Nothing Special   »   [go: up one dir, main page]

JP4309162B2 - Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition - Google Patents

Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition Download PDF

Info

Publication number
JP4309162B2
JP4309162B2 JP2003088841A JP2003088841A JP4309162B2 JP 4309162 B2 JP4309162 B2 JP 4309162B2 JP 2003088841 A JP2003088841 A JP 2003088841A JP 2003088841 A JP2003088841 A JP 2003088841A JP 4309162 B2 JP4309162 B2 JP 4309162B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
monoxide removal
catalyst composition
dehumidifying
unit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003088841A
Other languages
Japanese (ja)
Other versions
JP2004230368A (en
Inventor
隆弘 中島
秀直 平沢
孝昭 中曽根
泰 田井
佳正 勝見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Panasonic Ecology Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ecology Systems Co Ltd filed Critical Panasonic Ecology Systems Co Ltd
Priority to JP2003088841A priority Critical patent/JP4309162B2/en
Publication of JP2004230368A publication Critical patent/JP2004230368A/en
Application granted granted Critical
Publication of JP4309162B2 publication Critical patent/JP4309162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、少ないエネルギー消費量で一酸化炭素を含む気体からこれを除去するための一酸化炭素除去ユニット、一酸化炭素除去方法、空気清浄装置および一酸化炭素除去触媒組成物に関するものである。
【0002】
【従来の技術】
一酸化炭素は、人体に有害であることは周知の通りであり、自動車の排気ガスなどに含まれる一酸化炭素を効率的に除去するための種々の方法が研究されている。また、燃料電池で使用する水素を製造する際に発生する一酸化炭素は、燃料電池の発電を阻害することから、燃料電池に関する技術分野においても一酸化炭素をいかに効率的に除去するかは重要な技術課題である。
現在、一酸化炭素を除去する方法として盛んに研究が行われているものは、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を用い、触媒反応によって一酸化炭素を酸化して二酸化炭素に変換する方法である(例えば下記の特許文献1参照)。
【0003】
【特許文献1】
特許第3251009号公報
【0004】
【発明が解決しようとする課題】
しかしながら、触媒反応によって一酸化炭素を酸化して二酸化炭素に変換するためには、通常、反応温度を200℃以上にまで高める必要があるので、省エネルギー化の観点からは更なる検討を要する。
そこで本発明は、少ないエネルギー消費量で一酸化炭素を含む気体からこれを除去するための一酸化炭素除去ユニット、一酸化炭素除去方法、空気清浄装置および一酸化炭素除去触媒組成物を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の点に鑑みてなされた本発明の一酸化炭素除去ユニットは、請求項1記載の通り、除湿手段の後段に、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた高熱伝導性材料からなる担持体で構成される一酸化炭素除去手段を配し、除湿手段と一酸化炭素除去手段の間に更に加熱手段を配してなり、一酸化炭素を含む気体を除湿した後に更に加熱してから一酸化炭素を除去するようにするとともに、熱風を一酸化炭素除去手段に導いてこれを所定時間おきに加熱することで触媒組成物の一酸化炭素酸化能の再生を行うようにしたことを特徴とする
た、請求項記載の一酸化炭素除去ユニットは、請求項記載の一酸化炭素除去ユニットにおいて、一酸化炭素除去手段に導かれることで一酸化炭素が除去された気体を吸湿した除湿手段に導き、除湿手段から水分を当該気体に放出させることで除湿手段を再生するようにしたことを特徴とする。
また、請求項記載の一酸化炭素除去ユニットは、請求項1または2記載の一酸化炭素除去ユニットにおいて、デシカントにより除湿手段を構成することを特徴とする
た、請求項記載の一酸化炭素除去ユニットは、請求項1乃至3のいずれかに記載の一酸化炭素除去ユニットにおいて、一酸化炭素酸化能を有する遷移金属がルテニウム、ロジウム、パラジウム、白金から選ばれる少なくとも一つであることを特徴とする。
また、請求項記載の一酸化炭素除去ユニットは、請求項1乃至3のいずれかに記載の一酸化炭素除去ユニットにおいて、触媒組成物が、一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなることを特徴とする
た、本発明の一酸化炭素除去方法は、請求項記載の通り、請求項1乃至5のいずれかに記載の一酸化炭素除去ユニットを用いて一酸化炭素を除去することを特徴とする
た、本発明の空気清浄装置は、請求項記載の通り、請求項1乃至5のいずれかに記載の一酸化炭素除去ユニットを備えてなることを特徴とする
【0006】
【発明の実施の形態】
本発明は、要すれば、一酸化炭素を含む気体を除湿手段に導いて除湿した後に一酸化炭素除去手段に導くことで一酸化炭素を除去するというものである。従来、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を用い、触媒反応によって一酸化炭素を二酸化炭素に酸化することでこれを除去するためには、反応温度を200℃以上にまで高める必要があったが、本発明によれば、一酸化炭素を含む気体を予め除湿しておくことにより、より低温において触媒反応を促進させることで効率的に一酸化炭素を除去することができることから省エネルギー化を図ることができる。
【0007】
本発明における除湿手段は、例えば、デシカント(シリカゲル、活性炭、ゼオライトなどの除湿剤)により構成される。
【0008】
本発明における一酸化炭素除去手段は、例えば、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により構成される。ここで、一酸化炭素酸化能を有する遷移金属としては、ルテニウム、ロジウム、パラジウム、白金などが好適に用いられる。触媒組成物は、一酸化炭素酸化能を有する遷移金属を含むものであればどのような組成のものであってもよいが、中でも、一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなるものが、従来から知られている、一酸化炭素酸化能を有する遷移金属と酸化鉄やアルミナとからなるものよりも、より低温で効率的に一酸化炭素を除去することができるとともに、アセトアルデヒドやアンモニアなどの有害ガスも効率的に除去することができるものとして好適に用いられる。
【0009】
一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなる触媒組成物は、例えば、まず、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属の塩(硝酸塩や硫酸塩など)とマンガンの塩(硝酸塩や硫酸塩など)を溶解させた水溶液にアンモニア水などのpH調整剤を添加してこれらの水酸化物を生成させ、水溶液中に沈殿したこの水酸化物を空気中にて200℃〜300℃で焼成して不純物を脱離させることでこれらの複合酸化物を得、次に、一酸化炭素酸化能を有する遷移金属の塩(硝酸塩や硫酸塩など)を溶解させた水溶液をこの複合酸化物に分散させた後、空気中にて200℃〜300℃で焼成して不純物を脱離させることで調製することができる。このようにして調製された触媒組成物を、例えば、シリカゾルなどのバインダとともに水に分散させて均一に混合することでスラリ状物とし、これをセラミックス製のハニカム状フィルターなどの担持体に塗布した後、空気中にて200℃〜300℃で焼成することで一酸化炭素除去手段とする。セラミックス製の担持体は、スラリ状物の担持接着性に優れているのでバインダが少量でも多量の触媒組成物を担持させることができること、有害ガス成分による腐食の心配が少ないこと、価格が安いことなどの点において都合がよい。
また、一酸化炭素酸化能を有する遷移金属の塩を溶解させた水溶液を上記の複合酸化物に分散させたものを、例えば、シリカゾルなどのバインダと均一に混合することでスラリ状物とし、これをセラミックス製のハニカム状フィルターなどの担持体に塗布した後、空気中にて200℃〜300℃で焼成することで不純物を脱離させて一酸化炭素除去手段としてもよい。
【0010】
本発明の一酸化炭素除去ユニットにおいては、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により一酸化炭素除去手段を構成した場合、除湿手段と一酸化炭素除去手段の間に更に加熱手段を配し、一酸化炭素を含む気体を除湿した後に更に加熱してから一酸化炭素を除去するようにすることが望ましい。このような態様を採ることにより、高温の一酸化炭素を含む気体を触媒組成物と接触させれば、効果的に一酸化炭素を二酸化炭素に酸化することができるので、一酸化炭素の除去効率をより一層高めることができる。また、一酸化炭素除去手段から排出された一酸化炭素が除去された気体は高温かつ除湿された状態にあるので、この気体を吸湿した除湿手段に導くようにすれば、除湿手段から水分が当該気体に放出されるので除湿手段を再生することができるといった利点もある。
【0011】
一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた担持体により一酸化炭素除去手段を構成した場合、長時間の使用により触媒組成物の表面に水分が付着し、付着した水分が触媒毒となって触媒組成物の一酸化炭素酸化能を低下させることがある。このような現象を極力回避するため、本発明の一酸化炭素除去ユニットにおいては、望ましくは、除湿手段と一酸化炭素除去手段の間に更に加熱手段を配し、一酸化炭素を含む気体を除湿した後に更に加熱してから一酸化炭素を除去するようにしている。しかしながら、それでもなお、このような現象が起こる可能性を完全に否定することは必ずしも容易なことではない。そこで、一酸化炭素除去手段を所定時間おきに加熱することで、触媒組成物の表面に付着した水分を蒸発させて除去し、触媒組成物の一酸化炭素酸化能の再生を行うことが望ましい。一酸化炭素除去手段を加熱する方法としては、例えば、一酸化炭素除去手段の前段に配した加熱手段にて熱風を発生させ、発生させた熱風を一酸化炭素除去手段に導く方法が挙げられる。例えば、1日に1回、一酸化炭素除去手段を200℃以上(望ましくは250℃程度)にまで加熱することで、触媒組成物の一酸化炭素酸化能の再生を効果的に行うことができる。この際、触媒組成物を担持させる担持体を、アルミニウムやステンレスなどの高熱伝導性材料からなるものとすれば、一酸化炭素除去手段が速やかに昇温するので、触媒組成物の一酸化炭素酸化能の再生を少ないエネルギー消費量で素早く行うことができる。
【0012】
なお、除湿手段の前段に空気清浄手段を配することで、一酸化炭素を含む気体を浄化してから除湿手段に導くようにしてもよい。また、除湿手段の前段に冷却手段を配することで、一酸化炭素を含む気体の相対湿度をいったん上昇させてから除湿手段に導くようにしてもよい。
【0013】
本発明の一酸化炭素除去ユニットの用途は特段限定されるものではなく、例えば、空気清浄装置(分煙カウンターなど)に組み込んで使用することができる他、燃料電池製造装置などに組み込んで使用することもできる。
【0014】
【実施例】
以下、本発明を実施例にて詳細に説明するが、本発明は、以下の記載に何ら限定して解釈されるものではない。
【0015】
実施例1:一酸化炭素除去手段の作成その1
硝酸コバルトと硝酸マンガンを溶解させた水溶液(コバルトとマンガンが原子比1:1で含まれるように調整)にアンモニア水を滴下し、コバルトとマンガンの水酸化物を沈殿させ、ろ過してこれを回収した。回収した沈殿物を空気中にて250℃で焼成することで不純物を脱離させ、コバルトとマンガンの複合酸化物を得た。次に、硝酸白金を溶解させた水溶液をこの複合酸化物に分散させた後、これをシリカゾルと均一に混合することでスラリ状物とした。このスラリ状物中に直径20mm×長さ40mmのセラミックス製のハニカム状フィルターを浸漬した後、引き上げてから空気中にて250℃で焼成することで不純物を脱離させ、白金含量が1重量%の触媒組成物1.1gが担持された一酸化炭素除去手段を作成した。
この一酸化炭素除去手段(Pt-CoMn)の基本特性を図1に示す。基本特性は、外側からヒータで加熱できるようにした内径20mmの石英製の反応管内にサンプル(一酸化炭素除去手段)を挿入し、そこに一酸化炭素を20ppmの濃度で含む相対湿度70%の空気を送り込んでこれを触媒組成物と接触させて一酸化炭素除去率を調べる実験を各種の温度条件で行うことで評価した。図1から明らかなように、この一酸化炭素除去手段は、従来から知られている触媒組成物を用いて同様にして作成された一酸化炭素除去手段(Au-Fe2O3,Pt-Al2O3)よりも低温でも優れた一酸化炭素除去率を有していることがわかった。
【0016】
実施例2:一酸化炭素除去手段の作成その2
実施例1における硝酸白金の代わりに硝酸パラジウムを用い、実施例1と同様にしてパラジウム含量が1重量%の触媒組成物が担持された一酸化炭素除去手段を作成した。
この一酸化炭素除去手段の基本特性を図2に示す。図2から明らかなように、この一酸化炭素除去手段は、低温でも優れた一酸化炭素除去率を有していることがわかった。また、この一酸化炭素除去手段の空間速度(SV)54000h-1における一酸化炭素除去率と相対湿度との関係を図3〜図5に示す。図3〜図5から明らかなように、この一酸化炭素除去手段は、相対湿度が低くなるにつれて優れた一酸化炭素除去率を示し、相対湿度15%では反応温度が50℃であっても、60%以上の一酸化炭素除去率を有していることがわかった(図5)。
【0017】
実施例3:一酸化炭素除去手段の作成その3
実施例1におけるセラミックス製のハニカム状フィルターの代わりにアルミニウム製のハニカム状フィルターを用い、実施例1と同様にして担持体が高熱伝導性材料からなる一酸化炭素除去手段を作成した。
【0018】
実施例4:一酸化炭素除去ユニット
図6にその概略斜視断面図を示す一酸化炭素除去ユニットAは、除湿手段Bと加熱手段Cと、例えば、実施例1で作成した一酸化炭素除去手段Dを基本構成としてなる。
除湿手段Bの概略斜視図を図7に示す。この除湿手段Bは、デシカントロータであり、セラミック繊維やガラス繊維などの無機繊維や、これらの無機繊維とパルプとを混合して抄造した平面紙111とコルゲート加工を施した波型紙112とを積層して形成、または、巻き上げて円盤状に形成し、その表面にシリカゲル、活性炭、ゼオライトなどの除湿剤を担持させて構成される。
除湿手段Bは、図中の矢印の方向に多数の小透孔113を有していて通風が可能であり、一酸化炭素を含む気体がこれよりも相対的に湿度が高い場合には小透孔を気体が通過する際に気体に含まれる水分を除湿剤が吸湿することで、除湿された気体が加熱手段Cに導かれるように構成されている。加熱手段Cはヒータであり、一酸化炭素を含む気体は、除湿手段Bと加熱手段Cにより除湿された後に更に加熱され、実施例1で作成した一酸化炭素除去手段Dに導かれて効率的に一酸化炭素が除去される。
なお、この一酸化炭素除去ユニットAにおいては、一酸化炭素除去手段Dから排出された一酸化炭素が除去された気体は高温かつ除湿された状態にあるので、吸湿した除湿手段Bよりも湿度が相対的に低いことから、この気体を吸湿した除湿手段Bに導くようにすれば、小透孔を気体が通過する際に気体に水分が放湿されることで、除湿手段Bの再生を図ることができる。
【0019】
実施例5:空気清浄装置(分煙カウンターその1)
図8にその概略斜視図を示し、図9にその概略断面図を示す。この分煙カウンターは、外枠1に囲まれた本体2と、前記本体2の上部に設けたテーブル3と、このテーブル3のほぼ中央に設けた吸込口4と、この吸込口4の周囲にグリル枠13を設け、このグリル枠13の上に載せたパンチングメタル状の穴を有した吸込みグリル14と、この吸込みグリル14から突出させて設け、人を検知する人感センサー28と、前記吸込口4の下流側には吸込みグリル14を通過した埃を取るプリフィルター15と微細な埃を集塵する集塵フィルター16(例えばHEPAフィルター)で構成した集塵部17と、臭いを除去する脱臭フィルター18を設け、さらに下流側には本体2内を仕切った底板5と、この底板5の上に設けたモーター台7と、このモーター台7の上にはモーター8と両軸に設けられケーシング6で覆われた羽根9とで構成された送風機10が載せられ、前記ケーシング6の吹出し側の端部は底板5に固定されており、吸込口4から下流側方向に空気の流れをつくる構成となっている。
また、本体の底部には手軽に移動できるキャスター12を有した本体脚11と、ケーシング6の吹出し側の端部と連通した排気口29を有した実施例4の一酸化炭素除去ユニット19を設けている。
さらに本体2内部には、電源を供給する電源コード20と接続された制御回路部21を設けるとともに、本体2の側面には運転を切り換える操作部27を設けている。
上記構成により、喫煙者がタバコを吸うために近寄ると、人感センサー28がこれを検知し、制御回路部21によりモーター8に通電され送風機10が動作し本体2内が負圧となる。喫煙者がタバコに火を着けて吸うことによって発生した煙成分や空気中に含まれた埃は、吸込口4に設けられた吸込みグリル14のパンチングメタル状の穴から本体2内に吸込まれ、比較的大きい埃はプリフィルター15によって除去され、プリフィルター15を通過した比較的小さい埃は集塵フィルター16によって微細な埃まで除去される。
空気中の臭いは、脱臭フィルター18によって吸着され、除塵・脱臭された空気は送風機10のケーシング6と羽根9の中を通過し、一酸化炭素除去ユニット19内で一酸化炭素を除去し、排気口29から周囲に排出される。また、喫煙者がタバコを吸い終わりその場を立ち去ると、これを人感センサー28が検知したのち約5分間(置きタバコをしても燃え尽きる時間)残置運転を行ない停止する。
この場合、人を人感センサー28が検知して動作したが、操作部分の運転スイッチをONにして動作させても同じである。
なお、一酸化炭素除去ユニット19は、一酸化炭素に加えてアセトアルデヒドやアンモニアなどの有害ガスも除去するので室内空気のよりいっそうの清浄化に寄与する。
また、この分煙カウンターにおいては、一酸化炭素除去ユニット19を送風機10の下流側に設けているが、送風機10の上流側(例えば集塵フィルター16と送風機10の間)に設けても、その効果は変らない。
【0020】
実施例6:空気清浄装置(分煙カウンターその2)
図10にその概略断面図を示す。この分煙カウンターは、ケーシング6の吹出し側の端部に排気の空気の一部(例えば1m3/min)を取り込む排気取り込み口30を設け、更にこの下流側には排気される空気に含まれる一酸化炭素を除去する実施例4の一酸化炭素除去ユニット19を本体底部に設けている。空気中の臭いは、脱臭フィルター18によって吸着され、浄化された空気は送風機10のケーシング6と羽根9の中を通過し、排気口29より外部へ排気されるが、排気の一部(例えば1m3/min)は排気取り込み口30から一酸化炭素除去ユニット19内に取り込まれ、一酸化炭素を除去し、排気口29から周囲に排出される。これにより、換気のない密閉された喫煙室においても、一酸化炭素除去ユニット19で浄化された1m3/minの空気が循環することで、タバコに含まれた一酸化炭素をある一定レベル濃度(ビル管理法の基準値10ppm)以下に抑えることができるとともに、アセトアルデヒドやアンモニアなどの有害ガスも除去され、室内空気のよりいっそうの清浄化が図られる。その他の構成は実施例5に示した分煙カウンターと同様である。
【0021】
【発明の効果】
本発明によれば、少ないエネルギー消費量で一酸化炭素を含む気体からこれを除去するための一酸化炭素除去ユニット、一酸化炭素除去方法、空気清浄装置および一酸化炭素除去触媒組成物が提供される。
【図面の簡単な説明】
【図1】 実施例1の一酸化炭素除去手段の基本特性を示すグラフ。
【図2】 実施例2の一酸化炭素除去手段の基本特性を示すグラフ。
【図3】 実施例2の一酸化炭素除去手段の一酸化炭素除去率と相対湿度との関係を示すグラフ(その1)。
【図4】 同(その2)。
【図5】 同(その3)。
【図6】 実施例4の一酸化炭素除去ユニットの概略斜視断面図。
【図7】 実施例4の一酸化炭素除去ユニットに用いられる除湿手段の概略斜視図。
【図8】 実施例5の分煙フィルターの概略斜視図。
【図9】 同、概略断面図。
【図10】 実施例6の分煙フィルターの概略断面図。
【符号の説明】
A 一酸化炭素除去ユニット
B 除湿手段
C 加熱手段
D 一酸化炭素除去手段
111 平面紙
112 波型紙
113 小透孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon monoxide removal unit, a carbon monoxide removal method, an air cleaning device, and a carbon monoxide removal catalyst composition for removing carbon monoxide-containing gas with a small energy consumption.
[0002]
[Prior art]
It is well known that carbon monoxide is harmful to the human body, and various methods for efficiently removing carbon monoxide contained in automobile exhaust gas and the like have been studied. In addition, carbon monoxide generated when producing hydrogen for use in fuel cells impedes fuel cell power generation, so it is important how efficiently carbon monoxide is removed even in the technical field related to fuel cells. Technical issue.
Currently, active research is being conducted as a method for removing carbon monoxide using a catalyst composition containing a transition metal having carbon monoxide oxidizing ability, and oxidizing carbon monoxide by catalytic reaction to carbon dioxide. (See, for example, Patent Document 1 below).
[0003]
[Patent Document 1]
Japanese Patent No. 3251809 [0004]
[Problems to be solved by the invention]
However, in order to oxidize carbon monoxide and convert it to carbon dioxide by catalytic reaction, it is usually necessary to raise the reaction temperature to 200 ° C. or higher, and therefore further investigation is required from the viewpoint of energy saving.
Therefore, the present invention provides a carbon monoxide removal unit, a carbon monoxide removal method, an air purifier, and a carbon monoxide removal catalyst composition for removing carbon monoxide-containing gas with a small energy consumption. With the goal.
[0005]
[Means for Solving the Problems]
The carbon monoxide removal unit of the present invention made in view of the above points, as described in claim 1, is a high heat in which a catalyst composition containing a transition metal having a carbon monoxide oxidation ability is supported at the subsequent stage of the dehumidifying means. After carbon monoxide removing means composed of a carrier made of a conductive material is disposed , and further heating means is disposed between the dehumidifying means and the carbon monoxide removing means, and after dehumidifying the gas containing carbon monoxide Further, the carbon monoxide is removed after heating, and the carbon monoxide oxidizing ability is regenerated by introducing hot air to the carbon monoxide removing means and heating it at predetermined intervals. characterized in that the.
Also, the carbon monoxide removing unit according to claim 2, wherein, in the carbon monoxide removing unit according to claim 1, wherein, dehumidifying means absorbs moisture and gas from which carbon monoxide has been removed by being guided to the carbon monoxide removing unit The dehumidifying means is regenerated by releasing moisture from the dehumidifying means into the gas.
Further, the carbon monoxide removal unit according to claim 3, wherein, in the carbon monoxide removing unit according to claim 1 or 2, characterized in that it constitutes the dehumidifying means by desiccant.
Also, the carbon monoxide removing unit according to claim 4, wherein, in the carbon monoxide removal unit according to any one of claims 1 to 3, a transition metal having a carbon monoxide oxidizing ability of ruthenium, rhodium, palladium, platinum It is at least one selected from.
Moreover, the carbon monoxide removal unit according to claim 5 is the carbon monoxide removal unit according to any one of claims 1 to 3, wherein the catalyst composition includes a transition metal having a carbon monoxide oxidation ability, chromium, It consists of at least one transition metal selected from iron, cobalt, and copper and a complex oxide mainly composed of manganese .
Also, the carbon monoxide removing method of the present invention, as claimed in claim 6, characterized in that for removing carbon monoxide using a carbon monoxide removal unit according to any one of claims 1 to 5 .
Also, the air cleaning apparatus of the present invention, as claimed in claim 7, and characterized by including carbon monoxide removal unit according to any one of claims 1 to 5.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, if necessary, carbon monoxide is removed by introducing a gas containing carbon monoxide to the dehumidifying means and dehumidifying it, and then introducing it to the carbon monoxide removing means. Conventionally, in order to remove carbon monoxide by oxidizing it to carbon dioxide by catalytic reaction using a catalyst composition containing a transition metal having carbon monoxide oxidizing ability, the reaction temperature is increased to 200 ° C. or higher. Although it was necessary, according to the present invention, carbon monoxide can be efficiently removed by promoting the catalytic reaction at a lower temperature by dehumidifying the gas containing carbon monoxide in advance. Energy saving can be achieved.
[0007]
The dehumidifying means in the present invention is composed of, for example, a desiccant (dehumidifying agent such as silica gel, activated carbon or zeolite).
[0008]
The carbon monoxide removing means in the present invention is constituted by, for example, a support on which a catalyst composition containing a transition metal having carbon monoxide oxidizing ability is supported. Here, as the transition metal having carbon monoxide oxidizing ability, ruthenium, rhodium, palladium, platinum and the like are preferably used. The catalyst composition may be of any composition as long as it contains a transition metal having carbon monoxide oxidizing ability, and among them, a transition metal having carbon monoxide oxidizing ability, chromium, iron, A compound composed of at least one transition metal selected from cobalt and copper and a complex oxide mainly composed of manganese is composed of a conventionally known transition metal capable of oxidizing carbon monoxide and iron oxide or alumina. Carbon monoxide can be efficiently removed at a lower temperature than that of carbon dioxide, and harmful gases such as acetaldehyde and ammonia can also be efficiently removed.
[0009]
A catalyst composition comprising a transition metal having carbon monoxide oxidizing ability, at least one transition metal selected from chromium, iron, cobalt, and copper and a composite oxide mainly composed of manganese is, for example, first chromium, iron A pH adjuster such as aqueous ammonia is added to an aqueous solution in which at least one transition metal salt selected from cobalt, copper (nitrate, sulfate, etc.) and manganese salt (nitrate, sulfate, etc.) is dissolved. These hydroxides precipitated in an aqueous solution were calcined in air at 200 ° C. to 300 ° C. to remove impurities, and then these composite oxides were obtained. An aqueous solution in which a transition metal salt (nitrate, sulfate, etc.) capable of oxidizing carbon oxide is dispersed in this composite oxide, and then calcined in air at 200 ° C. to 300 ° C. to remove impurities. Letting It can be prepared. The catalyst composition thus prepared is dispersed in water together with, for example, a binder such as silica sol and uniformly mixed to form a slurry, and this is applied to a support such as a ceramic honeycomb filter. Then, it is set as a carbon monoxide removal means by baking at 200 to 300 degreeC in the air. Ceramic support is excellent in supporting adhesion of slurries, so it can support a large amount of catalyst composition even with a small amount of binder, there is less concern about corrosion due to harmful gas components, and the price is low. It is convenient in terms of
In addition, a solution in which an aqueous solution in which a transition metal salt having carbon monoxide oxidizing ability is dissolved is dispersed in the above composite oxide, for example, is mixed with a binder such as silica sol to obtain a slurry-like material. May be applied to a carrier such as a honeycomb filter made of ceramics and then fired at 200 ° C. to 300 ° C. in air to remove impurities and serve as carbon monoxide removing means.
[0010]
In the carbon monoxide removal unit of the present invention, when the carbon monoxide removal means is constituted by a carrier carrying a catalyst composition containing a transition metal having carbon monoxide oxidation ability, the dehumidification means and the carbon monoxide removal means It is desirable that a heating means is further provided between them to dehumidify the gas containing carbon monoxide, and then further heated before removing the carbon monoxide. By adopting such an embodiment, if a gas containing high-temperature carbon monoxide is brought into contact with the catalyst composition, carbon monoxide can be effectively oxidized to carbon dioxide. Can be further increased. Further, since the gas from which the carbon monoxide discharged from the carbon monoxide removing means is removed is in a high temperature and dehumidified state, if the gas is guided to the dehumidifying means that has absorbed moisture, the moisture from the dehumidifying means There is also an advantage that the dehumidifying means can be regenerated because it is released into the gas.
[0011]
When the carbon monoxide removing means is constituted by a carrier on which a catalyst composition containing a transition metal having carbon monoxide oxidizing ability is supported, moisture adheres to the surface of the catalyst composition after a long period of use, and the adhered moisture May become a catalyst poison and reduce the carbon monoxide oxidizing ability of the catalyst composition. In order to avoid such a phenomenon as much as possible, in the carbon monoxide removal unit of the present invention, preferably, a heating means is further provided between the dehumidification means and the carbon monoxide removal means to dehumidify the gas containing carbon monoxide. Then, after further heating, carbon monoxide is removed. Nevertheless, it is not always easy to completely deny the possibility of such a phenomenon. Therefore, it is desirable to regenerate the carbon monoxide oxidizing ability of the catalyst composition by heating the carbon monoxide removing means every predetermined time to evaporate and remove the water adhering to the surface of the catalyst composition. As a method for heating the carbon monoxide removing means, for example, there is a method in which hot air is generated by a heating means disposed in front of the carbon monoxide removing means and the generated hot air is guided to the carbon monoxide removing means. For example, once the carbon monoxide removing means is heated to 200 ° C. or higher (desirably about 250 ° C.) once a day, the carbon monoxide oxidizing ability of the catalyst composition can be effectively regenerated. . At this time, if the carrier for supporting the catalyst composition is made of a highly heat conductive material such as aluminum or stainless steel, the carbon monoxide removing means can quickly increase the temperature. Performance can be quickly recovered with less energy consumption.
[0012]
In addition, you may make it guide | induced to a dehumidification means, after purifying the gas containing carbon monoxide by arrange | positioning an air purifying means in the front | former stage of a dehumidification means. Further, a cooling unit may be disposed in front of the dehumidifying unit, so that the relative humidity of the gas containing carbon monoxide is once increased and then guided to the dehumidifying unit.
[0013]
The use of the carbon monoxide removal unit of the present invention is not particularly limited. For example, the carbon monoxide removal unit can be used by being incorporated in an air purifier (such as a smoke counter) or by being incorporated in a fuel cell manufacturing apparatus. You can also.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted at all.
[0015]
Example 1: Preparation of carbon monoxide removing means 1
Ammonia water is dropped into an aqueous solution in which cobalt nitrate and manganese nitrate are dissolved (cobalt and manganese are adjusted so as to be contained at an atomic ratio of 1: 1), and a hydroxide of cobalt and manganese is precipitated, filtered, and filtered. It was collected. The collected precipitate was baked at 250 ° C. in the air to remove impurities, thereby obtaining a complex oxide of cobalt and manganese. Next, an aqueous solution in which platinum nitrate was dissolved was dispersed in this composite oxide, and this was uniformly mixed with silica sol to obtain a slurry. A ceramic honeycomb filter having a diameter of 20 mm and a length of 40 mm is immersed in this slurry, and then lifted and fired at 250 ° C. in air to remove impurities, and the platinum content is 1% by weight. A carbon monoxide removing means carrying 1.1 g of the catalyst composition was prepared.
The basic characteristics of this carbon monoxide removal means (Pt-CoMn) are shown in FIG. The basic characteristic is that a sample (carbon monoxide removing means) is inserted into a quartz reaction tube having an inner diameter of 20 mm so that it can be heated by a heater from the outside, and the relative humidity is 70% with carbon monoxide at a concentration of 20 ppm. Evaluation was performed by conducting experiments under various temperature conditions in which air was fed and contacted with the catalyst composition to examine the carbon monoxide removal rate. As is apparent from FIG. 1, this carbon monoxide removing means is a carbon monoxide removing means (Au—Fe 2 O 3 , Pt—Al) prepared in the same manner using a conventionally known catalyst composition. 2 O 3 ) was found to have excellent carbon monoxide removal rate even at lower temperatures.
[0016]
Example 2: Preparation of carbon monoxide removal means 2
In place of platinum nitrate in Example 1, palladium nitrate was used, and in the same manner as in Example 1, a carbon monoxide removing means carrying a catalyst composition having a palladium content of 1% by weight was prepared.
The basic characteristics of this carbon monoxide removal means are shown in FIG. As apparent from FIG. 2, it was found that this carbon monoxide removing means has an excellent carbon monoxide removal rate even at a low temperature. Moreover, the relationship between the carbon monoxide removal rate and the relative humidity at a space velocity (SV) of 54,000 h −1 of this carbon monoxide removing means is shown in FIGS. As apparent from FIGS. 3 to 5, this carbon monoxide removal means exhibits an excellent carbon monoxide removal rate as the relative humidity decreases, and even when the reaction temperature is 50 ° C. at a relative humidity of 15%, It was found that the carbon monoxide removal rate was 60% or more (FIG. 5).
[0017]
Example 3: Preparation of carbon monoxide removal means 3
In place of the ceramic honeycomb filter in Example 1, an aluminum honeycomb filter was used, and in the same manner as in Example 1, carbon monoxide removing means in which the carrier was made of a highly thermally conductive material was prepared.
[0018]
Example 4: Carbon monoxide removal unit The carbon monoxide removal unit A, whose schematic perspective cross-sectional view is shown in FIG. 6, includes a dehumidifying means B and a heating means C, for example, the carbon monoxide removing means D created in Example 1. Is the basic configuration.
A schematic perspective view of the dehumidifying means B is shown in FIG. The dehumidifying means B is a desiccant rotor in which inorganic fibers such as ceramic fibers and glass fibers, a flat paper 111 made by mixing these inorganic fibers and pulp, and corrugated paper 112 are laminated. Or formed into a disk shape and supported on a surface by a dehumidifying agent such as silica gel, activated carbon or zeolite.
The dehumidifying means B has a large number of small through holes 113 in the direction of the arrow in the figure and can be ventilated. When the gas containing carbon monoxide has a relatively higher humidity than this, the dehumidifying means B is small. When the gas passes through the holes, the dehumidifying agent absorbs moisture contained in the gas so that the dehumidified gas is guided to the heating means C. The heating means C is a heater, and the gas containing carbon monoxide is further heated after being dehumidified by the dehumidifying means B and the heating means C, and is guided to the carbon monoxide removing means D created in Example 1 for efficient operation. Carbon monoxide is removed.
In this carbon monoxide removal unit A, the gas from which the carbon monoxide discharged from the carbon monoxide removal means D is removed is in a high temperature and dehumidified state, so that the humidity is higher than that of the dehumidification means B that has absorbed moisture. Since the gas is relatively low, if the gas is guided to the dehumidifying means B that has absorbed moisture, the moisture is released to the gas when the gas passes through the small through holes, thereby regenerating the dehumidifying means B. be able to.
[0019]
Example 5: Air purifier (smoke counter 1)
FIG. 8 shows a schematic perspective view thereof, and FIG. 9 shows a schematic sectional view thereof. The smoke counter includes a main body 2 surrounded by an outer frame 1, a table 3 provided on the upper portion of the main body 2, a suction port 4 provided substantially at the center of the table 3, and a grill around the suction port 4. A suction grill 14 provided with a frame 13 and having a punching metal-like hole placed on the grill frame 13, a human sensor 28 for detecting a person provided by projecting from the suction grill 14, and the suction opening 4 on the downstream side, a dust collecting part 17 composed of a pre-filter 15 that collects dust that has passed through the suction grille 14, a dust collecting filter 16 that collects fine dust (for example, a HEPA filter), and a deodorizing filter that removes odors. 18 is provided, and further on the downstream side, a bottom plate 5 that partitions the inside of the main body 2, a motor base 7 provided on the bottom plate 5, and a motor 8 provided on both shafts on the motor base 7. The blower 10 comprised with the blade | wing 9 covered with 6 is mounted | worn, the edge part by the side of the blowing of the said casing 6 is being fixed to the baseplate 5, and the structure which produces the flow of air downstream from the suction inlet 4 It has become.
Further, a carbon monoxide removal unit 19 of Example 4 having a main body leg 11 having a caster 12 that can be easily moved and an exhaust port 29 communicating with an end portion on the blowing side of the casing 6 is provided at the bottom of the main body. ing.
Further, a control circuit unit 21 connected to a power cord 20 that supplies power is provided inside the main body 2, and an operation unit 27 that switches operation is provided on a side surface of the main body 2.
With the above configuration, when a smoker approaches to smoke a cigarette, the human sensor 28 detects this, and the motor 8 is energized by the control circuit unit 21 to operate the blower 10 and the inside of the main body 2 becomes negative pressure. Smoke components generated by smokers igniting and smoking cigarettes and dust contained in the air are sucked into the main body 2 from the punching metal-like holes of the suction grille 14 provided in the suction port 4, Relatively large dust is removed by the pre-filter 15, and relatively small dust that has passed through the pre-filter 15 is removed to fine dust by the dust collection filter 16.
The odor in the air is adsorbed by the deodorizing filter 18, and the dust and deodorized air passes through the casing 6 and the blades 9 of the blower 10, removes carbon monoxide in the carbon monoxide removal unit 19, and exhausts the air. It is discharged from the mouth 29 to the surroundings. Further, when the smoker finishes smoking and leaves the place, the human sensor 28 detects this, and after that, the remaining operation is performed for about 5 minutes (the time when the cigarette is burnt out) and stopped.
In this case, the human sensor 28 detects the person and operates. However, the operation is the same even if the operation switch of the operation part is turned ON.
The carbon monoxide removal unit 19 also removes harmful gases such as acetaldehyde and ammonia in addition to carbon monoxide, thereby contributing to further purification of indoor air.
In the smoke counter, the carbon monoxide removal unit 19 is provided on the downstream side of the blower 10, but the effect can be obtained even if provided on the upstream side of the blower 10 (for example, between the dust collection filter 16 and the blower 10). Will not change.
[0020]
Example 6: Air purifier (smoke counter 2)
FIG. 10 shows a schematic cross-sectional view thereof. The smoke counter is provided with an exhaust intake port 30 for taking in a part of exhaust air (for example, 1 m 3 / min) at an end of the casing 6 on the blow-out side, and further on the downstream side is included in the exhausted air. A carbon monoxide removal unit 19 for removing carbon oxide in Example 4 is provided at the bottom of the main body. The odor in the air is adsorbed by the deodorizing filter 18, and the purified air passes through the casing 6 and the blade 9 of the blower 10 and is exhausted to the outside through the exhaust port 29, but a part of the exhaust (for example, 1 m) 3 / min) is taken into the carbon monoxide removal unit 19 from the exhaust intake port 30 to remove the carbon monoxide and discharged from the exhaust port 29 to the surroundings. Thus, even in a sealed smoking room without ventilation, 1 m 3 / min of air purified by the carbon monoxide removal unit 19 circulates, so that the carbon monoxide contained in the tobacco is at a certain level concentration ( In addition to being able to suppress the building management method to a standard value of 10 ppm or less, harmful gases such as acetaldehyde and ammonia are also removed, thereby further purifying indoor air. Other configurations are the same as those of the smoke counter shown in the fifth embodiment.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the carbon monoxide removal unit, the carbon monoxide removal method, the air purifier, and the carbon monoxide removal catalyst composition for removing this from the gas containing carbon monoxide with little energy consumption are provided. The
[Brief description of the drawings]
FIG. 1 is a graph showing basic characteristics of a carbon monoxide removing unit of Example 1. FIG.
FIG. 2 is a graph showing basic characteristics of a carbon monoxide removing unit of Example 2.
FIG. 3 is a graph showing a relationship between a carbon monoxide removal rate of a carbon monoxide removal unit of Example 2 and relative humidity (part 1);
FIG. 4 (No. 2)
FIG. 5 (No. 3)
6 is a schematic perspective cross-sectional view of a carbon monoxide removal unit of Embodiment 4. FIG.
7 is a schematic perspective view of dehumidifying means used in the carbon monoxide removing unit of Embodiment 4. FIG.
8 is a schematic perspective view of a smoke filter according to Embodiment 5. FIG.
FIG. 9 is a schematic sectional view of the same.
10 is a schematic cross-sectional view of a smoke smoking filter of Example 6. FIG.
[Explanation of symbols]
A Carbon monoxide removing unit B Dehumidifying means C Heating means D Carbon monoxide removing means 111 Plane paper 112 Corrugated paper 113 Small through hole

Claims (7)

除湿手段の後段に、一酸化炭素酸化能を有する遷移金属を含む触媒組成物を担持させた高熱伝導性材料からなる担持体で構成される一酸化炭素除去手段を配し、除湿手段と一酸化炭素除去手段の間に更に加熱手段を配してなり、一酸化炭素を含む気体を除湿した後に更に加熱してから一酸化炭素を除去するようにするとともに、熱風を一酸化炭素除去手段に導いてこれを所定時間おきに加熱することで触媒組成物の一酸化炭素酸化能の再生を行うようにしたことを特徴とする一酸化炭素除去ユニット After the dehumidifying means, carbon monoxide removing means composed of a support made of a high thermal conductivity material carrying a catalyst composition containing a transition metal having carbon monoxide oxidizing ability is arranged , and the dehumidifying means and monoxide are disposed. A heating means is further arranged between the carbon removing means, and after dehumidifying the gas containing carbon monoxide, the heating is further performed to remove the carbon monoxide, and the hot air is led to the carbon monoxide removing means. The carbon monoxide removing unit is characterized in that the carbon monoxide oxidizing ability of the catalyst composition is regenerated by heating it at predetermined intervals . 一酸化炭素除去手段に導かれることで一酸化炭素が除去された気体を吸湿した除湿手段に導き、除湿手段から水分を当該気体に放出させることで除湿手段を再生するようにしたことを特徴とする請求項記載の一酸化炭素除去ユニット。It is characterized in that the gas from which carbon monoxide has been removed is guided to the dehumidifying means that has absorbed moisture by being guided to the carbon monoxide removing means, and the dehumidifying means is regenerated by releasing moisture from the dehumidifying means to the gas. The carbon monoxide removal unit according to claim 1 . デシカントにより除湿手段を構成することを特徴とする請求項1または2記載の一酸化炭素除去ユニット 3. The carbon monoxide removing unit according to claim 1, wherein the dehumidifying means is constituted by a desiccant . 一酸化炭素酸化能を有する遷移金属がルテニウム、ロジウム、パラジウム、白金から選ばれる少なくとも一つであることを特徴とする請求項1乃至3のいずれかに記載の一酸化炭素除去ユニット。The carbon monoxide removing unit according to any one of claims 1 to 3, wherein the transition metal having carbon monoxide oxidizing ability is at least one selected from ruthenium, rhodium, palladium and platinum. 触媒組成物が、一酸化炭素酸化能を有する遷移金属と、クロム、鉄、コバルト、銅から選ばれる少なくとも一つの遷移金属とマンガンを主体とする複合酸化物とからなることを特徴とする請求項1乃至3のいずれかに記載の一酸化炭素除去ユニット The catalyst composition comprises a transition metal having an ability to oxidize carbon monoxide, a composite oxide mainly composed of manganese and at least one transition metal selected from chromium, iron, cobalt, and copper. The carbon monoxide removal unit according to any one of 1 to 3 . 請求項1乃至5のいずれかに記載の一酸化炭素除去ユニットを用いて一酸化炭素を除去することを特徴とする一酸化炭素除去方法 A carbon monoxide removal method comprising removing carbon monoxide using the carbon monoxide removal unit according to any one of claims 1 to 5 . 請求項1乃至5のいずれかに記載の一酸化炭素除去ユニットを備えてなることを特徴とする空気清浄装置 An air purifier comprising the carbon monoxide removing unit according to any one of claims 1 to 5 .
JP2003088841A 2002-12-04 2003-03-27 Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition Expired - Fee Related JP4309162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088841A JP4309162B2 (en) 2002-12-04 2003-03-27 Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002353067 2002-12-04
JP2003088841A JP4309162B2 (en) 2002-12-04 2003-03-27 Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition

Publications (2)

Publication Number Publication Date
JP2004230368A JP2004230368A (en) 2004-08-19
JP4309162B2 true JP4309162B2 (en) 2009-08-05

Family

ID=32964413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088841A Expired - Fee Related JP4309162B2 (en) 2002-12-04 2003-03-27 Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition

Country Status (1)

Country Link
JP (1) JP4309162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138162A1 (en) 2020-12-24 2022-06-30 大陽日酸株式会社 Stable isotope enrichment device and stable isotope enrichment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320387B1 (en) 2005-01-25 2013-10-22 삼성에스디아이 주식회사 Catalytic system for the removal of carbon monoxide and fuel processor using the same
JP2007222863A (en) * 2005-03-31 2007-09-06 Daikin Ind Ltd Material, apparatus and member for removing carbon monoxide, and method of manufacturing member for removing carbon monoxide

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543820B1 (en) * 1971-04-01 1979-02-27
JPS4986272A (en) * 1972-12-25 1974-08-19
JPS526277B2 (en) * 1973-11-22 1977-02-21
JPS526276B2 (en) * 1973-11-22 1977-02-21
JPS5528745A (en) * 1978-08-22 1980-02-29 Shimizu Constr Co Ltd Air purification apparatus
JPS61227842A (en) * 1985-03-30 1986-10-09 Japan Tobacco Inc Removing agent for carbon monoxide
JPH0368419A (en) * 1989-08-07 1991-03-25 Hitachi Ltd Deodorizing device and air cleaner using it
JPH0523542A (en) * 1991-07-22 1993-02-02 Daikin Ind Ltd Harmful gas removing apparatus
JPH05253483A (en) * 1992-03-12 1993-10-05 Matsushita Electric Ind Co Ltd Catalyst composition
JPH05317651A (en) * 1992-05-18 1993-12-03 Daikin Ind Ltd Catalytic device
JPH09173781A (en) * 1995-12-22 1997-07-08 Aqueous Res:Kk Catalytic filter for removing carbon monoxide
US5888924A (en) * 1996-08-07 1999-03-30 Goal Line Enviromental Technologies Llc Pollutant removal from air in closed spaces
JPH10290923A (en) * 1997-04-21 1998-11-04 Matsushita Electric Ind Co Ltd Air cleaner
JP3834973B2 (en) * 1997-12-02 2006-10-18 松下電器産業株式会社 Air purifier
JPH11267457A (en) * 1998-03-25 1999-10-05 Matsushita Electric Ind Co Ltd Air cleaner
JP2002011087A (en) * 2000-06-28 2002-01-15 Daikin Ind Ltd Air purifying device
JP2002079046A (en) * 2000-09-04 2002-03-19 Matsushita Electric Ind Co Ltd Gas cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138162A1 (en) 2020-12-24 2022-06-30 大陽日酸株式会社 Stable isotope enrichment device and stable isotope enrichment method

Also Published As

Publication number Publication date
JP2004230368A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP2007032859A (en) Humidified air cleaner
KR20050080240A (en) Reactor unit for air-purifying and air purifier comprising the same
JP4309162B2 (en) Carbon monoxide removal unit, carbon monoxide removal method, air cleaning device, and carbon monoxide removal catalyst composition
JP2008221174A (en) Dehumidifier
JP4145691B2 (en) Carbon monoxide removal unit, carbon monoxide removal method, and air cleaning device
JPH11221442A (en) Composite deodorizing and dust collecting filter
JP2005224703A (en) Auto-regenerating filter for removing harmful gas, its manufacturing method, air purifier and air conditioning system
JPH0368419A (en) Deodorizing device and air cleaner using it
JPH11197456A (en) Catalyst heater and dehumidifier using same
JPH10113522A (en) Air cleaner
JP2000254452A (en) Air purifier
JP4834911B2 (en) Air purification device
JP2006017425A (en) Air conditioner
JPH09173781A (en) Catalytic filter for removing carbon monoxide
JP2000217897A (en) Air purifying material and air purifying device using same
JPH10290923A (en) Air cleaner
KR100881862B1 (en) Reactor unit for air-purifying and air purifier comprising the same
JP5704154B2 (en) Deodorization device
JP2002011087A (en) Air purifying device
JP4726839B2 (en) Catalyst body and catalyst structure, and air conditioner equipped with the same
JP2000146236A (en) Air cleaner and air conditioner
JP2001227031A (en) Toilet deodorizing machine
JPH10202046A (en) Dust collecting and deodorizing filter for air conditioner and regenerating method thereof
JPH11155937A (en) Air cleaning device
JPH11267457A (en) Air cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees