Nothing Special   »   [go: up one dir, main page]

JP4257676B2 - Forming of three-dimensional microstructures by plating - Google Patents

Forming of three-dimensional microstructures by plating Download PDF

Info

Publication number
JP4257676B2
JP4257676B2 JP2002256335A JP2002256335A JP4257676B2 JP 4257676 B2 JP4257676 B2 JP 4257676B2 JP 2002256335 A JP2002256335 A JP 2002256335A JP 2002256335 A JP2002256335 A JP 2002256335A JP 4257676 B2 JP4257676 B2 JP 4257676B2
Authority
JP
Japan
Prior art keywords
oxide film
plating
dimensional
metal
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002256335A
Other languages
Japanese (ja)
Other versions
JP2004091878A (en
Inventor
英明 高橋
正敏 坂入
竜也 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002256335A priority Critical patent/JP4257676B2/en
Publication of JP2004091878A publication Critical patent/JP2004091878A/en
Application granted granted Critical
Publication of JP4257676B2 publication Critical patent/JP4257676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、めっきにより形成した金属層による成形体を得る電鋳法に関し、特に微細な三次元立体構造の成形法に関する。
【0002】
【従来の技術】
近年、ナノテクノロジーの技術開発が著しく進み、種々のマイクロマシンや各種の機能を有するデバイスなどが試みられているが、これらの要素技術が微細加工/成形法であり、フォトリソグラフィーなどの手法がマイクロマシンや各種のデバイス作成に適用されている。
しかしながら、これらの手法は主として半導体デバイスの製造技術として培われてきたもので、いずれも2次元平面のパターニング法として開発されてきたものであるため、微細なパターニングを高精度で実現でき、高生産性を有するが、3次元の立体構造に関しては必ずしも適したものといえない。たとえば、マイクロマシンなどでは、メカニズム上立体的な配置構造を有しており、各構成要素自体も3次元で屈曲した構造が求められることが少なくないが、半導体製造に用いられていたフォトリソグラフィーの手法では基板の平面を基準としてパターニングするため、そのままでは立体形状に適用できない。
【0003】
また、これらの立体形状を機械的・物理的手段により作成し、或いはフォトリソグラフィーによる成型後にこれらの加工法を適用することは、その微細な構造上困難であるばかりでなく、これらの加工法においては加工に伴う歪や残留応力が生じるため、精密な形状を再現することが困難であり、また、デバイスの特性上残留応力の発生など好ましくない場合が少なくない。
【0004】
このようなことから現在、マイクロマシンなどの立体形状を有する微細構造体を作成するには、これらのフォトリソグラフィーの手法を適用して基板上に形成しためっき層などをパターニングした後、基板電極などを溶解して分離して得た成形体を組み立てて立体構造を構成することによって行われている。
【0005】
しかしながら、この方法によっては連続した曲面を形成したり、角度を付したい場合、或いは複雑な立体構造については、工程が複雑となり、また組み立て加工することにも限界がある。
また、これらマイクロマシン等の開発・実証段階にあるものや、少量生産であって高精度を要求される分野などにあっては、これらの加工条件に対して柔軟性と共に少ない工程で容易に加工できることが求められるが、フォトリソグラフィーは、フォトマスク製造やフォトレジスト形成工程を含むため、工程も複雑で大掛かりとなってこのような要請に応えることが困難である。
【0006】
【発明が解決しようとする課題】
連続した曲面などの立体的な形状の構造体を容易に、且つ簡単な工程により、高精度で微細加工する手法を実現する。
【0007】
【課題を解決するための手段】
本発明は、3次元立体形状に成形したアルニミウム基材を電界研磨などにより表面を平滑化した後、アノード酸化皮膜を形成し、めっきする金属塩を含む溶液中でこの酸化皮膜をレーザー照射により所定のパターンに除去してその酸化膜剥離部にめっきし、その後基材及び酸化皮膜を溶解除去することにより三次元立体構造体を得る、
ことを最も主要な特徴とする。
【0008】
【発明の実施の形態】
本発明においては、3次元立体形状をアルミニウム基材上に予め成形しておき、一方これに対してレーザー照射光によって平面パターニングを行なうことにより、これら二つのパターニングを組合わせた立体三次元構造体の成形を可能とした。
すなわち、フォトマスクやフォトレジストによるパターニングと異なり、アルミニウム又はアルミニウム合金基材を3次元立体形状の母型とし、そのアノード酸化皮膜の特性を応用してめっきマスクパターンとするのであり、レーザー光直接描画による精密なパターニングを可能とし、簡単且つ柔軟性のある加工法が実現できた。
【0009】
この手法におけるレーザー光によるアノード酸化膜のパターニングは、発明者らがアルミニウムの局部表面処理法の研究成果を通じてかねてより明らかにしてきたもので、レーザー光に対して透明な酸化膜は下地金属表面に達して照射域を瞬間的に加熱し、素地金属のいわゆるレーザーアブレーションによってその上の酸化膜を剥離させるもので、確実に下地金属表面の露出したパターニングが可能である。
そして、この照射処理をめっき金属塩を含む溶液中で、レーザー光を石英窓などを通して行ない、露出した下地金属表面に対して直接めっき工程に移行することにより、下地のアルミニウム表面を酸化させることなく均一なめっき層を形成することができる。これは、レーザー光照射によって酸化膜が剥離する際に溶液中のめっき金属が(微粒状に)析出してめっき下地層を形成することによると解されるが、このようにして通常はアルミニウム表面に形成される酸化皮膜のため困難なアルミニウムへのめっきを可能とした。
このレーザ照射の際の酸化防止効果は、めっき処理において有効であるが、特に化学めっきにおいては、通常必要とされる表面活性化処理に換えて直接めっき工程が可能であり、めっき皮膜の特性も優れている特徴がある。また、このレーザー照射処理の際の酸化防止効果は、必ずしもめっき金属の塩などを含まなくとも大気を遮断する液体であれば、例えば水を用いても効果があり、レーザー照射処理後大気に直接触れないようにめっき液に浸漬することによって効果的に発揮することができた。
(表面技術、Vol.49,No.11(1998)「レーザー照射およびを局部Niめっきによるアルミニウム表面のパターニング、I.レーザー照射によるアノード酸化皮膜の破壊挙動」、及び「 II.レーザー照射部における局部Niめっきと微細パターン作製」、高橋 英明、ほか、表面技術、Vol.50,No.8(1999)「Alのアノード酸化とレーザー照射を利用した金属微細構造の作製−新LIGAプロセスを目指してー」高橋 英明、ほか、及び、表面技術、Vol.50,No.9(1999)「Alのアノード酸化/レーザー照射/電気めっきを用いた微細回路板の作製」高橋 英明、ほか、)
また、両性金属であるアルミニウムをめっき母型に使用できるためその後の三次元立体構造体の分離においても、目的とする成形金属を母型基材から分離する溶解処理の際に成形金属を傷めず、また溶解液として成形金属に適したものを選択しやすく、その後の処理を容易としている。
【0010】
基材の3次元形状は、微細な機械加工の容易な円柱、三角柱などの加工線材などのほか、フォトリソグラフィーによって形成した微細な階段状の立体、或いはケミカルミーリング等によって厚みを変化させた傾斜形状など、が適用でき、レーザー照射可能で、めっきのつきまわりが可能であればその形状に格別の制限はない。また、レーザー光の照射はこれら軸対称な立体形状である場合には、母型を回転しながら軸方向に移動して行なうことによって自由なパターニングが可能であるが、平面上でパターニング可能な形状の場合には、母型をXYテーブル上で2次元移動するのみで行なうことができる。
したがって、以下に説明するコイル状や角状コイルなどの幾何学的な連続形状のほか、マイクロマシンなどで用いる角度付レバーやアームなどの形状も容易に成形可能である。
【0011】
めっきの種類に関しても、電気めっきと化学めっきを問わない。レーザー照射の際にめっき金属を含む溶液中でパターニングを行なうことにより、酸化皮膜剥離と同時にめっき金属の析出による下地層が形成されて、めっきの付着性を損なう酸化皮膜の形成が防止され、レーザー照射後、直ちにめっき工程を行なうことができる。
また、さらにめっき金属は、その後の三次元立体構造体として利用するためにその用途に応じた性質、機能が求められるが、材質上は上記したようにめっき可能な金属・物質であれば本発明の適用上格別の制約はない。
以下の実施例ではNiを挙げるが、その他Cu、Auでも確認しており、その他、Co、Cr、Sn、Pb、Pt、Ag、Pd 或いはこれらの合金を挙げることができ、また、これら合金のみでなくこれらの金属、合金をマトリックスとしてセラミックスを分散させた複合めっきなども対象とすることができる。
要は、めっき可能であれば良いのであって、これらの金属/合金及びそれらとセラミックスなどからなる複合材料などの種々の合金・材料の組合わせに適用可能である。
このような本発明の特徴は、形成された三次元立体構造体が、強度や弾性などの機械的性質のみでなく、デバイスとして電磁気的性質等の特性が求められる場合等に極めて有用である。
【0012】
【実施例】
図1は、円柱状のアルミニウム基材を用いてコイル状の微細構造体を製作する本発明の工程を示す。
図左端より順次工程を示す。
(1)前処理
アルミニウム丸棒(径2.0mm、純度99.5%)を電解研磨し表面の平滑化をおこなった。
アノード酸化:研磨試料を0.16M−H2C2O4溶液に浸漬し、100Am-2の定電流アノード酸化(10〜240分間)を行い、ポーラス型酸化皮膜を形成した。ポーラスにする意味は、アノード酸化皮膜をテンプレートとして働かせるため、ある程度の厚さを必要とするからである。
酸化皮膜を形成して後、試料を0.029M-アルザリンレッドS溶液中に5分間浸漬して皮膜を着色した。酸化皮膜の着色により、レーザー光を効率よく吸収させることができ、また、レーザー照射の際に照射域の酸化膜を加熱して脆化し、剥離を促進することによってめっきマスクとして残存する皮膜にクラックが発生するのを防ぐことができる。
その後、沸騰2回蒸留水中に15分間浸漬して封孔処理を施した。封孔処理により、めっきをする際の定電位カソード分極によってレーザー照射部のポーラス酸化皮膜を剥離した微細加工パターンの面積以外にも金属が析出することを防止する。
【0013】
(2) レーザー照射
試料を0.31M−NiSO4/0.4M-H3BO3 混合溶液(293K、以下Niめっき溶液という。)中に保持した後、パルスNd−YAGレーザー(2倍高調波:波長532nm、周波数10HZ、パルス幅8ns)をライン照射し、アノード酸化皮膜を局部的に破壊・除去した。波長依存度及び使える波長範囲の限度範囲はNd-YAGレーザーの基本波の波長の1064nm、及び4倍高調波まで可能である。
1064nm〜266nmの波長範囲が使用範囲である。
極短紫外レーザーを用いると、波長域はさらに短い範囲が使用可能である。レーザー照射においては、焦点距離60mmの平凸レンズを用いてレーザー光を集光するとともに、XYZθステージを用いて試料を移動・回転させた。
【0014】
(3)パターン形成
レーザー照射の後、定電位カソード分極(−1.2V v.s.Ag/AgCl)を15分間行い、レーザー照射部にNiを析出させた。
【0015】
(3)三次元構造体の分離
Niめっきした試料を1.0〜3.0M−NaOH溶液中(室温)に浸漬し、素地のアルミニウム及び酸化皮膜を溶解・除去して、めっき層からなる三次元構造体を分離した。
【0016】
このようにして得られたコイル状構造体の電界放射型走査電子顕微鏡(FE−SEM)による映像を図2に、同じくコイル状の構造に軸方向のNiラインを8本形成した構造体を図3に、さらにアルミニウムの角柱(1辺2mm)を素地金属として形成した四角い籠状のNi構造体を図4に示す。
これらのNi微細コイルのライン巾は、40μm、肉厚15μmであった。図2の微細コイルが若干歪んでいるのは、めっき層が薄く、自重による変形によるもので、コイル径を小さくするか、めっき層の厚さを50μm程度にすれば解消する。
【0017】
【発明の効果】
本発明の三次元構造体の製造方法によれば、アルミニウムアノード酸化皮膜処理後レーザー光照射によってパターニングし、直接めっきした後母型溶解による分離工程によって所定の三次元構造体が得られ、その設備上も、レーザー光照射装置と、XYZθステージを具えためっき設備があればよいのであって、加工対象として種々の三次元立体形状と平面パターニングとの組合わせからなる微細加工が可能であり、多品種/少量の成形に応じ、また、マイクロマシンなどの実証開発などの要請に柔軟に対応することができる。
【0018】
加工精度及び微細化についても、実施例では比較的サイズの大きい例(径2mmの丸棒)を挙げているが、加工精度上ライン巾5μm以上のサイズでの加工が可能であり、レーザー光波長の短波長化などの改良により更に大幅な微細化が可能である。
従って、これらの特徴を応用することにより、マイクロマシンなどに限らず、ナノテクノロジーの広い分野において要望される微細加工技術として適用可能であって、再生医療分野における視神経結合に用いられる10μmオーダーの電極構造や電子部品の三次元多電極構造、高周波・サブミリ波・テラヘルツ光の送受信アンテナ、など多くの応用が考えられ、その加工特性としても従来のリソグラフィーによる加工では困難であった数μmオーダーの精度を保って20cmの長さを有する多チャンネル細線電極など、容易に製作可能である。
これらの応用が期待される例として
ナノテクノロジー研究材料の微細加工
タンパク質、遺伝子などの生体研究用微細電極
再生医療用神経結合電極
マイクロロボットの微細部品
液晶、EL、半導体など電子部品の多層微細電極
X線・テラヘルツ級光二次元多チャンネルイメージングディスプレイデバイス
三次元微細プリント配線基板、マイクロコイル
等を挙げることができる。
【図面の簡単な説明】
【図1】本発明の三次元微細構造体の作成手順。
【図2】コイル状微細構造体。
【図3】籠状微細構造体。
【図4】四角籠状微細構造体
【符号の説明】
10 アルミニウム素地金属基材
20 酸化膜
30 レーザー光
31 剥離した酸化皮膜
35 レーザー光の照射により露出した素地金属パターン
40 めっき層
41 コイル状構造体
42 コイル軸方向にラインを形成した籠上構造体
43 帯状コイル構造体
44 リング状構造体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electroforming method for obtaining a molded body made of a metal layer formed by plating, and particularly to a method for forming a fine three-dimensional structure.
[0002]
[Prior art]
In recent years, technological development of nanotechnology has remarkably advanced, and various micromachines and devices having various functions have been tried. However, these elemental technologies are microfabrication / molding methods, and techniques such as photolithography are micromachines and Applied to various device creation.
However, these methods have been cultivated mainly as semiconductor device manufacturing technologies, and all of these methods have been developed as two-dimensional planar patterning methods, so that fine patterning can be realized with high accuracy and high productivity. However, the three-dimensional structure is not necessarily suitable. For example, a micromachine has a three-dimensional arrangement structure due to its mechanism, and each component itself is often required to have a three-dimensional bent structure. However, a photolithography technique used in semiconductor manufacturing Then, since patterning is performed based on the plane of the substrate, it cannot be applied to a three-dimensional shape as it is.
[0003]
In addition, it is difficult not only to create these three-dimensional shapes by mechanical / physical means, or to apply these processing methods after molding by photolithography because of their fine structure. However, since distortion and residual stress accompanying processing occur, it is difficult to reproduce a precise shape, and there are many unfavorable cases such as generation of residual stress due to device characteristics.
[0004]
For this reason, in order to create a micro structure having a three-dimensional shape such as a micromachine, a plating layer formed on a substrate is patterned by applying these photolithography techniques, and then a substrate electrode or the like is formed. This is done by assembling molded bodies obtained by melting and separating to form a three-dimensional structure.
[0005]
However, depending on this method, when a continuous curved surface is formed or an angle is desired, or for a complicated three-dimensional structure, the process becomes complicated, and there is a limit to assembly processing.
In addition, these micromachines that are in the development / demonstration stage, or in fields that require high precision in small-volume production, can be easily machined with these processes and flexibility with fewer steps. However, since photolithography includes a photomask manufacturing process and a photoresist forming process, the process is complicated and large, and it is difficult to meet such a demand.
[0006]
[Problems to be solved by the invention]
A technique for finely processing a three-dimensional structure such as a continuous curved surface with high accuracy by a simple process is realized.
[0007]
[Means for Solving the Problems]
In the present invention, the surface of an aluminum substrate formed into a three-dimensional solid shape is smoothed by electropolishing or the like, then an anodic oxide film is formed, and this oxide film is predetermined by laser irradiation in a solution containing a metal salt to be plated. The three-dimensional structure is obtained by removing the pattern and plating the oxide film peeling portion, and then dissolving and removing the base material and the oxide film.
This is the main feature.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a three-dimensional three-dimensional structure in which a three-dimensional three-dimensional shape is previously formed on an aluminum substrate, and on the other hand, is subjected to planar patterning by laser irradiation light, thereby combining these two patterns. Can be formed.
In other words, unlike patterning with a photomask or photoresist, the aluminum or aluminum alloy substrate is used as a three-dimensional matrix, and the characteristics of the anodic oxide film are applied to form a plating mask pattern. Precise patterning is possible, and a simple and flexible processing method was realized.
[0009]
The patterning of the anodic oxide film by laser light in this method has been clarified by the inventors for some time through the research results of the local surface treatment method of aluminum, and the oxide film transparent to the laser light is formed on the surface of the underlying metal. The irradiation area is instantaneously heated and the oxide film thereon is peeled off by so-called laser ablation of the base metal, so that the exposed metal pattern can be reliably exposed.
Then, this irradiation treatment is performed in a solution containing a plating metal salt through a quartz window or the like, and the exposed base metal surface is directly transferred to a plating step without oxidizing the underlying aluminum surface. A uniform plating layer can be formed. This is understood to be due to the fact that the plating metal in the solution is deposited (in the form of fine particles) when the oxide film is peeled off by laser light irradiation to form a plating base layer. This makes it possible to plate aluminum that is difficult because of the oxide film formed on the surface.
This antioxidant effect at the time of laser irradiation is effective in the plating process, but in chemical plating in particular, a direct plating process is possible instead of the normally required surface activation process, and the characteristics of the plating film are also improved. There is an excellent feature. In addition, the anti-oxidation effect at the time of laser irradiation treatment is effective even if water is used as long as it is a liquid that does not necessarily contain a plating metal salt or the like, and can be directly applied to the atmosphere after laser irradiation treatment. It was able to be exhibited effectively by immersing it in the plating solution so as not to touch it.
(Surface technology, Vol. 49, No. 11 (1998) "Laser irradiation and patterning of aluminum surface by local Ni plating, I. Destruction behavior of anodic oxide film by laser irradiation", and "II. Local in laser irradiation part""Ni plating and fine pattern fabrication", Hideaki Takahashi, et al., Surface Technology, Vol. 50, No. 8 (1999) "Preparation of metal microstructure using Al anodic oxidation and laser irradiation-Toward a new LIGA process""Hideaki Takahashi, et al., And Surface Technology, Vol. 50, No. 9 (1999)" Preparation of fine circuit boards using Al anodic oxidation / laser irradiation / electroplating "Hideaki Takahashi, et al.)
In addition, since aluminum, an amphoteric metal, can be used in the plating matrix, the molded metal is not damaged during the subsequent separation process of the three-dimensional structure, in which the target molded metal is separated from the matrix substrate. In addition, it is easy to select a solution suitable for the formed metal as the solution, and the subsequent processing is facilitated.
[0010]
The three-dimensional shape of the substrate is a fine step-like solid formed by photolithography, or a slanted shape whose thickness has been changed by chemical milling, etc., in addition to finely machined cylinders and triangular prisms, etc. The shape is not particularly limited as long as it can be applied, laser irradiation is possible, and plating can be performed. In addition, when laser beam irradiation is in these three-dimensional shapes that are axisymmetric, free patterning is possible by moving the matrix in the axial direction while rotating the matrix, but it can be patterned on a plane. In this case, it is possible to carry out only by moving the matrix two-dimensionally on the XY table.
Therefore, in addition to geometric continuous shapes such as a coil shape and a rectangular coil described below, shapes such as angled levers and arms used in micromachines can be easily formed.
[0011]
As for the type of plating, it does not matter whether it is electroplating or chemical plating. By performing patterning in a solution containing plating metal during laser irradiation, the formation of an undercoat layer by plating metal deposition at the same time as the removal of the oxide film prevents the formation of an oxide film that impairs the adhesion of the plating. A plating step can be performed immediately after irradiation.
Further, the plating metal is required to have properties and functions according to its use in order to be used as a subsequent three-dimensional structure. However, the present invention is applicable to any metal / substance that can be plated as described above. There are no particular restrictions on the application of.
In the following examples, Ni is cited, but other Cu and Au have been confirmed. In addition, Co, Cr, Sn, Pb, Pt, Ag, Pd, or alloys thereof can be cited, and these alloys only. In addition, composite plating in which ceramics are dispersed using these metals and alloys as a matrix can also be targeted.
The point is that it can be plated, and can be applied to a combination of various metals / alloys and various alloys / materials such as composite materials composed of these metals and alloys.
Such a feature of the present invention is extremely useful when the formed three-dimensional structure is required not only for mechanical properties such as strength and elasticity but also for properties such as electromagnetic properties as a device.
[0012]
【Example】
FIG. 1 shows the process of the present invention for producing a coiled microstructure using a cylindrical aluminum substrate.
Steps are shown sequentially from the left end of the figure.
(1) A pretreated aluminum round bar (diameter 2.0 mm, purity 99.5%) was electropolished to smooth the surface.
Anodic oxidation: The polished sample was immersed in a 0.16M-H 2 C 2 O 4 solution and subjected to constant current anodic oxidation (10 to 240 minutes) at 100 Am −2 to form a porous oxide film. The meaning of making it porous is that a certain thickness is required to make the anodized film work as a template.
After forming the oxide film, the sample was immersed in 0.029M-Alzarin Red S solution for 5 minutes to color the film. By coloring the oxide film, the laser beam can be absorbed efficiently, and the oxide film in the irradiation area is embrittled by heating during laser irradiation, and cracking occurs in the film remaining as a plating mask by promoting peeling. Can be prevented.
Then, it was immersed in boiling double distilled water for 15 minutes and subjected to sealing treatment. The sealing treatment prevents the metal from depositing in addition to the area of the finely processed pattern from which the porous oxide film of the laser irradiation portion has been peeled off by constant potential cathode polarization during plating.
[0013]
(2) After holding the laser irradiated sample in a 0.31M-NiSO 4 /0.4MH 3 BO 3 mixed solution (293K, hereinafter referred to as Ni plating solution), a pulsed Nd-YAG laser (double harmonic: wavelength 532 nm, The line was irradiated with a frequency of 10 Hz and a pulse width of 8 ns), and the anodic oxide film was locally destroyed and removed. The wavelength dependence and the limit range of the usable wavelength range can be up to 1064 nm of the fundamental wavelength of the Nd-YAG laser and up to the fourth harmonic.
The wavelength range of 1064 nm to 266 nm is the use range.
When an ultrashort ultraviolet laser is used, a shorter wavelength range can be used. In laser irradiation, the laser beam was condensed using a plano-convex lens having a focal length of 60 mm, and the sample was moved and rotated using an XYZθ stage.
[0014]
(3) After pattern formation laser irradiation, constant potential cathode polarization (-1.2 V vs. Ag / AgCl) was performed for 15 minutes to deposit Ni in the laser irradiated portion.
[0015]
(3) Separation of three-dimensional structure A Ni-plated sample is immersed in a 1.0 to 3.0 M NaOH solution (room temperature) to dissolve and remove the base aluminum and oxide film, and is composed of a plating layer. The original structure was separated.
[0016]
FIG. 2 shows an image of the coiled structure thus obtained by a field emission scanning electron microscope (FE-SEM), and FIG. 2 shows a structure in which eight axial Ni lines are formed on the coiled structure. FIG. 4 shows a square bowl-shaped Ni structure in which an aluminum prism (2 mm per side) is further formed as a base metal.
The line width of these Ni fine coils was 40 μm and the wall thickness was 15 μm. The slight distortion of the fine coil in FIG. 2 is due to the thin plating layer and deformation due to its own weight, which can be eliminated by reducing the coil diameter or reducing the thickness of the plating layer to about 50 μm.
[0017]
【The invention's effect】
According to the method for producing a three-dimensional structure of the present invention, a predetermined three-dimensional structure is obtained by a separation step by dissolving a master mold after patterning by laser light irradiation after aluminum anodic oxide film treatment and direct plating. Above all, it is only necessary to have a laser beam irradiation device and a plating facility equipped with an XYZθ stage, and as a processing target, fine processing consisting of a combination of various three-dimensional solid shapes and planar patterning is possible. It is possible to respond flexibly to requests for demonstration development such as micromachines according to the type / small quantity of molding.
[0018]
Regarding the processing accuracy and miniaturization, the examples give examples of relatively large sizes (round bars with a diameter of 2 mm), but processing with a line width of 5 μm or more is possible due to processing accuracy, and the wavelength of the laser beam Further refinement is possible by improving the wavelength of the laser.
Therefore, by applying these features, the present invention can be applied not only to micromachines but also to microfabrication techniques required in a wide field of nanotechnology, and an electrode structure of the order of 10 μm used for optic nerve coupling in the field of regenerative medicine. Many applications such as high-frequency, submillimeter wave, and terahertz transmission / reception antennas can be considered, and the processing characteristics are as accurate as several μm, which was difficult with conventional lithography processing. A multi-channel fine wire electrode having a length of 20 cm can be easily manufactured.
Examples of applications where these applications are expected are: Microfabricated proteins for nanotechnology research materials, microelectrodes for biological research such as genes, nerve-coupled electrodes for regenerative medicine, microparts for micro robots, multilayer microelectrodes for electronic parts such as EL and semiconductor Examples include a line / terahertz-class optical two-dimensional multi-channel imaging display device, a three-dimensional fine printed wiring board, and a microcoil.
[Brief description of the drawings]
FIG. 1 shows a procedure for producing a three-dimensional microstructure of the present invention.
FIG. 2 shows a coiled microstructure.
FIG. 3 shows a cage-like microstructure.
[Fig. 4] Quadrangle-like microstructure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Aluminum base metal base material 20 Oxide film 30 Laser light 31 Peeled oxide film 35 Base metal pattern 40 exposed by laser light irradiation Plating layer 41 Coil structure 42 Coiled structure body 43 in which a line is formed in the coil axial direction Coil structure 44 Ring-shaped structure

Claims (6)

表面を所定の立体形状に成形した後、研磨により平滑化したアルミニウム又はアルミニウム合金基材にアノード酸化により酸化皮膜を形成し、
レーザー光照射により酸化皮膜を剥離してパターニングを行い
酸化皮膜を剥離・除去した素地金属パターン上に電気的又は化学的めっきにより所定金属のめっき層を形成し、
素地基材及び酸化膜の溶解により、めっき層からなる三次元構造体を分離する
三次元微細構造体の製造方法。
After forming the surface into a predetermined three-dimensional shape, an oxide film is formed by anodic oxidation on an aluminum or aluminum alloy substrate smoothed by polishing,
Form a predetermined metal plating layer by electrical or chemical plating on the base metal pattern from which the oxide film is peeled off by laser light irradiation and patterned to remove and remove the oxide film.
A method for producing a three-dimensional microstructure, wherein a three-dimensional structure composed of a plating layer is separated by dissolving a base substrate and an oxide film.
上記アノード酸化膜がポーラス型酸化膜であり該ポーラス型酸化膜の形成後、封孔処理を行うことを特徴とする、請求項1記載の三次元微細構造体の製造方法。After the formation of the anodic oxidation skin film is porous type oxide film said porous type oxide film, and performing a sealing treatment, a manufacturing method of three-dimensional microstructure of claim 1 wherein. 上記酸化膜形成後アリザリンレッドSなどのレーザー光を吸収する色素の溶液に浸漬してこれらの色素を該酸化皮膜に浸透着色することを特徴とする請求項1又は2記載の三次元微細構造体の製造方法。3. The three-dimensional microstructure according to claim 1 or 2, wherein after the oxide film is formed, the dye is immersed in a solution of a dye that absorbs laser light such as alizarin red S, and the dye is permeated into the oxide film. Manufacturing method. レーザー光照射が、水等の液体又はめっき金属塩を含む溶液中で行われることにより酸化膜剥離後の素地金属の酸化を防止することを特徴とする請求項1、2又は3記載の三次元微細構造体の製造方法。The three-dimensional according to claim 1, 2 or 3 , wherein the laser light irradiation is performed in a liquid such as water or a solution containing a plating metal salt to prevent oxidation of the base metal after the oxide film is peeled off. A manufacturing method of a fine structure. 上記めっき金属が、Ni、Cu、又はAuであることを特徴とする請求項1,2,3又は4記載の三次元微細構造体の製造方法。The method for producing a three-dimensional microstructure according to claim 1, 2, 3, or 4 , wherein the plating metal is Ni, Cu, or Au. 上記めっき金属が、Co、Cr、Sn、Pb、Pt、Ag、Pdから選ばれた一種又はこれらの合金、又はこれらの金属・合金とセラミックスからなる複合めっきであることを特徴とする請求項1,2,3又は4記載の三次元微細構造体の製造方法。It claims that the plating metal is, Co, Cr, Sn, Pb , Pt, Ag, one selected from Pd, or an alloy thereof, or being a composite plating consisting of metals and alloys and ceramics 1 , 2, 3 or 4 for producing a three-dimensional microstructure.
JP2002256335A 2002-09-02 2002-09-02 Forming of three-dimensional microstructures by plating Expired - Fee Related JP4257676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256335A JP4257676B2 (en) 2002-09-02 2002-09-02 Forming of three-dimensional microstructures by plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256335A JP4257676B2 (en) 2002-09-02 2002-09-02 Forming of three-dimensional microstructures by plating

Publications (2)

Publication Number Publication Date
JP2004091878A JP2004091878A (en) 2004-03-25
JP4257676B2 true JP4257676B2 (en) 2009-04-22

Family

ID=32061588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256335A Expired - Fee Related JP4257676B2 (en) 2002-09-02 2002-09-02 Forming of three-dimensional microstructures by plating

Country Status (1)

Country Link
JP (1) JP4257676B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663363A (en) * 2013-12-05 2014-03-26 浙江大学 Disordered alloy micro-spring, and preparation method and lighthouse thereof
EP3427341A4 (en) * 2016-03-09 2019-10-09 Commscope Technologies LLC 3-d printing process for forming flat panel array antenna
JP2024071312A (en) * 2022-11-14 2024-05-24 株式会社ヨコオ Method for manufacturing electroformed spring
JP2024071311A (en) * 2022-11-14 2024-05-24 株式会社ヨコオ Method for manufacturing electroformed spring and electroformed spring

Also Published As

Publication number Publication date
JP2004091878A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP2952539B2 (en) Micro processing equipment
US8070970B2 (en) UV-LIGA process for fabricating a multilayer metal structure having adjacent layers that are not entirely superposed, and the structure obtained
US5342737A (en) High aspect ratio metal microstructures and method for preparing the same
CN107208256B (en) Printing of three-dimensional metal structures using sacrificial supports
CA2088605C (en) Formation of microstructures by multiple level deep x-ray lithography with sacrificial metal layers
US5744283A (en) Method of photolithographically metallizing at least the inside of holes arranged in accordance with a pattern in a plate of an electrically insulating material
US9194052B2 (en) Method of fabricating a plurality of metallic microstructures
KR20100098425A (en) Method for obtaining a metal microstructure and microstructure obtained according to said method
US20020069512A1 (en) Damascene fabrication of nonplanar microcoils
JP4257676B2 (en) Forming of three-dimensional microstructures by plating
CN1778505A (en) Production of extremely profiled fine electrode for processing electric spark
US8986563B2 (en) Method for the production of three-dimensional microstructures
JP4214233B2 (en) Fine processing method and fine structure of transparent material
CN105858591A (en) Metal micro-structure and manufacturing method thereof
Kikuchi et al. Three-dimensional microstructure fabrication with aluminum anodizing, laser irradiation, and electrodeposition
CN116446004A (en) Localized electrochemical deposition method based on ultrafast laser surface modification
JPH10140399A (en) Pattern forming method
JP5256680B2 (en) Method for forming shape transfer conductive layer in electroforming
DE69508019T2 (en) METHOD FOR PHOTOLITHOGRAPHIC METALLIZING AT LEAST ON THE INSIDE OF HOLES APPLIED IN CONNECTION WITH A PATTERN CONTAINING A PLATE CONTAINING ELECTRICALLY ISOLATING MATERIAL
US10273592B2 (en) Method of forming local nano/micro size structures of anodized metal
DE102005011345A1 (en) Method for producing nanostructure on substrate involves irradiating of defined surface of substrate through ions, introduction of irradiating substrate into a supersaturated solution and removal of substrate form solution
JPH1088385A (en) Plating method of tungsten alloy
RU2308552C1 (en) Method for manufacturing nano-moulds for contact press-lithography (variants)
JP2007247052A (en) Method of manufacturing microcomponent
Cole Precision excimer laser lithography for cylindrical substrates with thick photoresists

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees