JP4314600B2 - Method for producing tartaric acid lower alkyl diester - Google Patents
Method for producing tartaric acid lower alkyl diester Download PDFInfo
- Publication number
- JP4314600B2 JP4314600B2 JP18755499A JP18755499A JP4314600B2 JP 4314600 B2 JP4314600 B2 JP 4314600B2 JP 18755499 A JP18755499 A JP 18755499A JP 18755499 A JP18755499 A JP 18755499A JP 4314600 B2 JP4314600 B2 JP 4314600B2
- Authority
- JP
- Japan
- Prior art keywords
- tartaric acid
- lower alkyl
- alcohol
- alkyl diester
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、酒石酸低級アルキルジエステルの効率的製造法に関するものである。
【0002】
【従来の技術】
酒石酸低級アルキルジエステルは農薬、医薬の製造中間体や不斉触媒として有用である。酒石酸低級アルキルジエステルは酒石酸と低級アルコールを酸触媒存在下で反応させることで製造できる。反応は平衡反応であるので、原理的には大量の脱水低級アルコールを使用することで、高収率で酒石酸低級アルキルジエステルを製造できるが、過剰の低級アルコールを脱水処理してリサイクル使用するために煩雑な作業が必要となる。大量の脱水低級アルキルアルコールを使用しない方法としては、オルト蟻酸エステルなどのエステル化剤を酸触媒存在下で使用する(シンセティックコミニケーションズ(Synth.Comn.),14,1087,(1984))記載の方法、低級アルキルアルコールを酸触媒の存在下反応させ、水と共沸する有機溶媒,例えばクロロホルムを共存させて副生する水を共沸脱水で系外に除去する(ヘルベチカ.ケミカ.アクタ(Helv.Chim.Acta.)62,1710(1979))記載の方法等が知られている。
【0003】
【発明が解決しようとする課題】
オルト蟻酸エステルを使用する方法は反応収率も高く、酒石酸低級アルキルジエステルを得る方法として優れているが、オルト蟻酸エステルが高価であり、工業生産に使用するには価格的に不利である。また、クロロホルムを使用して共沸脱水する方法は、反応に長時間を要し、クロロホルムが環境汚染する恐れがあり好ましくない。
【0004】
本発明の目的は、酒石酸低級アルキルジエステルを製造する方法において、使用する低級アルコール使用量を最小限に抑え、短時間で高収率を達成することにある。更に、光学活性酒石酸を原料に使用した場合には、光学純度を低下させること無く光学活性酒石酸低級アルキルジエステルを製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは前記目的を達成するために鋭意研究を重ねた結果、酒石酸と炭素数4以下のアルコールに塩化チオニルを加えることにより、酒石酸低級アルキルジエステルを短時間で収率よく製造できることを見いだし、本発明を完成させた。
【0006】
即ち、本発明は、「酒石酸および炭素数4以下のアルコールを酸触媒存在下でエステル化する工程、系中の副生水を除去する濃縮工程、炭素数4以下のアルコールと塩化チオニルを加える工程からなることを特徴とする酒石酸低級アルキルジエステルの製造法。」である。
【0007】
【発明の実施の形態】
本発明の原料である酒石酸は、L−酒石酸、D−酒石酸、DL−酒石酸、メソ−酒石酸の何れでも使用することができる。
【0008】
もう一方の原料である低級アルコールは炭素数4以下のアルキルアルコールであり、不活性溶媒で変性されたものも使用できる(本明細書で低級アルコールは炭素数4以下のアルコールを意味する。)。具体的にはメタノール、エタノール、プロパノール、イソブタノール等で、直鎖、或いは分岐状のアルキルアルコールである。エタノールの場合には、トルエン等の酒石酸や低級アルコールと反応しない不活性溶媒類を添加して変性されたものでも同様に使用できる。
【0009】
低級アルコールの使用量は酒石酸に対して2〜30倍モルが好ましく、さらに好ましくは2〜6倍モルである。この範囲であれば経済効率も良好で、酒石酸低級アルキルジエステルの収率も高い。
【0010】
反応は酒石酸と低級アルコールに塩化チオニルを添加して進行させる。塩化チオニル添加量は未反応カルボキシル基に対し0.2〜5倍モルが好ましく、更に好ましくは0.5〜2倍モルである。反応温度は0〜120℃が好ましく、さらに好ましくは20〜90℃である。この範囲で反応を行うことで、酒石酸低級アルキルジエステルの収率を高くすることが出来る。
【0011】
反応時には、塩化水素と二酸化硫黄が排ガスとして発生するが、塩化チオニル添加量が多いと排ガス量も多く、排ガス処理の負荷が大きくなるため問題が生ずる場合がある。そこで、酒石酸と低級アルコールを酸触媒存在下でエステル化反応を進行させ、次いで反応により副生した水を濃縮により除去した後、少量残存する未反応の酒石酸、酒石酸低級アルキルモノエステル、および酒石酸低級アルキルジエステルの混合物に低級アルコールと残存するカルボキシル基に対し、0.5〜2.0倍モルの塩化チオニルを添加するのが好ましい。酸触媒存在下でエステル化を行う際は、加熱をするのが好ましい。好ましい加熱温度は、30〜120℃であり、さらに好ましくは50〜90℃である。この範囲で反応を行うことで不純物の発生を少なくすることが出来る。
【0012】
ここで、使用される酸触媒は、塩酸や硫酸等の鉱酸類、ベンゼンスルホン酸、トルエンスルホン酸等の芳香族スルホン酸類、メタンスルホン酸等の脂肪族スルホン酸類、またH型の陽イオン交換樹脂、例えばナフィオン(デュポン(株)製)、ダイアイオンPK208(三菱化成(株)製)等が挙げられる。酸触媒の使用量は酒石酸に対し0.001〜1倍モルが好ましく、さらに好ましくは0.005〜0.1倍モルである。
【0013】
酒石酸と低級アルコールを酸触媒の存在下、エステル化反応を進行させる際に、低級アルコールの使用量は少ない方が有利であり、低級アルコールの使用量は酒石酸1モルに対し、2〜6モルが好ましい。この範囲で反応を行うことで、経済的に、高純度の酒石酸低級アルキルジエステルを得ることが出来る。しかし、低級アルコールの使用量が少ないと、スラリー濃度が高くなり、攪拌などに問題が生ずる場合があるので、そこで反応を円滑に進行させるために希釈剤を添加するのが好ましい。ここで添加する希釈剤は、酒石酸や低級アルコールと反応せず、かつ水と共沸する有機溶媒が好ましく使用できる。具体的にはヘキサン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、トルエン、キシレン等の芳香族炭化水素類、ジイソプロピルエーテル等のエーテル類が挙げられる。
【0014】
添加量は攪拌できるスラリー濃度になる量でよく、低級アルコールの使用量によって異なるが、通常は酒石酸に対して1〜20倍重量が好ましく、さらに好ましくは2〜10倍重量である。この範囲であれば、経済効率も良好で、作業性もよい。また、希釈剤は濃縮工程で使用してもよい。エステル化反応終了後に過剰の低級アルコール、および副生した水を濃縮除去するが、濃縮工程での体積変化が小さくすることで、反応缶の熱効率が低下して濃縮時間が延長される問題点や、局部加熱で酒石酸低級アルキルジエステルの品質が低下する問題点を防ぐことが出来る。そこで、濃縮工程に於いて留出する低級アルコール、水、および希釈剤の量に見合った希釈剤を系中に添加すれば、共沸脱水効率を高めると同時に局部加熱による品質低下を防止することができる。
【0015】
エステル化の反応温度は30〜120℃が好ましく、さらに好ましくは50〜90℃である。
【0016】
反応時間は低級アルコール、酸触媒の種類や使用量、反応温度によって異なるが、通常は0.5〜20時間が好ましく、さらに好ましくは1〜6時間である。
【0017】
本発明法において、反応、脱水、塩化チオニル添加により得た反応液から、酒石酸低級アルキルジエステルを単離するには、通常の方法が採用できる。例えば反応液に水を加えて極僅かに残留した酒石酸や酒石酸低級アルキルモノエステルを水層に移行させ、希釈剤溶液を濃縮することにより、目的とする酒石酸低級アルキルジエステルを単離することができる。或いは、真空蒸留で精製することもできる。
【0018】
【実施例】
次に、本発明を実施例等にて具体的に説明する。尚、酒石酸や酒石酸低級アルキルジエステルの濃度分析は下記の高速液体クロマトグラフィーで実施した。
装置:島津LC−10AT
カラム:YMC−Pack ODS−AM303(YMC(株)製)直径4.6mm×250mm
カラム温度:40℃
検出法:UV(215nm)
溶媒:20mM−NaH2SO4水溶液/アセトニトリル=9/1(V/V)
流量:0.5ml/min
実施例1
温度計、コンデンサー、滴下ロート、撹拌機を装着した1L三ッ口フラスコに、D−酒石酸(東レ(株)製、光学純度99.9%ee以上)120.1g(0.8モル)、エタノール(片山化学(株)製、特級試薬)73.7g(1.6モル)、トルエン(片山化学(株)製、1級試薬)432.3gを加え攪拌した。これに、塩化水素ガスをエタノールに吹き込み調製した10%塩化水素エタノール溶液8.8g(塩化水素0.024モル)を加え、2時間80℃下で加熱した。次いで苛性ソーダ(片山化学(株)製、1級試薬)を水に溶解させ調製した48%苛性ソーダ水溶液2.0g(苛性ソーダ0.024モル)を加えた後、単蒸留装置を装着し、滴下ロートによりトルエン180.1gを加えながら、減圧下でフラスコ中の水とエタノールをトルエンとともに70℃下で留出させた。水、エタノール、トルエンの混合物約240gを留出させた後、冷却し、その液中のD−酒石酸およびD−酒石酸モノエチルエステル濃度を分析した結果、仕込みD−酒石酸に対し、D−酒石酸残存率は14%、D−酒石酸モノエチルエステル生成率は34%であった。エタノール64.5g(1.4モル)を加え、30〜40℃下で塩化チオニル(片山化学(株)製、特級試薬)61.9g(0.52モル)を約30分で滴下した。2時間撹拌の後、滴下ロートによりトルエン72.0gを加えながら、減圧下でフラスコの中の水とエタノールをトルエンとともに50℃下で蒸発させ、水、エタノール、トルエンの混合物約108gを留出させた。反応液を35℃以下まで放冷し、炭酸水素ナトリウム(片山化学(株)製、1級試薬)6.7g(0.08モル)、塩化ナトリウム(片山化学(株)製、1級試薬)を水に溶解させ調製した8%食塩水33gを反応液に加え、良く撹拌した後、有機層を分取した。有機層は再度飽和食塩水33gで2回洗浄を行った。分離した水層はトルエン350gで再度抽出を行い、先の分取した有機層に加えた。ついで有機層を減圧下、40℃下で濃縮乾固し、溶媒を留去した後、ろ過してD−酒石酸ジエチルエステル156.7gを得た。仕込みD−酒石酸に対するD−酒石酸ジエチルエステルの収率は95.0%であった。また、光学純度は99.9%ee以上で光学純度は低下していなかった。
【0019】
実施例2
実施例1の方法において塩化チオニルの添加量を、31.0g(0.26モル)とした以外は同様の操作を行い、D−酒石酸ジエチルエステル152.2gを得た。仕込みD−酒石酸に対するD−酒石酸ジエチルエステルの収率は92.3%であった。また、光学純度は99.9%ee以上で光学純度は低下していなかった。
【0020】
実施例3
実施例1の方法において塩化チオニルの添加温度を、70℃とし、D−酒石酸の代わりにL−酒石酸(片山化学(株)製、特級試薬、光学純度99.5%ee以上)を使用した以外は同様の操作を行い、L−酒石酸ジエチルエステル153.7gを得た。仕込みL−酒石酸に対するL−酒石酸ジエチルエステルの収率は93.2%であった。また、光学純度は99.9%ee以上で光学純度は低下していなかった。
【0021】
実施例4実施例1の方法においてエタノールの代わりに2−プロパノール(片山化学(株)製、1級試薬)を使用し、添加量を96.0g(初期仕込み時)、84.0g(塩化チオニル添加時)とした以外は同様の操作を行い、D−酒石酸ジイソプロピルエステル179.8gを得た。仕込みD−酒石酸に対するD−酒石酸ジイソプロピルエステルの収率は96.0%であった。また、光学純度は99.9%ee以上で光学純度は低下していなかった。
【0022】
比較例
実施例1の方法において塩化チオニルの添加をなくした以外は同様の操作を行い、D−酒石酸ジエチルエステル67.6gを得た。仕込みD−酒石酸に対するD−酒石酸ジエチルエステルの収率は41.0%と低かった。また、光学純度は99.9%ee以上で光学純度の低下はなかった。
【0023】
【発明の効果】
本発明によれば、酒石酸と低級アルコールに、塩化チオニルを加えることで、低級アルコール使用量を最低限に抑え、短時間で収率よく高純度の酒石酸低級アルキルジエステルを製造することができ、酒石酸低級アルキルジエステル製造コスト削減に大きく貢献できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an efficient process for producing tartaric acid lower alkyl diesters.
[0002]
[Prior art]
Tartaric acid lower alkyl diesters are useful as intermediates and asymmetric catalysts for agricultural chemicals and pharmaceuticals. The tartaric acid lower alkyl diester can be produced by reacting tartaric acid and a lower alcohol in the presence of an acid catalyst. Since the reaction is an equilibrium reaction, in principle, a large amount of dehydrated lower alcohol can be used to produce tartaric acid lower alkyl diester in a high yield. Complicated work is required. As a method not using a large amount of dehydrated lower alkyl alcohol, an esterifying agent such as orthoformate is used in the presence of an acid catalyst (Synth. Comn., 14, 1087, (1984)). Method, a lower alkyl alcohol is reacted in the presence of an acid catalyst, and by-product water is removed from the system by azeotropic dehydration in the presence of an organic solvent that is azeotroped with water, such as chloroform (Helvetica, Chemica, Actor (Helv Chim. Acta.) 62, 1710 (1979)) and the like are known.
[0003]
[Problems to be solved by the invention]
Although the method using orthoformate ester has a high reaction yield and is excellent as a method for obtaining tartaric acid lower alkyl diester, orthoformate ester is expensive and disadvantageous in price for use in industrial production. Also, the method of azeotropic dehydration using chloroform is not preferred because the reaction takes a long time and there is a risk of chloroform being contaminated with the environment.
[0004]
An object of the present invention is to minimize the amount of lower alcohol used in the process for producing tartaric acid lower alkyl diesters and achieve a high yield in a short time. It is another object of the present invention to provide a method for producing an optically active tartaric acid lower alkyl diester without reducing optical purity when optically active tartaric acid is used as a raw material.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that by adding thionyl chloride to tartaric acid and an alcohol having 4 or less carbon atoms , a lower alkyl diester of tartaric acid can be produced in a high yield in a short time. The present invention has been completed.
[0006]
That is, the present invention provides a process of esterifying tartaric acid and an alcohol having 4 or less carbon atoms in the presence of an acid catalyst, a concentration process for removing by-product water in the system, and a process of adding an alcohol having 4 or less carbon atoms and thionyl chloride. A process for producing lower alkyl diesters of tartaric acid, characterized in that
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The tartaric acid which is the raw material of the present invention can be any of L-tartaric acid, D-tartaric acid, DL-tartaric acid and meso-tartaric acid.
[0008]
The other raw material, lower alcohol, is an alkyl alcohol having 4 or less carbon atoms , and one modified with an inert solvent can be used (in this specification, lower alcohol means an alcohol having 4 or less carbon atoms) . Specifically, it is a linear or branched alkyl alcohol such as methanol, ethanol, propanol, isobutanol and the like. In the case of ethanol, those modified by adding an inert solvent that does not react with tartaric acid or lower alcohol such as toluene can be used as well.
[0009]
The amount of the lower alcohol used is preferably 2 to 30 times mol, more preferably 2 to 6 times mol with respect to tartaric acid. Within this range, economic efficiency is good and the yield of tartaric acid lower alkyl diester is also high.
[0010]
The reaction proceeds by adding thionyl chloride to tartaric acid and lower alcohol. The addition amount of thionyl chloride is preferably 0.2 to 5 times mol, more preferably 0.5 to 2 times mol for the unreacted carboxyl group. 0-120 degreeC of reaction temperature is preferable, More preferably, it is 20-90 degreeC. By carrying out the reaction in this range, the yield of tartaric acid lower alkyl diester can be increased.
[0011]
During the reaction, hydrogen chloride and sulfur dioxide are generated as exhaust gas. However, if the amount of thionyl chloride added is large, the amount of exhaust gas is large and the load of exhaust gas treatment increases, which may cause problems. Therefore, the esterification reaction of tartaric acid and lower alcohol proceeds in the presence of an acid catalyst, and then water produced as a by-product of the reaction is removed by concentration, and then a small amount of unreacted tartaric acid, tartaric acid lower alkyl monoester, and tartaric acid lower It is preferable to add 0.5 to 2.0 times moles of thionyl chloride with respect to the lower alcohol and the remaining carboxyl group in the mixture of alkyl diesters. When esterification is performed in the presence of an acid catalyst, heating is preferably performed. A preferable heating temperature is 30 to 120 ° C, and more preferably 50 to 90 ° C. By performing the reaction within this range, the generation of impurities can be reduced.
[0012]
Here, the acid catalysts used are mineral acids such as hydrochloric acid and sulfuric acid, aromatic sulfonic acids such as benzenesulfonic acid and toluenesulfonic acid, aliphatic sulfonic acids such as methanesulfonic acid, and H-type cation exchange resins. Examples thereof include Nafion (manufactured by DuPont), Diaion PK208 (manufactured by Mitsubishi Kasei Co., Ltd.), and the like. The amount of the acid catalyst used is preferably 0.001 to 1 mole, more preferably 0.005 to 0.1 mole relative to tartaric acid.
[0013]
In the esterification reaction of tartaric acid and lower alcohol in the presence of an acid catalyst, it is advantageous that the amount of lower alcohol used is small, and the amount of lower alcohol used is 2 to 6 moles per mole of tartaric acid. preferable. By carrying out the reaction in this range, a highly pure lower alkyl diester of tartaric acid can be obtained economically. However, if the amount of the lower alcohol used is small, the slurry concentration becomes high and a problem may occur in stirring and the like. Therefore, it is preferable to add a diluent in order to make the reaction proceed smoothly there. The diluent added here is preferably an organic solvent that does not react with tartaric acid or lower alcohol and azeotropes with water. Specific examples include aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene, and ethers such as diisopropyl ether.
[0014]
The addition amount may be a slurry concentration that can be stirred, and varies depending on the amount of lower alcohol used, but is usually 1 to 20 times the weight of tartaric acid, more preferably 2 to 10 times the weight. Within this range, economic efficiency is good and workability is also good. The diluent may be used in the concentration step. Excess lower alcohol and by-product water are concentrated and removed after the esterification reaction is completed, but the volume change in the concentration process is reduced, which reduces the thermal efficiency of the reaction can and extends the concentration time. Moreover, the problem that the quality of tartaric acid lower alkyl diester is deteriorated by local heating can be prevented. Therefore, by adding a lower alcohol, water, and a diluent commensurate with the amount of diluent in the concentration process, the azeotropic dehydration efficiency can be improved and quality deterioration due to local heating can be prevented. Can do.
[0015]
The reaction temperature for esterification is preferably 30 to 120 ° C, more preferably 50 to 90 ° C.
[0016]
While the reaction time varies depending on the type and amount of the lower alcohol and acid catalyst used, and the reaction temperature, it is usually preferably 0.5 to 20 hours, more preferably 1 to 6 hours.
[0017]
In the method of the present invention, a normal method can be employed to isolate the tartaric acid lower alkyl diester from the reaction solution obtained by reaction, dehydration, and thionyl chloride addition. For example, tartaric acid or tartaric acid lower alkyl monoester that remains slightly after addition of water to the reaction solution is transferred to the aqueous layer, and the target lower tartaric acid dialkyl diester can be isolated by concentrating the diluent solution. . Alternatively, it can be purified by vacuum distillation.
[0018]
【Example】
Next, the present invention will be specifically described with reference to examples and the like. The concentration analysis of tartaric acid and tartaric acid lower alkyl diester was performed by the following high performance liquid chromatography.
Equipment: Shimadzu LC-10AT
Column: YMC-Pack ODS-AM303 (manufactured by YMC) diameter 4.6 mm × 250 mm
Column temperature: 40 ° C
Detection method: UV (215 nm)
Solvent: 20 mM NaH 2 SO 4 aqueous solution / acetonitrile = 9/1 (V / V)
Flow rate: 0.5ml / min
Example 1
In a 1 L three-necked flask equipped with a thermometer, a condenser, a dropping funnel and a stirrer, D-tartaric acid (manufactured by Toray Industries, Inc., optical purity 99.9% ee or more) 120.1 g (0.8 mol), ethanol 73.7 g (1.6 mol) manufactured by Katayama Chemical Co., Ltd. (special grade reagent) and 432.3 g of toluene (first grade reagent manufactured by Katayama Chemical Co., Ltd.) were added and stirred. To this was added 8.8 g of a 10% ethanol solution of hydrogen chloride prepared by blowing hydrogen chloride gas into ethanol (0.024 mol of hydrogen chloride), and the mixture was heated at 80 ° C. for 2 hours. Next, after adding 2.0 g (caustic soda 0.024 mol) of 48% aqueous caustic soda solution prepared by dissolving caustic soda (Katayama Chemical Co., Ltd., first grade reagent) in water, a simple distillation apparatus was attached, and a dropping funnel was used. While adding 180.1 g of toluene, water and ethanol in the flask were distilled together with toluene at 70 ° C. under reduced pressure. After distilling about 240 g of a mixture of water, ethanol and toluene, the mixture was cooled and analyzed for the concentrations of D-tartaric acid and D-tartaric acid monoethyl ester in the liquid. As a result, D-tartaric acid remained with respect to the charged D-tartaric acid. The rate was 14%, and the production rate of D-tartaric acid monoethyl ester was 34%. 64.5 g (1.4 mol) of ethanol was added, and 61.9 g (0.52 mol) of thionyl chloride (made by Katayama Chemical Co., Ltd., special grade reagent) was added dropwise at about 30 to 40 ° C. in about 30 minutes. After stirring for 2 hours, while adding 72.0 g of toluene with a dropping funnel, water and ethanol in the flask were evaporated together with toluene at 50 ° C. under reduced pressure to distill about 108 g of a mixture of water, ethanol and toluene. It was. The reaction solution is allowed to cool to 35 ° C. or lower, and sodium hydrogen carbonate (Katayama Chemical Co., Ltd., first grade reagent) 6.7 g (0.08 mol), sodium chloride (Katayama Chemical Co., Ltd., first grade reagent) After adding 33 g of 8% saline prepared by dissolving in water to the reaction solution and stirring well, the organic layer was separated. The organic layer was washed twice with 33 g of saturated saline again. The separated aqueous layer was extracted again with 350 g of toluene and added to the previously separated organic layer. Next, the organic layer was concentrated to dryness under reduced pressure at 40 ° C., and the solvent was distilled off, followed by filtration to obtain 156.7 g of D-tartaric acid diethyl ester. The yield of D-tartaric acid diethyl ester relative to the charged D-tartaric acid was 95.0%. The optical purity was 99.9% ee or higher, and the optical purity was not lowered.
[0019]
Example 2
The same operation as in Example 1 was carried out except that the amount of thionyl chloride added was 31.0 g (0.26 mol) to obtain 152.2 g of D-tartaric acid diethyl ester. The yield of D-tartaric acid diethyl ester relative to the charged D-tartaric acid was 92.3%. The optical purity was 99.9% ee or higher, and the optical purity was not lowered.
[0020]
Example 3
In the method of Example 1, the addition temperature of thionyl chloride was 70 ° C., and L-tartaric acid (made by Katayama Chemical Co., Ltd., special grade reagent, optical purity 99.5% ee or more) was used instead of D-tartaric acid. The same operation was performed to obtain 153.7 g of L-tartaric acid diethyl ester. The yield of L-tartaric acid diethyl ester relative to the charged L-tartaric acid was 93.2%. The optical purity was 99.9% ee or higher, and the optical purity was not lowered.
[0021]
Example 4 In the method of Example 1, 2-propanol (manufactured by Katayama Chemical Co., Ltd., primary reagent) was used instead of ethanol, and the addition amount was 96.0 g (at the initial charge), 84.0 g (thionyl chloride). The same operation was carried out except that the addition was carried out to obtain 179.8 g of D-tartaric acid diisopropyl ester. D- tartaric acid yield of di-isopropyl ester on the charged D- tartaric acid was 96.0%. The optical purity was 99.9% ee or higher, and the optical purity was not lowered.
[0022]
Comparative Example Except that the addition of thionyl chloride was omitted in the method of Example 1, 67.6 g of D-tartaric acid diethyl ester was obtained. The yield of D-tartaric acid diethyl ester relative to the charged D-tartaric acid was as low as 41.0%. The optical purity was 99.9% ee or higher, and there was no decrease in optical purity.
[0023]
【The invention's effect】
According to the present invention, by adding thionyl chloride to tartaric acid and lower alcohol, the amount of lower alcohol used can be minimized, and a high-purity tartaric acid lower alkyl diester can be produced in high yield in a short time. It can greatly contribute to the production cost reduction of lower alkyl diesters.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18755499A JP4314600B2 (en) | 1999-07-01 | 1999-07-01 | Method for producing tartaric acid lower alkyl diester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18755499A JP4314600B2 (en) | 1999-07-01 | 1999-07-01 | Method for producing tartaric acid lower alkyl diester |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001011016A JP2001011016A (en) | 2001-01-16 |
JP4314600B2 true JP4314600B2 (en) | 2009-08-19 |
Family
ID=16208118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18755499A Expired - Lifetime JP4314600B2 (en) | 1999-07-01 | 1999-07-01 | Method for producing tartaric acid lower alkyl diester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4314600B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002128738A (en) * | 2000-10-18 | 2002-05-09 | Toray Ind Inc | Method for producing tartaric acid lower alkyl diester |
JP6002603B2 (en) * | 2013-03-01 | 2016-10-05 | 東レ・ファインケミカル株式会社 | Method for producing high-purity optically active dialkyl ester of tartaric acid |
CN104003883B (en) * | 2013-02-26 | 2016-08-17 | 东丽精细化工株式会社 | The manufacture method of high-purity dialkyl tartrate |
JP5798141B2 (en) * | 2013-02-26 | 2015-10-21 | 東レ・ファインケミカル株式会社 | Production method of high-purity tartaric acid dialkyl ester |
-
1999
- 1999-07-01 JP JP18755499A patent/JP4314600B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001011016A (en) | 2001-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Koh et al. | Stereoselective SN2 Reactions of the (R)-Pantolactone Ester of Racemic. alpha.-Halo Carboxylic Acids with Aryl Oxides. A Synthesis of (S)-2-Aryloxy and (S)-2-Hydroxy Acids | |
AU2034901A (en) | New process | |
JP4314600B2 (en) | Method for producing tartaric acid lower alkyl diester | |
JPH03372B2 (en) | ||
JP3777408B2 (en) | Method for producing carboxylic acid derivative | |
EP0783480A1 (en) | Processes for the preparation of cyclopropanecarboxylic acid and derivatives thereof | |
US6162946A (en) | Processing for producing allyl 2-hydroxyisobutyrate | |
JP4029992B2 (en) | Production of tartranic acid | |
WO2004005241A1 (en) | Process for producing optically active amide | |
JP2001011015A (en) | Production of tartaric acid lower alkyl diester | |
JP3726315B2 (en) | Purification method of ketonic ester | |
EP1293495B1 (en) | Process for the preparation of bromoisophthalic acid compounds | |
JP3677786B2 (en) | Method for producing aryloxypropionic acid | |
JP2002128738A (en) | Method for producing tartaric acid lower alkyl diester | |
JP2002293774A (en) | Method for producing 5-(meth)acryloyloxy-2,6- norbornanecarbolactone | |
JP4423494B2 (en) | Method for producing 2-hydroxycarboxylic acid | |
JP2897833B2 (en) | Method for producing 2-chloro-4-fluorophenol | |
FR2956400A1 (en) | PROCESS FOR THE PREPARATION OF ADAMANTYL COMPOUNDS | |
JPH03275644A (en) | Production of alpha-hydroxyisobutyric acid | |
JP2000063321A (en) | Production of long-chain beta-hydroxycarboxylic acid of high optical purity | |
JP3974379B2 (en) | Process for producing 2-cyclohexyl-2-hydroxy-2-phenylacetic acid, its intermediate and process for producing the same | |
CN112645829A (en) | Chiral synthesis method of ephedrine key intermediate (S) -2-methylamino-1-phenyl-1-acetone | |
JP5572292B2 (en) | Method for producing perfluorobifunctional acid | |
JP3234838B2 (en) | Method for producing 2,4,5-trifluoro-3-hydroxybenzoic acid | |
JP2004262778A (en) | Method for producing dialkyl 5-bromoisophthalate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060612 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060613 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090428 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4314600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140529 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |