JP4023878B2 - Superelastic wire and manufacturing method thereof - Google Patents
Superelastic wire and manufacturing method thereof Download PDFInfo
- Publication number
- JP4023878B2 JP4023878B2 JP27535197A JP27535197A JP4023878B2 JP 4023878 B2 JP4023878 B2 JP 4023878B2 JP 27535197 A JP27535197 A JP 27535197A JP 27535197 A JP27535197 A JP 27535197A JP 4023878 B2 JP4023878 B2 JP 4023878B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- heat treatment
- superelastic
- temperature
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Media Introduction/Drainage Providing Device (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、超弾性線及びその製造方法に関し、詳しくは、カテーテルガイドワイヤー、釣竿用中通しワイヤー、中空管等の送りガイドワイヤー等に用いられるトルク伝達性の優れた超弾性線及びその製造方法に関する。
【0002】
【従来の技術】
カテーテルガイドワイヤーは、柔軟性、曲げ変形に対する回復を要することから、超弾性線が用いられている。このカテーテルガイドワイヤーは、複雑な血管内を通す時に、後端部を回転させて、その回転を先端部に伝達し、所定の方向に合わせ、血管内部に、その先端部を送り込むものである。ちなみに、従来の超弾性線では、その線材の後端部と先端部の回転トルク比は、0.50〜0.79であった。従来の超弾性線を血管内に通し、その線材の後端部を回転させ、その回転を先端部に伝達した場合、その後端部と先端部の回転角度の関係の一例を図6に示した。
【0003】
従来、これらに用いる超弾性線は、超弾性合金に加工率を取った後に、熱処理を行い、超弾性特性を出していた。
【0004】
【発明が解決しようとする課題】
しかしながら、前述したカテーテルガイドワイヤーは、複雑な血管内を通す時に、前述したように、回転トルクの伝達性が悪く、所定の血管の方向に後端部を回転させながら先端部の方向を合わせようとしても、後端部の回転量と先端部の回転量が一致せず、先端部の位置制御が困難で、目的の位置までワイヤーを装入する時間が長くなるという欠点があった。
【0005】
そこで、本発明の技術的課題は、トルク伝達性が良い超弾性線とその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
課題を解決するための手段は、下記の通りである。
【0007】
本発明によれば、49.0〜52.0at%Ni及び残部Tiからなる合金線材を、280℃〜520℃の間で第1の熱処理をし、さらに480℃〜520℃の間であって前記第1の熱処理温度以上の温度で前記合金線材の全体に第2の熱処理を施してなることを特徴とする超弾性線が得られる。
また、本発明によれば、49.0〜52.0at%Ni及び残部Tiからなる合金線材を、280℃〜520℃の間で5分間の第1の熱処理をし、さらに480℃〜520℃の間であって前記第1の熱処理温度以上の温度で前記合金線材の全体に5分間の第2の熱処理を施してなることを特徴とする超弾性線が得られる。
【0008】
本発明によれば、前記超弾性線の回転トルク比は、0.80〜1.00であることを特徴とする超弾性線が得られる。
【0009】
本発明によれば、前記超弾性線は、−20℃〜60℃の温度範囲内で少なくとも超弾性特性を有することを特徴とする超弾性線が得られる。
【0010】
本発明によれば、高周波真空溶解によって得られた49.0〜52.0at%Ni及び残部Tiからなる合金を、熱間ハンマー、熱間ロールによって線材に形成し、冷間伸線および熱処理を繰り返した後に、冷間加工後、280℃〜520℃の間で第1の熱処理をし、さらに480℃〜520℃の間であって、前記第1の熱処理温度以上の温度で前記合金線材の全体に第2の熱処理を施すことを特徴とする超弾性線の製造方法が得られる。
【0011】
本発明によれば、前記超弾性線を用いたことを特徴とする釣竿用の中通しワイヤーが得られる。
【0012】
本発明によれば、前記超弾性線を用いたことを特徴とするカテーテルガイドワイヤーが得られる。
【0013】
本発明によれば、前記超弾性線を用いたことを特徴とする中空管内の送り用ガイド用線材が得られる。ここで、送り用ガイド用線材とは、二又管等の管に装入する線、水道管に装入する線、細管等に装入する線材を呼ぶが、これらに限定されるものではない。
【0014】
カテーテルガイドワイヤーの先端部を回転させると、他端部も同様に回転する回転トルクの伝達性のよい線材ができれば、ワイヤー他端部の位置制御が容易にでき、かつ、ワイヤーの装入する時間を短くすることができる。
【0015】
【発明の実施の形態】
49.0〜52.0at%Ni及び残部Ti、又は49.0〜52.0at%Ni、0.1〜5at%X(但し、XはV,Cr,Co,Feの内の少なくとも一種)及び残部Tiからなる長尺状の超弾性合金を線材とし、−20℃〜60℃の温度範囲内で超弾性特性を有するように、少なくとも10%以上の加工率で加工し、280℃〜520℃の間で熱処理をし、再び、480℃〜520℃の間で熱処理をする。これによって、この線材を管内に通し、軸方向に回転を与えた場合、この線材の後端部と先端部との回転トルク比が、0.80〜1.00である超弾性線が得られる。
【0016】
【実施例】
以下、本発明の実施例について、図面を参照して説明する。
【0017】
高周波真空溶解によって得られたTi−50.5at%Ni合金を熱間ハンマー、熱間ロールによって、径8mmの線材に形成した。この線材を冷間伸線と熱処理とを繰り返し、直径0.7mmの線材を得、その後、熱処理なしで径0.5mmで冷間加工(加工率49%)した。
【0018】
次に、伸線上がりの線材を長さ1.5mmに切断して何本かの線片の試料を作製し、これらの試料を数本ずつに分け、280℃〜530℃の間の温度で張力を掛けながら、5分の熱処理を行った。各々の試料の温度を変えた5%の引っ張り試験と20℃におけるトルク伝達性試験を行った結果を表1、表2に示す。
【0019】
【0020】
【0021】
トルク伝達性試験は、図5に示すトルク伝達性試験装置を用いて、1.5mmの線材を30cmのフープにまるめ、片端を回転させ、他端の回転具合を観察したものである。以下、トルク伝達性試験は、このトルク伝達性試験装置を用いて行った。
【0022】
表1で、熱処理条件250℃の試料は、軟化されておらず、5%引っ張り試験において破断している。条件280℃〜520℃のすべての試料が、−20℃〜60℃まで超弾性を示しているが、条件530℃の試料は、−20℃で残留歪みが確認された。
【0023】
表2から、530℃の試料は、トルク伝達性が良く、それ以外の熱処理温度の試料は、全てトルク伝達性が悪いことが確認された。
【0024】
これらのことから、超弾性とトルク伝達性の両方が良い試料は、ないことが判る。
【0025】
次に、これらの熱処理を行った試料を、更に数本ずつに分け、2回めの熱処理を行った。熱処理条件は、450℃〜530℃の間の温度で、張力をかけながら、5分の熱処理を行った。各々の試料を、温度を変えた5%の引っ張り試験と20℃におけるトルク伝達性試験を行った結果を表3、表4、表5、表6に示す。
【0026】
【0027】
【0028】
【0029】
【0030】
表3及び表4で、250℃〜520℃までの熱処理条件は、5%引っ張り試験において、450℃〜520℃までの2回め熱処理条件で、−20℃〜60℃まで超弾性を示しているが、530℃の熱処理条件は、それぞれの2回め熱処理条件において、残留歪みが確認された。
【0031】
表5及び表6から、250℃熱処理試料は、450℃〜520℃までの2回め熱処理条件で、トルク伝達性が悪いことが確認された。
【0032】
又、280℃〜530℃までの熱処理試料は、480℃〜520℃までの2回め熱処理条件において、トルク伝達性が良いことが判った。
【0033】
これらのことから、熱処理条件280℃〜520℃で熱処理した試料を、2回め熱処理条件450℃〜520℃で処理したものは、−20℃〜60℃まで超弾性が良く、かつ、トルク伝達性が良いことが判明した。
【0034】
なお、表1〜表6に示したトルク伝達性がよいという結果が得られた本発明の超弾性線では、後端部と先端部との回転トルク比は、0.80〜1.00の範囲であった。
【0035】
図1は、本発明の製造方法である熱処理条件500℃×5分で処理した後、2回め熱処理条件500℃×5分で処理した試料を、温度を変えて引っ張り試験機で測定し、得られた荷重−伸び曲線を示す。−20℃から60℃まで、残留歪み量は小さく、良好な超弾性特性を示している。
【0036】
図2は、本発明の製造方法である熱処理条件500℃×5分で処理した後、2回め熱処理条件500℃×5分で処理した試料を、30cmのフープにまるめ、先端部に入れた角度と他端部が回転した角度を測定し得られた角度を示す。入れた角度に対して他端部の回転した角度が、ほぼ同じで、直線上をなし、良好にトルクが伝達していることを示す。
【0037】
図3は、熱処理条件500℃×5分で処理した後、2回め熱処理条件530℃×5分で処理した試料を、温度を変えて引っ張り試験機で測定し、得られた荷重−伸び曲線を示す。−20℃,−10℃の残留歪みが大きく、低温における超弾性が悪いことを示す。
【0038】
図4は、熱処理条件500℃×5分で処理した後、2回め熱処理条件530℃×5分で処理した試料を、30cmのフープにまるめ、先端部に入れた角度と他端部が回転した角度を測定し得られた角度を示す。入れた角度に対して他端部の回転が、追随せず、曲線になっており、トルク伝達性が悪いことを示す。
【0039】
なお、本発明の超弾性線を、釣竿用の中通しワイヤー、カテーテルガイドワイヤー、中空管内の送り用ガイド用線材として用いたところ、良好であった。
【0040】
【発明の効果】
以上、説明したように、本発明によれば、−20℃〜60℃まで超弾性を示し、かつ、トルクの伝達性が良好な超弾性線とその製造方法とを提供することができる。
【図面の簡単な説明】
【図1】超弾性線の500℃×5分の熱処理後、500℃×5分の熱処理をした−20℃〜60℃までの測定温度における5%引っ張り試験をした荷重−伸び曲線を示す図。
【図2】超弾性線の500℃×5分の熱処理後、500℃×5分の熱処理をした20℃における先端部の入れた角度と他端部の回転角度の曲線を示す図。
【図3】超弾性線の500℃×5分の熱処理後、530℃×5分の熱処理をした−20℃〜60℃までの測定温度における5%引っ張り試験をした荷重−伸び曲線を示す図。
【図4】超弾性線の500℃×5分の熱処理後、530℃×5分の熱処理をした20℃における先端部の入れた角度と他端部の回転角度の曲線を示す図。
【図5】トルク伝達性試験装置の概略説明図。
【図6】従来の超弾性線におけるその線材の後端部の入れた角度と先端部の回転角度の曲線を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superelastic wire and a method for producing the same, and more specifically, a superelastic wire having excellent torque transmission used for a catheter guidewire, a fishing rod through wire, a feed guidewire such as a hollow tube, and the like, and the production thereof. Regarding the method.
[0002]
[Prior art]
Since the catheter guide wire requires flexibility and recovery from bending deformation, a super elastic wire is used. When this catheter guide wire passes through a complicated blood vessel, the rear end portion is rotated, the rotation is transmitted to the distal end portion, the rotation is matched with a predetermined direction, and the distal end portion is sent into the blood vessel. Incidentally, in the conventional superelastic wire, the rotational torque ratio between the rear end portion and the front end portion of the wire was 0.50 to 0.79. FIG. 6 shows an example of the relationship between the rotation angle of the rear end and the front end when a conventional superelastic wire is passed through the blood vessel, the rear end of the wire is rotated and the rotation is transmitted to the front end. .
[0003]
Conventionally, the superelastic wire used in these has been processed by heat treatment after taking the processing rate of the superelastic alloy, and has exhibited superelastic properties.
[0004]
[Problems to be solved by the invention]
However, when the catheter guide wire described above passes through a complex blood vessel, as described above, the transmission performance of the rotational torque is poor, and the direction of the distal end portion is adjusted while rotating the rear end portion in a predetermined blood vessel direction. However, the rotation amount of the rear end portion and the rotation amount of the front end portion do not coincide with each other, and it is difficult to control the position of the front end portion.
[0005]
Therefore, a technical problem of the present invention is to provide a superelastic wire with good torque transmission and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
Means for solving the problems are as follows.
[0007]
According to the present invention, the alloy wire consisting of 49.0 to 52.0 at% Ni and the balance Ti is subjected to the first heat treatment between 280 ° C. and 520 ° C., and further between 480 ° C. and 520 ° C. A superelastic wire obtained by subjecting the entire alloy wire to a second heat treatment at a temperature equal to or higher than the first heat treatment temperature is obtained.
Further, according to the present invention, the alloy wire consisting of 49.0 to 52.0 at% Ni and the balance Ti is subjected to a first heat treatment between 280 ° C. and 520 ° C. for 5 minutes, and further 480 ° C. to 520 ° C. A super-elastic wire is obtained by performing a second heat treatment for 5 minutes on the entire alloy wire at a temperature equal to or higher than the first heat treatment temperature.
[0008]
According to the present invention, it is possible to obtain a superelastic wire characterized in that the rotational torque ratio of the superelastic wire is 0.80 to 1.00.
[0009]
According to the present invention, it is possible to obtain a superelastic wire characterized in that the superelastic wire has at least superelastic characteristics within a temperature range of −20 ° C. to 60 ° C.
[0010]
According to the present invention, an alloy composed of 49.0 to 52.0 at% Ni and the balance Ti obtained by high-frequency vacuum melting is formed on a wire with a hot hammer and a hot roll, and cold drawing and heat treatment are performed. After repeating, after the cold working, the first heat treatment is performed between 280 ° C. and 520 ° C., and further between 480 ° C. and 520 ° C. at a temperature equal to or higher than the first heat treatment temperature. A superelastic wire manufacturing method characterized by subjecting the whole to a second heat treatment is obtained.
[0011]
According to the present invention, there is obtained a through wire for a fishing rod using the superelastic wire.
[0012]
According to the present invention, a catheter guide wire using the superelastic wire can be obtained.
[0013]
According to the present invention, it is possible to obtain a guide wire for feeding in a hollow tube using the superelastic wire. Here, the feeding guide wire refers to a wire inserted into a pipe such as a bifurcated tube, a wire inserted into a water pipe, a wire inserted into a thin tube, etc., but is not limited thereto. .
[0014]
If the distal end of the catheter guide wire is rotated, the other end can be rotated in the same way, and if the wire with good transferability of rotational torque can be obtained, the position of the other end of the wire can be easily controlled, and the time for inserting the wire Can be shortened.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
49.0 to 52.0 at% Ni and the balance Ti, or 49.0 to 52.0 at% Ni, 0.1 to 5 at% X (where X is at least one of V, Cr, Co and Fe) and A long superelastic alloy composed of the balance Ti is used as a wire, and is processed at a processing rate of at least 10% so as to have superelastic characteristics within a temperature range of -20 ° C to 60 ° C, and 280 ° C to 520 ° C. The heat treatment is performed between 480 ° C. and 520 ° C. again. As a result, when this wire is passed through the pipe and rotated in the axial direction, a superelastic wire having a rotational torque ratio between the rear end portion and the front end portion of the wire rod of 0.80 to 1.00 is obtained. .
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0017]
A Ti-50.5 at% Ni alloy obtained by high-frequency vacuum melting was formed into a wire with a diameter of 8 mm by a hot hammer and a hot roll. This wire was repeatedly subjected to cold drawing and heat treatment to obtain a wire having a diameter of 0.7 mm, and then cold-worked with a diameter of 0.5 mm without a heat treatment (processing rate 49%).
[0018]
Next, the drawn wire is cut into a length of 1.5 mm to produce several pieces of wire pieces, and the samples are divided into several pieces at a temperature between 280 ° C. and 530 ° C. Heat treatment was performed for 5 minutes while applying tension. Tables 1 and 2 show the results of a 5% tensile test and a torque transmission test at 20 ° C. with the temperature of each sample changed.
[0019]
[0020]
[0021]
In the torque transmission test, using a torque transmission test apparatus shown in FIG. 5, a 1.5 mm wire is wrapped in a 30 cm hoop, one end is rotated, and the rotation condition at the other end is observed. Hereinafter, the torque transferability test was performed using this torque transferability test apparatus.
[0022]
In Table 1, the sample with the heat treatment condition of 250 ° C. is not softened and is broken in the 5% tensile test. All samples under conditions 280 ° C. to 520 ° C. exhibited superelasticity from −20 ° C. to 60 ° C., but residual strains were confirmed at −20 ° C. for the samples under condition 530 ° C.
[0023]
From Table 2, it was confirmed that the samples at 530 ° C. had good torque transmission, and all the samples at other heat treatment temperatures had poor torque transmission.
[0024]
From these facts, it can be seen that there is no sample having both excellent superelasticity and torque transmission.
[0025]
Next, these heat-treated samples were further divided into several pieces and subjected to a second heat treatment. The heat treatment was performed at a temperature between 450 ° C. and 530 ° C. for 5 minutes while applying tension. Tables 3, 4, 5, and 6 show the results of a 5% tensile test at different temperatures and a torque transmission test at 20 ° C. for each sample.
[0026]
[0027]
[0028]
[0029]
[0030]
In Tables 3 and 4, the heat treatment conditions from 250 ° C. to 520 ° C. show superelasticity from −20 ° C. to 60 ° C. in the second heat treatment condition from 450 ° C. to 520 ° C. in the 5% tensile test. However, in the heat treatment conditions at 530 ° C., residual strain was confirmed in each second heat treatment condition.
[0031]
From Tables 5 and 6, it was confirmed that the 250 ° C. heat-treated samples had poor torque transmission under the second heat treatment conditions from 450 ° C. to 520 ° C.
[0032]
Further, it was found that the heat-treated sample from 280 ° C. to 530 ° C. had good torque transmission under the second heat treatment conditions from 480 ° C. to 520 ° C.
[0033]
From these results, a sample heat-treated at 280 ° C. to 520 ° C. for the second time and treated at 450 ° C. to 520 ° C. for the second time has excellent superelasticity from −20 ° C. to 60 ° C. and torque transmission. It turned out to be good.
[0034]
In addition, in the superelastic wire of the present invention in which the results of good torque transmission shown in Tables 1 to 6 were obtained, the rotational torque ratio between the rear end portion and the front end portion was 0.80 to 1.00. It was in range.
[0035]
FIG. 1 shows a sample treated with a second heat treatment condition of 500 ° C. × 5 minutes after being treated at a heat treatment condition of 500 ° C. × 5 minutes, which is a production method of the present invention, and measured with a tensile tester at different temperatures. The obtained load-elongation curve is shown. From −20 ° C. to 60 ° C., the amount of residual strain is small, showing good superelastic characteristics.
[0036]
FIG. 2 shows that the sample treated with the second heat treatment condition of 500 ° C. × 5 minutes after being treated with the heat treatment condition of 500 ° C. × 5 minutes, which is the manufacturing method of the present invention, was wrapped in a 30 cm hoop and placed at the tip. The angle obtained by measuring the angle and the angle at which the other end is rotated is shown. The angle at which the other end is rotated with respect to the inserted angle is substantially the same, is on a straight line, and shows that torque is transmitted well.
[0037]
FIG. 3 shows a load-elongation curve obtained by treating a sample treated with a heat treatment condition of 500 ° C. × 5 minutes and then a second heat treatment condition of 530 ° C. × 5 minutes with a tensile tester at different temperatures. Indicates. The residual strain at −20 ° C. and −10 ° C. is large, indicating that the superelasticity at low temperature is poor.
[0038]
Figure 4 shows a sample treated with heat treatment conditions of 500 ° C. for 5 minutes, then rounded with a second heat treatment condition of 530 ° C. for 5 minutes into a 30 cm hoop, the angle placed at the tip and the other end rotated. The angle obtained by measuring the measured angle is shown. The rotation of the other end portion does not follow the angle that has been inserted, and is curved, indicating that torque transmission is poor.
[0039]
In addition, when the super elastic wire of the present invention was used as a feeding wire for a fishing rod, a catheter guide wire, and a guide wire for feeding in a hollow tube, it was good.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a superelastic wire that exhibits superelasticity from −20 ° C. to 60 ° C. and has good torque transmission and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a graph showing a load-elongation curve obtained by performing a 5% tensile test at a measurement temperature from −20 ° C. to 60 ° C. after heat treatment of a superelastic wire at 500 ° C. for 5 minutes and then heat treatment at 500 ° C. for 5 minutes. .
FIG. 2 is a diagram showing curves of the angle at the tip and the rotation angle at the other end at 20 ° C. after heat treatment of the superelastic wire at 500 ° C. for 5 minutes and then heat treatment at 500 ° C. for 5 minutes.
FIG. 3 is a graph showing a load-elongation curve obtained by performing a 5% tensile test at a measurement temperature from −20 ° C. to 60 ° C. after heat treatment of a superelastic wire at 500 ° C. for 5 minutes and then heat treatment at 530 ° C. for 5 minutes. .
FIG. 4 is a diagram showing curves of the angle at the tip and the rotation angle at the other end at 20 ° C. after heat treatment of the superelastic wire at 500 ° C. for 5 minutes and heat treatment at 530 ° C. for 5 minutes.
FIG. 5 is a schematic explanatory diagram of a torque transmission test apparatus.
FIG. 6 is a diagram showing a curve of the angle of the rear end portion of the wire rod and the rotation angle of the front end portion in a conventional superelastic wire.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27535197A JP4023878B2 (en) | 1997-09-22 | 1997-09-22 | Superelastic wire and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27535197A JP4023878B2 (en) | 1997-09-22 | 1997-09-22 | Superelastic wire and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1192847A JPH1192847A (en) | 1999-04-06 |
JP4023878B2 true JP4023878B2 (en) | 2007-12-19 |
Family
ID=17554271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27535197A Expired - Lifetime JP4023878B2 (en) | 1997-09-22 | 1997-09-22 | Superelastic wire and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4023878B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002355249A (en) * | 2001-05-31 | 2002-12-10 | Asahi Optical Co Ltd | Clip device for endoscope |
CN102712968A (en) * | 2009-11-02 | 2012-10-03 | 赛伊斯智能材料公司 | Ni-Ti semi-finished products and related methods |
US9307927B2 (en) | 2010-08-05 | 2016-04-12 | Biosense Webster (Israel) Ltd. | Catheter entanglement indication |
US8876726B2 (en) | 2011-12-08 | 2014-11-04 | Biosense Webster (Israel) Ltd. | Prevention of incorrect catheter rotation |
-
1997
- 1997-09-22 JP JP27535197A patent/JP4023878B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1192847A (en) | 1999-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4602636A (en) | Suture wire with integral needle-like tip | |
US6508803B1 (en) | Niti-type medical guide wire and method of producing the same | |
US6783438B2 (en) | Method of manufacturing an endodontic instrument | |
EP1051125B1 (en) | Superelastic endodontic instrument, method of manufacture, and apparatus therefor | |
US5230348A (en) | Guide wire for a catheter | |
EP2501829B1 (en) | Improved fatigue-resistant nitinol instrument | |
JP2004190167A (en) | Hollow twisted wire coil, tool for medical application obtained by using the same, and method for producing the same | |
JP2000512691A (en) | Improved linear elastic member | |
JP4023878B2 (en) | Superelastic wire and manufacturing method thereof | |
EP2404636B1 (en) | Core for guide wire and method of producing same | |
JP3337989B2 (en) | Medical guidewire using high strain Ni-Ti alloy wire with wide strain range | |
JP3560907B2 (en) | NiTi-based alloy wire, method for producing the same, and guide wire for catheter using the NiTi-based alloy wire | |
TW201325642A (en) | Medical guide wire | |
JP3547366B2 (en) | Method for producing wide strain range high elasticity Ni-Ti alloy wire used for medical guidewire | |
JP5386088B2 (en) | Guide wire core, method for manufacturing the core, and medical guide wire using the core | |
DE102005014609A1 (en) | Super elastic titanium alloy for living bodies | |
JPH07148267A (en) | Guide wire for medical treatment and its production | |
JP2013240562A (en) | Medical guide wire | |
JP3597707B2 (en) | Brush shaft wire and interdental brush product using the wire | |
JP2003526177A (en) | Multifilament nickel-titanium alloy drawn superelastic wire | |
JPH04202749A (en) | Manufacture of superelastic alloy wire rod | |
JPS596361A (en) | Preparation of conductive high strength and heat resistant aluminum alloy twisted wire | |
JP2640461B2 (en) | Medical guidewire and medical catheter | |
JP2005131358A (en) | Ti-ni based super-elasticity alloy wire | |
JPH07112027A (en) | Guide wire for medical treatment and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071002 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131012 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141012 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |