Nothing Special   »   [go: up one dir, main page]

JP4093021B2 - Surface mount type SAW filter - Google Patents

Surface mount type SAW filter Download PDF

Info

Publication number
JP4093021B2
JP4093021B2 JP2002327928A JP2002327928A JP4093021B2 JP 4093021 B2 JP4093021 B2 JP 4093021B2 JP 2002327928 A JP2002327928 A JP 2002327928A JP 2002327928 A JP2002327928 A JP 2002327928A JP 4093021 B2 JP4093021 B2 JP 4093021B2
Authority
JP
Japan
Prior art keywords
pattern
substrate
upper electrode
conductor pattern
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002327928A
Other languages
Japanese (ja)
Other versions
JP2004165874A5 (en
JP2004165874A (en
Inventor
卓弥 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2002327928A priority Critical patent/JP4093021B2/en
Publication of JP2004165874A publication Critical patent/JP2004165874A/en
Publication of JP2004165874A5 publication Critical patent/JP2004165874A5/ja
Application granted granted Critical
Publication of JP4093021B2 publication Critical patent/JP4093021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、弾性表面波チップを平板状の実装基板上にバンプを用いてフェイスダウン搭載してから弾性表面波チップを樹脂にて封止した小型構造でありながら、金属キャップを用いたSAWフィルタと同等の減衰特性を得ることを可能にした表面実装型SAWフィルタに関するものである。
【0002】
【従来の技術】
弾性表面波フィルタ(SAWフィルタ)は、水晶、タンタル酸リチウム等の圧電基板上に櫛歯状の電極指から成るIDT電極(インターディジタルトランスジューサ)電極、反射器等の機能部パターンを配置した構成を備え、例えばIDT電極に高周波電界を印加することによって弾性表面波を励起し、弾性表面波を圧電作用によって高周波電界に変換することによってフィルタ特性を得るものである。
SAWフィルタは、高性能、小型、量産性等の優れた特徴を発揮するため、通信分野で広く利用されている。近年、通信端末の高性能化に伴い、SAWフィルタには更に小型かつ高減衰な特性が強く要求されている。
従来の表面実装型SAWフィルタ100として、例えば図6(a)に示すように、SAWチップ101を、パッケージ110の凹所116内に収容したものが知られている。即ち、このSAWチップ101は、圧電基板102の主面上に、櫛形電極としてのIDT電極及び反射器から成る機能部パターン103と、IDT電極の各端子と接続された接続パッド104と、を備えた構成を備えている。パッケージ110は、絶縁材料から成る底板111と、底板の上面周縁に沿って立設されることにより凹所116を形成する絶縁材料から成る外周壁112と、底板111の底面に配置した複数の外部電極113と、底板111の上面に配置され且つ各外部電極113と導通した複数の上部電極114と、外周壁112の上面に配置されて各上部電極114と導通したシールリング115と、シールリング115上に固定されることにより凹所116を気密封止する金属キャップ117と、を備えている。
このSAWフィルタ100にあっては、機能部パターン103が下向きになるようにSAWチップをフェイスダウン状態にし、この状態で、底板111上の上部電極114と接続パッド104とを導体バンプ120を介して接続してフリップチップ実装することによりSAWチップ101のマウントを行い、最後にシールリング115上に金属キャップ117を固着することにより気密構造が完成する。
【0003】
このように従来のSAWフィルタ100にあっては、圧電基板102やパッケージ110側の各パターンだけではなく、パッケージのシールリングや金属キャップも利用して所望の減衰特性を得ていた。すなわち、パッケージのシールリング115や金属キャップ117は、パッケージ上の複数の接地用上部電極114a、114b間にインダクタンスとして接続され、フィルタの減衰特性に影響を与えている。図6(b)はそのフィルタ特性例を示しており、良好な減衰特性が得られている。
しかしながら、このように外周壁112を備えたパッケージ構造では、SAWチップ101の周囲に外周壁112が存在することになるため、SAWフィルタ100の平面形状は必然的に大きくなり、市場の小型化の要求を満足できないという致命的欠点を持つこととなる。
特開平9−116377号公報(富士通)には、パッケージ側のGnd端子間をあるインピーダンスをもって接続した構造が開示されており、接続手段としては金属キャップを用いることが前提となっているため、SAWフィルタの大型化を回避することができない。
特開2000−49565公報(富士通)は、特開平9−116377号公報の場合と同様に、導電性キャップを用いることが前提となっているため、SAWフィルタの大型化を回避することができない。
これに対して、金属キャップを用いずに小型化の要求を満たしたSAWフィルタ130として、図7(a)に示すように、外周壁を有しない平板構造の実装基板131上に、SAWチップ101をフェイスダウン状態でフリップチップ搭載してから、SAWチップ外面を封止樹脂135を用いて気密封止するようにしたCSP(チップサイズパッケージ)タイプが知られている。
しかしながら、この構造にあっては、図6(a)に示したタイプのSAWフィルタとは異なり、シールリング115や金属キャップ117を、複数の接地用上部電極114a、114b間にインダクタンスとして接続しないため、図7(b)のフィルタ特性例の如く、SAWフィルタとしての減衰特性が著しく劣化する。
【0004】
また、図8(a)は図7(a)のSAWフィルタの変形例であり、実装基板131上の複数の接地用上部電極114a、114b間を、非常に小さい値のインダクタンスとなる短尺の金属配線140にて接続した構造を備えている。
図8(b)は図8(a)のSAWフィルタのフィルタ特性例を示しており、これによればフィルタの減衰特性が劣化していることが明らかである。即ち、実装基板131上の複数の接地用上部電極114a、114b間を接続する金属配線140が持つインダクタンスをある程度大きな値にしなければ、所望の減衰特性を得ることはできないことが明らかである。
特開2000−406400(京セラ)には、減衰特性向上のために圧電基板の下面もしくは外周部にGnd電極が励振電極を取り囲むように配置されたSAWフィルタが開示されている。しかし、後述するように、本発明においては、Gnd電極が励振電極を取り囲む必要はないので、本発明とは異なった発明である。
【特許文献1】
特開平9−116377号公報
【特許文献2】
特開2000−049565公報
【特許文献3】
特開2000−406400公報
【0005】
【発明が解決しようとする課題】
本発明は上記に鑑みてなされたものであり、金属キャップを備えないCSP構造のSAWフィルタでありながら、金属キャップを用いた構造のSAWフィルタと同等の減衰特性を得ることが可能なSAWフィルタを提供することを目的としている。
即ち、平板構造の実装基板を備えたSAWフィルタにおいて、SAWフィルタの全体形状を大型化することなく、実装基板上の周縁に位置するスペースを活用してインダクタンスとして機能する導体パターンを配置することにより、複数の接地用上部電極間を十分に大きな値のインダクタンスとしての導体パターンを介して接続して、十分な減衰特性を得ることを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、平板状の絶縁基板、該絶縁基板の下部に設けた表面実装用の複数の外部電極、及び各外部電極と導通し且つ該絶縁基板の上部に設けた複数の上部電極、を備えた実装基板と、圧電基板、該圧電基板の下面に形成され且つ前記各上部電極上に導体バンプを介してフリップチップ実装される複数の接続パッド、及び該圧電基板の下面に形成され且つ該各接続パッドと導通接続された機能部パターン、を備えたSAWチップと、該SAWチップ下面と前記実装基板上面との間に気密空間を形成するようにSAWチップ外面全体を被覆する封止樹脂と、を備え、前記複数の接続パッドの内の接地用接続パッドが、前記複数の上部電極の内の接地用上部電極と導通接続された表面実装型SAWフィルタにおいて、前記実装基板上面の外周部には、前記接地用上部電極を包囲するようにインダクタンスを得るための連続環状体の導体パターンと、該導体パターン前記接地用上部電極とを導通接続するリードパターンと、が形成され、前記導体パターンと前記各接地用上部電極とを接続する前記各リードパターン間の距離は最も離間するように設定されていることを特徴とする。
請求項の発明では、平板状の絶縁基板、該絶縁基板の下部に設けた表面実装用の複数の外部電極、及び各外部電極と導通し且つ該絶縁基板の上部に設けた複数の上部電極、を備えた実装基板と、圧電基板、該圧電基板の下面に形成され且つ前記各上部電極上に導体バンプを介してフリップチップ実装される複数の接続パッド、及び該圧電基板の下面に形成され且つ該各接続パッドと導通接続された機能部パターン、を備えたSAWチップと、該SAWチップ下面と前記実装基板上面との間に気密空間を形成するようにSAWチップ外面全体を被覆する封止樹脂と、を備え、前記複数の接続パッドの内の接地用接続パッドが、前記複数の上部電極の内の接地用上部電極と導通接続された表面実装型SAWフィルタにおいて、前記実装基板上面の外周部には、前記接地用上部電極を包囲するようにインダクタンスを得るための非連続環状体の導体パターンと、該導体パターンと前記各接地用上部電極とを導通接続するリードパターンと、が形成され、前記導体パターンと前記各接地用上部電極とを接続する前記各リードパターン間の距離は最も離間するように設定されていることを特徴とする。
【0007】
請求項の発明では、平板状の絶縁基板、該絶縁基板の下部に設けた表面実装用の複数の外部電極、及び各外部電極と導通し且つ該絶縁基板の上部に設けた複数の上部電極、を備えた実装基板と、圧電基板、該圧電基板の下面に形成され且つ前記各上部電極上に導体バンプを介してフリップチップ実装される複数の接続パッド、及び該圧電基板の下面に形成され且つ該各接続パッドと導通接続された機能部パターン、を備えたSAWチップと、該SAWチップ下面と前記実装基板上面との間に気密空間を形成するようにSAWチップ外面全体を被覆する封止樹脂と、を備え、前記複数の接続パッドの内の接地用接続パッドが、前記複数の上部電極の内の接地用上部電極と導通接続された表面実装型SAWフィルタにおいて、前記実装基板上面の外周部には、前記接地用上部電極を包囲するようにインダクタンスを得るための非連続環状体の導体パターンと、該導体パターンと前記各接地用上部電極とを導通接続するリードパターンと、が形成され、前記導体パターンと前記各接地用上部電極とを接続する前記各リードパターンは導体パターンの両端部から前記各接地用上部電極に接続され、前記各リードパターン間の距離は最も接近するように設定されていることを特徴とする。
請求項の発明は、請求項1、2、又は3において、前記機能部パターンは、IDT電極と反射器を縦結合二重モード構造とし、更に前記縦結合二重モード構造を2段縦続接続したことを特徴とする
【0008】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて詳細に説明する。
図1(a)及び(b)は本発明に係るSAWフィルタの構造の一例を示す縦断面図及び実装基板の平面図である。
このSAWフィルタ1は、外周壁を有しない平板状の実装基板2上に、SAWチップ10をフェイスダウン状態でフリップチップ実装すると共に、SAWチップ10の下面と実装基板上面との間にSAW伝搬用の気密空間Sを形成するように封止樹脂20をSAWチップ10の外面に被覆形成した構成を備えている。
実装基板2は、平板状の絶縁基板3と、絶縁基板3の下部に設けた表面実装用の複数の外部電極4と、各外部電極4と導通し且つ絶縁基板3の上部に設けられた複数の上部電極5と、を備えている。
SAWチップ10は、水晶、或いはタンタル酸リチウム(LiTaO)等の圧電材料から成る圧電基板11と、圧電基板下面に形成されて実装基板2側の上部電極5上に導体バンプ21を介してフリップチップ接続される複数の接続パッド12と、圧電基板下面に形成されて接続パッド12と導通接続された機能部パターン13と、を備えている。機能部パターン13は、後述するIDT電極(インターディジタルトランスジューサ)電極と、反射器等から構成されている。また、SAWチップ下面と実装基板上面との間に気密空間Sを形成するようにSAWチップ外面全体に封止樹脂20が被覆形成されている。
接続パッド12は、入力用、出力用の各接続パッド12i、12oの他に、接地用接続パッド12g、12g’を備えている。また、実装基板側の上部電極5も、入力用、出力用の上部電極5i、5oの他に、接地用上部電極5g、5g’を備えている。これらの接地用接続パッド12g、12g’が夫々接地用上部電極5g、5g’と、導体バンプ21によって導通接続されている。
【0009】
本発明の特徴的な構成は、実装基板2の上面周縁のデッドスペース内に、接地用の上部電極5g、5g’を包囲するようにインダクタンスを得るための環状の導体パターン30を形成し、導体パターン30を各接地用上部電極5g、5g’と導通接続している点にある。この実施形態に係る実装基板2は、平板状の絶縁基板3の上面外周縁部に沿って環状長尺の金属配線から成る導体パターン30を配置し、この導体パターン30をリードパターン31を介して接地用上部電極5g、5g’と接続することにより、接地用上部電極5g、5g’間に大きな値のインダクタンスを接続した構成を実現している。
図2は、図1のSAWフィルタ1のフィルタ特性例を示しており、導体パターン30が存在しない従来品と比較して、本発明のSAWフィルタにおいては減衰量が向上している。これは、上述の如く複数の接地用上部電極間に接続されて大きな値のインダクタンスとして機能する長尺の導体パターン30を設けたことによる本発明特有の効果である。
【0010】
次に、図3は、圧電基板11上の配線パターン(機能部パターン13及び接続パッド12)の詳細な構成を示しており、本実施形態例に係る機能部パターン13は、縦結合二重モードSAWフィルタを2段縦続接続した構造を備えている。圧電基板11にはタンタル酸リチウム(LiTaO3)を用い、この圧電基板11上に形成される一方(入力側)の機能部パターン13は、3個のIDT電極40a、40b、40cと、これらのIDT電極40a、40b、40cのSAW伝搬方向両側に夫々配置した反射器41a、41bを備えた構造となっている。また、他方(出力側)の機能部パターン13’は、3個のIDT電極40a’、40b’、40c’と、これらのIDT電極40a’、40b’、40c’のSAW伝搬方向両側に夫々配置した反射器41a’、41b’を備えた構造となっている。
各IDT電極40a、40b、40c、40a’、40b’、40c’は、それぞれ互いに交差した複数本の電極指を有する一対の櫛形電極により構成されている。中央のIDT電極40bに入力された信号は両側のIDT電極40a、40cから並列に出力され、1段の縦結合二重モードSAWフィルタとして機能する。本実施例ではこれを2段縦続接続しており、IDT電極40a、40cから並列に出力された信号は出力側のIDT電極40a’、40c’に入力され、IDT電極40b’から出力される。また、反射器41a、41b(出力側の反射器41a’、41b’も同様)はIDT電極からの漏洩弾性表面波を反射する機能を有し、IDT電極で励起される弾性表面波のエネルギーを両反射器間に閉じ込めることにより縦1次モードと縦3次モードを分離して励起し、この二つのモードの共振周波数差を利用して縦結合二重モードSAWフィルタを実現する。
接地用接続パッド12g、12g’は、導体バンプ21を介して図1(b)の平板構造の実装基板2上に接続される。即ち、接地用接続パッド12gは、接地用上部電極5gに、接地用接続パッド12gは接地用上部電極5gに夫々接続される。なお、他の2つの接地用接続パッド12g”は、夫々接地用上部電極5g、5g’と導体バンプにより接続される。
【0011】
従来例の説明中にて述べた通り、SAWフィルタの減衰特性を良好に維持するためには、接地用上部電極間インダクタンスはある程度大きな値でなければならない。本発明では、接地用上部電極間インダクタンスを得るための金属配線としての導体パターン30を平板構造の実装基板2の上面外周部に設けることで、距離の長い導体パターン30を実現している。しかも、接地用上部電極間インダクタンスを得るための導体パターン30を平板構造実装基板の上面外周部に設けることによる効果は、そのインダクタンスの値を大きくしやすいという点だけではなく、接地用上部電極間の導体パターン30と他の信号線との不要な電磁的結合を抑圧しやすく、しかもインダクタンスの値を調整して市場の多様な減衰特性要求に容易に対応できる、といった利点をも有する。
このことを図4に基づいて詳細に説明する。図4(a)〜(c)はいずれも平板構造の実装基板2上の導体パターン30の構成例を示しており、(a)は図1(b)と同一構造であり、(b)(c)は変形構造を示している。これらの実施形態では、いずれも絶縁基板3上に所定の間隔を隔てて対向配置された接地用上部電極5g、5g’を包囲するように環状(連続環状、或いは非連続環状)に導体パターン30が配置されてリードパターン31によって接続されているため、接地用上部電極5g、5g’間にインダクタンスとして動作する導体パターン30が接続された構造になっている。
具体的には、図4(a)においては、連続的な環状体としての導体パターン30が両接地用上部電極5g、5g’を完全に包囲するように配置され、各接地用上部電極5g、5g’と導体パターン30との間は、リードパターン31によって導通されている。2つのリードパターン31の位置は、最も離間した位置となるように矩形の導体パターン30の対角線に沿った位置に配置されている。
図4(b)の例では、導体パターン30は、連続した環状体ではなく、両接地用上部電極5g、5g’間の境界に相当する位置にて切断された非連続的な環状体である。リードパターン31の位置は図4(a)の例と同様である。
図4(c)の例では、導体パターン30は、図4(b)と同様に非連続的な環状体であるが、リードパターン31の位置は互いに最も接近した位置となるように設定されている。
上記各実施形態に係る実装基板2においては、いうまでもなく接地用上部電極間インダクタンスの大きさは、(a)<(b)<(c)の順となっており、そのインダクタンスの値は図4(a)の例が0.84nH、(b)の例が1.60nH、(c)の例が2.69nHである。
図5(a)〜(c)は、図4(a)〜(c)の各実施形態に係る実装基板を用いたSAWフィルタのフィルタ特性を示しており、いずれの減衰特性も接地用上部電極間インダクタンス接続が無い従来構造品と比べて大幅に改善され、しかも容易にその減衰特性を調整できることがわかる。本実施形態の場合、例えば通過帯域近傍減衰量を重視するならば、接地用上部電極間インダクタンスを大きくすればよい。すなわち図4(c)のような導体パターン構造にすればよい。
尚、本発明による効果は、各実施形態にて例示した縦結合二重モードSAWフィルタを2段縦続接続したような構造に限らず、例えばラダー型SAWフィルタ等でも得られることは自明である。
【0012】
本発明は以上説明したように、外壁のない平板構造の実装基板をパッケージとして用い、金属キャップを用いずに封止樹脂を用いてSAWチップの気密構造を実現するSAWフィルタにおいて、実装基板上の複数の接地用上部電極間をある程度大きなインダクタンスで接続するために、実装基板上面外周部のデッドスペースを利用してインダクタンスとしての導体パターン(金属配線)を設けた。このように、距離が長く面積が大きい導体パターン、すなわち値の大きなインダクタンスを接地用上部電極間に接続した構造とすることで、小型でかつ高減衰な特性のSAWフィルタを供給することが可能となる。しかも平板構造の実装基板外周部に設けた導体パターンの面積や形状を調整したり、導体パターンと各接地用上部電極との接続箇所を種々変更設定することにより、インダクタンスの値を容易に調整できるため、市場の要求に合わせて減衰特性を容易に調整できることとなる。
【0013】
【発明の効果】
以上のように本発明によれば、金属キャップを備えないCSP構造のSAWフィルタでありながら、金属キャップを用いた構造のSAWフィルタと同等の減衰特性を得ることが可能となる。即ち、平板構造の実装基板を備えたSAWフィルタにおいて、SAWフィルタの全体形状を大型化することなく、実装基板上の外周縁に位置するデッドスペース上に、インダクタンスとして機能する導体パターンを配置することにより、複数の接地用上部電極間を十分に大きな値のインダクタンスとしての導体パターンを介して接続して、十分な減衰特性を得ることができる。しかも、本発明では、インダクタンスの値を任意に調整することにより、任意の減衰量を得ることが可能となる。
即ち、本発明によれば、インダクタンスとしての導体パターン(金属配線)を実装基板上面外周部に設けることにより、パッケージを大型化することなく、距離の長い導体パターン、即ち値の大きなインダクタンスが実現でき、所望の減衰量を得ることができる。
また本発明によれば、平板構造の実装基板外周部に設けた導体パターンの面積や形状を調整したり、導体パターンと各接地用上部電極との接続箇所を種々変更設定することにより、インダクタンスの値を容易に調整できるため、市場の要求に合わせて減衰特性を容易に調整できることとなる。
また本発明はあらゆるタイプの機能部パターン構造を備えたSAWフィルタに適用可能である。
【図面の簡単な説明】
【図1】(a)及び(b)は本発明に係るSAWフィルタの構造の一例を示す縦断面図及び実装基板の平面図。
【図2】図1のSAWフィルタ1のフィルタ特性例を示す図。
【図3】圧電基板上の配線パターンの詳細な構成を示す図。
【図4】(a)〜(c)は平板構造の実装基板上の導体パターンの構成例を示す図。
【図5】(a)〜(c)は、図4(a)〜(c)の各実施形態に係る実装基板を用いたSAWフィルタのフィルタ特性を示す図。
【図6】(a)及び(b)は従来のSAWフィルタの構成を示す断面図、及びその減衰特性を示す図。
【図7】(a)及び(b)は他の従来例に係るSAWフィルタの構成を示す断面図、及びその減衰特性を示す図。
【図8】(a)及び(b)は他の従来例に係るSAWフィルタの構成を示す断面図、及びその減衰特性を示す図。
【符号の説明】
1 SAWフィルタ、2 実装基板、3 絶縁基板、4 外部電極、5 上部電極、5i、5o 上部電極、5g、5g’ 接地用上部電極、10 SAWチップ、11 圧電基板、12 接続パッド、12i、12o 接続パッド、12g、12g’ 接地用接続パッド、13 機能部パターン、S 気密空間、20封止樹脂、21 導体バンプ、30 導体パターン、31 リードパターン、40a、40b、40c 、40a’、40b’、40c’ IDT電極、41a、41b、41a’、41b’ 反射器。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a SAW filter using a metal cap while having a small structure in which a surface acoustic wave chip is face-down mounted on a flat mounting substrate using a bump and then the surface acoustic wave chip is sealed with a resin. It is related with the surface mount type SAW filter which made it possible to obtain the same attenuation characteristic.
[0002]
[Prior art]
The surface acoustic wave filter (SAW filter) has a configuration in which functional part patterns such as IDT electrodes (interdigital transducer) electrodes composed of comb-like electrode fingers and reflectors are arranged on a piezoelectric substrate such as crystal or lithium tantalate. For example, a surface acoustic wave is excited by applying a high frequency electric field to the IDT electrode, and a filter characteristic is obtained by converting the surface acoustic wave into a high frequency electric field by a piezoelectric action.
SAW filters are widely used in the communication field because they exhibit excellent characteristics such as high performance, small size, and mass productivity. In recent years, with higher performance of communication terminals, SAW filters are strongly required to have smaller and higher attenuation characteristics.
As a conventional surface-mount SAW filter 100, for example, a SAW chip 101 accommodated in a recess 116 of a package 110 as shown in FIG. 6A is known. That is, the SAW chip 101 includes, on the main surface of the piezoelectric substrate 102, a functional part pattern 103 including IDT electrodes and reflectors as comb-shaped electrodes, and connection pads 104 connected to respective terminals of the IDT electrodes. It has a configuration. The package 110 includes a bottom plate 111 made of an insulating material, an outer peripheral wall 112 made of an insulating material that forms a recess 116 by being erected along the periphery of the upper surface of the bottom plate, and a plurality of external parts disposed on the bottom surface of the bottom plate 111. An electrode 113, a plurality of upper electrodes 114 disposed on the upper surface of the bottom plate 111 and electrically connected to each external electrode 113, a seal ring 115 disposed on the upper surface of the outer peripheral wall 112 and electrically connected to each upper electrode 114, and a seal ring 115 And a metal cap 117 that hermetically seals the recess 116 by being fixed on the top.
In this SAW filter 100, the SAW chip is face down so that the functional part pattern 103 faces downward, and in this state, the upper electrode 114 and the connection pad 104 on the bottom plate 111 are connected via the conductor bump 120. The SAW chip 101 is mounted by connecting and flip-chip mounting, and finally the metal cap 117 is fixed on the seal ring 115 to complete the airtight structure.
[0003]
As described above, in the conventional SAW filter 100, desired attenuation characteristics are obtained by using not only the patterns on the piezoelectric substrate 102 and the package 110 side but also the seal ring and metal cap of the package. That is, the package seal ring 115 and the metal cap 117 are connected as inductances between the plurality of grounding upper electrodes 114a and 114b on the package, and affect the attenuation characteristics of the filter. FIG. 6B shows an example of the filter characteristic, and a good attenuation characteristic is obtained.
However, in the package structure including the outer peripheral wall 112 as described above, the outer peripheral wall 112 exists around the SAW chip 101, so that the planar shape of the SAW filter 100 is inevitably increased, and the market size is reduced. It will have a fatal defect that it cannot satisfy the request.
Japanese Laid-Open Patent Publication No. 9-116377 (Fujitsu) discloses a structure in which the Gnd terminals on the package side are connected with a certain impedance, and it is assumed that a metal cap is used as the connecting means. An increase in the size of the filter cannot be avoided.
Since JP 2000-49565 (Fujitsu) is based on the premise that a conductive cap is used, as in the case of JP 9-116377 A, the increase in size of the SAW filter cannot be avoided.
On the other hand, as shown in FIG. 7A, as a SAW filter 130 that satisfies the requirement for miniaturization without using a metal cap, a SAW chip 101 is mounted on a flat-plate mounting substrate 131 having no outer peripheral wall. There is known a CSP (chip size package) type in which a SAW chip outer surface is hermetically sealed using a sealing resin 135 after mounting the chip in a face-down state.
However, in this structure, unlike the SAW filter of the type shown in FIG. 6A, the seal ring 115 and the metal cap 117 are not connected as inductance between the plurality of grounding upper electrodes 114a and 114b. As shown in the filter characteristic example of FIG. 7B, the attenuation characteristic of the SAW filter is significantly deteriorated.
[0004]
FIG. 8A is a modification of the SAW filter of FIG. 7A, and a short metal having a very small inductance between the plurality of grounding upper electrodes 114a and 114b on the mounting substrate 131. A structure connected by wiring 140 is provided.
FIG. 8B shows an example of the filter characteristic of the SAW filter of FIG. 8A, and it is clear that the attenuation characteristic of the filter is deteriorated. That is, it is apparent that the desired attenuation characteristics cannot be obtained unless the inductance of the metal wiring 140 connecting the plurality of grounding upper electrodes 114a and 114b on the mounting substrate 131 is set to a certain large value.
Japanese Patent Application Laid-Open No. 2000-406400 (Kyocera) discloses a SAW filter in which a Gnd electrode is disposed so as to surround an excitation electrode on a lower surface or an outer peripheral portion of a piezoelectric substrate in order to improve attenuation characteristics. However, as will be described later, in the present invention, the Gnd electrode does not need to surround the excitation electrode, and thus is an invention different from the present invention.
[Patent Document 1]
JP-A-9-116377 [Patent Document 2]
JP 2000-049565 A [Patent Document 3]
JP 2000-406400 A
[Problems to be solved by the invention]
The present invention has been made in view of the above, and provides a SAW filter capable of obtaining attenuation characteristics equivalent to a SAW filter having a metal cap but a CSP structure without a metal cap. It is intended to provide.
That is, in a SAW filter provided with a flat-plate mounting board, a conductor pattern that functions as an inductance is arranged by utilizing the space located on the peripheral edge of the mounting board without increasing the overall shape of the SAW filter. The object is to obtain a sufficient attenuation characteristic by connecting a plurality of grounding upper electrodes through a conductor pattern as an inductance having a sufficiently large value.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is a flat insulating substrate, a plurality of external electrodes for surface mounting provided on the lower portion of the insulating substrate, and an upper portion of the insulating substrate that is electrically connected to each external electrode. A plurality of upper pads provided on the piezoelectric substrate, a piezoelectric substrate, a plurality of connection pads formed on the lower surface of the piezoelectric substrate and flip-chip mounted on the upper electrodes via conductor bumps, and A SAW chip having a functional part pattern formed on the lower surface of the piezoelectric substrate and electrically connected to the connection pads, and a SAW chip so as to form an airtight space between the lower surface of the SAW chip and the upper surface of the mounting substrate. A surface mount SAW filter in which a grounding connection pad of the plurality of connection pads is electrically connected to a grounding upper electrode of the plurality of upper electrodes. Oh Te, the outer peripheral portion of the mounting substrate upper surface is electrically connected to the conductor pattern of the continuous annular member for obtaining the inductance so as to surround the ground upper electrode, wherein the conductor pattern and the ground for the upper electrode The lead pattern is formed, and the distance between the lead patterns that connect the conductor pattern and the grounding upper electrodes is set to be the most separated.
In the invention of claim 2 , a flat insulating substrate, a plurality of external electrodes for surface mounting provided at the lower portion of the insulating substrate, and a plurality of upper electrodes provided on the insulating substrate and electrically connected to the external electrodes A mounting substrate, a piezoelectric substrate, a plurality of connection pads formed on the lower surface of the piezoelectric substrate and flip-chip mounted on the upper electrodes via conductor bumps, and formed on the lower surface of the piezoelectric substrate. And a sealing member that covers the entire outer surface of the SAW chip so as to form an airtight space between the lower surface of the SAW chip and the upper surface of the mounting substrate. A surface mount type SAW filter, wherein a ground connection pad of the plurality of connection pads is conductively connected to a ground upper electrode of the plurality of upper electrodes. A non-continuous annular conductor pattern for obtaining an inductance so as to surround the grounding upper electrode and a lead pattern for electrically connecting the conductor pattern and each grounding upper electrode are formed on the outer periphery. is the distance between the respective lead patterns for connecting the conductor pattern and the respective grounding upper electrode, characterized in that it is configured to farthest.
[0007]
According to a third aspect of the present invention, a flat insulating substrate, a plurality of external electrodes for surface mounting provided below the insulating substrate, and a plurality of upper electrodes provided on the insulating substrate and electrically connected to the external electrodes A mounting substrate, a piezoelectric substrate, a plurality of connection pads formed on the lower surface of the piezoelectric substrate and flip-chip mounted on the upper electrodes via conductor bumps, and formed on the lower surface of the piezoelectric substrate. And a sealing member that covers the entire outer surface of the SAW chip so as to form an airtight space between the lower surface of the SAW chip and the upper surface of the mounting substrate. A surface mount type SAW filter, wherein a ground connection pad of the plurality of connection pads is conductively connected to a ground upper electrode of the plurality of upper electrodes. A non-continuous annular conductor pattern for obtaining an inductance so as to surround the grounding upper electrode and a lead pattern for electrically connecting the conductor pattern and each grounding upper electrode are formed on the outer periphery. is, wherein each lead pattern for connecting the conductor pattern each ground upper electrode is connected to the upper electrode for the respective ground from both ends of the conductor pattern, the distance between each of the lead patterns to closest It is characterized by being set .
According to a fourth aspect of the present invention, in the first, second , or third aspect , the functional part pattern has an IDT electrode and a reflector having a longitudinally coupled double mode structure, and the longitudinally coupled dual mode structure is connected in two stages in cascade. It is characterized by that .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1A and 1B are a longitudinal sectional view and a plan view of a mounting substrate showing an example of the structure of a SAW filter according to the present invention.
This SAW filter 1 flip-chip mounts a SAW chip 10 in a face-down state on a flat mounting board 2 having no outer peripheral wall, and is used for SAW propagation between the lower surface of the SAW chip 10 and the upper surface of the mounting board. The sealing resin 20 is provided on the outer surface of the SAW chip 10 so as to form the hermetic space S.
The mounting substrate 2 includes a flat insulating substrate 3, a plurality of surface-mounting external electrodes 4 provided below the insulating substrate 3, and a plurality of conductive electrodes that are electrically connected to the external electrodes 4 and provided above the insulating substrate 3. The upper electrode 5 is provided.
The SAW chip 10 is flip-flopped via conductor bumps 21 on a piezoelectric substrate 11 made of a piezoelectric material such as quartz or lithium tantalate (LiTaO 3 ) and an upper electrode 5 on the mounting substrate 2 side formed on the lower surface of the piezoelectric substrate. A plurality of connection pads 12 connected to the chip and a functional part pattern 13 formed on the lower surface of the piezoelectric substrate and connected to the connection pads 12 are provided. The functional part pattern 13 is composed of an IDT electrode (interdigital transducer) electrode described later, a reflector, and the like. Further, a sealing resin 20 is formed on the entire outer surface of the SAW chip so as to form an airtight space S between the lower surface of the SAW chip and the upper surface of the mounting substrate.
The connection pad 12 includes ground connection pads 12g and 12g ′ in addition to the input and output connection pads 12i and 12o. Also, the upper electrode 5 on the mounting substrate side includes grounding upper electrodes 5g and 5g ′ in addition to the input and output upper electrodes 5i and 5o. These grounding connection pads 12g and 12g ′ are conductively connected to the grounding upper electrodes 5g and 5g ′ by the conductor bumps 21, respectively.
[0009]
The characteristic configuration of the present invention is that an annular conductor pattern 30 for obtaining an inductance is formed in a dead space at the periphery of the upper surface of the mounting substrate 2 so as to surround the grounding upper electrodes 5g and 5g ′. The pattern 30 is electrically connected to the grounding upper electrodes 5g and 5g ′. In the mounting substrate 2 according to this embodiment, a conductor pattern 30 made of an annular long metal wiring is arranged along the outer peripheral edge of the upper surface of the flat insulating substrate 3, and the conductor pattern 30 is arranged via a lead pattern 31. By connecting to the grounding upper electrodes 5g and 5g ′, a configuration in which a large inductance is connected between the grounding upper electrodes 5g and 5g ′ is realized.
FIG. 2 shows an example of the filter characteristics of the SAW filter 1 of FIG. 1, and the amount of attenuation is improved in the SAW filter of the present invention as compared with the conventional product in which the conductor pattern 30 does not exist. This is an effect peculiar to the present invention due to the provision of the long conductor pattern 30 that is connected between the plurality of grounding upper electrodes and functions as a large value inductance as described above.
[0010]
Next, FIG. 3 shows a detailed configuration of the wiring pattern (functional part pattern 13 and connection pad 12) on the piezoelectric substrate 11, and the functional part pattern 13 according to this embodiment is a vertically coupled double mode. It has a structure in which SAW filters are cascaded in two stages. Lithium tantalate (LiTaO 3 ) is used for the piezoelectric substrate 11, and one (input side) functional part pattern 13 formed on the piezoelectric substrate 11 includes three IDT electrodes 40 a, 40 b, 40 c, and these The IDT electrodes 40a, 40b, and 40c are structured to include reflectors 41a and 41b disposed on both sides of the SAW propagation direction. The other (output side) functional part pattern 13 ′ is arranged on both sides of the SAW propagation direction of the three IDT electrodes 40a ′, 40b ′, 40c ′ and the IDT electrodes 40a ′, 40b ′, 40c ′. The reflectors 41a ′ and 41b ′ are provided.
Each IDT electrode 40a, 40b, 40c, 40a ′, 40b ′, 40c ′ is composed of a pair of comb-shaped electrodes each having a plurality of electrode fingers intersecting each other. The signal input to the central IDT electrode 40b is output in parallel from the IDT electrodes 40a and 40c on both sides and functions as a single-stage vertically coupled double mode SAW filter. In this embodiment, these are cascaded in two stages, and signals output in parallel from the IDT electrodes 40a and 40c are input to the IDT electrodes 40a ′ and 40c ′ on the output side and output from the IDT electrode 40b ′. Further, the reflectors 41a and 41b (the same applies to the output-side reflectors 41a ′ and 41b ′) have a function of reflecting the leaky surface acoustic wave from the IDT electrode, and the energy of the surface acoustic wave excited by the IDT electrode is obtained. By confining between both reflectors, the longitudinal first-order mode and the longitudinal third-order mode are separated and excited, and a longitudinally coupled double-mode SAW filter is realized by utilizing the difference between the resonance frequencies of the two modes.
The ground connection pads 12g and 12g ′ are connected to the mounting substrate 2 having a flat structure shown in FIG. That is, the ground connection pad 12g is connected to the ground upper electrode 5g, and the ground connection pad 12g ' is connected to the ground upper electrode 5g ' . The other two ground connection pads 12g "are connected to the ground upper electrodes 5g and 5g 'by conductor bumps, respectively.
[0011]
As described in the explanation of the conventional example, in order to maintain the attenuation characteristic of the SAW filter satisfactorily, the inductance between the grounding upper electrodes must be a certain value. In the present invention, the conductor pattern 30 having a long distance is realized by providing the conductor pattern 30 as the metal wiring for obtaining the inductance between the upper electrodes for grounding on the outer peripheral portion of the upper surface of the mounting board 2 having the flat structure. In addition, the effect of providing the conductor pattern 30 for obtaining the inductance between the upper electrodes for grounding on the outer peripheral portion of the upper surface of the flat plate mounting board is not only that the value of the inductance is easily increased, but also between the upper electrodes for grounding. The present invention has an advantage that unnecessary electromagnetic coupling between the conductor pattern 30 and other signal lines can be easily suppressed, and the inductance value can be adjusted to easily meet various attenuation characteristics demands on the market.
This will be described in detail with reference to FIG. 4A to 4C show examples of the configuration of the conductor pattern 30 on the mounting substrate 2 having a flat plate structure. FIG. 4A shows the same structure as FIG. c) shows a deformed structure. In these embodiments, the conductor pattern 30 has a ring shape (continuous ring or non-continuous ring) so as to surround the grounding upper electrodes 5g and 5g ′ disposed opposite to each other on the insulating substrate 3 at a predetermined interval. Are arranged and connected by the lead pattern 31, so that the conductor pattern 30 that operates as an inductance is connected between the grounding upper electrodes 5g and 5g ′.
Specifically, in FIG. 4A, a conductor pattern 30 as a continuous annular body is disposed so as to completely surround both grounding upper electrodes 5g, 5g ′, and each grounding upper electrode 5g, The lead pattern 31 is electrically connected between 5g ′ and the conductor pattern 30. The positions of the two lead patterns 31 are arranged at positions along diagonal lines of the rectangular conductor pattern 30 so as to be the most separated positions.
In the example of FIG. 4B, the conductor pattern 30 is not a continuous annular body but a discontinuous annular body cut at a position corresponding to the boundary between the grounding upper electrodes 5g and 5g ′. . The position of the lead pattern 31 is the same as in the example of FIG.
In the example of FIG. 4C, the conductor pattern 30 is a discontinuous annular body as in FIG. 4B, but the positions of the lead patterns 31 are set so as to be closest to each other. Yes.
In the mounting substrate 2 according to each of the above embodiments, needless to say, the magnitude of the upper inter-electrode inductance for grounding is in the order of (a) <(b) <(c), and the value of the inductance is The example of FIG. 4A is 0.84 nH, the example of (b) is 1.60 nH, and the example of (c) is 2.69 nH.
FIGS. 5A to 5C show the filter characteristics of the SAW filter using the mounting substrate according to each of the embodiments shown in FIGS. 4A to 4C. Each of the attenuation characteristics has an upper electrode for grounding. It can be seen that this is a significant improvement over the conventional structure without inter-inductance connection, and the attenuation characteristics can be easily adjusted. In the case of this embodiment, for example, if importance is attached to the attenuation near the passband, the inductance between the grounding upper electrodes may be increased. That is, a conductor pattern structure as shown in FIG.
It is obvious that the effect of the present invention is not limited to the structure in which the vertically coupled double mode SAW filters exemplified in the embodiments are connected in two stages, for example, a ladder type SAW filter.
[0012]
As described above, the present invention provides a SAW filter that uses a flat-plate mounting substrate without an outer wall as a package and realizes an airtight structure of a SAW chip using a sealing resin without using a metal cap. In order to connect the plurality of grounding upper electrodes with a somewhat large inductance, a conductor pattern (metal wiring) as an inductance is provided using a dead space on the outer peripheral portion of the upper surface of the mounting substrate. As described above, a conductor pattern having a long distance and a large area, that is, a structure in which a large inductance is connected between the grounding upper electrodes, it is possible to supply a SAW filter having a small size and a high attenuation characteristic. Become. Moreover, the inductance value can be easily adjusted by adjusting the area and shape of the conductor pattern provided on the outer periphery of the mounting substrate having a flat plate structure, or by variously changing and setting the connection location between the conductor pattern and each grounding upper electrode. Therefore, the attenuation characteristic can be easily adjusted according to the market demand.
[0013]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an attenuation characteristic equivalent to that of a SAW filter having a metal cap, although it is a CSP structure SAW filter having no metal cap. That is, in a SAW filter provided with a flat-plate mounting board, a conductor pattern that functions as an inductance is arranged in a dead space located on the outer periphery of the mounting board without increasing the overall shape of the SAW filter. As a result, a plurality of grounding upper electrodes can be connected via a conductor pattern as an inductance having a sufficiently large value, and sufficient attenuation characteristics can be obtained. In addition, in the present invention, it is possible to obtain an arbitrary attenuation amount by arbitrarily adjusting the inductance value.
That is, according to the present invention , by providing a conductor pattern (metal wiring) as an inductance on the outer peripheral portion of the upper surface of the mounting substrate, a conductor pattern having a long distance, that is, an inductance having a large value can be realized without increasing the size of the package. The desired attenuation can be obtained.
Further , according to the present invention, by adjusting the area and shape of the conductor pattern provided on the outer peripheral portion of the mounting board having a flat plate structure, or by changing and setting various connection points between the conductor pattern and each grounding upper electrode, Since the value can be easily adjusted, the attenuation characteristic can be easily adjusted according to the market demand.
The present invention can be applied to SAW filters having all types of functional part pattern structures.
[Brief description of the drawings]
FIGS. 1A and 1B are a longitudinal sectional view and a plan view of a mounting substrate showing an example of the structure of a SAW filter according to the present invention.
FIG. 2 is a diagram showing an example of filter characteristics of the SAW filter 1 of FIG.
FIG. 3 is a diagram showing a detailed configuration of a wiring pattern on a piezoelectric substrate.
FIGS. 4A to 4C are diagrams illustrating a configuration example of a conductor pattern on a mounting substrate having a flat plate structure.
FIGS. 5A to 5C are diagrams illustrating filter characteristics of a SAW filter using the mounting substrate according to each embodiment of FIGS. 4A to 4C. FIGS.
6A and 6B are a cross-sectional view showing a configuration of a conventional SAW filter and a diagram showing attenuation characteristics thereof.
7A and 7B are a cross-sectional view showing a configuration of a SAW filter according to another conventional example, and a diagram showing an attenuation characteristic thereof.
8A and 8B are a cross-sectional view showing a configuration of a SAW filter according to another conventional example, and a diagram showing an attenuation characteristic thereof.
[Explanation of symbols]
1 SAW filter, 2 mounting substrate, 3 insulating substrate, 4 external electrode, 5 upper electrode, 5i, 5o upper electrode, 5g, 5g 'grounding upper electrode, 10 SAW chip, 11 piezoelectric substrate, 12 connection pad, 12i, 12o Connection pad, 12g, 12g ′ Ground connection pad, 13 functional part pattern, S airtight space, 20 sealing resin, 21 conductor bump, 30 conductor pattern, 31 lead pattern, 40a, 40b, 40c, 40a ′, 40b ′, 40c ′ IDT electrode, 41a, 41b, 41a ′, 41b ′ reflector.

Claims (4)

平板状の絶縁基板、該絶縁基板の下部に設けた表面実装用の複数の外部電極、及び各外部電極と導通し且つ該絶縁基板の上部に設けた複数の上部電極、を備えた実装基板と、
圧電基板、該圧電基板の下面に形成され且つ前記各上部電極上に導体バンプを介してフリップチップ実装される複数の接続パッド、及び該圧電基板の下面に形成され且つ該各接続パッドと導通接続された機能部パターン、を備えたSAWチップと、
該SAWチップ下面と前記実装基板上面との間に気密空間を形成するようにSAWチップ外面全体を被覆する封止樹脂と、を備え、
前記複数の接続パッドの内の接地用接続パッドが、前記複数の上部電極の内の接地用上部電極と導通接続された表面実装型SAWフィルタにおいて、
前記実装基板上面の外周部には、前記接地用上部電極を包囲するようにインダクタンスを得るための連続環状体の導体パターンと、該導体パターン前記接地用上部電極とを導通接続するリードパターンと、が形成され、
前記導体パターンと前記各接地用上部電極とを接続する前記各リードパターン間の距離は最も離間するように設定されていることを特徴とする表面実装型SAWフィルタ。
A mounting substrate including a flat insulating substrate, a plurality of external electrodes for surface mounting provided at a lower portion of the insulating substrate, and a plurality of upper electrodes provided on the insulating substrate and electrically connected to the external electrodes; ,
Piezoelectric substrate, a plurality of connection pads formed on the lower surface of the piezoelectric substrate and flip-chip mounted on the upper electrodes via conductor bumps, and formed on the lower surface of the piezoelectric substrate and electrically connected to the connection pads. A SAW chip provided with a functional part pattern,
A sealing resin that covers the entire outer surface of the SAW chip so as to form an airtight space between the lower surface of the SAW chip and the upper surface of the mounting substrate;
In the surface mount type SAW filter in which the ground connection pad of the plurality of connection pads is electrically connected to the ground upper electrode of the plurality of upper electrodes.
Lead pattern on the outer peripheral portion of the mounting substrate upper surface, which electrically connected to the conductor pattern of the continuous annular member for obtaining the inductance so as to surround the ground upper electrode, and the conductor pattern and the respective ground upper electrode And formed,
A surface-mount type SAW filter characterized in that a distance between each lead pattern connecting the conductor pattern and each grounding upper electrode is set to be the farthest .
平板状の絶縁基板、該絶縁基板の下部に設けた表面実装用の複数の外部電極、及び各外部電極と導通し且つ該絶縁基板の上部に設けた複数の上部電極、を備えた実装基板と、
圧電基板、該圧電基板の下面に形成され且つ前記各上部電極上に導体バンプを介してフリップチップ実装される複数の接続パッド、及び該圧電基板の下面に形成され且つ該各接続パッドと導通接続された機能部パターン、を備えたSAWチップと、
該SAWチップ下面と前記実装基板上面との間に気密空間を形成するようにSAWチップ外面全体を被覆する封止樹脂と、を備え、
前記複数の接続パッドの内の接地用接続パッドが、前記複数の上部電極の内の接地用上部電極と導通接続された表面実装型SAWフィルタにおいて、
前記実装基板上面の外周部には、前記接地用上部電極を包囲するようにインダクタンスを得るための非連続環状体の導体パターンと、該導体パターンと前記各接地用上部電極とを導通接続するリードパターンと、が形成され、
前記導体パターンと前記各接地用上部電極とを接続する前記各リードパターン間の距離は最も離間するように設定されていることを特徴とする表面実装型SAWフィルタ。
A mounting substrate including a flat insulating substrate, a plurality of external electrodes for surface mounting provided at a lower portion of the insulating substrate, and a plurality of upper electrodes provided on the insulating substrate and electrically connected to the external electrodes; ,
Piezoelectric substrate, a plurality of connection pads formed on the lower surface of the piezoelectric substrate and flip-chip mounted on the upper electrodes via conductor bumps, and formed on the lower surface of the piezoelectric substrate and electrically connected to the connection pads. A SAW chip provided with a functional part pattern,
A sealing resin that covers the entire outer surface of the SAW chip so as to form an airtight space between the lower surface of the SAW chip and the upper surface of the mounting substrate;
In the surface mount type SAW filter in which the ground connection pad of the plurality of connection pads is electrically connected to the ground upper electrode of the plurality of upper electrodes.
A conductor pattern of a discontinuous annular body for obtaining inductance so as to surround the grounding upper electrode and leads for electrically connecting the conductor pattern and each grounding upper electrode to the outer peripheral portion of the upper surface of the mounting substrate A pattern is formed,
The distance between each lead pattern surface mount type SAW filter, characterized in that it is configured to farthest which connects each of the ground upper electrode and the conductor pattern.
平板状の絶縁基板、該絶縁基板の下部に設けた表面実装用の複数の外部電極、及び各外部電極と導通し且つ該絶縁基板の上部に設けた複数の上部電極、を備えた実装基板と、
圧電基板、該圧電基板の下面に形成され且つ前記各上部電極上に導体バンプを介してフリップチップ実装される複数の接続パッド、及び該圧電基板の下面に形成され且つ該各接続パッドと導通接続された機能部パターン、を備えたSAWチップと、
該SAWチップ下面と前記実装基板上面との間に気密空間を形成するようにSAWチップ外面全体を被覆する封止樹脂と、を備え、
前記複数の接続パッドの内の接地用接続パッドが、前記複数の上部電極の内の接地用上部電極と導通接続された表面実装型SAWフィルタにおいて、
前記実装基板上面の外周部には、前記接地用上部電極を包囲するようにインダクタンスを得るための非連続環状体の導体パターンと、該導体パターンと前記各接地用上部電極とを導通接続するリードパターンと、が形成され、
前記導体パターンと前記各接地用上部電極とを接続する前記各リードパターンは導体パターンの両端部から前記各接地用上部電極に接続され、前記各リードパターン間の距離は最も接近するように設定されていることを特徴とする表面実装型SAWフィルタ。
A mounting substrate including a flat insulating substrate, a plurality of external electrodes for surface mounting provided at a lower portion of the insulating substrate, and a plurality of upper electrodes provided on the insulating substrate and electrically connected to the external electrodes; ,
Piezoelectric substrate, a plurality of connection pads formed on the lower surface of the piezoelectric substrate and flip-chip mounted on the upper electrodes via conductor bumps, and formed on the lower surface of the piezoelectric substrate and electrically connected to the connection pads. A SAW chip provided with a functional part pattern,
A sealing resin that covers the entire outer surface of the SAW chip so as to form an airtight space between the lower surface of the SAW chip and the upper surface of the mounting substrate;
In the surface mount type SAW filter in which the ground connection pad of the plurality of connection pads is electrically connected to the ground upper electrode of the plurality of upper electrodes.
A conductor pattern of a discontinuous annular body for obtaining inductance so as to surround the grounding upper electrode and leads for electrically connecting the conductor pattern and each grounding upper electrode to the outer peripheral portion of the upper surface of the mounting substrate A pattern is formed,
Wherein each lead pattern for connecting the conductor pattern and the upper electrode for the ground is connected to the upper electrode for the respective ground from both ends of the conductor pattern, the distance between the respective lead patterns are set to closest A surface- mount SAW filter characterized by comprising:
前記機能部パターンは、IDT電極と反射器を縦結合二重モード構造とし、更に前記縦結合二重モード構造を2段縦続接続したことを特徴とする請求項1、2、又は3の何れか一項に記載の表面実装型SAWフィルタ。The functional unit pattern, the the IDT electrode reflector and longitudinally coupled double mode structure, further to any of claims 1, 2, or 3, wherein the longitudinally-coupled dual mode structure and a two-stage cascaded The surface mount SAW filter according to one item.
JP2002327928A 2002-11-12 2002-11-12 Surface mount type SAW filter Expired - Fee Related JP4093021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327928A JP4093021B2 (en) 2002-11-12 2002-11-12 Surface mount type SAW filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327928A JP4093021B2 (en) 2002-11-12 2002-11-12 Surface mount type SAW filter

Publications (3)

Publication Number Publication Date
JP2004165874A JP2004165874A (en) 2004-06-10
JP2004165874A5 JP2004165874A5 (en) 2006-01-05
JP4093021B2 true JP4093021B2 (en) 2008-05-28

Family

ID=32806375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327928A Expired - Fee Related JP4093021B2 (en) 2002-11-12 2002-11-12 Surface mount type SAW filter

Country Status (1)

Country Link
JP (1) JP4093021B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601411B2 (en) * 2004-12-20 2010-12-22 京セラ株式会社 Surface acoustic wave device and communication device
JP4601415B2 (en) * 2004-12-24 2010-12-22 京セラ株式会社 Surface acoustic wave device and communication device
CN101107776B (en) 2005-06-16 2010-05-19 株式会社村田制作所 Piezoelectric device and method for producing same
JP4637669B2 (en) * 2005-07-13 2011-02-23 京セラ株式会社 Filter device and multiband filter, duplexer and communication device using the same
JP4829040B2 (en) * 2006-08-23 2011-11-30 京セラ株式会社 Surface acoustic wave device
JP6106404B2 (en) * 2012-10-30 2017-03-29 太陽誘電株式会社 Electronic component module

Also Published As

Publication number Publication date
JP2004165874A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US6417574B1 (en) Surface-acoustic-wave device for flip-chip mounting
US7683736B2 (en) Resonant circuit, filter, and antenna duplexer
US7211925B2 (en) Surface acoustic wave device and branching filter
US8169278B2 (en) Surface acoustic wave device and duplexer
JP2011130513A (en) Surface acoustic wave filter element, module, and communication device
CN107112976A (en) Acoustic wave device
JP6472945B2 (en) Elastic wave device
US9595938B2 (en) Elastic wave device
CN1119372A (en) A surface acoustic wave filter element and a surface acoustic wave filter made by packaging it
JPH09321573A (en) Surface acoustic wave filter device
JP4093021B2 (en) Surface mount type SAW filter
JP3869919B2 (en) Surface acoustic wave device
JP4001111B2 (en) Surface acoustic wave device
JP2021190908A (en) Band rejection filter, composite filter, and communication device
US6166611A (en) Resonator ladder type surface acoustic wave filter
JP4251476B2 (en) Surface acoustic wave filter element
JP2010245722A (en) Surface acoustic wave element and surface acoustic wave device using the same
JP2000223989A (en) Surface acoustic wave device
JPH05235684A (en) Multielectrode type surface acoustic wave device
CN110089031B (en) Elastic wave device, demultiplexer, and communication device
JP4095311B2 (en) Surface acoustic wave filter device
JPH11214955A (en) Surface-acoustic-wave device
JP2003008394A (en) Surface acoustic wave device and communication equipment mounting the same
JP2006303932A (en) Surface acoustic wave element, and surface acoustic wave device
JP3638431B2 (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees