Nothing Special   »   [go: up one dir, main page]

JP4351025B2 - Method for joining heat-treatable aluminum alloy materials - Google Patents

Method for joining heat-treatable aluminum alloy materials Download PDF

Info

Publication number
JP4351025B2
JP4351025B2 JP2003373408A JP2003373408A JP4351025B2 JP 4351025 B2 JP4351025 B2 JP 4351025B2 JP 2003373408 A JP2003373408 A JP 2003373408A JP 2003373408 A JP2003373408 A JP 2003373408A JP 4351025 B2 JP4351025 B2 JP 4351025B2
Authority
JP
Japan
Prior art keywords
heat
aluminum alloy
joining
temperature
friction stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003373408A
Other languages
Japanese (ja)
Other versions
JP2005131701A (en
Inventor
正 箕田
晃二 田中
正樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2003373408A priority Critical patent/JP4351025B2/en
Publication of JP2005131701A publication Critical patent/JP2005131701A/en
Priority to US12/486,950 priority patent/US20090250144A1/en
Application granted granted Critical
Publication of JP4351025B2 publication Critical patent/JP4351025B2/en
Priority to US15/287,957 priority patent/US10016837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、熱処理型アルミニウム合金材の接合方法に係り、特に、熱処理型アルミニウム合金材の摩擦攪拌接合において、その攪拌接合部や熱影響部での破断の発生を効果的に防止して、延性に優れた、ひいてはプレス成形性に優れた接合材を有利に得ることの出来る接合方法に関するものである。
The present invention relates to a bonding how the heat-treatable aluminum alloy material, in particular, the heat treatment mold in the friction stir welding of aluminum alloy material, and effectively prevent the occurrence of fracture at that stir joining portion and the heat-affected zone, excellent ductility, are those concerning the bonding how that can be obtained advantageously and thus bonding material having excellent press formability.

従来から、熱処理型アルミニウム合金からなる板材を、プレス成形用のブランク材として用い、かかるブランク材に対してプレス成形を施すことによって、多種多様なプレス製品が、製造されてきている。そして、このような熱処理型アルミニウム合金板材のプレス加工においては、高い強度が得られるT6調質のアルミニウム合金板材よりも、かかるT6調質のものに比して軟らかい、延性に優れたT4調質のアルミニウム合金板材が、好適に採用されている。   Conventionally, a wide variety of press products have been manufactured by using a plate material made of a heat-treatable aluminum alloy as a blank material for press molding and subjecting the blank material to press molding. In such a heat-treatable aluminum alloy sheet press, T4 tempering is softer and more ductile than T6 tempered aluminum alloy sheet that provides high strength. The aluminum alloy plate material is suitably employed.

一方、近年では、プレス加工後の切削やトリミングの省略による材料歩留りの向上や、製造工程の簡略化等を目的として、複数のアルミニウム合金材を接合した後に、その接合材に対して、プレス加工や曲げ加工等が行なわれるようになってきている。具体的には、複数のアルミニウム合金材を互いに突き合わせて溶接することによって接合し、一体化して、1枚のプレス成形用ブランク材、所謂テーラードブランク材を製造し、そして、このプレス成形用ブランク材に対して所定のプレス成形を行なうようにした技術が、例えば、自動車の内装パネル用のプレス製品の製造等の分野において、多く採用されてきているのである。   On the other hand, in recent years, after joining a plurality of aluminum alloy materials for the purpose of improving material yield by omitting cutting and trimming after press processing and simplifying the manufacturing process, press processing is performed on the joint materials. And bending are now being carried out. Specifically, a plurality of aluminum alloy materials are joined to each other by welding and integrated to produce a single press-forming blank material, a so-called tailored blank material, and this press-forming blank material For example, a technique for performing predetermined press molding has been widely employed in the field of manufacturing a press product for an interior panel of an automobile, for example.

このようなプレス成形技術においては、上記した材料歩留りの向上や製造工程の簡略化等の他にも、一般的なプレス成形技術では使用困難な小型の金属板を、ブランク材の形成材料として利用することが出来、また、かかるプレス成形用ブランク材として、厚さの異なるアルミニウム合金材を一体的に接合してなるブランク材を用いれば、必要な部位に必要なだけの強度が付与されたプレス製品を容易に得ることが出来る等といった利点も、享受され得る。   In such press forming technology, in addition to the above-mentioned improvement in material yield and simplification of the manufacturing process, a small metal plate that is difficult to use with general press forming technology is used as a material for forming blanks. As a blank material for press molding, if a blank material formed by integrally joining aluminum alloy materials having different thicknesses is used, a press with a necessary strength provided to a necessary part. Advantages such as being able to easily obtain a product can also be enjoyed.

ところで、そのようなプレス成形用ブランク材を得るために、アルミニウム合金材を接合する方法としては、従来より、TIG溶接や、MIG溶接、レーザ溶接、摩擦攪拌接合等の各種の接合手法が採用されているが、それらの中でも、摩擦攪拌接合法にあっては、溶融溶接に比して入熱が少なく軟化や歪みが少ない固相接合により、充分な接合強度乃至は継手強度を実現することが出来るところから、特に注目を浴びている。しかしながら、このような摩擦攪拌接合方式によって、T4調質材を突き合わせて接合しても、攪拌接合部の近傍の熱影響部における軟化は避けらず、それ故、そのように接合されたブランク材を、何等の後処理も施すことなく、そのままプレス成形した際には、接合時に発生する熱によって強度(硬さ)が最も低くなる熱影響部に、応力が局所的に集中し、かかる熱影響部が優先的に変形し、破断が起きてしまうことが、往々にしてあったのであり、この熱影響部での破断により、プレス形状やその伸び乃至は延び(変形量)が制限されてしまうことが問題となっている。   By the way, in order to obtain such a blank for press forming, various joining methods such as TIG welding, MIG welding, laser welding, friction stir welding, etc. have been conventionally employed as methods for joining aluminum alloy materials. However, among them, in the friction stir welding method, sufficient joining strength or joint strength can be realized by solid phase joining with less heat input and less softening and distortion than fusion welding. It's getting a lot of attention from where it can. However, even if the T4 tempered material is abutted and joined by such a friction stir welding method, softening in the heat-affected zone in the vicinity of the stir welded portion is unavoidable, and therefore the blank material so joined When the material is pressed without any post-treatment, the stress is locally concentrated in the heat-affected zone where the strength (hardness) is the lowest due to the heat generated during joining. It is often the case that the part is preferentially deformed and breakage occurs, and the breakage at the heat-affected part limits the press shape and its elongation or extension (deformation amount). Is a problem.

これに対し、(1)熱処理型アルミニウム合金材を溶接した後、時効硬化処理を施して溶接部の継手強度を向上せしめる試み(例えば、特許文献1〜5参照)や、(2)熱処理型アルミニウム合金材を摩擦攪拌接合した後、時効硬化処理を施すことにより、熱影響部も含めた接合部全体の継手強度を向上せしめる試み(例えば、特許文献6〜8参照)が、数多く為されている。   On the other hand, (1) after heat-treatable aluminum alloy material is welded, an age hardening treatment is performed to improve the joint strength of the welded part (see, for example, Patent Documents 1 to 5), or (2) heat-treatable aluminum Many attempts have been made to improve the joint strength of the entire joint including the heat-affected zone by subjecting the alloy material to friction stir welding, followed by age hardening (see, for example, Patent Documents 6 to 8). .

より具体的には、上記(1)として、特許文献1においては、アルミニウム合金材をフラッシュバット溶接した後、リム形状に成形し、それを、170℃〜200℃で加熱処理することにより、高強度アルミニウム合金製リムを製造している。また、特許文献2では、アルミニウム合金製リムにAl−Mg−Si系合金ディスクを溶接した後、溶接部を1℃/秒以上の冷却速度で冷却し、更に引き続いて、100〜200℃の温度で、5〜60分の加熱処理を行なうことにより、アルミニウム合金製ホイールの強度を高めている。さらに、特許文献3では、溶接後に、150℃〜200℃の温度で30分以上加熱して時効処理を行なうことにより、溶接熱による熱軟化現象を回復させている。また、特許文献4では、Al−Mg−Si系アルミニウム合金押出形材を溶接して、焼入れした後、強度の向上を図るために、150℃〜220℃で、3時間〜24時間の時効処理を行なうことが、明らかにされている。更にまた、特許文献5では、成形用過剰Si型6000系アルミニウム合金を溶接した後、180℃以下の温度で、10〜50分程度の時効処理を行なうことにより、継手強度と継手伸びが回復されることが、明らかにされている。   More specifically, as the above (1), in Patent Document 1, after flash butt welding of an aluminum alloy material, it is molded into a rim shape and heat-treated at 170 ° C. to 200 ° C. Manufactures strong aluminum alloy rims. In Patent Document 2, after welding an Al—Mg—Si alloy disk to an aluminum alloy rim, the welded portion is cooled at a cooling rate of 1 ° C./second or more, and subsequently, a temperature of 100 to 200 ° C. Thus, the strength of the aluminum alloy wheel is increased by performing the heat treatment for 5 to 60 minutes. Furthermore, in patent document 3, the heat softening phenomenon by welding heat is recovered by performing an aging treatment by heating at a temperature of 150 ° C. to 200 ° C. for 30 minutes or more after welding. In Patent Document 4, an Al-Mg-Si-based aluminum alloy extruded profile is welded and quenched, and then aging treatment is performed at 150 ° C to 220 ° C for 3 hours to 24 hours in order to improve the strength. Has been made clear. Furthermore, in Patent Document 5, joint strength and joint elongation are recovered by performing aging treatment for about 10 to 50 minutes at a temperature of 180 ° C. or lower after welding an excessive Si-type 6000 series aluminum alloy for molding. It has been made clear.

また一方、上記(2)として、特許文献6には、摩擦攪拌接合された直後の接合部を強制冷却することにより、接合部を焼入れ状態とし、この接合部材に対して、適当な人工時効硬化処理や自然時効硬化処理を行なって、所期強度の接合継手を得ることが、明らかにされている。更に、特許文献7には、アルミニウム合金のT1材を、攪拌部外側の熱影響部が300℃以上に加熱される時間を1分以内として、摩擦攪拌接合した後、かかる接合部材に300℃より低温で、10分〜24時間程度の時効処理を施すことにより、母材の耐力に対して95%以上の継手強度を確保し得ることが、明らかにされている。加えて、特許文献8では、平均結晶粒径が100〜5×103 nmであるアルミニウム基合金を、摩擦攪拌接合によって接合した後、100〜200℃の温度で時効処理を行なっている。 On the other hand, as the above (2), in Patent Document 6, the joint immediately after the friction stir welding is forcedly cooled so that the joint is in a quenched state. It has been clarified that a joint joint having a desired strength can be obtained by performing a treatment or a natural age hardening treatment. Further, in Patent Document 7, after the friction stir welding of the aluminum alloy T1 material with the heat-affected zone outside the stirring section heated to 300 ° C. or more within 1 minute, the joining member is heated to 300 ° C. It has been clarified that a joint strength of 95% or more can be secured with respect to the proof stress of the base material by applying an aging treatment at a low temperature for about 10 minutes to 24 hours. In addition, in Patent Document 8, an aluminum base alloy having an average crystal grain size of 100 to 5 × 10 3 nm is joined by friction stir welding, and then an aging treatment is performed at a temperature of 100 to 200 ° C.

上述せるように、溶融溶接後乃至は摩擦攪拌接合後に時効硬化処理を行なうことにより、確かに、継手強度は向上するものの、接合材のプレス成形性や延性については、全く検討されておらず、依然として、熱影響部の強度が最も低く、かかる熱影響部に応力が集中して破断が生じ易く、プレス形状や伸び(成形量)が制約される問題を内在している。   As described above, by performing age hardening after melt welding or after friction stir welding, the joint strength is certainly improved, but the press formability and ductility of the bonding material have not been studied at all. Still, the strength of the heat-affected zone is the lowest, stress concentrates on the heat-affected zone and breaks easily, and there is a problem that the press shape and elongation (molding amount) are restricted.

特開平5−117826号公報JP-A-5-117826 特開平8−246116号公報JP-A-8-246116 特開平9−177974号公報JP-A-9-177974 特開平11−199994号公報Japanese Patent Laid-Open No. 11-199994 特開2002−294381号公報JP 2002-294281 A 特開平11−104860号公報JP-A-11-104860 特開2000−61663号公報JP 2000-61663 A 特開2002−346770号公報JP 2002-346770 A

ここにおいて、本発明者らが、上記の如き事情に鑑み、熱処理型アルミニウム合金材の摩擦攪拌接合材におけるプレス成形性等の問題を悉く解消すべく鋭意検討した結果、攪拌接合部、熱影響部及び母材の強度バランスを制御することにより、具体的には、攪拌接合部や熱影響部の硬さを母材の硬さ以上とすることにより、プレス成形時における攪拌接合部や熱影響部への応力集中を回避することが可能であることを知見した。   Here, in view of the circumstances as described above, the present inventors have intensively studied to eliminate problems such as press formability in the friction stir welding material of the heat-treatable aluminum alloy material. In addition, by controlling the strength balance of the base material, specifically, by setting the hardness of the stir welded portion and the heat affected zone to be equal to or higher than the hardness of the base material, the stir welded portion and the heat affected zone at the time of press molding. It was found that it was possible to avoid stress concentration on the surface.

また、本発明者らは、更に、攪拌接合部、熱影響部及び母材の強度バランスを制御するために、冶金学的観点から、摩擦攪拌接合後の攪拌接合部、熱影響部及び母材部分の各金属組織について、研究を重ねた結果、攪拌接合部の近傍に生じる、最も低い硬さを有する熱影響部にあっては、その金属組織が復元された状態(復元組織)となっていることを知見した。そして、T4調質された熱処理型アルミニウム合金材を摩擦攪拌接合した後、得られた接合材に対して、GPゾーン(またはクラスター)を一旦消滅せしめる復元処理を行なって、母材部分の金属組織を復元すれば、母材の強度乃至は硬さが、熱影響部の強度乃至は硬さと同程度か、それ以下に効果的に低減され、その結果、プレス成形時における熱影響部への応力集中による破断が効果的に防止され、且つ、応力が面積の大きな母材部分で効果的に分散されることとなって、接合材全体の変形量が有利に増大せしめられ、これにより、接合材の延性乃至は破断伸びが効果的に高められ、プレス成形性が有利に向上せしめられ得ることを、見出したのである。   Further, the present inventors further controlled the strength balance between the stir welded portion, the heat affected zone and the base metal from the metallurgical viewpoint, after the friction stir weld, the heat affected zone and the base material. As a result of repeated research on each metal structure of the part, in the heat affected zone having the lowest hardness that occurs in the vicinity of the stir weld, the metal structure is restored (restored structure) I found out. Then, after the T4 tempered heat-treatable aluminum alloy material is friction stir welded, the obtained bonding material is subjected to a restoration process for once extinguishing the GP zone (or cluster), and the metal structure of the base material portion. Thus, the strength or hardness of the base material is effectively reduced to less than or equal to the strength or hardness of the heat-affected zone, and as a result, the stress on the heat-affected zone during press molding is reduced. Breaking due to concentration is effectively prevented, and the stress is effectively dispersed in the base material portion having a large area, so that the deformation amount of the entire joining material is advantageously increased. It has been found that the ductility or the elongation at break can be effectively increased, and the press formability can be advantageously improved.

従って、本発明は、かかる知見に基づいて完成されたものであって、その解決課題とするところは、攪拌接合部、熱影響部及び母材の強度バランスを制御することにより、攪拌接合部や熱影響部での破断を防止して、延性、ひいてはプレス成形性に優れた接合材を有利に得ることが出来る熱処理型アルミニウム合金材の接合方法を提供することにある。
Therefore, the present invention has been completed based on such knowledge, and the problem to be solved is that by controlling the strength balance of the stir welded portion, the heat affected zone and the base material, to prevent breakage in the heat affected zone, ductility, in the child provides a method of joining heat-treatable aluminum alloy material and thus the bonding material having excellent press formability advantageously obtained it is possible.

そして、本発明にあっては、上記した課題の解決のために、熱処理型アルミニウム合金材を摩擦攪拌接合する方法であって(a)熱処理型アルミニウム合金材をT4調質する工程と、(b)かかるT4調質された熱処理型アルミニウム合金材を摩擦攪拌接合して、接合材を得る工程と、(c)該接合材の攪拌接合部にGPゾーンが形成される前に、該接合材に対して復元処理を施す工程とを、含むことを特徴とする熱処理型アルミニウム合金材の接合方法を、その第一の態様とするものである。   In the present invention, in order to solve the above-described problems, the present invention is a method of friction stir welding a heat-treatable aluminum alloy material, (a) a step of T4 tempering the heat-treatable aluminum alloy material, and (b ) A step of friction stir welding the T4 tempered heat-treatable aluminum alloy material to obtain a joint material; and (c) before the GP zone is formed in the stir joint portion of the joint material, A first method is a joining method of heat-treatable aluminum alloy materials characterized by including a step of performing a restoration treatment on the surface.

また、本発明に従う熱処理型アルミニウム合金材の接合方法における望ましい第二の態様にあっては、前記復元処理が、前記接合材を、150℃〜350℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理にて、実施されることとなる。   Moreover, in the desirable 2nd aspect in the joining method of the heat processing type aluminum alloy material according to this invention, the said restoration process heats up the said joining material to the temperature of 150 to 350 degreeC, and 300 degreeC is required at this temperature. It will be carried out by heat treatment that is held for a time of less than a second.

さらに、本発明に従う熱処理型アルミニウム合金材の接合方法の第三の態様においては、前記熱処理型アルミニウム合金材として6000系アルミニウム合金材が用いられ、且つ前記復元処理が、前記接合材を、200℃〜350℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理にて実施される。   Furthermore, in the third aspect of the method for joining heat-treatable aluminum alloy materials according to the present invention, a 6000 series aluminum alloy material is used as the heat-treatable aluminum alloy material, and the restoration treatment is performed at 200 ° C. The temperature is raised to ˜350 ° C., and the heat treatment is performed at such a temperature for 300 seconds or less.

加えて、本発明の第四の態様においては、記熱処理型アルミニウム合金材として2000系アルミニウム合金材が用いられ、且つ前記復元処理が、前記接合材を、150℃〜300℃の温度に昇温し、かかる温度で300秒以下の時間、保持とされることとなる。   In addition, in the fourth aspect of the present invention, a 2000 series aluminum alloy material is used as the heat treatment type aluminum alloy material, and the restoration treatment raises the temperature of the bonding material to a temperature of 150 ° C. to 300 ° C. However, the temperature is maintained for 300 seconds or less at such temperature.

更にまた、本発明に従う熱処理型アルミニウム合金材の接合方法の第五の態様によれば、前記熱処理型アルミニウム合金材として7000系アルミニウム合金材が用いられ、且つ前記復元処理が、前記接合材を、150℃〜250℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理にて実施される。   Furthermore, according to the fifth aspect of the method for joining heat-treatable aluminum alloy materials according to the present invention, a 7000 series aluminum alloy material is used as the heat-treatable aluminum alloy material, and the restoration treatment comprises the steps of: The temperature is raised to a temperature of 150 ° C. to 250 ° C., and the heat treatment is performed at such a temperature for 300 seconds or less.

ところで、本発明にあっては、その好ましい第六の態様として、前記摩擦攪拌接合後の自然時効が、24時間を超えない間に、前記復元処理が実施される手法が、採用される。   By the way, in the present invention, as a preferred sixth aspect, there is adopted a method in which the restoration process is performed while the natural aging after the friction stir welding does not exceed 24 hours.

また、かかる本発明に従う熱処理型アルミニウム合金材の接合方法の第七の態様においては、前記復元処理が、ソルトバス、オイルバス、空気炉、アイロン、赤外線加熱又は誘導加熱の何れかの加熱手段による熱処理にて行なわれる構成が、採用される。   In the seventh aspect of the method for joining heat-treatable aluminum alloy materials according to the present invention, the restoration treatment is performed by any heating means such as a salt bath, an oil bath, an air furnace, an iron, infrared heating or induction heating. A configuration performed by heat treatment is employed.

さらに、本発明の望ましい第八の態様においては、前記熱処理型アルミニウム合金材の摩擦攪拌接合されるべき被接合部位に沿って、前記摩擦攪拌接合が順次実施される一方、かかる摩擦攪拌接合により形成された攪拌接合部を少なくとも含む前記接合材に対して、所定の加熱手段を用いて、前記復元処理が順次実施されることとなる。   Furthermore, in a desirable eighth aspect of the present invention, the friction stir welding is sequentially performed along the welded portion of the heat treated aluminum alloy material to be friction stir welded, and formed by the friction stir welding. The restoration process is sequentially performed on the bonding material including at least the stir bonding portion using a predetermined heating unit.

かくの如き本発明に従う熱処理型アルミニウム合金材の接合方法によれば、T4調質された熱処理型アルミニウム合金材を摩擦攪拌接合して接合材を得た後、かかる接合材に対して、復元処理を実施しているところから、T4調質とされた接合材の母材部分が復元され、つまり、母材部分(T4調質材)の金属組織中に形成された、微細な化合物からなるGPゾーン(またはクラスター)が一旦消滅せしめられ、これにより、母材の強度乃至は硬さが効果的に低減されることとなるのである。一方、摩擦攪拌接合によって、溶体化処理を行なった場合と同様な金属組織を有する攪拌接合部は、復元処理によっても、そのままの状態を維持し、その強度乃至は硬さは母材や熱影響部よりも高くなる。また、摩擦攪拌接合によって、復元状態とされた熱影響部は、その後の復元処理によって、時効硬化が僅かに惹起された復元組織となり、強度は、復元状態の母材と同じか、或いはそれ以上となり、且つ攪拌接合部よりも低くなる。その結果、継手部を含んだ部位に対してプレス成形を行なっても、従来のように、熱影響部に局所的に応力が集中して、熱影響部で破断が起こるようなことが有利に防止され、母材で応力が分散するようになって変形量が増大し、これにより、接合材の破断伸び乃至は延性が効果的に高められ得て、プレス成形性が有利に向上せしめられるようになるのである。   According to the joining method of the heat treatment type aluminum alloy material according to the present invention as described above, after the T4 tempered heat treatment type aluminum alloy material is friction stir welded to obtain a joining material, a restoration treatment is performed on the joining material. The base material portion of the bonding material that has been T4 tempered is restored, that is, GP made of a fine compound formed in the metal structure of the base material portion (T4 tempered material). The zone (or cluster) is once extinguished, whereby the strength or hardness of the base material is effectively reduced. On the other hand, the stir welded portion having the same metal structure as that obtained when the solution treatment is performed by the friction stir welding maintains the same state even after the restoration treatment, and the strength or hardness is influenced by the base material and the heat effect. Higher than the part. In addition, the heat-affected zone that has been restored by friction stir welding becomes a restored structure in which age hardening is slightly induced by the subsequent restoration process, and the strength is the same as or higher than that of the restored base material. And lower than the stir joint. As a result, even if press molding is performed on the part including the joint part, it is advantageous that stress is locally concentrated in the heat-affected zone and fracture occurs in the heat-affected zone as in the past. As a result, stress is dispersed in the base material and the amount of deformation is increased, so that the elongation at break or ductility of the joining material can be effectively increased, and the press formability is advantageously improved. It becomes.

なお、かかる本発明に従う熱処理型アルミニウム合金材の接合方法において、特に、上記した第三〜第五の態様を採用すれば、熱処理型アルミニウム合金材の種類に応じて、復元処理の熱処理条件が緻密に設定されているところから、攪拌接合部、熱影響部及び母材の強度バランスをより一層効果的に制御することが可能となり、延性、ひいてはプレス成形性に優れた接合材を更に有利に得ることが出来るのである。   In the method for joining heat-treatable aluminum alloy materials according to the present invention, in particular, if the third to fifth aspects described above are employed, the heat treatment conditions for the restoration treatment are dense according to the type of heat-treatable aluminum alloy material. Therefore, it is possible to more effectively control the strength balance of the stir welded portion, the heat affected zone, and the base material, and further advantageously obtain a joint material excellent in ductility and by extension, press formability. It can be done.

また、本発明に従う熱処理型アルミニウム合金材の接合方法の第六の態様によれば、母材の強度乃至は硬さを、より一層確実に、攪拌接合部や熱影響部の強度乃至は硬さよりも低くすることが出来る。   Further, according to the sixth aspect of the method for joining heat-treatable aluminum alloy materials according to the present invention, the strength or hardness of the base material is more reliably determined than the strength or hardness of the stir welded portion or the heat-affected zone. Can also be lowered.

さらに、本発明に従う熱処理型アルミニウム合金材の接合方法の第七の態様によれば、所望とする条件の熱処理を有利に実施することが可能となる。   Furthermore, according to the seventh aspect of the method for joining heat-treatable aluminum alloy materials according to the present invention, it is possible to advantageously carry out heat treatment under desired conditions.

加えて、本発明に従う熱処理型アルミニウム合金材の接合方法の第八の態様によれば、接合すべき一対の熱処理型アルミニウム合金材に対して、摩擦攪拌接合操作と復元処理操作とが、それぞれ、別々の場所で別々に実施されることなく、同一のライン上で、順次、引き続いて行なわれるようになっているところから、上述せる如きプレス成形性に優れた接合材を、連続的に効率良く製造することが出来る。更に、摩擦攪拌接合後、復元処理が実施されるまでの自然時効による時効硬化も起こらないことから、母材の強度乃至は硬さを、攪拌接合部や熱影響部の強度乃至は硬さよりも、より一層確実に低くすることが可能となる。   In addition, according to the eighth aspect of the method for joining heat-treatable aluminum alloy materials according to the present invention, for the pair of heat-treatable aluminum alloy materials to be joined, the friction stir welding operation and the restoring treatment operation are respectively Because it is designed to be performed successively on the same line without being performed separately at different locations, it is possible to continuously and efficiently produce a bonding material with excellent press formability as described above. Can be manufactured. In addition, after friction stir welding, age hardening due to natural aging until the restoration process is performed does not occur, so the strength or hardness of the base material is higher than the strength or hardness of the stir welded portion or heat affected zone. Thus, it is possible to lower the temperature more reliably.

また、本発明に従うプレス成形用接合材にあっては、上述せる如き熱処理型アルミニウム合金材の接合方法によって製造されるところから、プレス成形時に、熱影響部での破断が防止されて、変形量が有利に増大せしめられ、その結果、自由なプレス形状やより大きな加工量でのプレス成形が実現され得るようになる。   In addition, the press-forming bonding material according to the present invention is manufactured by the heat-treatable aluminum alloy material bonding method as described above. Is advantageously increased, and as a result, press forming with a free press shape and a larger processing amount can be realized.

ところで、かくの如き本発明に従う熱処理型アルミニウム合金材の接合方法において、熱処理型アルミニウム合金材の材質としては、時効硬化熱処理によって強度を高めることが可能な、従来より公知の熱処理型のアルミニウム合金、例えば、JIS呼称の合金番号にて、6000系(Al−Mg−Si系)、2000系(Al−Cu−Mg系)、7000系(Al−Zn−Mg系)等からなるものが用いられることとなる。より具体的に、6000系合金としては、JIS A6061合金、JIS A6063合金等のSi含有量が少ないものや、AA6016合金、AA6111合金等のSi含有量が多いものでも良い。また、2000系合金としては、JIS A2014合金、JIS A2017合金、JIS A2024合金等を例示することが出来る一方、7000系合金としては、JIS A7075合金、JIS A7N01合金等を挙げることが出来る。   By the way, in the joining method of the heat treatment type aluminum alloy material according to the present invention as described above, as a material of the heat treatment type aluminum alloy material, conventionally known heat treatment type aluminum alloy capable of increasing the strength by age hardening heat treatment, For example, a JIS series alloy number of 6000 series (Al-Mg-Si series), 2000 series (Al-Cu-Mg series), 7000 series (Al-Zn-Mg series), etc. should be used. It becomes. More specifically, the 6000 series alloy may be one having a low Si content such as JIS A6061 alloy or JIS A6063 alloy, or one having a high Si content such as AA6016 alloy or AA6111 alloy. Examples of 2000 series alloys include JIS A2014 alloy, JIS A2017 alloy, JIS A2024 alloy and the like, while examples of 7000 series alloys include JIS A7075 alloy and JIS A7N01 alloy.

また、そのような熱処理型アルミニウム合金材の形状としては、接合されるべき被接合部位の端部を、接合相手方の被接合部位の端部に突き合わせることが可能な形状のものであれば、圧延や押出、鍛造等の公知の手法にて製作された、板状や管状、棒状等、各種の形状の熱処理型アルミニウム合金材(熱処理型Al合金材)が、何れも、採用されることとなるが、一般には、板材や押出形材が有利に用いられる。   In addition, as the shape of such a heat-treatable aluminum alloy material, if it has a shape capable of abutting the end of the joined part to be joined to the end of the joined part of the other party, Any of heat-treatable aluminum alloy materials (heat-treatable Al alloy materials) of various shapes, such as plate-like, tubular, rod-like, manufactured by known methods such as rolling, extrusion, forging, etc. In general, however, plate materials and extruded shapes are advantageously used.

そして、それらの形状の中でも、板状の圧延材は、例えば、次のようにして形成されることとなる。即ち、先ず、所定の化学成分組成とされたアルミニウム合金が、通常の半連続鋳造法によって造塊され、次いで、この得られた鋳塊に対して均質化処理が施された後、熱間圧延が行われて、熱間圧延板が製造される。また、所定の化学成分組成に調整されたアルミニウム合金の溶湯を、連続鋳造法(溶湯圧延法)により、直接に、連続鋳造板として製造する。そして、これらの熱間圧延板或いは連続鋳造板に対して、冷間圧延が行なわれて、所定の厚さを有する平板形状の板材とされる。なお、かかる冷間圧延の前や、冷間圧延の途中において、必要に応じて、中間焼鈍処理が実施されることもある。   And among those shapes, a plate-shaped rolling material will be formed as follows, for example. That is, first, an aluminum alloy having a predetermined chemical composition is ingoted by a normal semi-continuous casting method, and then the obtained ingot is homogenized and then hot rolled. Is performed to produce a hot-rolled sheet. Also, an aluminum alloy melt adjusted to a predetermined chemical composition is directly produced as a continuous cast plate by a continuous casting method (molten rolling method). And these hot-rolled plates or continuous cast plates are cold-rolled to obtain flat plate-shaped plate materials having a predetermined thickness. In addition, before this cold rolling and in the middle of cold rolling, an intermediate annealing process may be implemented as needed.

次いで、上述せる如き板材や押出形材等の熱処理型Al合金材の複数を用いて、摩擦攪拌接合が行なわれることとなるが、本発明においては、先ず、熱処理型Al合金材に対して、T4調質が実施される。つまり、熱処理型Al合金材に対して、溶体化処理が施された後、焼入れが行なわれ、そして自然時効されることにより、T4調質材が得られるのである。特に、6000系合金材を用いる場合には、ベークハード性(塗装焼付硬化性)を付与するために、必要に応じて、焼入れ後、40℃〜120℃の温度で、24時間以内の予備時効を行なうようにすることが出来る。   Next, friction stir welding is performed using a plurality of heat-treatable Al alloy materials such as the above-described plate materials and extruded shapes, but in the present invention, first, for heat-treatable Al alloy materials, T4 tempering is performed. That is, the heat-treatable Al alloy material is subjected to a solution treatment, quenched, and naturally aged to obtain a T4 tempered material. In particular, in the case of using a 6000 series alloy material, pre-aging within 24 hours at a temperature of 40 ° C. to 120 ° C. after quenching is performed as necessary in order to impart bake hardness (coating bake hardenability). Can be done.

その後、このT4調質された熱処理型Al合金材が、常法に従って、摩擦攪拌接合されることにより、接合材が得られるのである。例えば、先ず、図1に示されるように、T4調質された熱処理型Al合金材(ここでは、板材)の二枚を突き合わせ、かかる二つの熱処理型Al合金材10a,10bを突き合わせた状態下で、それら二つの熱処理型Al合金材10a,10bが長手方向(接合方向)及び幅方向に相対的に移動することがないように、常法に従って拘束する。そして、回転工具12を軸回りにピン14と一体的に高速回転させて、突き合わされた熱処理型Al合金材10a,10bの突合せ部16に該回転工具12のピン14を差し込み、かかる回転工具12及びピン14を、突合せ部16に沿って、つまり図1の紙面に対して垂直な方向に、相対的に移動せしめることにより、二つの熱処理型Al合金材10a,10bを、その突合せ部16において、摩擦攪拌接合せしめるのである。なお、その際、回転工具12及びピン14は、突合せ部に沿って移動せしめられたり、或いは、拘束された熱処理型Al合金材10a,10bが移動せしめられたりされることとなる。   Thereafter, the heat-treated Al alloy material tempered by T4 is subjected to friction stir welding according to a conventional method, whereby a bonding material is obtained. For example, as shown in FIG. 1, first, two T4 tempered heat-treatable Al alloy materials (here, plate materials) are butted together and the two heat-treatable Al alloy materials 10a and 10b are butted together. Thus, the two heat-treatable Al alloy materials 10a and 10b are restrained according to a conventional method so that they do not move relatively in the longitudinal direction (joining direction) and the width direction. Then, the rotary tool 12 is rotated at high speed integrally with the pin 14 around the axis, and the pin 14 of the rotary tool 12 is inserted into the abutting portion 16 of the heat-treated Al alloy materials 10a and 10b that are abutted together. And the pin 14 are moved relatively along the butting portion 16, that is, in a direction perpendicular to the paper surface of FIG. 1, so that the two heat-treatable Al alloy materials 10 a and 10 b are moved at the butting portion 16. Friction stir welding is performed. At that time, the rotary tool 12 and the pin 14 are moved along the abutting portion, or the restrained heat treatment type Al alloy materials 10a and 10b are moved.

このように、摩擦攪拌接合が行なわれると、二つの熱処理型Al合金材10a,10bの突合せ部16には、図2の上段に示されるように、それら二つの熱処理型Al合金材10a,10bに跨る攪拌接合部18が、長手方向(図2中、紙面に垂直な方向)に、連続的に延びるように形成されるのである。この攪拌接合部18は、摩擦攪拌接合によって、450℃以上の温度に達することで、Si、Mg、Cu、Zn等の強度に寄与する化合物やGPゾーン(またはクラスター)を形成する合金成分が固溶し、溶体化処理を行なった場合と同様に、GPゾーン(またはクラスター)が無くなった組織、所謂溶入化組織となって、その硬さが、一時的に最も低くなる。また、かかる攪拌接合部18に隣接する周辺域には、熱の影響を受けて、復元状態となった熱影響部20(HAZ部:熱の影響を受ける部位)が存在せしめられ、その熱影響部20の硬さは、母材よりも低下するのである。一方、摩擦攪拌接合による熱の影響を何等受けない母材22は、T4調質されたままの状態を維持し、その硬さは最も大きいものとなる。   As described above, when the friction stir welding is performed, the two heat-treatable Al alloy materials 10a and 10b are placed in the butt portions 16 of the two heat-treatable Al alloy materials 10a and 10b as shown in the upper part of FIG. The stir-joining part 18 straddling is formed so as to continuously extend in the longitudinal direction (the direction perpendicular to the paper surface in FIG. 2). This stir weld 18 reaches a temperature of 450 ° C. or higher by friction stir welding, so that a compound that contributes to the strength, such as Si, Mg, Cu, Zn, or an alloy component that forms a GP zone (or cluster) is solidified. As in the case of melting and solution treatment, the structure has a GP zone (or cluster) disappeared, that is, a so-called welded structure, and its hardness is temporarily lowest. Further, in the peripheral area adjacent to the stirring joint 18, there is a heat affected part 20 (HAZ part: a part affected by heat) that has been restored due to the influence of heat. The hardness of the part 20 is lower than that of the base material. On the other hand, the base material 22 that is not affected by heat caused by friction stir welding maintains the state of being T4 tempered and has the highest hardness.

そして、本発明においては、そのような摩擦攪拌接合直後の金属組織(つまり、攪拌接合部18:溶入化組織、熱影響部20:復元組織、母材22:T4調質状態)が実質的に維持された状態で、次の復元処理が、実施されることとなる。なお、ここにおいて、復元処理とは、T4調質された熱処理型Al合金の金属組織中に自然時効により形成されるGPゾーン(またはクラスター)を、一旦消滅させる処理のことであり、本発明においては、かかる復元処理が、熱処理型Al合金の接合材を、150℃〜350℃の温度に昇温し、その昇温した温度で300秒以下の間、より好ましくは、60秒以下の間、保持する熱処理にて、実施されることとなる。また、保持時間の下限は、特に制限されるものではなく、目的とする温度に昇温した後、直ちに降温するようにしても良い。   In the present invention, the metal structure immediately after the friction stir welding (that is, the stir welding part 18: the welded structure, the heat-affected part 20: the restored structure, the base material 22: the T4 tempered state) is substantial. The next restoration process is performed in a state maintained in the above. Here, the restoration process is a process for once extinguishing the GP zone (or cluster) formed by natural aging in the metal structure of the heat-treated Al alloy tempered by T4. In such a restoration treatment, the heat treatment type Al alloy bonding material is heated to a temperature of 150 ° C. to 350 ° C., and the temperature is raised for 300 seconds or less, more preferably 60 seconds or less. It is carried out by the heat treatment to be held. Further, the lower limit of the holding time is not particularly limited, and the temperature may be lowered immediately after the temperature is raised to the target temperature.

なお、上記の復元処理において、熱処理温度(復元処理温度)が150℃に満たず、低い場合には、GPゾーン(またはクラスター)が充分に消滅せず、つまり、復元が充分に行なわれず、母材の強度乃至は硬さを有効に低減せしめることが出来なくなる一方、熱処理温度が350℃を超えるようになると、過時効となって、金属組織中に形成された析出物が粗大化して、復元組織が得られなくなる。また、上記熱処理温度での保持時間が長過ぎると、復元されるものの、復元に続いて、時効硬化が生じたり、或いは過時効による軟化が生じ、目的とする復元組織が得られなくなる。   In the above restoration process, when the heat treatment temperature (restoration process temperature) is less than 150 ° C. and is low, the GP zone (or cluster) does not disappear sufficiently, that is, the restoration is not sufficiently performed, and the mother While it becomes impossible to effectively reduce the strength or hardness of the material, when the heat treatment temperature exceeds 350 ° C., it becomes over-aged, and the precipitate formed in the metal structure becomes coarse and restored. The organization cannot be obtained. In addition, if the holding time at the heat treatment temperature is too long, it is restored, but age hardening or softening due to overaging occurs after restoration, and the desired restored structure cannot be obtained.

また、上述せる如き熱処理温度(復元処理温度)は、被接合材たる熱処理型Al合金の種類に応じて、更に細かく設定されることが、より一層望ましく、例えば、熱処理型Al合金として、6000系Al合金を使用する場合には、上述せる範囲の中でも、好ましくは200℃〜350℃、更に好ましくは200℃〜300℃が有利に採用される。また、2000系Al合金の場合には、上述せる範囲の中でも、好ましくは150℃〜300℃、更に好ましくは180℃〜300℃とされることが望ましい。更に、7000系Al合金の場合には、上述せる如き範囲の中でも、好ましくは150℃〜250℃、更に好ましくは170℃〜250℃とされることが望ましい。   Further, it is more desirable that the heat treatment temperature (restoration treatment temperature) as described above is set more finely according to the type of the heat treatment type Al alloy to be bonded, for example, as a heat treatment type Al alloy, 6000 series In the case of using an Al alloy, the temperature is preferably 200 ° C. to 350 ° C., more preferably 200 ° C. to 300 ° C., among the ranges described above. Moreover, in the case of 2000 series Al alloy, it is desirable to set it as 150 to 300 degreeC among the range mentioned above, More preferably, it is set as 180 to 300 degreeC. Further, in the case of a 7000 series Al alloy, it is desirable that the temperature is preferably 150 ° C. to 250 ° C., more preferably 170 ° C. to 250 ° C., within the range described above.

さらに、上述せる如き目的とする熱処理温度に、接合材を昇温せしめたり、かかる熱処理温度から降温せしめるに際して、その昇温速度や降温速度としては、特に制限されるものではないものの、上記した復元を効果的に実現するためには、昇温速度も降温速度も、それぞれ、好適には2℃/秒以上、更に好適には4℃/秒〜50℃/秒となるように設定されることが、望ましい。   Furthermore, when the temperature of the bonding material is raised to the target heat treatment temperature as described above, or when the temperature is lowered from the heat treatment temperature, the temperature rise rate or the temperature drop rate is not particularly limited, but the above-described restoration is performed. In order to effectively realize the above, the rate of temperature rise and the rate of temperature drop are each preferably set to 2 ° C./second or more, more preferably 4 ° C./second to 50 ° C./second. Is desirable.

なお、ここにおいて、上述せる如き復元処理は、摩擦攪拌接合操作の後に実施されればよいのであるが、摩擦攪拌接合にて接合された接合材は、自然時効によって、時間の経過と共に金属組織に変化が生じて、強度乃至は硬さが変化する。このため、復元処理は、金属組織が著しく変化しないうちに、換言すれば、自然時効速度が大きな溶入化組織とされた攪拌接合部18において、その金属組織中にGPゾーン(またはクラスター)が形成される前に、実施されることが望ましい。具体的には、摩擦攪拌接合操作の終了後、室温下で保持する時間が、24時間を超えない間に、より好ましくは6時間を超えない間に、上記した復元処理が実施されることが望ましいのである。何故なら、摩擦攪拌接合操作を行なってから、復元処理を開始するまでの時間が長くなり過ぎると、自然時効により、攪拌接合部18や熱影響部20の金属組織中にGPゾーン(またはクラスター)が形成されてしまい、そのような金属組織を有する接合材に対して復元処理を施しても、後述する台形形状の硬さ分布を実現することは出来ず、攪拌接合部18や熱影響部20の強度乃至は硬さが母材と同程度か、或いはそれより僅かに小さくなって、攪拌接合部18や熱影響部20(特に、熱影響部20)で破断が生じ易くなるからである。   Here, the restoration process as described above may be performed after the friction stir welding operation, but the bonding material joined in the friction stir welding is formed into a metal structure over time due to natural aging. Changes occur and the strength or hardness changes. For this reason, the restoration process is performed in a state where the GP zone (or cluster) is present in the metal structure in the stir-joint portion 18 that is a welded structure having a large natural aging rate before the metal structure changes significantly. It is desirable to do this before it is formed. Specifically, after completion of the friction stir welding operation, the restoration process described above may be performed while the time for holding at room temperature does not exceed 24 hours, and more preferably does not exceed 6 hours. It is desirable. This is because if the time from the start of the friction stir welding operation to the start of the restoration process becomes too long, natural aging causes GP zones (or clusters) in the metal structure of the stir weld 18 and the heat affected zone 20 due to natural aging. Therefore, even if the joint material having such a metal structure is subjected to a restoration process, a trapezoidal hardness distribution described later cannot be realized, and the stir joint 18 and the heat affected zone 20 are not realized. This is because the strength or hardness of the steel is approximately the same as or slightly smaller than that of the base material, and breakage is likely to occur at the stir weld 18 and the heat affected zone 20 (particularly the heat affected zone 20).

また、そのような熱処理(復元処理)の加熱方式としては、特に限定されるものではなく、従来から公知の加熱手段を用いた熱処理が何れも採用され得る。例えば、復元処理工程と摩擦攪拌接合工程とが非連続的に実施されるオフラインの製造工程を採用する場合には、ソルトバス(塩浴)、オイルバス、空気炉、アイロン、赤外線加熱又は誘導加熱のうちの何れかの加熱手段を用いて行なう熱処理が、設備的な面やコスト的な面から、好適に採用されることとなる。   In addition, the heating method of such heat treatment (restoration treatment) is not particularly limited, and any heat treatment using a conventionally known heating means can be employed. For example, when an offline manufacturing process in which the restoration process and the friction stir welding process are performed discontinuously is adopted, a salt bath, an oil bath, an air furnace, an iron, infrared heating or induction heating is used. Of these, the heat treatment performed using any one of the heating means is preferably employed from the viewpoint of equipment and cost.

さらに、本発明においては、摩擦攪拌接合操作と復元処理操作とを、同一のライン上で連続的に実施することも可能であり、このようなオンラインの製造工程を採用する場合には、例えば、図3に示されるように、熱処理型Al合金材10a,10bの摩擦攪拌接合されるべき被接合部位(突合せ部16)に沿って、前記した摩擦攪拌接合が順次実施される一方で、かかる摩擦攪拌接合の済んだ被接合部位(攪拌接合部18)を含む接合材の幅方向(接合方向に直角な方向)において、攪拌接合部から熱影響部、母材部に至る充分な長さにて、望ましくは幅方向の全体に亘って、復元処理が順次実施されることとなる。なお、このようなオンラインの製造工程を採用する場合には、加熱手段として、赤外線加熱、誘導加熱、レーザ加熱、ガス炎加熱等が好適に採用されることとなる。この場合においても、復元処理(熱処理)は、攪拌接合部18とその近傍だけでなく、加工時に加えられる応力が母材部分で有効に分散されて、大きな変形量が確保され得るように、接合材の幅方向の広範囲に対して施される必要があることは、勿論、言うまでもないところである。   Furthermore, in the present invention, it is possible to continuously perform the friction stir welding operation and the restoration processing operation on the same line, and when adopting such an online manufacturing process, for example, As shown in FIG. 3, the friction stir welding described above is sequentially performed along the welded portions (butting portions 16) to be friction stir welded of the heat treatment type Al alloy materials 10a and 10b. In the width direction (direction perpendicular to the joining direction) of the joining material including the part to be joined (stirring joining part 18) that has undergone stirring joining, with a sufficient length from the stirring joining part to the heat affected zone and the base material part Preferably, the restoration process is sequentially performed over the entire width direction. When such an on-line manufacturing process is employed, infrared heating, induction heating, laser heating, gas flame heating, or the like is suitably employed as the heating means. Even in this case, the restoration process (heat treatment) is performed not only in the stirring joint 18 and the vicinity thereof, but also in such a way that the stress applied during processing is effectively dispersed in the base material portion and a large amount of deformation can be secured. Needless to say, it needs to be applied to a wide range in the width direction of the material.

かくして、上述せる如き所定の熱処理(復元処理)が施されることによって、母材22は、その金属組織に形成されたGPゾーン(またはクラスター)が一旦消滅し、復元組織となり、これによって、その強度乃至は硬さが有利に低下せしめられるのである。また一方、攪拌接合部18にあっては、GPゾーン(またはクラスター)のない溶入化組織が維持されると共に、熱影響部20にあっては、かかる熱処理によって、復元組織に僅かな時効硬化が生じた状態となるのである。そして、そのような金属組織状態を有する接合材が、室温で自然時効されると、攪拌接合部18は、時効硬化速度が速く、最も硬くなる。また、熱影響部20は、その硬さが攪拌接合部18に比して小さいものの、母材22と同じか、それ以上となる。更に、母材22は、その硬さが攪拌接合部18や熱影響部20よりも小さくなる。この結果、本実施形態の接合材における、接合方向に直角な方向の硬さ分布は、図2の中段に示されるように、左右の母材22から攪拌接合部18(突合せ部16)に向かって大きくなる、台形形状となるのである。   Thus, by performing the predetermined heat treatment (restoration process) as described above, the GP 22 (or cluster) formed in the metal structure of the base material 22 once disappears and becomes a restored structure, thereby Strength or hardness is advantageously reduced. On the other hand, in the stir weld 18, a welded structure without a GP zone (or cluster) is maintained, and in the heat affected zone 20, the heat-affected zone 20 has a slight age hardening in the restored structure. This is the state in which this occurs. When the joining material having such a metallographic state is naturally aged at room temperature, the stir-joined portion 18 has the fastest age hardening rate and becomes the hardest. In addition, the heat affected zone 20 is the same as or higher than the base material 22 although its hardness is smaller than that of the stir weld 18. Further, the hardness of the base material 22 is smaller than that of the stirring joint 18 and the heat affected zone 20. As a result, the hardness distribution in the direction perpendicular to the joining direction in the joining material of the present embodiment is directed from the left and right base materials 22 to the stir joining portion 18 (butting portion 16) as shown in the middle part of FIG. It becomes a trapezoidal shape that becomes larger.

このように、本発明に従う熱処理型Al合金材の接合方法にあっては、T4調質された熱処理型Al合金材を摩擦攪拌接合して接合材を得た後、かかる接合材に対して復元処理を実施しているところから、攪拌接合部18、熱影響部20及び母材22の強度バランスが制御され、母材22の硬さが最も小さくされた接合材が効果的に得られるのである。その結果、接合材に応力が加えられても、熱影響部20に応力集中が生じるようなことが効果的に防止されて、応力が母材22全体に分散されるようになる。これにより、接合材全体の変形量が有利に増大せしめられ得、以て、自由なプレス形状やより大きな加工量でのプレス成形が可能となる。換言すれば、接合材のプレス成形性が、極めて効果的に高められ得るのである。   As described above, in the joining method of the heat treatment type Al alloy material according to the present invention, the heat treatment type Al alloy material tempered by T4 is friction stir welded to obtain the joining material, and then restored to the joining material. Since the processing is performed, the strength balance of the stir weld 18, the heat affected zone 20, and the base material 22 is controlled, and a joint material in which the hardness of the base material 22 is minimized can be effectively obtained. . As a result, even if stress is applied to the bonding material, the stress concentration in the heat affected zone 20 is effectively prevented, and the stress is dispersed throughout the base material 22. As a result, the deformation amount of the entire bonding material can be advantageously increased, and thus press forming with a free press shape and a larger processing amount becomes possible. In other words, the press formability of the bonding material can be improved extremely effectively.

そして、上述せるようにして得られた接合材にあっては、優れたプレス成形性が付与されているところから、プレス成形用のブランク材等として有利に用いられ、プレス成形に供された後、船舶や車両、航空機等の殻やフロア、建材、熱交換器、アンテナ、自動車部品、橋架等に、有利に用いられることとなる。   And in the bonding material obtained as described above, since excellent press formability is imparted, it is advantageously used as a blank material for press molding, etc., and after being subjected to press molding It is advantageously used for shells and floors of ships, vehicles, airplanes, building materials, heat exchangers, antennas, automobile parts, bridges, and the like.

因みに、上述せる如き復元処理が実施されない場合には、攪拌接合部18は、溶体化処理を行なった場合と同様の組織となって、自然時効後、その硬さは、図2の下段に示されるように、T4調質された母材22と同程度が、それより僅かに小さな硬さとなる一方、熱影響部20は復元状態の金属組織となって、最も軟らかくなる。このため、かかる接合材に応力が加えられると、最も小さな硬さを有する熱影響部20に応力が集中して、熱影響部20が優先的に変形し、破断が惹起され易くなるのである。更に、本発明者らの検討によれば、TIG溶接やMIG溶接等の溶融溶接方式で接合したT4調質材の接合材に対して、上述せる如き復元処理を施したとしても、接合部及び接合部に隣接している熱影響部の一部は、一旦溶融されるために、鋳造組織が変質し、延性が低下してしまい、図2の中段に示されるような台形形状の硬さ分布は得られず、熱影響部において、硬さが最も低くなることが認められている。   Incidentally, when the restoration process as described above is not carried out, the stirring joint 18 has the same structure as that obtained when the solution treatment is carried out, and its hardness after natural aging is shown in the lower part of FIG. As shown, the same degree as the T4 tempered base material 22 is slightly smaller in hardness, while the heat affected zone 20 becomes a restored metal structure and becomes the softest. For this reason, when stress is applied to such a bonding material, the stress concentrates on the heat-affected zone 20 having the smallest hardness, and the heat-affected zone 20 is preferentially deformed, and breakage is likely to occur. Furthermore, according to the study by the present inventors, even if the restoration treatment as described above is performed on the joining material of the T4 tempered material joined by a fusion welding method such as TIG welding or MIG welding, Since a part of the heat-affected zone adjacent to the joint is once melted, the cast structure is altered and the ductility is lowered, and the trapezoidal hardness distribution as shown in the middle of FIG. It is recognized that the hardness is lowest in the heat-affected zone.

以上、本発明の代表的な実施形態について詳述してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。   The exemplary embodiments of the present invention have been described in detail above. However, the embodiments are merely examples, and the present invention is limited in any way by specific descriptions according to such embodiments. It should be understood that it is not interpreted.

例えば、上記の実施形態では、板厚が同じで、同一の熱処理型Al合金からなる板状の熱処理型Al合金材10a,10bを用いて、それらを接合せしめる例が示されているが、板厚の異なる熱処理型Al合金材が接合されても、また材質の異なる熱処理型Al合金材が接合されても良い。   For example, in the above embodiment, an example is shown in which the plate thickness is the same and the plate-like heat treatment type Al alloy materials 10a and 10b made of the same heat treatment type Al alloy are used to join them. Heat-treatable Al alloy materials having different thicknesses may be joined, or heat-treatable Al alloy materials having different materials may be joined.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施され得るものであり、そして、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもないところである。   In addition, although not listed one by one, the present invention can be implemented in a mode with various changes, modifications, improvements, and the like based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the invention.

以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。   Hereinafter, representative examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited by the description of such examples. It goes without saying.

先ず、下記表1に示される如き化学成分組成を有する10種類のアルミニウム合金(A〜J)を、常法に従って、DC鋳造法により造塊した。得られた鋳塊に対して、それぞれ、均質化処理、熱間圧延、冷間圧延を行なって、厚さが1.0mmのアルミニウム合金板材とした後、更に、溶体化処理、焼入れを行ない、室温で7日間の自然時効を経て、T4調質材とした。   First, 10 types of aluminum alloys (A to J) having chemical composition as shown in Table 1 below were ingoted by a DC casting method according to a conventional method. Each of the obtained ingots is subjected to homogenization treatment, hot rolling, and cold rolling to obtain an aluminum alloy sheet having a thickness of 1.0 mm, and further subjected to solution treatment and quenching. After undergoing natural aging for 7 days at room temperature, a T4 tempered material was obtained.

Figure 0004351025
Figure 0004351025

そして、各T4調質材を、それぞれ、2枚ずつ用い、その幅方向の端面同士において相互に突き合わせた状態で、それらの突合せ部を摩擦撹拌接合法(FSW法)により突合せ接合して、接合材を得た。また、摩擦攪拌接合に際しては、鋼製の回転工具を使用し、回転数:1000rpm、接合速度:400mm/分で、工具を水平移動させる条件を採用した。更に、回転工具の端部には、切削を目的として、深さ1mmの溝を8箇所設けた。   Then, two T4 tempered materials are used, and the butt portions are butt-joined by a friction stir welding method (FSW method) in a state where the two end faces in the width direction are butt-matched to each other. The material was obtained. In addition, in the friction stir welding, a steel rotating tool was used, and a condition was adopted in which the tool was horizontally moved at a rotation speed of 1000 rpm and a welding speed of 400 mm / min. Further, eight grooves having a depth of 1 mm were provided at the end of the rotary tool for the purpose of cutting.

次いで、上述せる如き摩擦攪拌接合操作の終了の後、1時間以内に、上記で得られた各接合材に対して、下記表2に示す条件で熱処理(復元処理)を施した。   Next, within 1 hour after the completion of the friction stir welding operation as described above, each joint material obtained above was subjected to a heat treatment (restoration process) under the conditions shown in Table 2 below.

そして、熱処理後(復元処理後)、得られた試験材1〜10を、20℃で7日間保管した後、それらの試験材の各々について、後述せるようにして、ビッカース硬さ試験、引張試験及び成形性試験を行ない、得られた結果を、それぞれ、下記表2に併せ示した。   And after heat processing (after a restoration process), after storing the obtained test materials 1-10 for 7 days at 20 degreeC, as mentioned later about each of these test materials, a Vickers hardness test and a tensile test are carried out. The moldability test was performed, and the obtained results are shown in Table 2 below.

−ビッカース硬さ試験−
試験材の接合方向に対して直角方向に試験片を切り出した。そして、かかる試験片の接合方向に直角な方向の断面を、樹脂埋め及び研磨した後、ビッカース硬さ試験機を用いて、JIS−Z−2244に準じて、荷重1kgfで、攪拌接合部、熱影響部及び母材部の硬さを測定した。
-Vickers hardness test-
A test piece was cut out in a direction perpendicular to the joining direction of the test materials. And after filling and polishing the cross section in the direction perpendicular to the joining direction of the test piece, using a Vickers hardness tester, according to JIS-Z-2244, with a load of 1 kgf, a stir welded portion, heat The hardness of the affected part and the base material part was measured.

−引張試験−
引張試験における引張方向に対して、試験材の接合方向が直角となるように、また接合部が中央に位置するように、JIS−5号形の引張試験片を切り出した。そして、かかる試験片を用いて、室温で、JIS−Z−2241に準じて引張試験を行ない、引張強さ、耐力及び破断伸びを測定すると共に、破断位置を確認した。
-Tensile test-
A JIS-5 type tensile test piece was cut out so that the joining direction of the test material was perpendicular to the tensile direction in the tensile test, and the joint was positioned in the center. And using this test piece, the tensile test was done at room temperature according to JIS-Z-2241, and while measuring the tensile strength, the yield strength, and breaking elongation, the breaking position was confirmed.

−成形試験−
試験材の接合部が中央に位置するように、直径120.0mmの円板状試験片を切り出した。そして、かかる試験片の表面に低粘度潤滑油を塗布した後、エリクセン試験機を用いて、張出し加工を行って、破断までの限界成形高さを測定した。なお、張出し加工は、材料流入を防止するために、試験片をロックビード付きのダイスで拘束し、直径50mmの球頭ポンチを用いて、成形速度2mm/sの条件で実施した。
-Molding test-
A disc-shaped test piece having a diameter of 120.0 mm was cut out so that the joint portion of the test material was located at the center. And after apply | coating a low-viscosity lubricating oil to the surface of this test piece, it used the Erichsen test machine and performed the extension process, and measured the limit shaping | molding height until a fracture | rupture. In order to prevent the material from flowing in, the overhanging process was carried out under the condition of a molding speed of 2 mm / s using a ball-head punch having a diameter of 50 mm, constraining the test piece with a die with a lock bead.

Figure 0004351025
Figure 0004351025

かかる表2の結果から明らかなように、試験材1〜10は、何れも、攪拌接合部、熱影響部及び母材のうち、母材の硬さが最も低い値となっている。また、引張試験の結果から、熱影響部で破断が起こることなく、母材で破断が起こっていると共に、破断伸びが16%以上となっており、更に、成形試験においては、何れの試験材も、限界成形高さが15.0mm以上の大きな値となっている。これらの結果から、本発明に従って復元処理が施された試験材1〜10は、プレス成形時に充分な変形が可能な、優れたプレス成形性を有するものであることが、分かる。   As is clear from the results in Table 2, all of the test materials 1 to 10 have the lowest hardness of the base material among the stir welded portion, the heat affected zone, and the base material. In addition, from the results of the tensile test, the base material was not ruptured at the heat-affected zone, and the elongation at break was 16% or more. However, the limit molding height is a large value of 15.0 mm or more. From these results, it can be seen that the test materials 1 to 10 subjected to the restoration treatment according to the present invention have excellent press formability that can be sufficiently deformed during press forming.

<比較例1>
また、比較のために、前記実施例で用いられたものと同じ化学成分組成を有する10種類の合金(A〜J)を、それぞれ、実施例と同一条件で加工して、厚さが1.0mmのアルミニウム合金板材とした後、更に、溶体化処理、焼入れを行ない、室温で7日間の自然時効を経て、T4調質材とした。そして、T4調質された各アルミニウム合金材を、それぞれ2枚ずつ用い、その幅方向の端面同士において相互に突き合わせた状態で、それらの突合せ部を、前記実施例と同様な条件で、摩擦撹拌接合法(FSW法)により突合せ接合して、接合材たる試験材11〜20を作製した。そして、摩擦攪拌接合後、熱処理(復元処理)を施すことなく、そのまま、得られた試験材11〜20を、20℃で7日間保管した後、それらの試験材の各々について、前述せるようにして、ビッカース硬さ試験、引張試験及び成形性試験を行ない、得られた結果を、それぞれ、下記表3に併せ示した。
<Comparative Example 1>
For comparison, 10 types of alloys (A to J) having the same chemical composition as those used in the above examples were processed under the same conditions as in the examples, and the thickness was 1. After making it a 0 mm aluminum alloy sheet, it was further subjected to solution treatment and quenching, and subjected to natural aging for 7 days at room temperature to obtain a T4 tempered material. Then, each aluminum alloy material that has been subjected to T4 tempering is used two by two, and in the state where the end surfaces in the width direction are butted against each other, the butted portions are subjected to friction stirring under the same conditions as in the above embodiment. Test materials 11 to 20 as bonding materials were produced by butt bonding by a bonding method (FSW method). After the friction stir welding, the obtained test materials 11 to 20 are stored as they are at 20 ° C. for 7 days without performing a heat treatment (restoration process), and then each of the test materials is described above. The Vickers hardness test, the tensile test, and the moldability test were performed, and the obtained results are also shown in Table 3 below.

Figure 0004351025
Figure 0004351025

かかる表3の結果から明らかなように、試験材11〜20は、摩擦攪拌接合後、復元処理を行なわなかったため、何れも、攪拌接合部、熱影響部及び母材のうち、熱影響部のビッカース硬さが最も低い値となっており、かかる熱影響部で破断が生じている。また、どの試験材も、同一のアルミニウム合金材からなる前記試験材1〜10に比べて、伸びが小さく、限界成形高さも15.0mmに満たないことが分かる。   As is clear from the results in Table 3, since the test materials 11 to 20 were not subjected to the restoration treatment after the friction stir welding, all of the heat affected zone among the stir welded portion, the heat affected zone and the base material. The Vickers hardness is the lowest value, and the heat-affected zone is broken. In addition, it can be seen that each test material has a smaller elongation and a limit forming height of less than 15.0 mm compared to the test materials 1 to 10 made of the same aluminum alloy material.

<比較例2>
また、比較のために、前記実施例で用いられたものと同じ化学成分組成を有する10種類の合金(A〜J)を、それぞれ、実施例と同一条件で加工して、厚さが1.0mmのアルミニウム合金板材とした後、更に、溶体化処理、焼入れを行ない、室温で7日間の自然時効を経て、T4調質材とした。そして、T4調質された各アルミニウム合金材を、それぞれ2枚ずつ用い、その幅方向の端面同士において相互に突き合わせた状態で、それらの突合せ部を、前記実施例と同様な条件で、摩擦撹拌接合法(FSW法)により突合せ接合して、接合材を得た。そして、摩擦攪拌接合操作の終了の後、1時間以内に、上記で得られた各接合材に対して、下記表4に示す条件で熱処理を行ない、得られた試験材21〜50を、20℃で7日間保管した後、それらの試験材の各々について、前述せるようにして、ビッカース硬さ試験、引張試験及び成形性試験を行ない、得られた結果を、それぞれ、下記表4に併せ示した。
<Comparative example 2>
For comparison, 10 types of alloys (A to J) having the same chemical composition as those used in the above examples were processed under the same conditions as in the examples, and the thickness was 1. After making it a 0 mm aluminum alloy sheet, it was further subjected to solution treatment and quenching, and subjected to natural aging for 7 days at room temperature to obtain a T4 tempered material. Then, each aluminum alloy material that has been subjected to T4 tempering is used two by two, and in the state where the end surfaces in the width direction are butted against each other, the butted portions are subjected to friction stirring under the same conditions as in the above embodiment. Butt bonding was performed by a bonding method (FSW method) to obtain a bonding material. And after completion | finish of friction stir welding operation, within 1 hour, with respect to each joining material obtained above, it heat-processes on the conditions shown in following Table 4, and obtained test materials 21-50 are 20 After storage at 7 ° C. for 7 days, each of these test materials was subjected to a Vickers hardness test, a tensile test, and a formability test as described above, and the results obtained are shown in Table 4 below. It was.

Figure 0004351025
Figure 0004351025

かかる表4の結果から明らかなように、試験材21,24,27,30,33,36,39,42,45,48は何れも、熱処理温度が復元処理温度よりも低いため、母材部の金属組織が復元されず、母材のビッカース硬さが熱影響部よりも高く、硬さの最も小さな熱影響部で破断が生じており、破断伸び及び限界成形高さは、それぞれ、16%未満及び15.0mm未満と低い値となっている。また、試験材22,25,28,31,34,37,40,43,46,49は何れも、熱処理温度が復元処理温度よりも高いため、過時効による軟化が生じ、所望とする復元組織が得られなかったところから、引張試験で母材破断となったものの、破断伸び及び限界成形高さは低い値となった。更に、試験材23,26,29,32,35,38,41,44,47,50は何れも、熱処理時間が長過ぎるため、過時効による軟化が生じ、所望とする復元組織が得られなかったところから、引張試験で母材破断となったものの、破断伸び及び限界成形高さは低い値となった。   As is apparent from the results of Table 4, since the test materials 21, 24, 27, 30, 33, 36, 39, 42, 45, and 48 all have a heat treatment temperature lower than the restoration treatment temperature, the base material portion The metal structure of the base material is not restored, the Vickers hardness of the base material is higher than that of the heat-affected zone, and the fracture occurs in the heat-affected zone with the smallest hardness. The elongation at break and the limit forming height are 16%, respectively. And less than 15.0 mm. Moreover, since all of the test materials 22, 25, 28, 31, 34, 37, 40, 43, 46, and 49 have a heat treatment temperature higher than the restoration treatment temperature, softening due to overaging occurs, and a desired restoration structure is obtained. However, although the base material fractured in the tensile test, the elongation at break and the limit molding height were low. Furthermore, since all of the test materials 23, 26, 29, 32, 35, 38, 41, 44, 47, and 50 are too heat-treated, softening due to overaging occurs, and a desired restored structure cannot be obtained. As a result, although the base material was ruptured in the tensile test, the elongation at break and the limit forming height were low.

<比較例3>
また、比較のために、前記実施例で用いられたものと同じ化学成分組成を有する10種類の合金(A〜J)を、それぞれ、実施例と同一条件で加工して、厚さが1.0mmのアルミニウム合金板材とした後、更に、溶体化処理、焼入れを行ない、室温で7日間の自然時効を経て、T4調質材とした。そして、T4調質された各アルミニウム合金材を、それぞれ2枚ずつ用い、その幅方向の端面同士において相互に突き合わせた状態で、それらの突合せ部を、前記実施例と同様な条件で、摩擦撹拌接合法(FSW法)により突合せ接合して、接合材を得た。そして、摩擦攪拌接合操作の終了の後、室温で72時間保管した後、上記で得られた各接合材に対して、下記表5に示す条件で熱処理を行ない、得られた試験材51〜60を、20℃で7日間保管した後、それらの試験材の各々について、前述せるようにして、ビッカース硬さ試験、引張試験及び成形性試験を行ない、得られた結果を、それぞれ、下記表5に併せ示した。
<Comparative Example 3>
For comparison, 10 types of alloys (A to J) having the same chemical composition as those used in the above examples were processed under the same conditions as in the examples, and the thickness was 1. After making it a 0 mm aluminum alloy sheet, it was further subjected to solution treatment and quenching, and subjected to natural aging for 7 days at room temperature to obtain a T4 tempered material. Then, each aluminum alloy material that has been subjected to T4 tempering is used two by two, and in the state where the end surfaces in the width direction are butted against each other, the butted portions are friction-stirred under the same conditions as in the above embodiment. Butt bonding was performed by a bonding method (FSW method) to obtain a bonding material. And after completion | finish of friction stir welding operation, after storing at room temperature for 72 hours, with respect to each joining material obtained above, it heat-processes on the conditions shown in following Table 5, and obtained test materials 51-60 Was stored at 20 ° C. for 7 days, and each of the test materials was subjected to a Vickers hardness test, a tensile test, and a moldability test as described above, and the results obtained are shown in Table 5 below. It was shown together.

Figure 0004351025
Figure 0004351025

かかる表5の結果から明らかなように、試験材51〜60にあっては、何れも、摩擦攪拌接合後、時効硬化した板材に対して、摩擦攪拌接合が行なわれたため、攪拌接合部、熱影響部及び母材のビッカース硬さは略同程度で、熱影響部のビッカース硬さが僅かに小さな値となっているため、かかる熱影響部で破断が生じている。また、どの試験材も、破断伸びが16%未満と小さく、限界成形高さも15.0mmに満たないことが分かる。   As is clear from the results of Table 5, in all of the test materials 51 to 60, after the friction stir welding, the friction stir welding was performed on the age-hardened plate material. Since the Vickers hardness of the affected part and the base material is substantially the same and the Vickers hardness of the heat affected part is a slightly small value, the heat affected part is broken. It can also be seen that all the test materials have a small elongation at break of less than 16% and a limit molding height of less than 15.0 mm.

熱処理型Al合金材を摩擦撹拌接合する工程の一例を示す断面説明図であって、熱処理型Al合金材を突き合わせた状態(接合前の状態)を示している。It is sectional explanatory drawing which shows an example of the process of carrying out friction stir welding of the heat treatment type Al alloy material, Comprising: The state (state before joining) which heat-treated type Al alloy material was faced | matched is shown. 摩擦攪拌接合によって得られた接合材の攪拌接合部、熱影響部及び母材と、その硬さの関係を説明するための説明図であって、摩擦攪拌接合が施された平板状の熱処理型Al合金材の断面説明図と、本発明に従って、摩擦攪拌接合の後、復元処理が実施された接合材の硬さ分布を示すグラフと、摩擦攪拌接合のみが実施された従来の接合材の硬さ分布を示すグラフとが、接合材の断面位置に関連付けて配置されている。It is explanatory drawing for demonstrating the relationship between the stir welding part of the joining material obtained by friction stir welding, a heat affected zone, and a base material, and its hardness, Comprising: The flat plate-shaped heat processing type | mold to which friction stir welding was given A cross-sectional explanatory diagram of an Al alloy material, a graph showing the hardness distribution of a joint material that has been subjected to a restoration process after friction stir welding in accordance with the present invention, and a hardness of a conventional joint material that has been subjected only to friction stir welding A graph indicating the height distribution is arranged in association with the cross-sectional position of the bonding material. 本発明に従って、同一ライン上で、摩擦攪拌接合操作と復元処理操作とを連続的に実施する工程の一例を示す説明図である。It is explanatory drawing which shows an example of the process of implementing a friction stir welding operation and a restoration process operation continuously on the same line according to this invention.

符号の説明Explanation of symbols

10a,b 熱処理型アルミニウム合金材
12 回転工具
14 ピン
16 突合せ部
18 攪拌接合部
20 熱影響部
22 母材
10a, b Heat-treatable aluminum alloy material 12 Rotary tool 14 Pin 16 Butt portion 18 Stir weld 20 Heat-affected zone 22 Base material

Claims (8)

熱処理型アルミニウム合金材をT4調質する工程と、
かかるT4調質された熱処理型アルミニウム合金材を摩擦攪拌接合して、接合材を得る工程と、
該接合材の攪拌接合部にGPゾーンが形成される前に、該接合材に対して復元処理を施す工程とを、
含むことを特徴とする熱処理型アルミニウム合金材の接合方法。
A step of T4 tempering the heat-treatable aluminum alloy material;
A step of friction stir welding the T4 tempered heat-treatable aluminum alloy material to obtain a bonding material;
A step of performing a restoration process on the bonding material before the GP zone is formed in the stirring bonded portion of the bonding material;
A heat-treatable aluminum alloy material joining method comprising:
前記復元処理が、前記接合材を、150℃〜350℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理にて、実施される請求項1に記載の熱処理型アルミニウム合金材の接合方法。   The heat treatment type aluminum alloy according to claim 1, wherein the restoration treatment is performed by a heat treatment in which the bonding material is heated to a temperature of 150 ° C to 350 ° C and held at the temperature for a time of 300 seconds or less. Material joining method. 前記熱処理型アルミニウム合金材が6000系アルミニウム合金材であり、且つ前記復元処理が、前記接合材を、200℃〜350℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理である請求項1に記載の熱処理型アルミニウム合金材の接合方法。   The heat treatment type aluminum alloy material is a 6000 series aluminum alloy material, and the restoration treatment heats the bonding material to a temperature of 200 ° C. to 350 ° C. and holds the bonding material at the temperature for 300 seconds or less. The method for joining heat-treatable aluminum alloy materials according to claim 1. 前記熱処理型アルミニウム合金材が2000系アルミニウム合金材であり、且つ前記復元処理が、前記接合材を、150℃〜300℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理である請求項1に記載の熱処理型アルミニウム合金材の接合方法。   The heat treatment type aluminum alloy material is a 2000 series aluminum alloy material, and the restoration treatment heats the bonding material to a temperature of 150 ° C. to 300 ° C. and holds the bonding material at such a temperature for 300 seconds or less. The method for joining heat-treatable aluminum alloy materials according to claim 1. 前記熱処理型アルミニウム合金材が7000系アルミニウム合金材であり、且つ前記復元処理が、前記接合材を、150℃〜250℃の温度に昇温し、かかる温度で300秒以下の時間、保持する熱処理である請求項1に記載の熱処理型アルミニウム合金材の接合方法。   The heat treatment type aluminum alloy material is a 7000 series aluminum alloy material, and the restoration treatment heats the bonding material to a temperature of 150 ° C. to 250 ° C. and holds the bonding material at such a temperature for 300 seconds or less. The method for joining heat-treatable aluminum alloy materials according to claim 1. 前記摩擦攪拌接合後の自然時効が、24時間を超えない間に、前記復元処理が実施される請求項1乃至請求項5の何れかに記載の熱処理型アルミニウム合金材の接合方法。   The method for joining heat-treatable aluminum alloy materials according to any one of claims 1 to 5, wherein the restoration treatment is performed while the natural aging after the friction stir welding does not exceed 24 hours. 前記復元処理が、ソルトバス、オイルバス、空気炉、アイロン、赤外線加熱又は誘導加熱の何れかの加熱手段による熱処理にて、行なわれる請求項1乃至請求項6の何れかに記載の熱処理型アルミニウム合金材の接合方法。   The heat-treatable aluminum according to any one of claims 1 to 6, wherein the restoration treatment is performed by heat treatment using a salt bath, oil bath, air furnace, iron, infrared heating or induction heating. Alloy material joining method. 前記熱処理型アルミニウム合金材の摩擦攪拌接合されるべき被接合部位に沿って、前記摩擦攪拌接合が順次実施される一方、かかる摩擦攪拌接合により形成された攪拌接合部を少なくとも含む前記接合材に対して、所定の加熱手段を用いて、前記復元処理が順次実施される請求項1乃至請求項7の何れかに記載の熱処理型アルミニウム合金材の接合方法。   While the friction stir welding is sequentially performed along the welded portion of the heat-treatable aluminum alloy material to be friction stir welded, the joining material including at least the stir joint formed by the friction stir welding The method for joining heat-treatable aluminum alloy materials according to any one of claims 1 to 7, wherein the restoration process is sequentially performed using a predetermined heating means.
JP2003373408A 2003-06-09 2003-10-31 Method for joining heat-treatable aluminum alloy materials Expired - Fee Related JP4351025B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003373408A JP4351025B2 (en) 2003-10-31 2003-10-31 Method for joining heat-treatable aluminum alloy materials
US12/486,950 US20090250144A1 (en) 2003-06-09 2009-06-18 Method of joining heat-treatable aluminum alloy members by friction stir welding
US15/287,957 US10016837B2 (en) 2003-06-09 2016-10-07 Method of joining heat-treatable aluminum alloy members by friction stir welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373408A JP4351025B2 (en) 2003-10-31 2003-10-31 Method for joining heat-treatable aluminum alloy materials

Publications (2)

Publication Number Publication Date
JP2005131701A JP2005131701A (en) 2005-05-26
JP4351025B2 true JP4351025B2 (en) 2009-10-28

Family

ID=34649496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373408A Expired - Fee Related JP4351025B2 (en) 2003-06-09 2003-10-31 Method for joining heat-treatable aluminum alloy materials

Country Status (1)

Country Link
JP (1) JP4351025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095940A1 (en) * 2011-01-10 2012-07-19 ワシ興産株式会社 Wheel and method for manufacturing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138239A1 (en) 2005-12-15 2007-06-21 Sumitomo Light Metal Industries, Ltd. Method of joining heat-treatable aluminum alloy members by friction stir welding and joined product obtained by the method and used for press forming
US7614539B2 (en) * 2004-09-13 2009-11-10 The Boeing Company Method to improve properties of aluminum alloys processed by solid state joining
US7810700B2 (en) * 2005-12-15 2010-10-12 Sumitomo Light Metal Industries, Ltd. Heat treating friction stir welded aluminum alloy members and joined product
KR101073954B1 (en) 2008-10-29 2011-10-17 주식회사 성우하이텍 High speed welding method of pipe
JP6140442B2 (en) * 2012-12-28 2017-05-31 株式会社Uacj Manufacturing method of Al-joined products
NO348114B1 (en) * 2017-11-02 2024-08-19 Norsk Hydro As Method and apparatus for Post Weld Heat Treatment of aluminium alloy components, and a welded aluminium alloy component treated according to the method
CN118106601B (en) * 2024-04-09 2024-07-19 江苏海洋大学 Method for preparing high-entropy alloy reinforced aluminum-based gradient composite material by adopting friction stir method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095940A1 (en) * 2011-01-10 2012-07-19 ワシ興産株式会社 Wheel and method for manufacturing same

Also Published As

Publication number Publication date
JP2005131701A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US10016837B2 (en) Method of joining heat-treatable aluminum alloy members by friction stir welding
US6959476B2 (en) Aluminum automotive drive shaft
US7490752B2 (en) Manufacturing method for friction welded aluminum alloy parts
JP4351025B2 (en) Method for joining heat-treatable aluminum alloy materials
JP2018520268A (en) Extruded material
JP4789253B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof
JP4351024B2 (en) Friction stir welding method for heat-treatable aluminum alloy material
JP4183177B2 (en) Heat treated aluminum alloy bonding material with excellent ductility
CN113165101B (en) Flash butt welding member having excellent formability of rim weld portion and flash butt welding method
JP7369858B2 (en) Clad 2XXX series aerospace products
JP3291252B2 (en) Aluminum alloy joining method
US7810700B2 (en) Heat treating friction stir welded aluminum alloy members and joined product
EP4201578A1 (en) Apparatus and method of forming countersinks and/or mouse holes in a stamped high strength aluminium sheet
JP4323296B2 (en) Method of joining heat-treatable aluminum alloy material and joining material for press forming
JP2004204352A (en) Crash resistant aluminum alloy sheet product and its manufacturing method
JP4707318B2 (en) Aluminum alloy material joining method and press forming joining material
JP4437914B2 (en) Aluminum bonding material and method of pressing aluminum bonding material
JP4707317B2 (en) Aluminum blank for press molding
JP2711957B2 (en) Aluminum alloy material for upset butt welding
JP3726034B2 (en) Aluminum alloy welded joints and aluminum alloy sheet base materials for welded joints
JP6679296B2 (en) Al alloy material for high energy beam welding and method for producing the same
JP2002294381A (en) Aluminum alloy welded joint for forming
JP2008207249A (en) Method for welding aluminum alloy material having excellent weld crack resistance, and method for evaluating weld crack resistance of aluminum alloy material
JP3726033B2 (en) Aluminum alloy welded joints and wrought aluminum alloys for welded joints
JP4410514B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees