Nothing Special   »   [go: up one dir, main page]

JP3964290B2 - Analytical instrument - Google Patents

Analytical instrument Download PDF

Info

Publication number
JP3964290B2
JP3964290B2 JP2002261667A JP2002261667A JP3964290B2 JP 3964290 B2 JP3964290 B2 JP 3964290B2 JP 2002261667 A JP2002261667 A JP 2002261667A JP 2002261667 A JP2002261667 A JP 2002261667A JP 3964290 B2 JP3964290 B2 JP 3964290B2
Authority
JP
Japan
Prior art keywords
cuvette
sample
analysis
sample tray
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002261667A
Other languages
Japanese (ja)
Other versions
JP2004101292A5 (en
JP2004101292A (en
Inventor
明広 小松
統安 木村
和久 小林
章 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002261667A priority Critical patent/JP3964290B2/en
Publication of JP2004101292A publication Critical patent/JP2004101292A/en
Publication of JP2004101292A5 publication Critical patent/JP2004101292A5/ja
Application granted granted Critical
Publication of JP3964290B2 publication Critical patent/JP3964290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、便潜血分析等が行える小型の分析機器に関するものである。
【0002】
【従来の技術】
従来より、集団検診等で集められた検体より便潜血分析を自動的に行う大型の分析装置は知られている(例えば、特許文献1参照)。
【0003】
この大型の分析装置は、使い捨てまたは洗浄して再使用するキュベット(混合容器)を多量にセットし、このキュベットを直線移送しつつ、空のキュベットに検体採取容器から検体液を、試薬ボトルから液状試薬をそれぞれ分注し、その呈色度合いの測光を行うようになっている。
【0004】
なお、上記検体採取容器は、スティック状の採取棒に採取した便検体を容器内の保存液に浸けて溶解・保存するもので、この検体採取容器をそのまま分析装置にセットし、装置内で先端部をカットして前記キュベットへ検体液を注入している。
【0005】
【特許文献1】
特開平8−35969号公報
【0006】
【発明が解決しようとする課題】
上記のような従来の自動分析装置では、装置が大型で多量の検体を分析するのに適したもので、検体数が少なく測定頻度の少ない場合には、高価で不向きであるとともに、操作・管理が複雑である問題を有する。
【0007】
つまり、分析装置には、予め多量のキュベットが搭載されて搬送され、一方、多量の検体採取容器がストッカーに搭載され、搬送されるキュベットに順次検体液、試薬を供給し、測光するものであり、測定対象については検体採取容器にバーコードを付して測定依頼を行うことにより、検体識別、測定管理を行うもので、連続していない検体分析では無駄が多く、効率的な分析が行えず、多量の検体が集まった状態で分析を行うことが前提となっている。
【0008】
また、分析装置が複数の検体搭載部を備え、この搭載部に検体容器を搭載して分析を行うものも知られており、その場合に、検体搭載位置を制御ユニットに対して入力して測定依頼を行うことが一般に行われているが、その入力操作は煩雑である。また、検体の搭載部位を認識して測定を行うことも考えられるが、そのための検体センサーが別途必要となり、装置が複雑となる。
【0009】
そこで、本発明は上記点に鑑み、分析数の少ない場合にも搭載位置の入力を不要として簡易な操作で分析が行えるようにした小型の分析機器を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の分析機器は、使い捨てのキュベット内で試薬と検体液とを混合し、その呈色変化を測光して検体成分の分析を行う分析機器であって、前記検体液を収容した検体容器および前記キュベットを組にして複数搭載可能なサンプルトレイと、前記キュベット内の試薬と検体液の呈色変化を透過測光する測光部と、該測光部の測光及び前記サンプルトレイの作動を制御する制御ユニットとを備え、前記制御ユニットは、分析開始時に前記測光部の測光により前記サンプルトレイの任意位置に搭載されたキュベットを検出し、該検出に基づいて前記サンプルトレイの作動を制御し、前記キュベットが搭載されたポジションの検体分析を順に行うことを特徴とするものである。
【0011】
前記サンプルトレイは、同心上に前記キュベットを搭載する回転式であるように設けるのが好適である。
【0012】
【発明の効果】
上記のような本発明によれば、分析開始時の測光部の測光によりサンプルトレイの任意位置に搭載されたキュベットを検出し、その検出に基づいて制御ユニットによりサンプルトレイの作動を制御し、キュベットが搭載されたポジションの検体分析を順に行うために、検体容器と使い捨てのキュベットとを組にしてサンプルトレイにセットして測定開始操作を行うことで搭載した検体についてのみ分析が行えるもので、搭載位置の入力が不要で、任意の位置に搭載することが可能となり、操作が簡素化できる。
【0013】
また、呈色度合いを測光するための測光部を使用してキュベットの検出を行うために、別途に検体センサを設置することなく検体搭載位置が認識でき、装置が複雑となることなく小型化が図れ、操作の簡素化を得ることができる。
【0014】
特に、前記サンプルトレイは、同心上にキュベットを搭載する回転テーブルを備え、キュベットが通過する位置に測光部を設置し、回転テーブルの回転動作に伴ってキュベットを検出するように設けると、コンパクトに構成でき小型化を図る上で有利である。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に沿って説明する。図1は一例の自動分析機器の概略機構を示す斜視図、図2はサンプルトレイの斜視図、図3は分析状態のサンプルトレイの概略断面図、図4はキュベット、検体容器およびノズルチップの斜視図、図5は開封機構によるキュベットの開封状態を示す断面図である。
【0016】
この自動分析機器1は、図4(a)に示すような乾燥試薬Rを封入した混合容器としての使い捨てのキュベット11、同図(b)のような検体液を収容する検体容器12、同図(c)のような液を吸引吐出する後述の吸引ノズル41の先端に装着する使い捨てのノズルチップ13を消耗品として使用する。
【0017】
上記キュベット11は透光性の樹脂により略角筒状に成形され、下部壁面が特に透明で測定光が透過する測定部11aに構成され、上部外周には外側に張り出して搭載穴に係止する鍔部11bを備え、内部には便潜血分析の場合には金コロイド試薬による凍結乾燥試薬Rが収容され、上端開口部に金属箔によるシール11cが溶着されて上記試薬Rが封入されてなる。なお、この試薬Rは分析時には溶解液が注入されて溶解される。また、検体容器12は、上部外周に外側に張り出して搭載穴に係止する鍔部12aを備え、その内部には不図示の検体採取容器より採取した便検体を溶解保存した検体液が注入される。また、ノズルチップ13はピペット状に形成され、上端開口に吸引ノズル41の先端が嵌合されて装着され、吸引圧の導入で内部に液体を吸引収容し、吐出圧の導入でキュベット11へ吐出する。
【0018】
自動分析機器1は、装置本体2の前側平坦部に前記キュベット11、検体容器12、ノズルチップ13を組にして複数(例えば10組)搭載できる円形状のサンプルトレイ3と、昇降移動および旋回移動する吸引ノズル41を有する分注器4と、サンプルトレイ3の内部に設置されキュベット11内の試薬Rと検体液の呈色変化を透過測光するLEDによる測光部5(図3参照)と、この測光部5の上方部位のサンプルトレイ3を覆う遮光カバー6と、この遮光カバー6に設置され前記キュベット11のシール11cを穿孔開封する開封機構7(図5参照)と、サンプルトレイ3の近傍に配置されたチップ廃却部8と、試薬Rの溶解液を収容した溶解液ボトル14が搭載されるボトル搭載部9などを備えてなる。
【0019】
上記装置本体2は、上部に設置された操作部21と、サンプルトレイ3および分注器4などの分析機構を覆うフロントカバー22と、下部に引出可能に設置されたチップ廃却ボックス23を備える。
【0020】
そして、便潜血分析の基本動作は、まず、検体液を収容した検体容器12とキュベット11とノズルチップ13を組にしてサンプルトレイ3に搭載しスタートすると、このサンプルトレイ3を回転作動させて、測光部5でキュベット11の搭載を検出し、その搭載ポジションの検体分析を自動的に開始する。そして、最初に、キュベット11のシール11cを開封してから、分注器4により溶解液を溶解液ボトル14より分注して試薬Rを溶解し、その後、検体容器12より所定量の検体液をキュベット11に分注し、攪拌する。次に、測定位置を通過する毎にその呈色変化を測光部5で測光し、初期値と所定時間後の呈色度合いから便潜血を求めるものである。
【0021】
次に、各部の構造を具体的に説明する。まず、サンプルトレイ3は、図2および図3にも示すように、正転方向および逆転方向に回転駆動される円盤状の回転テーブル31と、その下部に回転しない温調ブロック32と遮熱カバー33を備える。
【0022】
回転テーブル31には、外周側に同心上に検体容器12を保持する複数の円形搭載穴34と、内周側に同心上にキュベット11を保持する複数の矩形搭載穴35と、円形搭載穴34に隣接して外周側にノズルチップ13を保持する筒状搭載部36とが、円周を等分割して10組設置されている。回転テーブル31の下面中央には支持軸37を備え、温調ブロック32の中心部を貫通して旋回自在に支承されている。支持軸37の下端部にはギヤ38が固着され、不図示のタイミングベルトが掛けられて駆動モータにより回転駆動される。
【0023】
温調ブロック32はアルミニウム等の金属製で厚く大きな熱容量に形成され、底部にヒーター39が設置されて所定温度に加熱調整され、上面には回転テーブル31に搭載されたキュベット11の下部が移動する円環状の凹部32aを有し、この凹部32aのエアの加熱によってキュベット11を所定温度に加熱する。上記温調ブロック32の底面および外周は樹脂製の遮熱カバー33で覆われ、温調ブロック32の保温効果を得るとともに、外周部に形成された環状空間33aに検体容器12およびノズルチップ13の下部が、回転テーブル31の回転に伴って通るようになっている。
【0024】
さらに、測光部5が上記温調ブロック32の内部に設置されている。この測光部5は、凹部32aの内外周に、この凹部32a内を移動するキュベット11の測定部11aを挟むように、一方に設置されたLEDによる発光素子51と、これと対向して反対側に設置された受光素子52を備えてなる。発光素子51による所定波長(色)の測光が受光素子52に向けて照射され、その受光量に応じた信号を出力するようになっている。便潜血分析においては、主波長と副波長の2波長の測光を行うものであって、上記発光素子51と受光素子52が2組設置されている。この2組の発光素子51のLEDは発光波長が異なり、回転テーブル31のキュベット11の搭載間隔(前記矩形搭載穴35の開口間隔)のピッチに合わせて設置され、異なるキュベット11が同時に2組の発光素子51と受光素子52の間に位置して測光が行えるもので、その都度呈色度合いを順次測光する。
【0025】
上記測光部5を覆って外光の影響を遮断する遮光カバー6は、測光部5が設置されている範囲のサンプルトレイ3の上方部位に起伏可能に設置されている。その外周側部位が水平軸によって回動可能に支持され、サンプルトレイ3の中心部を覆う部分が持ち上がるようになっている。
【0026】
また、前記遮光カバー6に設置された開封機構7は、キュベット11の回転移動軌跡と吸引ノズル41の旋回軌跡との交差位置に上下動可能に配置された開封ピン71を備え、この開封ピン71は遮光カバー6に突起状に配設されたピン設置部61内に、図5に示すように設置されている。この開封ピン71は軸部は丸棒状であるが、先端部71aは多面テーパ形状、例えば4面角錐状に形成されて、キュベット11のシール11cに穴をあけて開封する。また、上記開封ピン71はスプリング72によって上方に付勢され、分注器4の吸引ノズル41の押し下げによって開封動作が行われる。
【0027】
さらに、遮光カバー6の下面には開封後の開封ピン71がシール11cの開封穴に係合してキュベット11を持ち上げるのを阻止するための開封時のキュベット押え62を備えるとともに、遮光カバー6の側部には攪拌時のキュベット押え63(図2参照)を備える。開封時のキュベット押え62は、ピン設置部61の下部に開封ピン71が挿通する筒部の先端で構成され、その下端部がキュベット11の上面縁部に当接可能で、該キュベット押え62は開封ピン71のガイドを兼ねる。攪拌時のキュベット押え63は、ノズルチップ13の先端が開封穴からキュベット11内へ深く挿入され、シール11cの開封穴に係合してキュベット11を持ち上げるのを阻止するためのもので、遮光カバー6の側部に下方のキュベット11の縁部の上方へ板状に突出して形成されている。
【0028】
分注器4(図1)は、旋回アーム42の先端下部に下方に向けて延びる棒状の吸引ノズル41を備え、検体液および溶解液の分注、両液の攪拌混合を行う。旋回アーム42は不図示のガイドロッドに沿って上下移動可能に支持され、このガイドロッドを保持する回転板が駆動モータから掛けられたタイミングベルトによって回転駆動される。これにより旋回アーム42が旋回駆動されるとともに、旋回中心に設置された不図示の送りネジが旋回アーム42に螺合され、この送りネジの回転駆動によって旋回アーム42が上下移動するようになっている。
【0029】
吸引ノズル41の先端には、旋回アーム42の下降移動によって上述したようなピペット状のノズルチップ13が装着されるものであって、このノズルチップ13内に検体液、溶解液を吸引し吐出するもので、使用後は、チップ廃却部8の係合溝にノズルチップ13の上端を係合した状態で旋回アーム42を上動させて嵌合を外し、下方の廃却ボックス23内へ落下させて廃却する。チップ廃却部8は吸引ノズル41の旋回軌跡上に配置されている。
【0030】
吸引ノズル41は先端部に開口する不図示のエア通路を有し、このエア通路には装置本体2内に設置された不図示のシリンジポンプからのエアパイプが接続されている。シリンジポンプは、注射器状のピストンを備えたエアポンプで、このシリンジの駆動によって生成された負圧または正圧(吸引・吐出圧)が吸引ノズル41へ導入される。
【0031】
また、自動分析機器1は、装置本体2に前記操作部21に連係された不図示の制御ユニットを内蔵している。この制御ユニットは、前記サンプルトレイ3および分注器4の作動を制御し、測光部5の測光に基づき分析結果を演算するとともに、分析開始時に測光部5の発光素子51と受光素子52とによる測光でキュベット11の有無を検出し、サンプルトレイ3の回転テーブル31に検体容器12と対になって搭載されたキュベット11の搭載位置を求め、この搭載位置の検体容器12の分析を自動的に行うように設定されている。
【0032】
次いで、本実施形態の動作について説明する。まず、分析を行う前に、サンプルトレイ3に、各検体液を収容した検体容器12を搭載すると共に、その組となる位置へキュベット11およびノズルチップ13を搭載し、さらに、溶解液ボトル14をセットして、測定準備を行う。
【0033】
その後、操作部21のスタートボタンを操作して分析処理を開始する。初期時点で、サンプルトレイ3の回転テーブル31を1回転させ、前述のように測光部5によってキュベット11を検出し、搭載されたポジションの検体分析を順に開始する。なお、検体容器12はキュベット11とともに回転テーブル31の任意の円周位置へセットできる。
【0034】
次に、回転テーブル31を回転させて分析する検体容器12に対応するキュベット11を開封位置に停止させ、開封ピン71を吸引ノズル41により押し下げてシール11cを開封する。次に、回転テーブル31を回転させて吸引ノズル41の旋回位置の下方にノズルチップ13を移動させ、吸引ノズル41に装着する。続いてキュベット11を吸引ノズル41の旋回位置の下方へ位置させるとともに、吸引ノズル41を溶解液ボトル14の位置へ旋回移動させてノズルチップ13内に所定量の溶解液を吸引した後、キュベット11上へ移動して開封穴よりキュベット11内へ溶解液を注入し、試薬Rを溶解させる。
【0035】
次に、回転テーブル31を回転させて吸引ノズル41の旋回位置の下方に検体容器12を移動させ所定量の検体液をノズルチップ13内に吸引した後、キュベット11上へ移動してキュベット11内へ検体液を分注し、さらにノズルチップ13をキュベット11内へ挿入して、キュベット11内の液体をノズルチップ13内へ吸引・吐出を繰り返して、試薬液と検体液との攪拌混合を行う。使用済みのノズルチップ13はチップ廃却部8で吸引ノズル41から外して下方に落下廃却する。
【0036】
そして、試薬液と検体液とが混合されたキュベット11は、温調ブロック32によって所定温度に温調され、回転テーブル31の回転により順次測光部5に移動され、透過光学濃度の測光がその都度行われる。上記測定を継続しつつ、次のキュベット11の開封に続く一連の分析動作を同時に行う。上記測光に基づく分析結果を出力し、処理を終了する。
【0037】
上記のような実施の形態では、使い捨てのキュベット11が検体容器12と同時にサンプルトレイ3に搭載されることを前提として、測光部5によるキュベット11の検出により検体容器12の搭載位置を求め、その検体分析を順に行うもので、使用者の操作は、サンプルトレイ3の任意の位置へキュベット11、検体容器12およびノズルチップ13を組にして搭載した後、操作部21のスタートボタンを操作するだけであり、搭載位置の入力を不要とした簡易な操作で自動分析が行え、検体数の少ない小型の分析機器に適したものである。
【0038】
なお、前記キュベット11に封入する試薬は、凍結乾燥されたもの、粉末状、顆粒状、錠剤などの乾燥状態のものが好ましいが、液状試薬も封入可能である。また、試薬は予めキュベットに封入しているが、空のキュベットを搭載して、溶解液に代えて試薬をキュベットへ分注するようにしてもよい。さらに、便潜血分析ほか、尿成分(例えば尿蛋白)の分析を行うように設計変更可能である。
【図面の簡単な説明】
【図1】本発明の一つの実施の形態における自動分析機器の概略構成を示す斜視図
【図2】図1のサンプルトレイの斜視図
【図3】分析状態のサンプルトレイの概略断面図
【図4】キュベット、検体容器およびノズルチップの斜視図
【図5】開封機構によるキュベットの開封状態を示す断面図
【符号の説明】
1 自動分析機器
2 装置本体
3 サンプルトレイ
4 分注器
5 測光部
6 遮光カバー
7 開封機構
8 チップ廃却部
9 ボトル搭載部
11 キュベット
R 試薬
12 検体容器
13 ノズルチップ
21 操作部
31 回転テーブル
41 吸引ノズル
42 旋回アーム
51 発光素子(LED)
52 受光素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small analytical instrument that can perform fecal occult blood analysis and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, large analyzers that automatically perform fecal occult blood analysis from samples collected by mass screening or the like are known (see, for example, Patent Document 1).
[0003]
This large analyzer sets a large number of cuvettes (mixing containers) that are disposable or washed and reused, and moves the cuvette linearly while transferring the sample liquid from the sample collection container to the empty cuvette and liquid from the reagent bottle. Each reagent is dispensed, and photometric measurement of the degree of coloration is performed.
[0004]
The sample collection container is a stool sample collected on a stick-shaped collection rod soaked in a preservative solution in the container for dissolution and storage. The sample liquid is cut into the cuvette and the sample liquid is injected.
[0005]
[Patent Document 1]
JP-A-8-35969 [0006]
[Problems to be solved by the invention]
The conventional automatic analyzers as described above are large and suitable for analyzing a large amount of specimens. When the number of specimens is small and the measurement frequency is low, they are expensive and unsuitable. Has the problem of being complicated.
[0007]
In other words, a large amount of cuvettes are mounted and transported in advance in the analyzer, while a large amount of sample collection containers are mounted on the stocker, and sample liquid and reagent are sequentially supplied to the transported cuvettes for photometry. For the measurement target, the sample collection container is attached with a barcode and a measurement request is made to perform sample identification and measurement management. Discontinuous sample analysis is wasteful and cannot be performed efficiently. It is assumed that the analysis is performed in a state where a large amount of samples are collected.
[0008]
In addition, it is also known that the analyzer includes a plurality of sample mounting portions, and a sample container is mounted on the mounting portion for analysis. In this case, the sample mounting position is input to the control unit for measurement. Although a request is generally made, the input operation is complicated. In addition, it is conceivable to perform measurement while recognizing the mounting site of the specimen, but a specimen sensor for that purpose is required separately, and the apparatus becomes complicated.
[0009]
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a small analytical instrument that can perform analysis with a simple operation without requiring an input of a mounting position even when the number of analyzes is small.
[0010]
[Means for Solving the Problems]
An analytical instrument of the present invention is an analytical instrument for analyzing a sample component by mixing a reagent and a specimen liquid in a disposable cuvette and measuring the color change thereof, and a specimen container containing the specimen liquid and A plurality of sample trays that can be mounted as a set of the cuvettes, a photometric unit that transmits and measures the color change of the reagent and the sample liquid in the cuvette, and a control unit that controls the photometry of the photometric units and the operation of the sample tray The control unit detects a cuvette mounted at an arbitrary position of the sample tray by photometry of the photometry unit at the start of analysis , controls the operation of the sample tray based on the detection , and the cuvette It is characterized in that the sample analysis of the mounted positions is performed in order .
[0011]
It is preferable that the sample tray is provided so as to be concentric and rotationally mounted with the cuvette.
[0012]
【The invention's effect】
According to the present invention as described above, the cuvette mounted at an arbitrary position of the sample tray is detected by photometry of the photometry unit at the start of analysis , and the operation of the sample tray is controlled by the control unit based on the detection. In order to perform the sample analysis of the position where the is mounted in order, the sample container and disposable cuvette are combined and set on the sample tray and the measurement start operation is performed, so only the mounted sample can be analyzed. Position input is not required, and it can be installed at any position, simplifying operations.
[0013]
In addition, since the cuvette is detected using a photometric unit for measuring the degree of coloration, the sample mounting position can be recognized without installing a separate sample sensor, and the size of the device can be reduced without complicating the apparatus. This simplifies operation.
[0014]
In particular, the sample tray is provided with a rotating table on which concentric cuvettes are mounted, a photometric unit is installed at a position where the cuvette passes, and the cuvette is detected as the rotating table rotates. It can be configured and is advantageous for downsizing.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a perspective view showing a schematic mechanism of an example of an automatic analyzer, FIG. 2 is a perspective view of a sample tray, FIG. 3 is a schematic sectional view of a sample tray in an analysis state, and FIG. 4 is a perspective view of a cuvette, a specimen container, and a nozzle tip. FIG. 5 and FIG. 5 are cross-sectional views showing a cuvette opening state by the opening mechanism.
[0016]
This automatic analyzer 1 includes a disposable cuvette 11 as a mixing container in which a dry reagent R is enclosed as shown in FIG. 4A, a sample container 12 containing a sample liquid as shown in FIG. A disposable nozzle tip 13 attached to the tip of a later-described suction nozzle 41 for sucking and discharging the liquid as shown in (c) is used as a consumable item.
[0017]
The cuvette 11 is formed into a substantially rectangular tube shape with a translucent resin, and is configured as a measurement unit 11a that has a particularly transparent lower wall surface and allows measurement light to pass therethrough. In the case of fecal occult blood analysis, a lyophilized reagent R made of a colloidal gold reagent is accommodated, and a seal 11c made of metal foil is welded to the upper end opening to enclose the reagent R therein. The reagent R is dissolved by injecting a lysis solution at the time of analysis. Further, the sample container 12 includes a collar portion 12a that protrudes outward on the outer periphery of the upper portion and engages with the mounting hole, into which a sample solution in which a fecal sample collected from a sample collection container (not shown) is dissolved and stored is injected. The In addition, the nozzle tip 13 is formed in a pipette shape, and the tip of the suction nozzle 41 is fitted to the upper end opening, and a liquid is sucked and accommodated by introducing suction pressure, and discharged to the cuvette 11 by introducing discharge pressure. To do.
[0018]
The automatic analyzer 1 includes a circular sample tray 3 that can mount a plurality (for example, 10 sets) of the cuvette 11, the sample container 12, and the nozzle chip 13 on the front flat portion of the apparatus main body 2, and the vertical movement and swivel movement. A dispenser 4 having an aspirating nozzle 41, a photometric unit 5 (see FIG. 3) by an LED which is installed inside the sample tray 3 and transmits and measures the color change of the reagent R and the sample liquid in the cuvette 11; A light shielding cover 6 that covers the sample tray 3 above the photometric unit 5, an unsealing mechanism 7 (see FIG. 5) that is installed in the light shielding cover 6 and that opens and seals the seal 11 c of the cuvette 11, and in the vicinity of the sample tray 3 The chip discarding unit 8 is disposed, and a bottle mounting unit 9 on which a solution bottle 14 containing a solution of the reagent R is mounted.
[0019]
The apparatus main body 2 includes an operation unit 21 installed at the upper part, a front cover 22 that covers the analysis mechanism such as the sample tray 3 and the dispenser 4, and a chip disposal box 23 installed at the lower part so as to be able to be pulled out. .
[0020]
The basic operation of fecal occult blood analysis is as follows. First, when the sample container 12 containing the sample liquid, the cuvette 11 and the nozzle chip 13 are mounted on the sample tray 3 and started, the sample tray 3 is rotated, The photometry unit 5 detects the mounting of the cuvette 11 and automatically starts the sample analysis of the mounting position. First, after opening the seal 11 c of the cuvette 11, the solution is dispensed from the solution bottle 14 by the dispenser 4 to dissolve the reagent R, and then a predetermined amount of sample solution is supplied from the sample container 12. Is dispensed into the cuvette 11 and stirred. Next, every time the measurement position is passed, the change in color is measured by the photometry unit 5, and fecal occult blood is obtained from the initial value and the degree of coloration after a predetermined time.
[0021]
Next, the structure of each part will be specifically described. First, as shown in FIGS. 2 and 3, the sample tray 3 includes a disk-shaped rotary table 31 that is rotationally driven in the forward direction and the reverse direction, a temperature control block 32 that does not rotate below, and a heat shield cover. 33.
[0022]
The rotary table 31 has a plurality of circular mounting holes 34 concentrically holding the sample container 12 on the outer peripheral side, a plurality of rectangular mounting holes 35 concentrically holding the cuvette 11 on the inner peripheral side, and a circular mounting hole 34. Ten cylindrical mounting portions 36 that are adjacent to each other and hold the nozzle tip 13 on the outer peripheral side are equally divided into the circumference. A support shaft 37 is provided at the center of the lower surface of the rotary table 31 and is pivotably supported through the central portion of the temperature control block 32. A gear 38 is fixed to the lower end portion of the support shaft 37, and a timing belt (not shown) is hung and is rotated by a drive motor.
[0023]
The temperature control block 32 is made of a metal such as aluminum and has a large and large heat capacity. A heater 39 is installed at the bottom to adjust the heating to a predetermined temperature, and the lower part of the cuvette 11 mounted on the rotary table 31 moves on the upper surface. An annular recess 32a is provided, and the cuvette 11 is heated to a predetermined temperature by heating the air in the recess 32a. The bottom surface and the outer periphery of the temperature control block 32 are covered with a heat insulating cover 33 made of resin to obtain the heat retaining effect of the temperature control block 32, and the sample container 12 and the nozzle chip 13 are placed in the annular space 33a formed in the outer periphery. The lower part passes along with the rotation of the rotary table 31.
[0024]
Further, the photometric unit 5 is installed inside the temperature control block 32. The photometric unit 5 includes a light emitting element 51 of an LED installed on one side and an opposite side opposite to the measuring unit 11a of the cuvette 11 moving in the concave portion 32a between the inner and outer circumferences of the concave portion 32a. The light receiving element 52 is provided. Photometry of a predetermined wavelength (color) by the light emitting element 51 is emitted toward the light receiving element 52, and a signal corresponding to the amount of received light is output. In the fecal occult blood analysis, two wavelengths of the main wavelength and the sub wavelength are measured, and two sets of the light emitting element 51 and the light receiving element 52 are provided. The LEDs of the two sets of light emitting elements 51 have different emission wavelengths, and are installed in accordance with the pitch of the mounting interval of the cuvettes 11 of the rotary table 31 (the opening interval of the rectangular mounting holes 35). It is located between the light-emitting element 51 and the light-receiving element 52 and can perform photometry, and the coloration degree is sequentially measured each time.
[0025]
The light-shielding cover 6 that covers the light metering unit 5 and blocks the influence of external light is installed on the upper portion of the sample tray 3 in a range where the light metering unit 5 is installed so as to be undulated. The outer peripheral side portion is rotatably supported by a horizontal shaft, and a portion covering the center portion of the sample tray 3 is lifted.
[0026]
The unsealing mechanism 7 installed in the light shielding cover 6 includes an unsealing pin 71 that is arranged so as to be movable up and down at the intersection of the rotational movement locus of the cuvette 11 and the turning locus of the suction nozzle 41. Is installed in a pin installation portion 61 arranged in a protruding manner on the light shielding cover 6 as shown in FIG. The opening pin 71 has a round bar shape in the shaft portion, but the tip end portion 71a is formed in a multi-sided taper shape, for example, a four-sided pyramid shape, and is opened by opening a hole in the seal 11c of the cuvette 11. The unsealing pin 71 is biased upward by a spring 72, and the unsealing operation is performed by depressing the suction nozzle 41 of the dispenser 4.
[0027]
Furthermore, the lower surface of the light shielding cover 6 is provided with a cuvette presser 62 at the time of opening for preventing the unsealed opening pin 71 from engaging with the opening hole of the seal 11 c and lifting the cuvette 11. A cuvette presser 63 (see FIG. 2) at the time of stirring is provided on the side portion. The cuvette presser 62 at the time of opening is constituted by a tip of a cylindrical portion through which the unsealing pin 71 is inserted at the lower portion of the pin installation portion 61, and a lower end portion thereof can be brought into contact with an upper surface edge portion of the cuvette 11. Also serves as a guide for the opening pin 71. The cuvette presser 63 at the time of stirring is for preventing the tip of the nozzle tip 13 from being inserted deeply into the cuvette 11 from the opening hole and engaging the opening hole of the seal 11c to lift the cuvette 11, and the light shielding cover 6 is formed so as to protrude in the shape of a plate above the edge of the lower cuvette 11 on the side portion.
[0028]
The dispenser 4 (FIG. 1) is provided with a rod-like suction nozzle 41 extending downward at the lower end of the swivel arm 42, and dispenses the sample liquid and the dissolved liquid and stirs and mixes both liquids. The swivel arm 42 is supported so as to be vertically movable along a guide rod (not shown), and a rotary plate holding the guide rod is rotationally driven by a timing belt hung from a drive motor. As a result, the turning arm 42 is driven to turn, and a feed screw (not shown) installed at the turning center is screwed to the turning arm 42, and the turning arm 42 is moved up and down by the rotational drive of the feed screw. Yes.
[0029]
The tip of the suction nozzle 41 is mounted with the pipette-shaped nozzle tip 13 as described above by the downward movement of the swivel arm 42, and the sample liquid and the lysate are sucked into the nozzle tip 13 and discharged. After use, the swivel arm 42 is moved upward with the upper end of the nozzle tip 13 engaged with the engaging groove of the tip discarding portion 8 to be disengaged and dropped into the lower disposal box 23 To dispose of it. The tip discarding unit 8 is disposed on the turning locus of the suction nozzle 41.
[0030]
The suction nozzle 41 has an air passage (not shown) that opens at the tip, and an air pipe from a syringe pump (not shown) installed in the apparatus main body 2 is connected to the air passage. The syringe pump is an air pump having a syringe-like piston, and a negative pressure or a positive pressure (suction / discharge pressure) generated by driving the syringe is introduced into the suction nozzle 41.
[0031]
In addition, the automatic analyzer 1 includes a control unit (not shown) linked to the operation unit 21 in the apparatus main body 2. The control unit controls the operation of the sample tray 3 and the dispenser 4, calculates the analysis result based on the photometry of the photometry unit 5, and uses the light emitting element 51 and the light receiving element 52 of the photometry unit 5 at the start of analysis. The presence or absence of the cuvette 11 is detected by photometry, the mounting position of the cuvette 11 mounted on the rotary table 31 of the sample tray 3 in a pair with the sample container 12 is obtained, and the analysis of the sample container 12 at this mounting position is automatically performed. Is set to do.
[0032]
Next, the operation of this embodiment will be described. First, before the analysis, the sample container 12 containing each sample solution is mounted on the sample tray 3, and the cuvette 11 and the nozzle chip 13 are mounted at the set position, and the solution bottle 14 is further attached. Set and prepare for measurement.
[0033]
Thereafter, the start button of the operation unit 21 is operated to start the analysis process. At the initial time, the rotary table 31 of the sample tray 3 is rotated once, the cuvette 11 is detected by the photometric unit 5 as described above, and the sample analysis of the mounted positions is started in order. The sample container 12 can be set together with the cuvette 11 at an arbitrary circumferential position of the rotary table 31.
[0034]
Next, the cuvette 11 corresponding to the sample container 12 to be analyzed is rotated by rotating the rotary table 31 and the opening pin 71 is pushed down by the suction nozzle 41 to open the seal 11c. Next, the rotary table 31 is rotated to move the nozzle tip 13 below the swiveling position of the suction nozzle 41 and is attached to the suction nozzle 41. Subsequently, the cuvette 11 is positioned below the swiveling position of the suction nozzle 41 and the suction nozzle 41 is swung to the position of the dissolving liquid bottle 14 to suck a predetermined amount of the dissolving liquid into the nozzle tip 13. It moves up and inject | pours a solution into cuvette 11 from an opening hole, and reagent R is dissolved.
[0035]
Next, the rotary table 31 is rotated to move the sample container 12 below the swiveling position of the suction nozzle 41 to suck a predetermined amount of sample liquid into the nozzle tip 13 and then move onto the cuvette 11 to move into the cuvette 11. The sample liquid is dispensed, and the nozzle tip 13 is further inserted into the cuvette 11, and the liquid in the cuvette 11 is repeatedly aspirated and discharged into the nozzle tip 13 to stir and mix the reagent liquid and the sample liquid. . The used nozzle tip 13 is removed from the suction nozzle 41 by the tip discarding unit 8 and dropped and discarded downward.
[0036]
Then, the cuvette 11 in which the reagent solution and the sample solution are mixed is adjusted to a predetermined temperature by the temperature adjustment block 32, and is sequentially moved to the photometry unit 5 by the rotation of the rotary table 31, and the measurement of the transmission optical density is performed each time. Done. While continuing the above measurement, a series of analysis operations following the opening of the next cuvette 11 are performed simultaneously. The analysis result based on the photometry is output, and the process is terminated.
[0037]
In the embodiment as described above, on the premise that the disposable cuvette 11 is mounted on the sample tray 3 simultaneously with the sample container 12, the mounting position of the sample container 12 is obtained by detecting the cuvette 11 by the photometric unit 5, Sample analysis is performed in order, and the user only operates the start button of the operation unit 21 after mounting the cuvette 11, the sample container 12 and the nozzle chip 13 in an arbitrary position on the sample tray 3. Therefore, automatic analysis can be performed with a simple operation that does not require input of the mounting position, and it is suitable for a small analytical instrument with a small number of samples.
[0038]
The reagent to be enclosed in the cuvette 11 is preferably a freeze-dried, powdered, granular, or tablet-dried reagent, but a liquid reagent can also be enclosed. In addition, although the reagent is sealed in the cuvette in advance, an empty cuvette may be mounted so that the reagent is dispensed into the cuvette instead of the lysis solution. In addition to fecal occult blood analysis, the design can be changed to analyze urine components (for example, urine protein).
[Brief description of the drawings]
1 is a perspective view showing a schematic configuration of an automatic analyzer according to an embodiment of the present invention. FIG. 2 is a perspective view of a sample tray in FIG. 1. FIG. 3 is a schematic sectional view of a sample tray in an analysis state. 4] Perspective view of cuvette, specimen container and nozzle tip [FIG. 5] Cross-sectional view showing the cuvette opening state by the opening mechanism [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Apparatus main body 3 Sample tray 4 Dispenser 5 Photometry part 6 Shading cover 7 Unsealing mechanism 8 Chip discard part 9 Bottle mounting part
11 Cuvette R Reagent
12 Sample container
13 Nozzle tip
21 Operation unit
31 Rotating table
41 Suction nozzle
42 Swivel arm
51 Light Emitting Element (LED)
52 Photo detector

Claims (2)

使い捨てのキュベット内で試薬と検体液とを混合し、その呈色変化を測光して検体成分の分析を行う分析機器であって、
前記検体液を収容した検体容器および前記キュベットを組にして複数搭載可能なサンプルトレイと、前記キュベット内の試薬と検体液の呈色変化を透過測光する測光部と、該測光部の測光及び前記サンプルトレイの作動を制御する制御ユニットとを備え、
前記制御ユニットは、分析開始時に前記測光部の測光により前記サンプルトレイの任意位置に搭載されたキュベットを検出し、該検出に基づいて前記サンプルトレイの作動を制御し、前記キュベットが搭載されたポジションの検体分析を順に行うことを特徴とする分析機器。
An analytical instrument that analyzes a sample component by mixing a reagent and a sample liquid in a disposable cuvette, and measuring the color change thereof,
And sample tray can be more equipped to the specimen container accommodating the sample liquid and the cuvette set, a light measuring unit that transmits metering the color change of the reagent and the specimen solution in the cuvette, photometric and said photometry section A control unit for controlling the operation of the sample tray ,
The control unit detects a cuvette mounted at an arbitrary position of the sample tray by photometry of the photometry unit at the start of analysis , controls the operation of the sample tray based on the detection , and a position where the cuvette is mounted Analytical instrument characterized by sequentially performing sample analysis.
前記サンプルトレイは、同心上に前記キュベットを搭載する回転式であることを特徴とする請求項1に記載の分析機器。2. The analytical instrument according to claim 1, wherein the sample tray is a rotary type on which the cuvette is mounted concentrically.
JP2002261667A 2002-09-06 2002-09-06 Analytical instrument Expired - Fee Related JP3964290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261667A JP3964290B2 (en) 2002-09-06 2002-09-06 Analytical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261667A JP3964290B2 (en) 2002-09-06 2002-09-06 Analytical instrument

Publications (3)

Publication Number Publication Date
JP2004101292A JP2004101292A (en) 2004-04-02
JP2004101292A5 JP2004101292A5 (en) 2005-10-27
JP3964290B2 true JP3964290B2 (en) 2007-08-22

Family

ID=32261977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261667A Expired - Fee Related JP3964290B2 (en) 2002-09-06 2002-09-06 Analytical instrument

Country Status (1)

Country Link
JP (1) JP3964290B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501650A1 (en) * 2005-02-22 2006-10-15 Technoclone Ges M B H PROCESS FOR DETERMINING COOLING ACTIVATION AND APPARATUS FOR CARRYING OUT SAID METHOD
JP2011506926A (en) * 2007-12-06 2011-03-03 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Integrated device for performing and monitoring chemical reactions
JP5049404B2 (en) 2008-03-31 2012-10-17 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Fluid handling and transfer methods using interconnected multi-chamber devices
JP5903054B2 (en) * 2013-02-01 2016-04-13 株式会社日立ハイテクノロジーズ Automatic analyzer
CN106645767B (en) 2015-10-30 2019-10-11 万华普曼生物工程有限公司 Rotating disc type stool occult blood detection analysis instrument

Also Published As

Publication number Publication date
JP2004101292A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP3964289B2 (en) Analytical instrument
CA2715306C (en) Auxiliary sample supply for a clinical analyzer
KR100920652B1 (en) Method for automatic alignment of metering system for a clinical analyzer
JP2004333259A (en) Autoanalyzer
JP2003098182A (en) Chemical system for clinical analyzer
JPS6321139B2 (en)
US11754580B2 (en) Sample measurement method and sample measurement device
JP3964291B2 (en) Analytical instrument
JPH10260118A (en) Automatic extraction device and automatic concentration-measuring apparatus for component substance in liquid sample
JP3964290B2 (en) Analytical instrument
US8507280B2 (en) Method of normalizing surface tension of a sample fluid
EP3508859A1 (en) Sample measurement device and sample measurement method
JPS6188158A (en) Automatic analysis instrument
JP2590688Y2 (en) Blood coagulation analyzer
JP2001165937A (en) Automatic biochemical analyzer
JP2004233123A (en) Automatic analyzer
JP2004101293A (en) Automatic analytical instrument
JP2004117134A (en) Method for calculating calibration curve in analyzer
JPH0666818A (en) Biochemical analyzer
JP2004117133A (en) Method for correcting device difference in analyzer
JP4475223B2 (en) Automatic analyzer
JPS61262639A (en) Automatic analyser
JPS5919832A (en) Injecting method of reagent to analyzing apparatus
JPH11237385A (en) Biochemical analyzer
JPH11271313A (en) Biochemical analyzer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees