Nothing Special   »   [go: up one dir, main page]

JP4131776B2 - Screening method for multilayer capacitors - Google Patents

Screening method for multilayer capacitors Download PDF

Info

Publication number
JP4131776B2
JP4131776B2 JP2000286538A JP2000286538A JP4131776B2 JP 4131776 B2 JP4131776 B2 JP 4131776B2 JP 2000286538 A JP2000286538 A JP 2000286538A JP 2000286538 A JP2000286538 A JP 2000286538A JP 4131776 B2 JP4131776 B2 JP 4131776B2
Authority
JP
Japan
Prior art keywords
voltage
pulse
multilayer capacitor
breakdown voltage
breakdown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000286538A
Other languages
Japanese (ja)
Other versions
JP2002100544A (en
Inventor
豊 島原
千春 近重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000286538A priority Critical patent/JP4131776B2/en
Publication of JP2002100544A publication Critical patent/JP2002100544A/en
Application granted granted Critical
Publication of JP4131776B2 publication Critical patent/JP4131776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品のスクリニング方法に関し、詳しくは、特に高耐圧が要求される中高圧タイプの積層コンデンサ群から耐圧不良品を選別除去するためのスクリニング方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、電子機器などの小型化、面実装化などにより、積層コンデンサの小型化、大容量化が進んでいる。そして、このような小型化、大容量化の流れは中高圧コンデンサの分野にも波及しており、従来では単板コンデンサが用いられていた中高圧領域のコンデンサにおいても、積層チップ化が進行している。
【0003】
ところで、中高圧積層コンデンサの回路用途は、大きく分けると、常時中高圧がかかる回路と、電源回りに入るサージ保護用に高耐圧が必要となる回路の2種類に分けられる。そして、後者に用いられる積層コンデンサに関しては、電源回りでの安全性確保のため、国内においては電気用品取締法により、また、諸外国においては、UL規格,BSI規格などにより、安全規格が定められており、定格電圧とは別に、高い耐パルス試験電圧性能が要求されている。
【0004】
このような積層コンデンサについては、一般的に、その製造工程における最終特性チェックとして、全数につき、定格電圧に応じてDC、あるいはAC、又はその両方で耐電圧試験を行い、絶縁抵抗不良品を選別、除去するようにしている。
なお、これらの耐圧選別を行う方法としては、DC電源、あるいはAC電源、又はその両方の電源を用いて、連続処理により選別を行う方法が確立されている。
【0005】
しかし、パルス電圧による耐圧選別試験は、単純な電源からの電圧印加により連続処理を行うことはできず、例えばIEC規格「IEC384−14」などに規定されているような特別な充放電試験電源回路が必要となるため、連続処理による耐圧選別スクリニングを行うことは非常に困難であった。
【0006】
本発明は、上記問題点を解決するものであり、特別な充放電試験電源回路を必要とする耐パルス電圧試験を行うことなく、耐パルス電圧試験を行ったのと同等のスクリニングを効率よく行うことが可能な積層コンデンサのスクリニング方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、発明者らは、積層コンデンサについて、DC電圧、AC電圧、パルス電圧の各電圧破壊試験を行い、AC電圧とパルス電圧における積層コンデンサの電圧破壊値が、ワイブル確率紙において同じ傾きを持つことに着目し、さらに実験、検討を行って、パルス電圧破壊試験を、AC電圧破壊試験で代用することにより、積層コンデンサを効率よくスクリニングすることが可能な本発明(積層コンデンサのスクリニング方法)を完成した。
【0008】
すなわち、本発明(請求項1)の積層コンデンサのスクリニング方法は、
パルス電圧に対する耐性を保証する積層コンデンサの良否を選別するスクリニング方法であって、
前記積層コンデンサの破壊電圧と平均故障率との関係を表すワイブル確率紙で示されたパルス破壊電圧の傾きmとほぼ同様の傾きm値をもつ交流耐電圧スクリニング電圧から、所望の平均故障率に対応する交流耐電圧スクリニング電圧における実効電圧値を求めた後、前記積層コンデンサに、前記実効電圧を印加して、パルス電圧耐性を保証する積層コンデンサの良否を選別すること
を特徴としている。
【0009】
積層コンデンサの破壊電圧と平均故障率との関係を表すワイブル確率紙で示されたパルス破壊電圧の傾きmとほぼ同様の傾きm値をもつ交流耐電圧スクリニング電圧から、所望の平均故障率に対応する交流耐電圧スクリニング電圧における実効電圧値を求めた後積層コンデンサに、実効電圧を印加して、パルス電圧耐性を保証する積層コンデンサの良否を選別することにより、特別な充放電試験電源回路を必要とする耐パルス電圧試験を行うことなく、耐パルス電圧試験を行ったのと同等のスクリニングを行うことが可能になり、所定のパルス電圧に対する耐性を備えた積層コンデンサと備えていない積層コンデンサを効率よく選別することが可能になる。
【0010】
積層コンデンサは特に多層化、薄層化が進んでおり、耐圧性能も問題になりやすいが、本発明の方法を適用することにより、信頼性の高い積層コンデンサを提供することが可能になる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を示して、その特徴とするところをさらに詳しく説明する。
【0012】
なお、この実施形態では、図1に示すように、チタン酸バリウム系セラミックを誘電体(B特性材料)として用いたセラミック素子1中に、セラミック層2を介して内部電極3が積層、配設されており、かつ、所定の内部電極3が、互いに対向する逆側の端面1a,1bに配設された外部電極4a,4bに接続された構造を有する積層コンデンサについて、スクリニングを行う場合を例にとって説明する。
【0013】
[積層コンデンサの条件]
(1)誘電体の誘電率:3000
(2)内部電極間のセラミック層の厚み:70μm
(3)容量 :22000pF
(4)定格電圧:DC630V
【0014】
[破壊電圧の測定]
この実施形態では、上記のような条件の積層コンデンサについて、DC破壊電圧、AC破壊電圧、及びパルス破壊電圧を測定した。
なお、AC破壊電圧は、商用周波数(60Hz)にて測定した。
また、パルス破壊電圧を測定するためのパルス破壊電圧回路としては、IEC規格「IEC384−14」に準拠したものを用いた。
【0015】
そして、破壊電圧の測定結果を、図2に示すように、ワイブル確率紙にプロットした。なお、図2において、横軸は破壊電圧(kV)、縦軸は平均故障率(F(t)(%))を示す。
また、図2において、AC破壊電圧値は、実効電圧値(Vrms)、パルス破壊電圧値は、パルスの0−ピーク電圧値(V0-P)である。
【0016】
図2より、DC破壊電圧(DC−BDV)は、パルス破壊電圧(パルスBDV)と異なる傾きを持っているのに対して、AC破壊電圧(AC−BDV)は、パルス破壊電圧(パルスBDV)とほぼ同じ傾きを持っていることがわかる。
図2のワイブル確率紙から求めた、傾きm値と、平均故障率F(t)=63%における破壊電圧値を表1に示す。
【0017】
【表1】

Figure 0004131776
【0018】
表1より、このときの傾きm値は、DC破壊電圧(DC−BDV)の傾きm値は9.80、AC破壊電圧(AC−BDV)の傾きm値は46.40、パルス破壊電圧(パルスBDV)の傾きm値は45.91となっており、AC破壊電圧とパルス破壊電圧は、ほぼ同じ傾きm値を持っていることがわかる。
【0019】
また、傾きm値、平均故障率F(t)=63%における破壊電圧値から求めた、他の平均故障率F(t)における推定破壊電圧値、DC破壊電圧/パルス破壊電圧、及びAC破壊電圧/パルス破壊電圧を表2に示す。
【0020】
【表2】
Figure 0004131776
【0021】
表2より、AC破壊電圧とパルス破壊電圧の関係は、図2に示すように、傾き(m値)がほとんど同じであるため、いずれの破壊確率においても推定破壊電圧が等倍性を示す(すなわち、AC破壊電圧/パルス破壊電圧の値がほぼ同一となっている)が、DC破壊電圧とパルス破壊電圧の関係は、図2に示すように、傾き(m値)が異なるため、等倍性が成立していない(すなわち、DC破壊電圧/パルス破壊電圧の値が大きくばらついている)ことがわかる。
【0022】
[スクリニングの実施]
次に、パルス破壊電圧とAC破壊電圧の等倍性を利用した耐圧スクリニングの実施形態について説明する。
【0023】
同じ条件で製造した積層コンデンサ(試料)を20000個用意し、10000個ずつ2つに振り分けて、パルス耐圧2400V0-Pと、AC(60Hz)耐圧1560Vrms(=2400×0.65)の条件で、耐圧スクリニングを実施した。
【0024】
評価数10000個に対して、スクリニングできた耐圧不良数並びに不良率を表3に示す。なお、耐圧不良は、絶縁抵抗が1桁以上低下したものを対象とした。
【0025】
【表3】
Figure 0004131776
【0026】
表3より、パルス耐圧2400V0-Pと、AC(60Hz)耐圧1560Vrms(=2400×0.65)の耐圧スクリニングにおいて、ほぼ同じスクリニング性が得られており、パルス耐圧スクリニングを、AC耐圧スクリニングにより代用できることがわかる。
【0027】
なお、上記実施形態では、パルス破壊電圧とAC破壊電圧の関係が、
AC破壊電圧(Vrms)=0.65×パルス破壊電圧(V0-P
である場合を例にとって説明したが、一般的には
AC破壊電圧(Vrms)=A×パルス破壊電圧(V0-P
となり、この場合の定数Aは、素子の設計構造、容量、材料、パルス波形などにより変化する。
【0028】
また、上記実施形態では、周波数60HzのAC電圧で評価したが、AC電圧の周波数が異なるとAは変化する。このため、積層コンデンサに応じてAを設定することが必要になるが、等倍性に変化はなく、パルス耐圧スクリニングを、AC耐圧スクリニングにより代用できることに変わりはない。
【0029】
また、上記実施形態において、積層コンデンサを対象としてスクリニングを行っているが、本発明は、積層コンデンサに限らず、セラミック素子中に、複数の内部電極がセラミック層を介して積層された構造を有するLC複合部品など、種々の積層コンデンサについてスクリニングを行う場合に広く適用することが可能である。
【0030】
本発明は、さらにその他の点においても上記実施形態に限定されるものではなく、発明の要旨の範囲内において、種々の応用、変形を加えることが可能である。
【0031】
【発明の効果】
上述のように、本発明(請求項1)の積層コンデンサのスクリニング方法は、積層コンデンサの破壊電圧と平均故障率との関係を表すワイブル確率紙で示されたパルス破壊電圧の傾きmとほぼ同様の傾きm値をもつ交流耐電圧スクリニング電圧から、所望の平均故障 率に対応する交流耐電圧スクリニング電圧における実効電圧値を求めた後積層コンデンサに、実効電圧を印加して、パルス電圧耐性を保証する積層コンデンサの良否を選別するようにしているので、特別な充放電試験電源回路を必要とする耐パルス電圧試験を行うことなく、耐パルス電圧試験を行ったのと同等のスクリニングを行うことができるようになり、所定のパルス電圧に対する耐性を備えた積層コンデンサと備えていない積層コンデンサを効率よく選別することができる。
【0032】
積層コンデンサは特に多層化、薄層化が進んでおり、耐圧性能も問題になりやすいが、本発明の方法を適用することにより、効率よく、しかも確実に、信頼性の高い積層コンデンサを提供することができるようになる。
【図面の簡単な説明】
【図1】 本発明のスクリニング方法の対象となる積層コンデンサの構成を示す断面図である。
【図2】 本発明の一実施形態にかかる方法で、積層コンデンサの耐圧スクリニングを行った場合の、電圧(破壊電圧値)(kV)と、平均故障率(F(t)(%))の関係を示す図である。
【符号の説明】
1 セラミック素子
1a,1b セラミック素子の端面
2 セラミック層
3 内部電極
4a,4b 外部電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to subscription training method of the electronic component, For details, relates to subscription training method for culling the breakdown voltage defective products from laminated capacitor group of the high pressure type in which is required particularly high breakdown voltage.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, the downsizing and large capacity of multilayer capacitors have been progressing due to downsizing and surface mounting of electronic devices. This trend of downsizing and increasing capacity has spread to the field of medium- and high-voltage capacitors, and in the middle- and high-voltage capacitors where single-plate capacitors have been used in the past, the production of multilayer chips has progressed. ing.
[0003]
By the way, the circuit application of the medium- and high-voltage multilayer capacitor can be broadly divided into two types, that is, a circuit that is constantly subjected to medium- and high-voltages and a circuit that requires a high withstand voltage for surge protection around the power source. For the multilayer capacitors used in the latter, safety standards are established by the Electrical Appliance and Material Control Law in Japan and by UL standards, BSI standards, etc. in other countries to ensure safety around the power supply. In addition to the rated voltage, high pulse resistance test voltage performance is required.
[0004]
For such multilayer capacitors, in general, as a final characteristic check in the manufacturing process, a withstand voltage test is performed on all units in accordance with the rated voltage at DC and / or AC, and defective insulation resistance is selected. To be removed.
In addition, as a method of performing such pressure-resistant sorting, a method of performing sorting by continuous processing using a DC power source, an AC power source, or both power sources has been established.
[0005]
However, the withstand voltage selection test using a pulse voltage cannot be performed continuously by applying a voltage from a simple power supply. For example, a special charge / discharge test power supply circuit as defined in the IEC standard “IEC384-14” or the like. Therefore, it is very difficult to perform pressure-resistant screening by continuous processing.
[0006]
The present invention solves the above-mentioned problems, and efficiently performs the same screening as the pulse voltage test without performing the pulse voltage test that requires a special charge / discharge test power supply circuit. An object of the present invention is to provide a method for screening a multilayer capacitor that can be performed.
[0007]
[Means for Solving the Problems]
To achieve the above object, the inventors with the multilayer capacitor, DC voltage, AC voltage, performs the voltage breakdown test of the pulse voltage, the voltage breakdown value of the multilayer capacitor in the AC voltage and the pulse voltage, Weibull Focusing on the fact that the paper has the same inclination, the present invention is capable of efficiently screening a multilayer capacitor by substituting the pulse voltage breakdown test with the AC voltage breakdown test by conducting further experiments and examinations. Completed the screening method for multilayer capacitors .
[0008]
That is, the screening method of the multilayer capacitor of the present invention (Claim 1)
A screening method for selecting the quality of a multilayer capacitor that guarantees tolerance to a pulse voltage,
From the AC withstand voltage subscription training voltage having substantially the same slope m value and the slope m of the pulse breakdown voltage indicated by Weibull probability paper representing the relationship between the destruction voltage and the average failure rate of the multilayer capacitor, a desired average failure after determining the effective voltage value at AC withstand voltage subscription training voltages corresponding to the rate, the multilayer capacitor, by applying the effective voltage, as characterized by selecting the quality of the multilayer capacitor to guarantee resistance of the pulse voltage Yes.
[0009]
From the AC withstand voltage subscription training voltage having substantially the same slope m value and the slope m of the pulse breakdown voltage indicated by Weibull probability paper representing the relationship between the corrupted voltage fracture of the multilayer capacitor and the average failure rate, desired average failure rate after determining the effective voltage value at AC withstand voltage subscription training voltages corresponding to, in the multilayer capacitor, by applying an effective voltage, by selecting the quality of the multilayer capacitor to guarantee resistance of the pulse voltage, a special charge and discharge It is possible to perform screening equivalent to the pulse withstand voltage test without performing the pulse withstand voltage test that requires a test power supply circuit, and it is equipped with a multilayer capacitor with tolerance to a predetermined pulse voltage This makes it possible to efficiently sort the multilayer capacitors that are not.
[0010]
Multilayer capacitors are particularly becoming multilayered and thinned, and the withstand voltage performance is likely to be a problem. However, by applying the method of the present invention, it is possible to provide a highly reliable multilayer capacitor.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment of the present invention will be shown and the features thereof will be described in more detail.
[0012]
In this embodiment, as shown in FIG. 1, an internal electrode 3 is laminated and disposed via a ceramic layer 2 in a ceramic element 1 using a barium titanate ceramic as a dielectric (B characteristic material). by which, and the predetermined internal electrodes 3, the reverse side of the end face 1a, the external electrodes 4a disposed 1b facing each other, with the multilayer capacitor having a connection structure in 4b, when performing subscription training Will be described as an example.
[0013]
[Conditions for multilayer capacitors]
(1) Dielectric constant of dielectric: 3000
(2) Thickness of ceramic layer between internal electrodes: 70 μm
(3) Capacity: 22000pF
(4) Rated voltage: DC630V
[0014]
[Measurement of breakdown voltage]
In this embodiment, the DC breakdown voltage, the AC breakdown voltage, and the pulse breakdown voltage were measured for the multilayer capacitor under the above conditions.
The AC breakdown voltage was measured at a commercial frequency (60 Hz).
As a pulse breakdown voltage circuit for measuring the pulse breakdown voltage, a circuit conforming to the IEC standard “IEC384-14” was used.
[0015]
And the measurement result of the breakdown voltage was plotted on the Weibull probability paper as shown in FIG. In FIG. 2, the horizontal axis represents the breakdown voltage (kV), and the vertical axis represents the average failure rate (F (t) (%)).
In FIG. 2, the AC breakdown voltage value is an effective voltage value (Vrms), and the pulse breakdown voltage value is a pulse 0-peak voltage value (V 0-P ).
[0016]
From FIG. 2, the DC breakdown voltage (DC-BDV) has a different slope from the pulse breakdown voltage (pulse BDV), whereas the AC breakdown voltage (AC-BDV) is equal to the pulse breakdown voltage (pulse BDV). It can be seen that it has almost the same inclination.
Table 1 shows the slope m value obtained from the Weibull probability paper of FIG. 2 and the breakdown voltage value at an average failure rate F (t) = 63%.
[0017]
[Table 1]
Figure 0004131776
[0018]
From Table 1, the slope m value at this time is 9.80 for the DC breakdown voltage (DC-BDV), 46.40 for the AC breakdown voltage (AC-BDV), and the pulse breakdown voltage ( The slope m value of the pulse BDV is 45.91, and it can be seen that the AC breakdown voltage and the pulse breakdown voltage have substantially the same slope m value.
[0019]
Further, the estimated breakdown voltage value, DC breakdown voltage / pulse breakdown voltage, and AC breakdown at other average failure rates F (t) obtained from the breakdown m value, breakdown voltage value at average failure rate F (t) = 63% The voltage / pulse breakdown voltage is shown in Table 2.
[0020]
[Table 2]
Figure 0004131776
[0021]
According to Table 2, the relationship between the AC breakdown voltage and the pulse breakdown voltage has almost the same slope (m value) as shown in FIG. 2, and therefore the estimated breakdown voltage shows the same magnification at any breakdown probability ( That is, the values of AC breakdown voltage / pulse breakdown voltage are almost the same), but the relationship between the DC breakdown voltage and the pulse breakdown voltage is different because the slope (m value) is different as shown in FIG. It can be seen that the characteristics are not established (that is, the values of the DC breakdown voltage / pulse breakdown voltage vary widely).
[0022]
[Screening]
Next, an embodiment of withstand voltage screening utilizing the equality of the pulse breakdown voltage and the AC breakdown voltage will be described.
[0023]
20000 multilayer capacitors (samples) manufactured under the same conditions are prepared, divided into two 10000 pieces each, under the conditions of a pulse withstand voltage of 2400 V 0-P and an AC (60 Hz) withstand voltage of 1560 Vrms (= 2400 × 0.65). , Pressure-resistant screening was carried out.
[0024]
Table 3 shows the number of pressure-resistant defects that can be screened and the defect rate with respect to 10,000 evaluations. Note that the breakdown voltage failure was targeted for the case where the insulation resistance decreased by one digit or more.
[0025]
[Table 3]
Figure 0004131776
[0026]
From Table 3, the pulse-voltage 2400 V 0-P, in the breakdown voltage subscription training of AC (60 Hz) withstand 1560Vrms (= 2400 × 0.65), and approximately the same subscription training property is obtained, a pulse-voltage subscription training, AC It turns out that it can substitute by pressure | voltage resistant screening.
[0027]
In the above embodiment, the relationship between the pulse breakdown voltage and the AC breakdown voltage is
AC breakdown voltage (Vrms) = 0.65 × pulse breakdown voltage (V 0-P )
In the example described above, the AC breakdown voltage (Vrms) = A × pulse breakdown voltage (V 0-P ).
In this case, the constant A varies depending on the element design structure, capacitance, material, pulse waveform, and the like.
[0028]
Moreover, in the said embodiment, although evaluated with the AC voltage of a frequency of 60 Hz, A changes if the frequency of an AC voltage differs. For this reason, it is necessary to set A according to the multilayer capacitor, but there is no change in the equality, and the pulse withstand voltage screening can be replaced by the AC withstand voltage screening.
[0029]
Further, in the above embodiment, screening is performed for a multilayer capacitor, but the present invention is not limited to a multilayer capacitor, and a structure in which a plurality of internal electrodes are laminated via a ceramic layer in a ceramic element. The present invention can be widely applied in the case of performing screening on various multilayer capacitors such as LC composite parts.
[0030]
The present invention is not limited to the above embodiment in other points, and various applications and modifications can be made within the scope of the gist of the invention.
[0031]
【The invention's effect】
As described above, subscription training method of the multilayer capacitor of the present invention (Claim 1) includes a slope m of the pulse breakdown voltage indicated by Weibull probability paper representing the relationship between the destruction voltage and the average failure rate of the multilayer capacitor from the AC withstand voltage subscription training voltage having substantially the same slope m value, after obtaining the effective voltage value at AC withstand voltage subscription training voltage corresponding to the desired average failure rate, in the multilayer capacitor, by applying an effective voltage, since so as to screen the quality of the multilayer capacitor to guarantee resistance of the pulse voltage, without performing a withstand voltage pulse tests requiring special charge and discharge test power supply circuit, similar to that performed withstand pulse voltage test that thing will be able to perform a subscription training, sorted efficiently multilayer capacitor which is not provided with a multilayer capacitor having a resistance to a predetermined pulse voltage Kill.
[0032]
Multilayer capacitors are becoming increasingly multilayered and thinned, and withstand voltage performance is likely to be a problem, but by applying the method of the present invention , an efficient , reliable, and highly reliable multilayer capacitor is provided. Will be able to.
[Brief description of the drawings]
1 is a cross-sectional view showing the structure of interest and ing multilayer capacitor subscription training method of the present invention.
FIG. 2 shows a voltage (breakdown voltage value) (kV) and an average failure rate (F (t) (%)) when the breakdown voltage screening of the multilayer capacitor is performed by the method according to the embodiment of the present invention. It is a figure which shows the relationship.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic element 1a, 1b End surface of ceramic element 2 Ceramic layer 3 Internal electrode 4a, 4b External electrode

Claims (1)

パルス電圧に対する耐性を保証する積層コンデンサの良否を選別するスクリニング方法であって、
前記積層コンデンサの破壊電圧と平均故障率との関係を表すワイブル確率紙で示されたパルス破壊電圧の傾きmとほぼ同様の傾きm値をもつ交流耐電圧スクリニング電圧から、所望の平均故障率に対応する交流耐電圧スクリニング電圧における実効電圧値を求めた後、前記積層コンデンサに、前記実効電圧を印加して、パルス電圧耐性を保証する積層コンデンサの良否を選別すること
を特徴とする積層コンデンサのスクリニング方法。
A screening method for selecting the quality of a multilayer capacitor that guarantees tolerance to a pulse voltage,
From the AC withstand voltage subscription training voltage having substantially the same slope m value and the slope m of the pulse breakdown voltage indicated by Weibull probability paper representing the relationship between the destruction voltage and the average failure rate of the multilayer capacitor, a desired average failure after determining the effective voltage value at AC withstand voltage subscription training voltages corresponding to the rate, the multilayer capacitor, by applying the effective voltage, and characterized in that selecting the quality of the multilayer capacitor to guarantee resistance of the pulse voltage Screening method for multilayer capacitors .
JP2000286538A 2000-09-21 2000-09-21 Screening method for multilayer capacitors Expired - Lifetime JP4131776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286538A JP4131776B2 (en) 2000-09-21 2000-09-21 Screening method for multilayer capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286538A JP4131776B2 (en) 2000-09-21 2000-09-21 Screening method for multilayer capacitors

Publications (2)

Publication Number Publication Date
JP2002100544A JP2002100544A (en) 2002-04-05
JP4131776B2 true JP4131776B2 (en) 2008-08-13

Family

ID=18770445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286538A Expired - Lifetime JP4131776B2 (en) 2000-09-21 2000-09-21 Screening method for multilayer capacitors

Country Status (1)

Country Link
JP (1) JP4131776B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738703B2 (en) * 2002-04-17 2011-08-03 パナソニック株式会社 Electrolytic capacitor manufacturing method

Also Published As

Publication number Publication date
JP2002100544A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP5043046B2 (en) Improved high voltage capacitor
TWI630631B (en) Capacitive structure and method of making the same, and layered structure
US20130242459A1 (en) Multilayer ceramic electronic component
CN107103995A (en) Multilayer ceramic capacitor and the circuit board for installing the multilayer ceramic capacitor
KR100245792B1 (en) Multilayered electronic element
JP2760263B2 (en) Screening method for early failure products of ceramic capacitors
US20090052111A1 (en) High voltage capacitors
CN1228148C (en) Method of screening laminated ceramic capacitor
US20130027843A1 (en) Multi-layered ceramic electronic component
Ivanov et al. Characteristics of self-healing processes in metallized film capacitors with all-over and segmented electrodes
JP4131776B2 (en) Screening method for multilayer capacitors
JPH09180956A (en) Multilayer ceramic capacitor
JP2022170666A (en) Laminated electronic component and manufacturing method thereof
US6243252B1 (en) Laminated ceramic electronic component
CN115591814B (en) Novel test screening method and verification method for high-capacity MLCC
Domingos et al. Breakdown in ceramic capacitors under pulsed high-voltage stress
KR100877041B1 (en) Screening method of multilayer ceramic capacitor
JP3760373B2 (en) Screening method for ceramic electronic components
JPH07183154A (en) Electronic component
US11011311B2 (en) Multilayer capacitor
JPH08227826A (en) Method for screening laminated ceramic capacitor
US6509741B2 (en) Method for screening multi-layer ceramic electronic component
JP2009295606A (en) Method for testing multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
CN205920877U (en) Chip multilayer ceramic capacitor
JP2003229324A (en) Laminated ceramic capacitor and manufacturing method therefore

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060116

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4131776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

EXPY Cancellation because of completion of term