塩水にて希釈懸濁した後、ブロムクレゾール・パープル・プレートカウント寒天培地(BCP培地)に混釈培養し、これから代表的コロニーを釣菌し、さらにこれをBCP寒天培地に画線し培養する操作を繰り返して乳酸菌の純粋分離を行う。
【0015】
こうして得られた本件出願人の研究所保存菌株の中から20種類の乳酸菌株、及びGABA生産能が認められたという報告(生物工学会誌,75,NO.4,p239-244,1997)がある乳酸菌4菌株{ラクトバチルス ブレビス(Lactobacillus brevis)IFO3345、ラクトバチルス ブレビスIFO3960、ラクトバチルスブレビスIFO12005、ラクトバチルス ブレビスIFO12520}をそれぞれ、GYP培地(1%MSG含有)にて培養し、GABAの生産能の比較を行った。
【0016】
その結果、その中でも、ブレビスTY414、ブレビスIFO3345、ブレビスIFO3960、ブレビスIFO12005及びブレビスIFO12520の5菌株において、顕著なGABA生産能が認められた。図1は、これら5菌株のGABA生産能を示している。
【0017】
また、これらの定量は、それぞれの発酵液をメンブランろ過後、セップパックにて粗精製し、薄層クロマトグラフィー(TLC)、高速液体クロマトグラフィー(HPLC)及びFキットL−グルタミン酸{L−グルタミン酸定量用キット(ベーリンガーマンハイム)}にて行った。なお、上記TLCとHPLCの各条件は、以下のとおりである。
(1)TLCの条件:
プレート;フナセルSF(セルロースプレート)
展開溶媒;イソプロパノール:水:酢酸=50:45:5
Rf値;GABA=0.91、MSG=0.80
(2)HPLCの条件
カラム;DAISO SP−120−5−ODS−BP(4.6mmφ×150mmL)
ディテクターd;Waters M484(UV)
波長;210nm
溶出溶媒;水:リン酸=99.9:0.1
流速;1 ml/min
温度;40℃
【0018】
図1のスクリーニングの結果、GYP培地(1%MSG含有)を発酵することにより効率よくGABAを生産する乳酸菌、3菌株(ブレビスTY414、ブレビスIFO3960、ブレビスIFO12005)に絞った。以下、この3菌株について発酵条件の検討を行う。
【0019】
これら3つの乳酸菌株について発酵物を調整すべく、10%脱脂粉乳(1%MSG含有)を出発原料とし発酵を試みたが、発酵が弱く、故にGABAへの変換が殆どみられなかった。
【0020】
そこで、他種の乳酸菌を混合培養することにより、発酵およびGABA生産能力の向上を試みた。図2には、ラクトバチルス デルブルッキィ ブルガリカス(Lactobacillus delbrueckii subsp. bulgaricus )TY028、ラクトバチルス デルブルッキィ ブルガリカス(Lactobacillus delbrueckii subsp. bulgaricus )TY122、ブルガリカスTY393、ブルガリカスタイプストレインとの混合培養時のGABA生産量を示す。なお、それぞれの発酵品名は表1に示す。
【0021】
【表1】
【0022】
その結果、2種類の混合培養においても100mg/100g以上のGABA含有発酵乳を得た(図2)。また、この結果より、組み合わせる菌種が同じブルガリカス種であっても、菌株によりGABA生産能に関する相性に差があることが分かった。
【0023】
この時、混合培養に用いたブルガリカス種各菌株単菌によるGYP培地(1%MSG含有)におけるGABA生産能は図3に示すようにかなり低いものであった。
【0024】
しかし、図2の結果程度のGABAへの変換率では、発酵液中に高い濃度のL−グルタミン酸が残存し、“うま味”の強い発酵液となり、乳酸菌発酵特有のサワー感に欠ける食品となる。
【0025】
そこで、発酵促進のために脱脂粉乳培地に植物由来成分(例えば、豆、人参、ピーマン、カボチャ、セロリ、ほうれん草、キャベツ、トマトなどを原料とする食品)を添加し、GABA生産性の向上を図った。この時の植物由来成分の例として豆乳を使用したときの処方を表2に示す。なお、スターターはブレビスTY414とブルガリカスタイプストレインの混合培養系を例とする。
【0026】
【表2】
【0027】
なお、表2において、「ブレビスTY414スターター」とは、2.0%ブドウ糖、1.0%豆由来ペプチド、0.5%酵母エキスの配合の水溶液を121℃、15分にて滅菌したものにブレビスTY414を添加し、30℃、24時間培養したものをいう。
また、表2において、「ブルガリカスタイプストレインスターター」とは、8.3%脱脂粉乳溶液(121℃、15分滅菌)にブルガリカスタイプストレインを添加し、37℃、24時間培養したものをいう。
【0028】
表2を処方例とし、各混合培養におけるGABA生産量を図4に示す。その結果、新たにブレビスTY414とブルガリカスTY393(サンプルA3b)、ブレビスTY414とブルガリカスタイプストレイン(サンプルA4b)、ブレビスIFO12005とブルガリカスTY393(サンプルC3b)の混合培養において、高濃度のGABAが得られた。
更に、GABA生産性をGYP培地(1%MSG含有)発酵時レベルに上げるために、脱脂粉乳の代わりにホエーパウダーを使用することによりGABAの生産能が上がった。また、ホエーパウダーの他に濃縮ホエーについても同様の効果が得られる。なお、その他に乳製品として、クリームパウダー、バターミルパウダー、濃縮乳、脱脂濃縮乳、無糖練乳、無糖脱脂練乳、加糖練乳、加糖脱脂練乳、全粉乳加糖粉乳、調整粉乳についての使用も考えられる。
【0029】
上記で検討した発酵物のなかでもブレビスTY414とブルガリカスタイプストレインの混合培養(サンプルA4c)にて得られたGABA含有発酵物については、MSG若しくはL−グルタミン酸をほぼ100%の効率でGABAに変換していた。また、ブレビスTY414とブルガリカスTY393の混合培養(サンプルA3c)、ブレビスIFO12005とブルガリカスTY393の混合培養(サンプルC3c)においてもGABA生産量が増し、GABA含有量もかなり高いものであった(図5)。
さらに、サンプルA4cにおける経時のGABA生産量の変化をみたところ、50時間過ぎたぐらいからGABAの生産量が急激に上がり、70時間前後で定常期をむかえることが分かった(図6)。
【0030】
また、この時の培地の配合と発酵条件は、乳製品としてホエーパウダー、植物由来成分として豆乳、L−グルタミン酸供給源としてMSGを使用した時を例とし表3に示す。
【0031】
【表3】
【0032】
なお、表3において、「炭酸ナトリウム」は、pH調整用であり、「ブレビスTY414スターター」とは、2.0%ブドウ糖、1.0%豆由来ペプチド、0.5%酵母エキスの配合の水溶液を121℃、15分にて滅菌したものにブレビスTY414を添加し、30℃、24時間培養したものであり、「ブルガリカスタイプストレインスターター」とは、8.3%脱脂粉乳溶液(121℃、15分滅菌)にブルガリカスタイプタイプストレインを添加し、37℃、24時間培養したものをいう。
【0033】
表3のように発酵条件は検討の結果、発酵時の2種の乳酸菌株バランスの推移がGABA生産に最も好ましい、温度28〜32℃、初発pH6.0〜6.5とした。
【0034】
こうして得られた発酵物をエキス化や濃縮、若しくはパウダー化することで更に高濃度のGABAを含有する発酵物が得られる(図7)。また、それぞれの製法例は表4に示すとおりである。
【0035】
【表4】
【0036】
このようなGABA高含有発酵物は、GABAを安全かつ、高濃度で摂取できるもので、更には、風味的にも嗜好性が高いものであるため、日常的に手軽に食することができる。
【0037】
また、このことより、例えば、当該発酵物を含む食品を日常的に摂取することにより、積極的な健康保持効果が期待でき、産業上の利用価値が極めて高いものである。
【0038】
【発明の効果】
以上詳述したとおり、この発明によれば、短期間に効率よく、高含有のGABAを生産することができ、しかも、これを食品として安全に用いることができる。
【図面の簡単な説明】
【図1】各乳酸菌株によるGYP培地(1%MSG含有)発酵後のGABA含有量を示す棒グラフである(培養条件:温度30℃、pH無調整、培養72時間)。
【図2】各乳酸菌株の混合培養における10%脱脂粉乳培地(1%MSG含有)発酵後のGABA含有量を示す棒グラフである(培養条件:温度30℃、pH無調整、培養72時間)。
【図3】GABA生産菌との混合培養に使用した乳酸菌株によるGYP培地(1%MSG含有)発酵後のGABA含有量を示す棒グラフである(培養条件:温度30℃、pH無調整、培養72時間)。
【図4】各乳酸菌株の混合培養における表2を処方例とする発酵物のGABA含有量をを示す棒グラフである。
【図5】各乳酸菌株の混合培養における表3を処方例とする発酵物のGABA含有量をを示す棒グラフである。
【図6】表3を処方例とするブレビスTY414とブルガリカスタイプストレインの混合培養におけるGABA生産量とL−グルタミン酸量の経時変化を示す折線図である。
【図7】表3を処方例とする発酵物を各加工法(表4に加工例を示す)により加工したときのGABA含有量を示す棒グラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lactic acid bacterium having a high production ability of γ-aminobutyric acid (GABA), which has been attracting attention as a compound having an inhibitory effect on blood pressure, a highly health-oriented food containing GABA using the lactic acid bacterium, and the food. Relates to the manufacturing method.
[0002]
[Prior art]
GABA is an amino acid that is widely distributed in nature, and is usually contained in foods, tea, vegetables, etc., and is produced in vivo by decarboxylation from L-glutamic acid, and in tissues. Exists. Unlike many other amino acids, GABA is a non-protein constituent amino acid, but has a physiologically important function. That is, GABA is not only ingested as a food by the body, but also promotes the excretion of sodium ions into the urine due to excessive intake of salt, and has a blood pressure lowering effect (Hubert C. Stanton, Archint. Pharmacodyn., 143, p195-204, 1963) are known to contribute to important regulatory actions.
[0003]
As food containing GABA, GABA-enhanced tea leaves were developed as Gabaron tea (Journal of Japanese Society for Agricultural Chemistry, 61, NO.11, p1449-1451, 1987, Shokai 63-103285), and rats were used. Experiments have confirmed that Gabalon tea has an effect of lowering blood pressure and promoting the discharge of sodium ions into urine. In addition, it has recently been clarified that the main active ingredient of red yeast rice which has been used for medicinal meals and the like since its antihypertensive effect has been remarkable for a long time is GABA.
[0004]
[Problems to be solved by the invention]
However, the food containing GABA has a limited number of types such as a small number of vegetables, and even the food containing GABA has a small content, and although GABA is an effective ingredient, There are few opportunities to be ingested as food.
[0005]
Therefore, as a method for artificially increasing the intake of GABA, GABA may be produced by microorganisms such as Escherichia coli and added to food. However, GABA produced by E. coli has a safety problem when used in food. As described above, when GABA produced by microorganisms is used in foods, the type of bacteria producing GABA becomes a problem, and bacteria capable of producing them safely and in large quantities are required.
[0006]
Here, for example, as disclosed in Japanese Patent No. 2704493, Lactobacillus plantum or brewing moromi containing the same is added, and fish soy sauce moromi, L-glutamic acid-containing savory sauce, its compressed solution, and fish soy sauce are fermented. You can get food. However, since the fermentation takes time, the productivity is poor, and since the raw material, L-glutamic acid, remains considerably, the amount of addition is not sufficient for use in the case where “umami” addition such as soft drinks is not preferable. Limited or cannot be added.
Therefore, bacteria and production methods that produce GABA from sodium L-glutamate (MSG) or L-glutamic acid in a short time and at a high rate are desired.
[0007]
[Means for Solving the Problems]
In the present invention, from the viewpoint of safety as a food, the production capacity of GABA by microorganisms conventionally used for food production such as fermented milk is used.
Moreover, in order not to destroy the flavor peculiar to lactic acid bacteria fermentation, almost 100% conversion from MSG, L-glutamic acid, or L-glutamic acid-containing food (for example, food made from beans, tomatoes, seaweed, etc.) to GABA is performed. The conditions (selection of lactic acid strain, selection of combination of lactic acid strain, blending of fermentation medium, setting of initial pH, setting of fermentation temperature and fermentation time) were searched.
[0008]
As a result, a new lactic acid strain with high GABA productivity was discovered, and further, selection of a combination of lactic acid strains (mixed culture of lactic acid bacteria that improved GABA productivity), composition of fermentation medium, setting of initial pH, fermentation The inventors have found that GABA can be efficiently obtained by setting the temperature and fermentation time, and have reached the present invention.
[0009]
That is, the novel lactic acid bacterium Lactobacillus brevis TY414 (FERM P-16910) having high GABA production ability of the present invention has the following mycological properties.
Bacterial morphology when cultured in MRS liquid medium for the first time at pH 5.7, 30 ° C. for 16 hours (1) Bacterial morphology Spider (2) Gram staining Positive (3) Motility None (4) Spore None (5) Catalase None (6) facultative anaerobic (7) growth temperature range 20-40 ° C
(8) Growth pH range 3.8 to 9.4
(9) Lactic acid fermentation Heterotype (10) Optical rotation of lactic acid DL
(11) Fermentative strong fermentation of sugar → L-arabinose, ribose, D-xylose, galactose, glucose, fructose, α-methyl-D-glucoside, maltose, melibiose weak fermentation → mannitol, N acetylglucosamine, seriobiose, gluconate, 2-ketogluconate, 5-ketogluconate
Furthermore, the present invention is also characterized by a mixed culture of Lactobacillus brevis TY414 and Lactobacillus delbrueckii subsp. Bulgaricus IFO13953 (Bulgaricus type strain) for the purpose of improving GABA productivity. .
[0012]
Furthermore, the present invention is a mixture of a dairy product (or a plant component added thereto) and a food containing sodium L-glutamate (MSG) or L-glutamic acid or L-glutamic acid, The method is also characterized by a short-term production method of a fermented product with a high GABA content by the fermentation action of any of the above lactic acid bacteria.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the production of GABA by the lactic acid bacteria of the present invention will be described in more detail.
[0014]
An appropriate amount of a test sample is sampled, diluted and suspended in physiological saline, and then mixed and cultured on bromcresol, purple, and plate count agar medium (BCP medium). Pure separation of lactic acid bacteria is performed by repeating the operation of streaking and culturing on an agar medium.
[0015]
There are reports that 20 lactic acid bacterial strains and GABA producing ability were recognized from the laboratory-preserved strains of the applicant obtained in this way (Journal of Biotechnology, 75, NO.4, p239-244, 1997). Lactobacillus 4 strains {Lactobacillus brevis (Lactobacillus brevis) IFO3345, Lactobacillus brevis IFO3960, Lactobacillus brevis IFO12005, Lactobacillus brevis IFO12520} were each cultured in GYP medium (containing 1% MSG), and comparison of GABA production ability Went.
[0016]
As a result, remarkable GABA production ability was recognized among 5 strains of brevis TY414, brevis IFO3345, brevis IFO3960, brevis IFO12005 and brevis IFO12520. FIG. 1 shows the GABA production ability of these five strains.
[0017]
In addition, these quantifications are carried out by membrane filtration of each fermentation broth, followed by rough purification with Sepppack, thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and F kit L-glutamic acid {L-glutamic acid quantification. Kit (Boehringer Mannheim)}. The conditions for TLC and HPLC are as follows.
(1) TLC conditions:
Plate; Funacell SF (cellulose plate)
Developing solvent; isopropanol: water: acetic acid = 50: 45: 5
Rf value; GABA = 0.91, MSG = 0.80
(2) HPLC condition column: DAISO SP-120-5-ODS-BP (4.6 mmφ × 150 mmL)
Detector d; Waters M484 (UV)
Wavelength: 210nm
Elution solvent; water: phosphoric acid = 99.9: 0.1
Flow rate: 1 ml / min
Temperature: 40 ° C
[0018]
As a result of the screening shown in FIG. 1, the strain was narrowed down to 3 lactic acid bacteria (brevis TY414, brevis IFO3960, brevis IFO12005) that efficiently produce GABA by fermenting GYP medium (containing 1% MSG). Hereinafter, the fermentation conditions are examined for these three strains.
[0019]
Fermentation was attempted using 10% nonfat dry milk (containing 1% MSG) as a starting material in order to adjust the fermented products for these three lactic acid strains, but fermentation was weak and therefore almost no conversion to GABA was observed.
[0020]
Therefore, an attempt was made to improve fermentation and GABA production capacity by mixing and culturing other types of lactic acid bacteria. FIG. 2 shows the amount of Lactobacillus delbrueckii subsp. Bulgaricus TY028, Lactobacillus delbrueckii subsp. Indicates. Each fermented product name is shown in Table 1.
[0021]
[Table 1]
[0022]
As a result, 100 mg / 100 g or more of GABA-containing fermented milk was obtained in the two types of mixed culture (FIG. 2). Moreover, even if the combined bacterial species was the same Bulgaricus species, it was found from these results that there was a difference in the affinity for GABA production ability depending on the strain.
[0023]
At this time, the GABA production ability in the GYP medium (containing 1% MSG) by each single strain of Bulgaricus spp. Used in the mixed culture was considerably low as shown in FIG.
[0024]
However, with the conversion rate to GABA of the level shown in FIG. 2, a high concentration of L-glutamic acid remains in the fermentation liquid, resulting in a fermented liquid with a strong “umami taste” and a food lacking the sour feeling peculiar to lactic acid bacteria fermentation.
[0025]
Therefore, plant-derived ingredients (for example, foods made from beans, carrots, peppers, pumpkins, celery, spinach, cabbage, tomatoes, etc.) are added to the skim milk medium to promote fermentation to improve GABA productivity. It was. Table 2 shows the formulation when soymilk is used as an example of the plant-derived component at this time. An example of the starter is a mixed culture system of brevis TY414 and Bulgaricus type strain.
[0026]
[Table 2]
[0027]
In Table 2, “Brevis TY414 Starter” refers to an aqueous solution containing 2.0% glucose, 1.0% bean-derived peptide, and 0.5% yeast extract sterilized at 121 ° C. for 15 minutes. This refers to a culture in which brevis TY414 was added and cultured at 30 ° C. for 24 hours.
In Table 2, “Bulgaricus type strain starter” refers to a product obtained by adding Bvlgaricus type strain to 8.3% skim milk powder solution (121 ° C., sterilized for 15 minutes) and culturing at 37 ° C. for 24 hours. .
[0028]
Table 2 is a formulation example, and the GABA production amount in each mixed culture is shown in FIG. As a result, a high concentration of GABA is newly obtained in a mixed culture of Brevis TY414 and Bulgaricus TY393 (sample A3b), Brevis TY414 and Bulgaricus type strain (sample A4b), Brevis IFO12005 and Bulgaricus TY393 (sample C3b). It was.
Furthermore, in order to raise GABA productivity to the level at the time of fermentation of GYP culture medium (containing 1% MSG), GABA productivity was increased by using whey powder instead of skim milk powder. In addition to whey powder, the same effect can be obtained with concentrated whey. As other dairy products, use of cream powder, butter mill powder, concentrated milk, defatted concentrated milk, sugar-free condensed milk, sugar-free defatted condensed milk, sweetened condensed milk, sweetened defatted condensed milk, whole powdered milk powdered powdered milk, adjusted powdered milk is also considered. It is done.
[0029]
Among the fermented products examined above, MSG or L-glutamic acid is converted to GABA with an efficiency of almost 100% for fermented products containing GABA obtained by mixed culture of brevis TY414 and Bulgaricus type strain (sample A4c). Was. Also, in the mixed culture of brevis TY414 and Bulgaricus TY393 (sample A3c) and in the mixed culture of brevis IFO12005 and Bulgaricus TY393 (sample C3c), the GABA production increased and the GABA content was also considerably high (FIG. 5). ).
Furthermore, when the change in GABA production over time in sample A4c was observed, it was found that the production of GABA suddenly increased after about 50 hours, and the steady phase was reached around 70 hours (FIG. 6).
[0030]
In addition, the composition and fermentation conditions of the medium at this time are shown in Table 3 as an example when whey powder is used as a dairy product, soy milk is used as a plant-derived component, and MSG is used as an L-glutamic acid supply source.
[0031]
[Table 3]
[0032]
In Table 3, “sodium carbonate” is for pH adjustment, and “brevis TY414 starter” is an aqueous solution containing 2.0% glucose, 1.0% bean-derived peptide, and 0.5% yeast extract. Was sterilized at 121 ° C. for 15 minutes and brevis TY414 was added and cultured at 30 ° C. for 24 hours. “Bulgaricus type strain starter” is an 8% skim milk solution (121 ° C., 15 minutes sterilized) and added with Bulgaricus type strain and cultured at 37 ° C. for 24 hours.
[0033]
As shown in Table 3, as a result of the examination of the fermentation conditions, the transition of the balance of the two lactic acid bacterial strains during fermentation was most preferable for GABA production, with a temperature of 28 to 32 ° C. and an initial pH of 6.0 to 6.5.
[0034]
A fermented product containing a higher concentration of GABA can be obtained by extracting, concentrating, or powdering the fermented product thus obtained (FIG. 7). Each example of the production method is as shown in Table 4.
[0035]
[Table 4]
[0036]
Such a fermented product with a high GABA content is safe and can be ingested at a high concentration. Furthermore, since it is highly palatable in flavor, it can be easily eaten on a daily basis.
[0037]
In addition, for example, by taking a food containing the fermented product on a daily basis, a positive health maintenance effect can be expected, and the industrial utility value is extremely high.
[0038]
【The invention's effect】
As described in detail above, according to the present invention, high-content GABA can be produced efficiently in a short period of time, and this can be safely used as food.
[Brief description of the drawings]
FIG. 1 is a bar graph showing GABA content after fermentation of GYP medium (containing 1% MSG) by each lactic acid strain (culture conditions:
FIG. 2 is a bar graph showing GABA content after fermentation of 10% nonfat dry milk medium (containing 1% MSG) in mixed culture of each lactic acid strain (culture conditions:
FIG. 3 is a bar graph showing GABA content after fermentation using a GYP medium (containing 1% MSG) by a lactic acid strain used for mixed culture with GABA-producing bacteria (culture conditions:
FIG. 4 is a bar graph showing the GABA content of a fermented product having Table 2 as a formulation example in mixed culture of each lactic acid bacterial strain.
FIG. 5 is a bar graph showing the GABA content of a fermented product having Table 3 as a formulation example in mixed culture of each lactic acid bacterial strain.
FIG. 6 is a polygonal diagram showing temporal changes in GABA production amount and L-glutamic acid amount in mixed culture of brevis TY414 and bulgaricus type strain with Table 3 as a formulation example.
FIG. 7 is a bar graph showing the GABA content when fermented products having Table 3 as formulation examples are processed by various processing methods (processing examples are shown in Table 4).
Claims (3)
MRS液体培地で初発pH5.7、30℃、16時間培養した時の菌の形態
(1)菌の形態 桿状
(2)グラム染色 陽性
(3)運動性 なし
(4)胞子 なし
(5)カタラーゼ なし
(6)通性嫌気性
(7)生育温度範囲 20〜40℃
(8)生育pH範囲 3.8〜9.4
(9)乳酸発酵 ヘテロ型
(10)乳酸の旋光性 DL
(11)糖の発酵性
強発酵 → L−アラビノース、リボース、D−キシロース、ガラクトース、グルコース、フルクトース、α−メチル−D−グルコシド、マルトース、メリビオース
弱発酵 → マンニトール、N アセチルグルコサミン、セリオビオース、グルコネート、2−ケトグルコネート、5−ケトグルコネートA novel lactic acid bacterium Lactobacillus brevis TY414 (FERM P-16910) having the ability to produce γ-aminobutyric acid having the following mycological properties.
Bacterial morphology when cultured in MRS liquid medium for the first time at pH 5.7, 30 ° C. for 16 hours (1) Bacterial morphology Spider (2) Gram staining Positive (3) Motility None (4) Spore None (5) Catalase None (6) facultative anaerobic (7) growth temperature range 20-40 ° C
(8) Growth pH range 3.8 to 9.4
(9) Lactic acid fermentation Heterotype (10) Optical rotation of lactic acid DL
(11) Fermentation of sugar Strong fermentation → L-arabinose, ribose, D-xylose, galactose, glucose, fructose, α-methyl-D-glucoside, maltose, melibiose weak fermentation → mannitol, N acetylglucosamine, seriobiose, gluconate, 2-ketogluconate, 5-ketogluconate
請求項1に記載の乳酸菌の発酵作用、又は請求項2に記載の混合培養方法の発酵作用によるγ−アミノ酪酸高含有発酵物の短期間製造法。The fermentation medium is a mixture of a dairy product or a product obtained by adding a plant component thereto and a food containing sodium L-glutamate, L-glutamic acid, or L-glutamic acid,
The short-term manufacturing method of the fermented material with high content of (gamma) -aminobutyric acid by the fermenting effect of the lactic acid bacteria of Claim 1, or the fermenting effect of the mixed culture method of Claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01363599A JP4332247B2 (en) | 1999-01-21 | 1999-01-21 | A lactic acid bacterium having high ability to produce γ-aminobutyric acid, a fermented food containing a high amount of γ-aminobutyric acid using the lactic acid bacterium, and a method for producing the same. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01363599A JP4332247B2 (en) | 1999-01-21 | 1999-01-21 | A lactic acid bacterium having high ability to produce γ-aminobutyric acid, a fermented food containing a high amount of γ-aminobutyric acid using the lactic acid bacterium, and a method for producing the same. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000210075A JP2000210075A (en) | 2000-08-02 |
JP4332247B2 true JP4332247B2 (en) | 2009-09-16 |
Family
ID=11838704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01363599A Expired - Lifetime JP4332247B2 (en) | 1999-01-21 | 1999-01-21 | A lactic acid bacterium having high ability to produce γ-aminobutyric acid, a fermented food containing a high amount of γ-aminobutyric acid using the lactic acid bacterium, and a method for producing the same. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4332247B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4968869B2 (en) * | 2001-06-13 | 2012-07-04 | 宝ホールディングス株式会社 | Method for producing γ-aminobutyric acid |
JP2003081808A (en) * | 2001-09-13 | 2003-03-19 | Taiyo Corp | Humectant and cosmetic composition comprising lactic acid fermentation metabolite |
JP2003327528A (en) * | 2002-03-04 | 2003-11-19 | Pharmafoods Kenkyusho:Kk | Immunocompetence-improving composition |
JP2005065691A (en) * | 2003-08-06 | 2005-03-17 | Akita Prefecture | COMPOSITION CONTAINING gamma-AMINOBUTYRIC ACID AND METHOD FOR MANUFACTURING THE SAME |
JP2005198578A (en) * | 2004-01-16 | 2005-07-28 | Ehime Prefecture | METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID AND FERMENTED LIQUID YIELDED THEREBY |
KR100631857B1 (en) | 2004-07-15 | 2006-10-09 | 전북대학교산학협력단 | -3 Lactobacillus Brevis OPK-3 Having a High Production Ability of Gamma-Aminobutyric Acid |
CN1295342C (en) * | 2005-03-07 | 2007-01-17 | 浙江大学 | Method for producing gamma-aminobutyric acid by control pH fermentation |
JP4921721B2 (en) * | 2005-03-14 | 2012-04-25 | ヤマモリ株式会社 | Production method of functional food |
KR101221239B1 (en) * | 2005-07-07 | 2013-01-11 | (주)바이오벤 | Lactic acid bacteria culture of Mung bean and the preparation method of the same, and the cosmetic composition comprising the same |
JP2007104977A (en) * | 2005-10-14 | 2007-04-26 | Taiyo Corp | Method for producing substance containing gamma aminobutyric acid |
JP4728769B2 (en) * | 2005-10-19 | 2011-07-20 | オリヒロ株式会社 | Production and utilization of sour dough containing high concentrations of γ-aminobutyric acid |
JP2007135416A (en) * | 2005-11-15 | 2007-06-07 | Unitika Ltd | NEW LACTOBACILLUS AND METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID |
KR100683948B1 (en) * | 2005-12-27 | 2007-02-16 | 씨제이 주식회사 | MEDIUM COMPRISING GOCHUJANG-FERMENTATION OR SOYBEAN SAUCE AND PRODUCTION METHOD OF gamma;-AMINOBUTYRIC ACID |
TW200811288A (en) | 2006-02-21 | 2008-03-01 | Kikkoman Corp | Lactic acid bacterium capable of producing gamma-aminobutyric acid |
JP2007289008A (en) * | 2006-04-20 | 2007-11-08 | Taiyo Corp | Method for producing tomato fermented product |
JP2008017703A (en) * | 2006-07-10 | 2008-01-31 | Unitika Ltd | METHOD FOR PRODUCING FOOD COMPRISING gamma-AMINOBUTYRIC ACID AND ORNITHINE |
CN101144064B (en) * | 2007-09-03 | 2011-06-08 | 江南大学 | Lactobacillus brevis with anti-mutagenesis active and capable of producing exopolysaccharide and use thereof |
JP6066466B2 (en) * | 2012-03-27 | 2017-01-25 | 国立大学法人九州大学 | Intestinal function control agent |
JP6381869B2 (en) * | 2012-12-12 | 2018-08-29 | 島根県 | Lactic acid bacteria derived from Tsuda turnip which have liver triglyceride reducing effect |
KR20150000372A (en) * | 2013-06-24 | 2015-01-02 | 목포대학교산학협력단 | Lactobacillus Brevis Having a High ProductionAbility of Gamma-Aminobutyric Acid |
JP6931012B2 (en) * | 2019-01-21 | 2021-09-01 | 台灣中油股▲ふん▼有限公司 | Cooking method with high production of γ-aminobutyric acid |
CN110982855B (en) * | 2019-11-13 | 2022-10-11 | 南昌大学 | Biotransformation method for synthesizing gamma-aminobutyric acid |
CN112890135A (en) * | 2021-02-01 | 2021-06-04 | 盘锦鼎信百草园有限公司 | Asparagus sleep-aiding gel bar rich in gamma-aminobutyric acid and preparation method thereof |
-
1999
- 1999-01-21 JP JP01363599A patent/JP4332247B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000210075A (en) | 2000-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4332247B2 (en) | A lactic acid bacterium having high ability to produce γ-aminobutyric acid, a fermented food containing a high amount of γ-aminobutyric acid using the lactic acid bacterium, and a method for producing the same. | |
US6890529B1 (en) | Lactobacillus helveticus producing antihypertensive di- and tripeptides | |
KR100979448B1 (en) | Functional beverage for health adding whey protein hydrolysate and probiotic bacteria and process for preparing the same | |
JP4628978B2 (en) | Method for producing composition with high content of γ-aminobutyric acid | |
CN101300341B (en) | Lactic acid bacterium having immunoregulatory activity derived from moromi for wine fermentation | |
JPS6296091A (en) | Lactic acid fermentation of juice product | |
JP2008017703A (en) | METHOD FOR PRODUCING FOOD COMPRISING gamma-AMINOBUTYRIC ACID AND ORNITHINE | |
JPH07227245A (en) | Production of fermented food product | |
KR20080077970A (en) | Method of producing gaba-containing fermented product | |
JP5568276B2 (en) | Method for producing catechin metabolites | |
EP2909309A1 (en) | Compositions and methods for vitamin-rich fermentates | |
JP3880820B2 (en) | Method for producing foods using lactic acid bacteria capable of producing γ-aminobutyric acid | |
JP6955808B1 (en) | How to make fermented honey | |
KR101116244B1 (en) | 14--2- process for producing 14-dihydroxy-2-naphthoic acid | |
JP7464940B2 (en) | Onions enriched with γ-aminobutyric acid and cycloalliin and method for producing the same | |
JP5212641B2 (en) | Ume lactic acid fermented food and drink and production method thereof | |
JP5626915B2 (en) | Method for producing γ-aminobutyric acid | |
JP4185823B2 (en) | Method for producing vinegar with high GABA (γ-aminobutyric acid) content | |
JP2006290835A (en) | Functional composition exhibiting ace inhibitory activity and having hypotensive activity | |
JPH0583218B2 (en) | ||
JP2007104977A (en) | Method for producing substance containing gamma aminobutyric acid | |
JP5781199B2 (en) | Catechin metabolite-containing composition | |
CN117015599A (en) | Novel rhizopus oligosporus strain and antimicrobial composition comprising same | |
KR20220013990A (en) | GABA Salt Containing Live Lactic acid Bacteria and Preparing Method Thereof | |
JP2005198578A (en) | METHOD FOR PRODUCING gamma-AMINOBUTYRIC ACID AND FERMENTED LIQUID YIELDED THEREBY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090310 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090622 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |